Science.gov

Sample records for air mass boundaries

  1. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  2. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  3. Fraction and composition of NOy transported in air masses lofted from the North American continental boundary layer

    NASA Astrophysics Data System (ADS)

    Parrish, D. D.; Ryerson, T. B.; Holloway, J. S.; Neuman, J. A.; Roberts, J. M.; Williams, J.; Stroud, C. A.; Frost, G. J.; Trainer, M.; Hübler, G.; Fehsenfeld, F. C.; Flocke, F.; Weinheimer, A. J.

    2004-05-01

    Five field studies have included research aircraft flights over the continental United States and the western North Atlantic Ocean from 1996 through 2000 in spring, summer, and fall seasons. The major source of NOx in this region is fossil fuel combustion, which is localized within the continental boundary layer (CBL). We use CO as a tracer of these anthropogenic emissions to estimate the fraction of the emitted NOx that is exported to the free troposphere (FT), either as NOx itself or as its oxidation products. This export was identified as plumes enhanced in CO above an estimated background by at least 30 ppbv, which account for 20-31% of the air parcels sampled in the FT during the five field studies. These plumes were encountered throughout the FT up to the 8 km ceiling of the aircraft but were primarily located just above the CBL with average altitudes of 3.0-4.1 km above ground level. In the summer over the continent, only 20 ± 5% of the originally emitted nitrogen oxides was transported in those plumes. This fraction is in reasonable accord with model results, but the models include only deep convection and not the shallow CBL venting mechanisms responsible for the observed plumes. During the two field studies in the early fall and in the spring over the western North Atlantic, we find that 9 ± 4% of the NOy was transported, although [2004] suggest that this is an underestimate and that 15 ± 11% is more accurate. Both of these numbers indicate that model results in the literature overestimate the amount of NOy transported from the CBL to the FT. In these five field studies, HNO3 generally accounted for one-half to two-thirds of the NOy, which is in contrast to the dominance by NOx and organic nitrates suggested by models. Over the North Atlantic, this difference is likely due to further photochemical processing of the NOy species within the FT and over the continent due to the different transport mechanism considered in the models.

  4. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  5. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  6. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  7. Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon

    2010-01-01

    The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.

  8. Columnar modelling of nucleation burst evolution in the convective boundary layer - first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios

    NASA Astrophysics Data System (ADS)

    Hellmuth, O.

    2006-09-01

    In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that

  9. Mass Transfers for Pressure and Boundary Driven Periodic Flow

    NASA Astrophysics Data System (ADS)

    Thomas, Aaron M.; Narayanan, R.

    1997-11-01

    Enhancing the mass transfer of species from one reservoir to another can be achieved by imposing a periodic flow to the system. Periodic flow is obtained using two different mechanisms: an oscillating pressure drop or oscillating the boundary of the system to produce either a periodic Poiseuille or Couette flow, respectively. A simple calculation of an oscillating flat plate in a semi-infinite fluid reveals the process to be dependent on the viscous and mass transfer boundary layers. For gases, the mass transfer of the lighter species is greater than the heavier species, whereas for liquids, the mass transfer of the lighter species is less than the heavier species. In modeling a finite system of parallel plates with either an imposed periodic pressure drop from a piston or oscillating the plates at the same frequency, it is calculated that the mass transfer of the pressure driven system is higher than that for the boundary driven system for all scaled frequencies. However, more power is required to drive the pressure driven system than the boundary driven system, and we find that the mass transfer per power of the pressure driven and boundary driven system are equal to one another.

  10. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2007-01-01

    The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.

  11. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  12. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  13. Chicxulub impact predates the K-T boundary mass extinction.

    PubMed

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Fucugauchi, Jaime Urrutia; Kramar, Utz; Stüben, Doris

    2004-03-16

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by approximately 300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico. PMID:15004276

  14. Chicxulub impact predates the K-T boundary mass extinction.

    PubMed

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Fucugauchi, Jaime Urrutia; Kramar, Utz; Stüben, Doris

    2004-03-16

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by approximately 300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico.

  15. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  16. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches)...

  17. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches)...

  18. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches)...

  19. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries. (a) Windows or air ports must be of tempered or laminated glass of at least 6.5 millimeters (0.25 inches)...

  20. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction

    NASA Technical Reports Server (NTRS)

    Omori, S.; Gross, K. W.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall hydrogen reacts with the combustion products, liberating an extensive amount of heat.

  1. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  2. A Database and Tool for Boundary Conditions for Regional Air Quality Modeling: Description and Evaluation

    EPA Science Inventory

    Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available ob...

  3. Air Flow Path Dynamics In The Vadose Zone Under Various Land Surface Climate Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Illangasekare, T. H.; Sakaki, T.; Schulte, P. E.; Cihan, A.; Christ, J.

    2010-12-01

    Vapor intrusion (VI) refers to the transport of volatile chemical vapors from subsurface sources to surface and subsurface structures through the vadose zone. Because of the difference in pressure between the inside of the building and the subsurface soil pores, vapor can enter the building through cracks in the foundation, slab and walls and utility openings. The processes that govern the vapor transport in the heterogeneous subsurface “outside the home” are complex, and the sampling to assess potential pathways is subjected to spatial and temporal variability. Spatial variability is a result of a number of factors that include changing soil and soil moisture conditions. Temporal variability is a result of transient heat, wind, ambient pressure and a water flux boundary conditions at the land-atmospheric interface. Fluctuating water table conditions controlled by recharge, pumping, and stream-aquifer interactions will also contribute to the transient vapor flux generation at the sources. When the soil moisture changes as a result of precipitation events and other soil surface boundary conditions, the soil moisture content changes and hence the air permeability. Therefore, the primary pathways for the vapor are preferential channels that change with the transient soil moisture distribution. Both field and laboratory studies have shown that heterogeneity has a significant influence on soil moisture conditions in unsaturated soils. Uncertainties in vapor transport predictions have been attributed to heterogeneity and spatial variability in hydraulic properties. In this study, our goal was to determine the role of soil moisture variability on vapor transport and intrusion as affected by the climate driven boundary conditions on the land surface. A series of experiments were performed to generate a comprehensive data set to understand and evaluate how the spatial and temporal variability of soil moisture affected by the mass and heat flux boundary conditions on the

  4. Air Mass Origin as a Diagnostic of Seasonally-Varying Transport into the Arctic

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Waugh, D. W.; Holzer, M. B.; Newman, P. A.; Polvani, L. M.; Oman, L.; Li, F.

    2013-12-01

    While the signatures of the seasonal cycle on basic state variables such as temperature, winds and on chemical composition have been explored in depth, its signature on air mass composition has received relatively little attention. To this end, we present the first analysis of the seasonally varying transport from the northern hemisphere (NH) midlatitudes into the Arctic using rigorously defined air masses. The fractional contribution from each air mass partitions Arctic air according to where it was last in the planetary boundary layer (PBL) at midlatitudes over the Pacific and Atlantic oceans, North America, Europe, and Asia. Air mass fractions are computed using the coupled climate-chemistry model GEOSCCM subject to fixed present-day climate forcings. We find that during DJF 48% of the air in the free troposphere poleward of 60N was last at midlatitudes primarily at the Pacific and Atlantic oceans, at 20% and 10% respectively. During JJA, however, the largest contributions to Arctic air come from Asian and North American source regions, revealing that transport from the industrialized midlatitude regions dominates during boreal summer. Preliminary calculations of future air masses for a model integration subject to A1B greenhouse gases also reveal the model's climate change response in arctic air mass composition. In concert with weakened tropospheric eddy kinetic energy and a weakened Hadley cell, we find that changes in annual mean arctic air mass fractions are of the order 10%, with increased contributions from air that was last in contact with the PBL over North America and over the Atlantic and Pacific oceans. Air-mass fractions, and their changes, thus help to isolate the role of transport to changes in composition, which are not only driven by changes in chemistry and emissions but also crucially by changes in atmospheric flow.

  5. 46 CFR 116.433 - Windows and air ports in fire control boundaries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... by Underwriters Laboratories may be used in B-Class bulkheads. (f) Windows in doors in fire control... 46 Shipping 4 2012-10-01 2012-10-01 false Windows and air ports in fire control boundaries. 116... CONSTRUCTION AND ARRANGEMENT Fire Protection § 116.433 Windows and air ports in fire control boundaries....

  6. Influence of Boundary Conditions on Simulated U.S. Air Quality

    EPA Science Inventory

    One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...

  7. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  8. Infrared sounding of the trade-wind boundary layer: AIRS and the RICO experiment

    NASA Astrophysics Data System (ADS)

    Martins, João P. A.; Teixeira, João; Soares, Pedro M. M.; Miranda, Pedro M. A.; Kahn, Brian H.; Dang, Van T.; Irion, Frederick W.; Fetzer, Eric J.; Fishbein, Evan

    2010-12-01

    The new generation of remote sensors on board NASA's A-Train constellation offers the possibility of observing the atmospheric boundary layer in different regimes, with or without clouds. In this study we use data from the Atmospheric InfraRed Sounder (AIRS) and of the Rain In Cumulus over the Ocean (RICO) campaign, to verify the accuracy and precision of the AIRS Version 5 Level 2 support product. This AIRS product has an improved vertical sampling that is necessary for the estimation of boundary layer properties. Good agreement is found between AIRS and RICO data, in a regime of oceanic shallow cumulus that is known to be difficult to analyze with other remote sensing data, and also shows a low sensitivity to cloud or land fraction. This suggests that AIRS data may be used for global boundary layer studies to support parameterization development in regions of difficult in-situ observation.

  9. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  10. Generalized Couette Poiseuille flow with boundary mass transfer

    NASA Astrophysics Data System (ADS)

    Marques, F.; Sanchez, J.; Weidman, P. D.

    1998-11-01

    A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F<0 fluid emitted through the inner cylinder fills the gap and flows uniaxially down the annulus; an asymptotic analysis leads to a scaling that removes the effect of [eta] in the pressure parameter [beta], namely [beta]=[pi]2R*2, where R*=F(1[minus sign][eta])/(1+[eta]). The case of sink flow for F>0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.

  11. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 1. [theoretical analysis

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.

  12. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  13. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.

    PubMed

    Braida, W J; Ong, S K

    2001-10-12

    Air sparging in conjunction with soil vapor extraction is one of many technologies currently being applied for the remediation of groundwater contaminated with volatile organic compounds (VOCs). Mass transfer at the air-water interface during air sparging is affected by various soil and VOC properties. In this study with a single air-channel apparatus, mass transfer of VOCs was shown to occur within a thin layer of saturated porous media next to the air channel. In this zone, the VOCs were found to rapidly deplete during air sparging resulting in a steep concentration gradient while the VOC concentration outside the zone remained fairly constant. The sizes of the mass transfer zone were found to range from 17 to 41 mm or 70d(50) and 215d(50) (d(50)=mean particle size) for low organic carbon content media (<0.01% OC). The size of the mass transfer zone was found to be proportional to the square root of the aqueous diffusivity of the VOC, and was affected by the mean particle size, and the uniformity coefficient. Effects of the volatility of the VOCs as represented by the Henry's law constants and the airflow rates on the mass transfer zone were found to be negligible but VOC mass transfer from air-water interface to bulk air phase seems to play a role. A general correlation for predicting the size of the mass transfer zone was developed. The model was developed using data from nine different VOCs and verified by two other VOCs. The existence of the mass transfer zone provides an explanation for the tailing effect of the air phase concentration under prolonged air sparging and the rebound in the VOC air phase concentration after the sparging system is turned off.

  14. Grain-boundary cavitation and bloating of isostatically hot-pressed magnesia-partially-stabilized zirconia on air annealing

    SciTech Connect

    Hogg, C.L.; Stringer, R.K.; Swain, M.V.

    1986-03-01

    Commercially sintered magnesia-partially-stabilized zirconia was densified to near theoretical density by isostatic hot-pressing at 200 MPa and 1700/sup 0/C in argon. Subsequent air annealing above 1100/sup 0/C resulted in bloating of the material due to grain-boundary cavitation. Mass spectrometry of crushed samples detected the evolution of CO/sub 2/ and possibly CO on annealing; the hot-pressed material showed a sudden gas evolution above 1400/sup 0/C. Preliminary Auger and ESCA analysis identified the presence of carbon as graphite and an undefined carbide in both the sintered and the hot-pressed material.

  15. Cold air outbreak during MASEX - Lidar observations and boundary-layer model test

    NASA Technical Reports Server (NTRS)

    Boers, R.; Melfi, S. H.

    1987-01-01

    Lidar observations of boundary-layer development during a cold air outbreak over the Atlantic Ocean were examined. Very rapid rise rates were measured in the first 20 km off the coast. A large region of partial cloudiness was found to exist between the totally clear region near shore and the overcast region far from the coast. As the layer became overcast, rise rate of the boundary layer tripled, suggesting a direct relation between cloudiness and entrainment. Boundary-layer evolution was reasonably well simulated by a simple slab model. The model was not capable of predicting the area of partial cloudiness, nor the region of rapid entrainment near the coast.

  16. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  17. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Fang; Wang, De-Yu; Cai, Zhong-Hua

    2015-07-01

    In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  18. Redefining the Boundaries of Interplanetary Coronal Mass Ejections from Observations at the Ecliptic Plane

    NASA Astrophysics Data System (ADS)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A.

    2016-09-01

    On 2015 January 6-7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  19. Redefining the Boundaries of Interplanetary Coronal Mass Ejections from Observations at the Ecliptic Plane

    NASA Astrophysics Data System (ADS)

    Cid, C.; Palacios, J.; Saiz, E.; Guerrero, A.

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling away from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.

  20. Mass and momentum transfer across solid-fluid boundaries in the lattice-Boltzmann method.

    PubMed

    Yin, Xuewen; Le, Guigao; Zhang, Junfeng

    2012-08-01

    Mass conservation and momentum transfer across solid-fluid boundaries have been active topics through the development of the lattice-Boltzmann method. In this paper, we review typical treatments to prevent net mass transfer across solid-fluid boundaries in the lattice-Boltzmann method, and argue that such efforts are in general not necessary and could lead to incorrect results. Carefully designed simulations are conducted to examine the effects of normal boundary movement, tangential density gradient, and lattice grid resolution. Our simulation results show that the global mass conservation can be well satisfied even with local unbalanced mass transfer at boundary nodes, while a local mass conservation constraint can produce incorrect flow and pressure fields. These simulations suggest that local mass conservation, at either a fluid or solid boundary node, is not only an unnecessary consequence to maintain the global mass conservation, but also harmful for meaningful simulation results. In addition, the concern on the momentum addition and reduction associated with status-changing nodes is also not technically necessary. Although including this momentum addition or reduction has no direct influence on flow and pressure fields, the incorrect fluid-particle interaction may affect simulation results of particulate suspensions.

  1. Factors influencing the marine boundary layer during a cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Stage, S. A.

    1983-01-01

    The model for the cloud-topped marine boundary layer during a cold air outbreak developed by Stage and Businger (1981a) is used in conjunction with a test profile based on a fall outbreak episode over Lake Ontario to study factors influencing marine boundary-layer evolution. Sensitivity tests are done which show changes in layer evolution resulting from variation of wind speed, radiative sky temperature, water surface temperature, humidity of the shoreline sounding and divergence. The behavior of the layer in the presence of a region of cold-water upwelling near the shore is also investigated. It is found that the main effect of the upwelling region is to delay modification of the boundary-layer air.

  2. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  3. Delimitation of air space and outer space - Is such a boundary needed now?

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    A discussion is presented of the question of establishing a boundary between air space and outer space. Four theories and approaches for establishing a delimitation between air space and outer space are examined. Spatial approaches include demarcation based on the division of the atmosphere into layers, demarcation based on aerodynamic characteristics of flight instrumentalities (von Karman Line), demarcation according to the lowest perigee of an orbiting satellite, and demarcation based upon the earth's gravitational effects. The functionalist approach is based on the delimitation or definition of the air space/outer space regime by the purpose and activities for which an object is designed in air space or outer space. The arbitrarist approach is supported by those who wish to draw an arbitrary line between air space and outer space. It is proposed that a pragmatist approach will be more useful than the other three approaches. The pragmatist approach advocates not establishing a boundary between air space and outer space at the present time or in the immediate future. It is argued that there are at present no serious problems that can be resolved by the definition/delimitation of air space and outer space.

  4. Analysis of mass transfer performance in an air stripping tower

    SciTech Connect

    Chung, T.W.; Lai, C.H.; Wu, H.

    1999-10-01

    The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

  5. A boundary element-Random walk model of mass transport in groundwater

    USGS Publications Warehouse

    Kemblowski, M.

    1986-01-01

    A boundary element solution to the convective mass transport in groundwater is presented. This solution produces a continuous velocity field and reduces the amount of data preparation time and bookkeeping. By combining this solution and the random walk procedure, a convective-dispersive mass transport model is obtained. This model may be easily used to simulate groundwater contamination problems. The accuracy of the boundary element model has been verified by reproducing the analytical solution to a two-dimensional convective mass transport problem. The method was also used to simulate a convective-dispersive problem. ?? 1986.

  6. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  7. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  8. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  9. Extended period of K/T boundary mass extinction in the marine realm

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1988-01-01

    The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.

  10. Boundary mass-exchange conditions in the form of the Newton and Dalton laws

    NASA Astrophysics Data System (ADS)

    Afanas'ev, A. M.; Siplivyi, B. N.

    2007-01-01

    It has been established that the linear boundary mass-exchange conditions in the form of the Newton law are unsuitable for description of the initial period of drying and the constant-rate period. The nonlinear boundary conditions of the third kind based on the Dalton evaporation law have been proposed. A numerical algorithm for investigation of the temperature and moisture-content fields up to the dropping-rate period has been developed.

  11. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

    PubMed

    Schulte, Peter; Alegret, Laia; Arenillas, Ignacio; Arz, José A; Barton, Penny J; Bown, Paul R; Bralower, Timothy J; Christeson, Gail L; Claeys, Philippe; Cockell, Charles S; Collins, Gareth S; Deutsch, Alexander; Goldin, Tamara J; Goto, Kazuhisa; Grajales-Nishimura, José M; Grieve, Richard A F; Gulick, Sean P S; Johnson, Kirk R; Kiessling, Wolfgang; Koeberl, Christian; Kring, David A; MacLeod, Kenneth G; Matsui, Takafumi; Melosh, Jay; Montanari, Alessandro; Morgan, Joanna V; Neal, Clive R; Nichols, Douglas J; Norris, Richard D; Pierazzo, Elisabetta; Ravizza, Greg; Rebolledo-Vieyra, Mario; Reimold, Wolf Uwe; Robin, Eric; Salge, Tobias; Speijer, Robert P; Sweet, Arthur R; Urrutia-Fucugauchi, Jaime; Vajda, Vivi; Whalen, Michael T; Willumsen, Pi S

    2010-03-01

    The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.

  12. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  13. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart; Chen, Yaosheng

    2016-01-01

    Boundary layer convection (BLC) is common over high-latitude oceans and adjacent coastal regions when a cold airmass becomes exposed to a sufficient fetch of open water. The vertical structure of mixed-phase BLC clouds and precipitation is examined using the Atmospheric Radiation Measurement Program data set collected at the North Slope of Alaska (NSA) site at Barrow, Alaska. BLC may occur at this location in autumn, when cold air masses originating at higher latitudes advect southward over the still ice-free coastal waters north of Alaska. This study identifies such BLC and documents its occurrence and characteristics. Instruments used for this study include profiling Ka band radars, a depolarization backscatter profiling lidar, a scanning X band radar, a microwave radiometer, a ceilometer, surface meteorological probes, and radiosondes. Six criteria are applied to objectively identify the BLC events, using data collected between 2004 and 2013. BLC episodes are relatively common at the NSA site, but almost exclusively in the month of October, and most episodes are relatively short, less than 10 h in duration. Liquid water is commonly found in these mixed-phase BLC clouds, with a typical liquid water path of 150 g/m2, and snowfall rates average ~3 mm h-1 (water equivalent), in some cases over 10 mm h-1, notwithstanding the low cloud echo tops (~1.0-1.5 km). In one rather weak but persistent episode fall speed estimates derived from the profiling Ka band radar indicates the presence of rimed particles, confirming the convective nature of this precipitation.

  14. 3D ultrasound to stereoscopic camera registration through an air-tissue boundary.

    PubMed

    Yip, Michael C; Adebar, Troy K; Rohling, Robert N; Salcudean, Septimiu E; Nguan, Christopher Y

    2010-01-01

    A novel registration method between 3D ultrasound and stereoscopic cameras is proposed based on tracking a registration tool featuring both ultrasound fiducials and optical markers. The registration tool is pressed against an air-tissue boundary where it can be seen both in ultrasound and in the camera view. By localizing the fiducials in the ultrasound volume, knowing the registration tool geometry, and tracking the tool with the cameras, a registration is found. This method eliminates the need for external tracking, requires minimal setup, and may be suitable for a range of minimally invasive surgeries. A study of the appearance of ultrasound fiducials on an air-tissue boundary is presented, and an initial assessment of the ability to localize the fiducials in ultrasound with sub-millimeter accuracy is provided. The overall accuracy of registration (1.69 +/- 0.60 mm) is a noticeable improvement over other reported methods and warrants patient studies.

  15. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  16. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  18. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1991-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  19. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  20. Trans-boundary Air Quality and Health Impacts of Emissions in Various Regions in China

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Yim, S. H. L.

    2015-12-01

    In last few decades, China has gone through a rapid development, resulting in urbanization and industrialization. However, the abundant economic achievements were gained at the cost of a sharp deterioration of air quality. Previous research has reported the adverse health outcome from outdoor air pollution in China. Nevertheless, the trans-boundary air quality and health impacts due to emissions in various regions in China have yet fully understood. Our study aims to comprehensively apportion the attribution of emissions in seven regions in China, which are defined based on their geographical locations, to air pollutions, as well as the resultant health impacts in their local areas and other regions, provinces, and cities in China. A regional air quality model is applied to simulate the physical and chemical processes of various pollutants in the atmosphere. The resultant health outcome, such as premature death, is estimated by using the concentration-response functions reported in the literature. We anticipate that our results would serve as a critical reference for research community and policy makers to mitigate the air quality and health impacts of emissions in China.

  1. Developing mass spectrometric techniques for boundary layer measurement in hypersonic high enthalpy test facilities

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.; Lewis, B. W.; Nowak, R. J.; Eide, D. G.; Paulin, P. A.; Upchurch, B. T.

    1983-01-01

    Thermodynamic flow properties of gases in the boundary layer or the flowfield have been mainly deduced from pressures and temperatures measured on a model. However, further progress with respect to an understanding of these properties requires a more complete characterization of the layer including determination of the gas composition and chemistry. Most attempts to measure boundary layer chemistry involve the employment of a mass spectrometer and an associated gas sampling system. The three major limiting factors which must be addressed for species measurement in aerothermodynamic investigations on models at reentry stream velocities, are gas sampling effects, instrument limitations, and problems with data acquisition. The present investigation is concerned with a concentrated effort to quantitatively identify and correct for instrument and sampling system effects, and to develop a miniaturized high performance mass spectrometer for on-model real-time analysis of the boundary layer and its associated atmosphere.

  2. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  3. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  4. Enhanced air pollution via aerosol-boundary layer feedback in China

    PubMed Central

    Petäjä, T.; Järvi, L.; Kerminen, V.-M.; Ding, A.J.; Sun, J.N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.; Fu, C.B.; Zilitinkevich, S.; Kulmala, M.

    2016-01-01

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m−3, but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant. PMID:26753788

  5. MHD simulations of boundary layer formation along the dayside Venus ionopause due to mass loading

    NASA Technical Reports Server (NTRS)

    Mcgary, J. E.; Pontius, D. H., Jr.

    1994-01-01

    A two-dimensional magnetohydrodynamic (MHD) simulation of mass-loaded solar wind flow around the dayside of Venus is presented. For conditions appropriate to a low-altitude ionopause the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer the temperatures exhibit strong gradients normal to and away from the ionopause. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the (predominantly tangential) flow decreases in speed as the ionopause is approached and remains small along the ionopause, consistent with Pioneer Venus observations. The total mass density increases significantly as the flow approaches the ionopause, where the contribution of O(+) to the total number density is a few percent. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 10(exp 5)/cu m/s. For the upstream solar wind parameters and mass loading rates chosen for these simulations, the results are consistent with observations made on the dayside of Venus for average ionopause conditions near 300 km.

  6. MHD simulations of boundary layer formation along the dayside Venus ionopause due to mass loading

    NASA Astrophysics Data System (ADS)

    McGary, J. E.; Pontius, D. H.

    1994-02-01

    A two-dimensional magnetohydrodynamic (MHD) simulation of mass-loaded solar wind flow around the dayside of Venus is presented. For conditions appropriate to a low-altitude ionopause the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer the temperatures exhibit strong gradients normal to and away from the ionopause. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the (predominantly tangential) flow decreases in speed as the ionopause is approached and remains small along the ionopause, consistent with Pioneer Venus observations. The total mass density increases significantly as the flow approaches the ionopause, where the contribution of O(+) to the total number density is a few percent. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 105/cu m/s. For the upstream solar wind parameters and mass loading rates chosen for these simulations, the results are consistent with observations made on the dayside of Venus for average ionopause conditions near 300 km.

  7. Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey

    USGS Publications Warehouse

    Miller, K.G.; Sherrell, Robert M.; Browning, J.V.; Field, M.P.; Gallagher, W.; Olsson, R.K.; Sugarman, P.J.; Tuorto, S.; Wahyudi, H.

    2010-01-01

    We directly link iridium (Ir) anomalies in New Jersey to the mass extinction of marine plankton marking the Cretaceous-Paleogene (K-Pg) boundary. We confirm previous reports of an Ir anomaly 20 cm below the extinction of Cretaceous macrofauna (the "Pinna" bed) with new results from a muddy sand section from Tighe Park, Freehold, New Jersey (United States), but we also show that Ir anomalies correlate with marine mass extinctions at three other clay-rich New Jersey sections. Thus, we attribute the anomaly at Freehold to the downward movement of Ir and reaffirm the link between impact and mass extinction. ?? 2010 Geological Society of America.

  8. The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Yi; Chin, Shan-Chieh; Liu, Tsun-Hsien

    2012-07-01

    Adequate air quality modeling is reliant on accurate meteorological simulations especially in the planetary boundary layer (PBL). To understand how the boundary layer processes affect the mixing and transport of air pollutants, the sensitivity of Weather Research Forecasting (WRF) model with different PBL schemes (YSU and MYJ) is utilized. Community Multiscale Air Quality (CMAQ) modeling system is performed subsequently to study the effects of the PBL physical processes on the meteorological and air quality simulations. A comparison is made of two distinct atmospheric conditions. Case 1 considers the influence of the Asian continental outflow where air pollutants carried by long-range transport (LRT) to Taiwan. The variation in ozone (O3) concentration between the two sensitivity runs is mainly caused by the PBL height difference with WRF-MYJ predicts much deeper PBL height near the frontal low-pressure region than does the WRF-YSU. Case 2 is associated with the land-sea breeze flow. In this situation O3 is locally produced from the western side of the country where major metropolitan cities and highways are located. Distinctions in O3 are caused by difference in the strength of the land-sea breeze flow between the two runs. At night the WRF-YSU predicts a weaker offshore land breeze than does the WRF-MYJ near the western coastline. During the day, the WRF-YSU predicts a stronger sea breeze near the offshore area than does the WRF-MYJ, while over the landside, the WRF-YSU predicts a lower wind speed than does the WRF-MYJ.

  9. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  10. Current state and prospects of researches on the control of turbulent boundary layer by air blowing

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.

    2015-07-01

    The paper presents the analytical review of the current state of the investigations and development trends on the problem of turbulent friction and aerodynamic drag reduction in simple model configurations, which is among key ones in modern aeromechanics. Under consideration is the modern fast progressing method of the turbulent flow control by air- and other gases (micro)blowing through a permeable surface, which is utilized in incompressible and compressible turbulent boundary layers. Several computational results to understand the essential flow physics are also included. The problem of simulation of the flow over a perforated wall where some ambiguities, in particular, at the permeable/impermeable boundary being still remained is discussed. Special attention is paid to the analysis of most important experimental and numerical results obtained with the air blowing through a finely-perforated surface, analysis of the physical peculiarities and regularities of the flow with the blowing, probability to describe the properties of such a flow within simple approach frameworks, evaluation of the efficiency of this control method, as well as the trends and opportunities of this method progress in view of state-of-the-art achievements. Although this technology has a penalty for developing the effective turbulent-flow control method, some modifications of the air blowing are an attractive alternative for real applications.

  11. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Newman, P. A.; Waugh, D. W.; Holzer, M. B.; Oman, L.; Polvani, L. M.; Li, F.

    2014-12-01

    Long-range transport from Northern Hemisphere (NH) midlatitudes plays a key role in setting the distributions of trace species and aerosols in the Arctic. While comprehensive models project a strengthening and poleward shift in the midlatitude tropospheric jets in response to future warming, relatively little attention has been paid to assessing the large-scale transport response in the Arctic. A natural way to quantify transport and its future changes is in terms of rigorously defined air masses that partition air according to where it last contacted the planetary boundary layer (PBL). Here we present climatologies of Arctic air mass origin for NH winter and summer, computed from two integrations of the Goddard Earth Observing System chemistry-climate model (GEOSCCM) subject to present-day and future climate forcings. The modeled transport response to A1B greenhouse-gas induced warming reveals that in the future ~10% more air in the Arctic will originate over NH midlatitudes, with a slighter weaker albeit significant increase in winter compared to summer. Our results indicate that transport changes alone may lead to "cleaner" Arctic winters, as air will be 5-10% more likely to have last contacted the PBL over the East Pacific and the Atlantic Oceans and less likely to have originated over Europe and North America. Conversely, in future summers the air mass fractions originating over Asia and North America increase by ~10%, indicating that Arctic pollutant levels may be enhanced owing solely to changes in transport. In particular, our results suggest that more stringent emissions caps may be needed to combat enhanced transport into the Arctic from Asia, where increases in black carbon emissions have already posed concerns. Future changes in air mass fractions are interpreted in terms of large-scale circulation responses that are consistent with CMIP5 multi-model mean projections - namely, upward and poleward shifted meridional transient eddies in future winters and

  12. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  13. Enantiomeric Signatures of Organochlorine Pesticides in Asian, Trans-Pacific and Western U.S. Air Masses

    PubMed Central

    Genualdi, Susan A.; Massey Simonich, Staci L.; Primbs, Toby K.; Bidleman, Terry F.; Jantunen, Liisa M.; Ryoo, Keon-Sang; Zhu, Tong

    2009-01-01

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 meters above sea level (m.a.s.l); Mary’s Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon’s Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon’s Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed as the enantiomeric fraction (1), defined as (+) enantiomer/(sum of the (+) and (−) enantiomers), where a racemic composition has EF = 0.5. Racemic α-hexachlorocyclohexane (α-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Non-racemic α-HCH (EF = 0.528 ± 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the α-HCH EFs were significantly more racemic (EF = 0.513 ± 0.0003, p < 0.001). Racemic α-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The α-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the α-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  14. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed.

  15. Influence of trans-boundary air pollution from China on multi-day high PM10 episodes in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Oh, H. R.; Ho, C. H.; Kim, J.; Chen, D.; Lee, S.; Choi, Y. S.; Chang, L. S.; Song, C. K.

    2014-12-01

    Air quality problems have become a serious global issue as it causes over 3 million deaths per year all over the world. With generations of massive air pollutants in China, the effects of trans-boundary transports of air pollutants on human health have become a serious international concern in East Asia. However, only a limited number of studies are available for providing scientific evidences for quantifying the sources and transports of air pollutants over major countries in East Asia. Here, it is shown that particulate matters originated from China played major role in the occurrence of multi-day (≥ 4 days) severe air pollution episodes in Seoul, Korea, in which the concentration of particulate matter of diameters ≤ 10 μm exceeds 100 μg m-3. Observations show that these multi-day severe air quality episodes occur when a strong high-pressure system resides over the eastern China - Korea region. Such a weather condition confines air pollutants within the atmospheric boundary layer and spread them by slow westerlies within the boundary layer from China into the neighboring countries. Understanding such dynamical processes is a key for advancing the predictability of trans-boundary air pollutants and their health impacts in East Asia as well as developing international measures to improve air quality for the region.

  16. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries

    NASA Astrophysics Data System (ADS)

    Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D.

    2014-06-01

    In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P (x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P =1), fluid cell (pure fluid occupation, P =0), and boundary cell (partial solid and partial fluid, 0boundary and the flow; (2) streaming accompanying a volumetric bounce-back procedure in boundary cells; and (3) boundary-induced volumetric fluid migration moving the residual fluid particles into the flow domain when the boundary swipes over a boundary cell toward a solid cell. The MCVLBM strictly satisfies mass conservation and can handle irregular boundary orientation and motion with respect to the mesh. Validation studies are carried out in four cases. The first is to simulate fluid dynamics in syringes focusing on how MCVLBM captures the underlying physics of flow driven by a willfully moving piston. The second and third cases are two-dimensional (2D) peristaltic flow and three-dimensional (3D) pipe flow, respectively. In each case, we compare the MCVLBM simulation result with the analytical solution and achieve quantitatively good agreements. The fourth case is to simulate blood flow in human aortic arteries with a very complicated irregular boundary. We study steady flow in two dimensions and unsteady flow via the pulsation of the cardiac cycle in three dimensions. In the 2D case, both vector (velocity) and

  17. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  18. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  19. MHD boundary layer flow of a power-law nanofluid with new mass flux condition

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Khan, Waqar Azeem

    2016-02-01

    An analysis is carried out to study the magnetohydrodynamic (" separators=" MHD ) boundary layer flow of power-law nanofluid over a non-linear stretching sheet. In the presence of a transverse magnetic field, the flow is generated due to non-linear stretching sheet. By using similarity transformations, the governing boundary layer equations are reduced into a system of ordinary differential equations. A recently proposed boundary condition requiring zero nanoparticle mass flux is employed in the flow analysis of power-law fluid. The reduced coupled differential equations are then solved numerically by the shooting method. The variations of dimensionless temperature and nanoparticle concentration with various parameters are graphed and discussed in detail. Numerical values of physical quantities such as the skin-friction coefficient and the reduced local Nusselt number are computed in tabular form.

  20. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA

    USGS Publications Warehouse

    Bratton, John F.; Berry, William B.N.; Morrow, Jared R.

    1999-01-01

    Major and trace metal results from three Great Basin stratigraphic sections with strong conodont biostratigraphy identify a distinct anoxic interval that precedes, but ends approximately 100 kyr before, the Frasnian–Famennian (F–F, mid-Late Devonian) boundary mass extinction horizon. This horizon corresponds to the final and most severe step of a more protracted extinction period. These results are inconsistent with data reported by others from the upper Kellwasser horizon in Europe, which show anoxia persisting up to the F–F boundary in most sections. Conditions returned to fully oxygenated prior to the F–F boundary in the study area. These data indicate that the worst part of the F–F extinction was not related directly to oceanic anoxia in this region and potentially globally.

  1. Functional forms for approximating the relative optical air mass

    NASA Astrophysics Data System (ADS)

    Rapp-Arrarás, Ígor; Domingo-Santos, Juan M.

    2011-12-01

    This article constitutes a review and systematic comparison of functional forms for approximating the air mass from the zenith to the horizon. Among them, we find the most meaningful forms in atmospheric optics, geophysics, meteorology, and solar energy science, as well as several forms arising from the study of the atmospheric delay of electromagnetic signals, whose relationship with the air mass was recently proved by the authors. In total, we have compared 26 functional forms, and the fits have been done for three atmospheric profiles, an observer at sea level, and the median wavelength of the Sun's spectral irradiance (0.7274 μm). As a result, the best of the uniparametric forms has more than three centuries of history; the best of the biparametric forms was recently introduced by one of the authors; the best of the tri- and tetraparametric forms were originally proposed for modeling the atmospheric delay of radio signals; and the best of the forms with more than four parameters is used here for the first time. On the basis of these, for the 1976 U.S. Standard Atmosphere (USSA-76), we provide one-, two-, three-, four-, and five-parameter formulas whose maximum deviations are 1.70, 2.91 × 10-1, 3.28 × 10-2, 2.49 × 10-3, and 3.24 × 10-4, respectively.

  2. Quantitative Assessment of Mass Flow Boundaries in Continuous Twin-screw Granulation.

    PubMed

    Schmidt, Adrian; de Waard, Hans; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2016-01-01

    In pharmaceutical manufacturing, there is an increasing interest in continuous manufacturing. As an example for fast continuous processes in general of considerable complexity, this study was focussed on improving the understanding of twin-screw wet granulation. The impact of the liquid-to-solid (L/S) mass flow ratio on product quality (granules) as well as on downstream process operations (tableting) was investigated in detail. Initially two methods were used to define L/S ratio boundaries for the granulation regime in twin-screw wet granulation. It was shown that the first method, which is based on measuring the wet granule mass flow variation, can be used to define the upper L/S ratio boundary of the granulation regime. The second method, based on measuring the granule size distribution, can be used to define the lower L/S ratio boundary of the regime. Using these methods, the granulation regime for different formulations could be established. This information was then used to show that the formulation could be optimised such that the process is more robust (i.e. wider L/S ratio boundaries for the granulation regime). Also it could be used to optimise the formulation considering further downstream processing such as drying (using as little water as possible to reduce drying efforts) or tableting (obtain granules with optimised tableting properties). Preferably, the process should be performed close to the lower L/S ratio boundary of the granulation regime. In summary, these tools enabled the quantitative establishment of granulation regime boundaries in a twin-screw wet granulation process and can be used to optimise formulation and to create a robust process. Analogies to other continuous processes in completely different applications can be conceived. PMID:27646540

  3. Numerical Computation of Mass Transport in Low Reynolds Number Flows and the Concentration Boundary Layer

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Fuller, Nathaniel J.

    Understanding the physical mechanisms by which an individual cell interacts with its environment often requires detailed information about the fluid in which the cell is immersed. Mass transport between the interior of the cell and the external environment is influenced by the flow of the extracellular fluid and the molecular diffusivity. Analytical calculations of the flow field are challenging in simple geometries, and not generally available in more realistic cases with irregular domain boundaries. Motivated by these problems, we discuss the numerical solution of Stokes equation by implementing a Gauss-Seidel algorithm on a staggered computational grid. The computed velocity profile is used as input to numerically solve the advection-diffusion equation for mass transport. Special attention is paid to the case of two-dimensional flows at large Péclet number. The numerical results are compared with a perturbative analytical treatment of the concentration boundary layer.

  4. Distribution of natural halocarbons in marine boundary air over the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Yokouchi, Yoko; Inoue, Jun; Toom-Sauntry, Desiree

    2013-08-01

    Ongoing environmental changes in the Arctic will affect the exchange of natural volatile organic compounds between the atmosphere and the Arctic Ocean. Among these compounds, natural halocarbons play an important role in atmospheric ozone chemistry. We measured the distribution of five major natural halocarbons (methyl iodide, bromoform, dibromomethane, methyl chloride, and methyl bromide) together with dimethyl sulfide and tetrachloroethylene in the atmosphere over the Arctic Ocean (from the Bering Strait to 79°N) and along the cruise path to and from Japan. Methyl iodide, bromoform, and dibromomethane were most abundant near perennial sea ice in air masses derived from coastal regions and least abundant in the northernmost Arctic, where the air masses had passed over the ice pack, whereas methyl chloride and methyl bromide showed the opposite distribution pattern. Factors controlling those distributions and future prospects for natural halocarbons in the Arctic are discussed.

  5. Cold-air outbreak during GALE - Lidar observations and modeling of boundary layer dynamics

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Melfi, S. H.; Palm, Stephen P.

    1991-01-01

    Two cold-air outbreaks were studied during the Genesis of Atlantic Lows Experiment. A lidar system was operated to observe the boundary layer evolution and the development of clouds. On the first day (January 30, 1986) boundary layer rise was less than 50 percent of the value for the second day (March 2, 1986). On the first day only a thin broken cloud cover formed, while on the second day a thick solid cloud deck formed - although the average moisture content was 60 percent of that on the first day. A trajectory slab model was employed to simulate the evolution of the layer over the ocean near the east Atlantic shore. The model allows for vertical gradients in conservative variables under neutrally buoyant conditions. The primary effect of these assumptions, which are based on observed thermodynamic profiles, is to reduce cloudiness to be more in line with observations. Boundary-layer depth was reasonably well predicted as was sensible and latent heat flux.

  6. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction.

    PubMed

    Ward, P D; Haggart, J W; Carter, E S; Wilbur, D; Tipper, H W; Evans, T

    2001-05-11

    The end-Triassic mass extinction is one of the five most catastrophic in Phanerozoic Earth history. Here we report carbon isotope evidence of a pronounced productivity collapse at the boundary, coincident with a sudden extinction among marine plankton, from stratigraphic sections on the Queen Charlotte Islands, British Columbia, Canada. This signal is similar to (though smaller than) the carbon isotope excursions associated with the Permian-Triassic and Cretaceous-Tertiary events. PMID:11349146

  7. Mass transfer across combustion gas thermal boundary layers - Power production and materials processing implications

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1985-01-01

    The effects of Soret diffusion (for vapors) and thermophoresis (for particles) are illustrated using recent optical experiments and boundary layer computations. Mass transfer rate augmentations of up to a factor of 1000 were observed and predicted for submicron-particle capture by cooled solid surfaces, while mass transfer suppressions of more than 10 to the -10th-fold were predicted for 'overheated' surfaces. It is noted that the results obtained are of interest in connection with such technological applications as fly-ash capture in power generation equipment and glass droplet deposition in optical-waveguide manufacture.

  8. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary.

    PubMed

    Longrich, Nicholas R; Bhullar, Bhart-Anjan S; Gauthier, Jacques A

    2012-12-26

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  9. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary

    NASA Astrophysics Data System (ADS)

    Longrich, Nicholas R.; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A.

    2012-12-01

    The Cretaceous-Paleogene (K-Pg) boundary is marked by a major mass extinction, yet this event is thought to have had little effect on the diversity of lizards and snakes (Squamata). A revision of fossil squamates from the Maastrichtian and Paleocene of North America shows that lizards and snakes suffered a devastating mass extinction coinciding with the Chicxulub asteroid impact. Species-level extinction was 83%, and the K-Pg event resulted in the elimination of many lizard groups and a dramatic decrease in morphological disparity. Survival was associated with small body size and perhaps large geographic range. The recovery was prolonged; diversity did not approach Cretaceous levels until 10 My after the extinction, and resulted in a dramatic change in faunal composition. The squamate fossil record shows that the end-Cretaceous mass extinction was far more severe than previously believed, and underscores the role played by mass extinctions in driving diversification.

  10. The measurement of Peroxyacetyl nitrate (PAN) in the regional background marine boundary air, Baengyeong Island, South Korea

    NASA Astrophysics Data System (ADS)

    Lee, G.; Choi, H.; Lee, T.; Lee, D.; Park, J.; Jang, S.

    2010-12-01

    Concurrent measurements of Peroxyacetyl nitrate (PAN), other photochemically reactive species including O3, CO, NO, NOy, selected species of non-methane hydrocarbons (NMHCs), and aerosol chemical (water soluble ionic species, OC/EC, trace metals) compositions were made in an atmospheric monitoring station in Baengyeong Island from Aug. 2nd to 14th of 2010. This island is located at the far western part of Korea in the middle of Yellow Sea between China and Korea. PAN was determined every 3 minutes by a fast chromatograph with luminol-based chemiluminescence detection. Mixing ratios of PAN ranged from the below the detection limit of 0.005 to 1.04 ppb with an average of 0.09 ppb. Over the same period, hourly averaged O3 ranged from 0 to 63 ppb (average of 32 ppb). Although our measurements were made over the relatively clean marine boundary air, significant and rapid increases of PAN were frequently observed. These increases of PAN were coincided with increases of its precursors and wind pattern changes. After detailed analysis of aerosol compositions using local wind variation, back-trajectory and synoptic analysis of air masses, the degree of influences and chemistry related with PAN from surrounding land areas, China, South Korea and North Korea will be identified. Also, the role of PAN and other reactive nitrogen species to ozone formation and its transport over the Yellow Sea are planned to be addressed.

  11. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-01

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  12. Use of Chiral Signatures of Organochlorine Pesticides in Asian, Trans-Pacific, and Western U.S. Air Masses to Identify Source Regions

    NASA Astrophysics Data System (ADS)

    Simonich, S.; Genualdi, S.; Primbs, T.; Ryoo, K.; Bidleman, T.; Jantunen, L.

    2008-12-01

    Chiral signatures of organochlorine pesticides were measured in air masses on Okinawa Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a coastal site on the Olympic Peninsula of Washington at 500 m; Mary's Peak Observatory (MPO), a site at 1250 m in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2300 m in Oregon's Cascade range. The chiral signature of composite soil samples collected from agricultural areas in China and South Korea were also measured. Racemic alpha-HCH was measured in Asian air masses and soil from China and South Korea. Non-racemic (enantiomer fraction (EF) = 0.528 ± 0.0048) alpha-HCH was measured in regional air masses at CPO, a marine boundary layer site, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the EFs were significantly (p-value <0.001) more racemic (EF = 0.513 ± 0.0003). Racemic alpha-HCH was consistently measured in trans- Pacific air masses at MPO and MBO. The alpha-HCH EFs in CPO, MPO, and MBO air masses were positively correlated (p-value = 0.0017) with the amount of time the air mass spent above the boundary layer along the 10-day back air mass trajectory prior to being sampled. This suggests that the alpha-HCH in the free troposphere is racemic. The racemic signatures of cis and trans chlordane in air masses at all four air sampling sites suggest that Asian and U.S. urban areas continue to be sources of chlordanes that have not yet undergone biotransformation.

  13. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  14. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  15. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  16. Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1986-01-01

    Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.

  17. Boundary lubrication of formulated C-ethers in air to 300 C. 2: Organic acid additives

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1973-01-01

    Friction and wear measurements were made on CVM M-50 steel lubricated with three C-ether (modified polyphenyl ether) formulations in dry and moist air. Results were compared to those obtained with a formulated Type 2 ester and the C-ether base fluid. A ball-on-disk sliding friction apparatus was used. Experimental conditions were a 1-kilogram load, a 17-meter/minute surface speed, and a 25 to 300 C (77 to 572 F) disk temperature range. The three C-ether formulations yielded better boundary lubricating characteristics than the Type 2 ester under most test conditions. All C-ether formulations exhibited higher friction coefficients than the ester from 150 to 300 C (302 to 572 F) and similar or lower values from 25 to 150 C (77 to 302 F).

  18. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.

    PubMed

    Li, Ling; Shi, Nan; du Puits, Ronald; Resagk, Christian; Schumacher, Jörg; Thess, André

    2012-08-01

    We report measurements and numerical simulations of the three-dimensional velocity and temperature fields in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra=3×10(9) and 3×10(10) and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of Γ=1. We find that the measured velocity data are in excellent agreement with the DNS results while the temperature data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS. Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δ(v)~Ra(-0.24) and δ(θ)~Ra(-0.24), respectively.

  19. Geographic boundaries in breast, lung and colorectal cancers in relation to exposure to air toxics in Long Island, New York

    PubMed Central

    Jacquez, Geoffrey M; Greiling, Dunrie A

    2003-01-01

    Background This two-part study employs several statistical techniques to evaluate the geographic distribution of breast cancer in females and colorectal and lung cancers in males and females in Nassau, Queens, and Suffolk counties, New York, USA. In this second paper, we compare patterns in standardized morbidity ratios (SMR values), calculated from New York State Department of Health (NYSDOH) data, to geographic patterns in overall predicted risk (OPR) from air toxics using exposures estimated in the USEPA National Air Toxics Assessment database. Results We identified significant geographic boundaries in SMR and OPR. We found little or no association between the SMR of colorectal and breast cancers and the OPR for each cancer from exposure to the air toxics. We did find boundaries in male and female lung cancer SMR and boundaries in lung cancer OPR to be closer to one another than expected. Conclusion While consistent with a causal relationship between air toxics and lung cancer incidence, the boundary analysis does not demonstrate the existence of a causal relationship. However, now that the areas of overlap between boundaries in lung cancer incidence and potential airborne exposures have been identified, we can begin to evaluate local- as well as large-scale determinants of lung cancer. PMID:12633502

  20. Evolutionary and Ecological Sequelae of Mass Extinctions: Examples From the Continental Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Whiteside, J. H.

    2003-12-01

    The Triassic-Jurassic boundary at ˜200 Ma marks one of the five major mass-extinctions of the Phanerozoic and, depending on the metrics used, was similar in magnitude to the K-T mass extinction. In continental environments about 50% of all tetrapod families are eliminated and although floral diversity change is difficult to gauge, a similar proportion of palynomorph taxa disappear at the boundary. The extinction event appears to have been very abrupt, followed by a roughly 900 ky super-greenhouse period characterized by increased precipitation. We hypothesize a series of biological consequences of the drop in diversity and associated super-greenhouse based on observations of the earliest Jurassic assemblages, largely from eastern North America. 1) The drop in diversity results in a collapse of ecological interactions that tend to stabilize the composition of regional biotas and buffer them from invading forms. Triassic assemblages show considerable biogeographic provinciality despite the existence of Pangea, but the earliest Jurassic assemblages were extraordinarily homogenous with many vertebrate genera being essentially global in distribution. 2) Initially the post-boundary terrestrial assemblages were comprised of eurytopic trophic generalists, with animal communities with few herbivores, but abundant carnivores and detritivores subsisting on aquatic-based food webs. The earliest Jurassic tetrapod footprint record is overwhelmingly dominated by the footprints of ceratosaurian theropod dinosaurs, the latter having skull characteristics usually associated at least in part with piscivory. 3) The dramatic size changes over very short periods of time were likely due to an absence of competition (i.e., ecological release). The maximum size of theropod dinosaur footprints increased by about 25% within 10 ky following the boundary, corresponding to a doubling of mass. 4) Representatives of clades with intrinsically high rates of speciation tend to form species flocks

  1. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  2. Three-dimensional flow of Powell–Eyring nanofluid with heat and mass flux boundary conditions

    NASA Astrophysics Data System (ADS)

    Tasawar, Hayat; Ikram, Ullah; Taseer, Muhammad; Ahmed, Alsaedi; Sabir, Ali Shehzad

    2016-07-01

    This article investigates the three-dimensional flow of Powell–Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.

  3. Changing air mass frequencies in Canada: potential links and implications for human health.

    PubMed

    Vanos, J K; Cakmak, S

    2014-03-01

    Many individual variables have been studied to understand climate change, yet an overall weather situation involves the consideration of many meteorological variables simultaneously at various times diurnally, seasonally, and yearly. The current study identifies a full weather situation as an air mass type using synoptic scale classification, in 30 population centres throughout Canada. Investigative analysis of long-term air mass frequency trends was completed, drawing comparisons between seasons and climate zones. We find that the changing air mass trends are highly dependent on the season and climate zone being studied, with an overall increase of moderate ('warm') air masses and decrease of polar ('cold') air masses. In the summertime, general increased moisture content is present throughout Canada, consistent with the warming air masses. The moist tropical air mass, containing the most hot and humid air, is found to increase in a statistically significant fashion in the summertime in 46% of the areas studied, which encompass six of Canada's ten largest population centres. This emphasises the need for heat adaptation and acclimatisation for a large proportion of the Canadian population. In addition, strong and significant decreases of transition/frontal passage days were found throughout Canada. This result is one of the most remarkable transition frequency results published to date due to its consistency in identifying declining trends, coinciding with research completed in the United States (US). We discuss relative results and implications to similar US air mass trend analyses, and draw upon research studies involving large-scale upper-level air flow and vortex connections to air mass changes, to small-scale meteorological and air pollution interactions. Further research is warranted to better understand such connections, and how these air masses relate to the overall and city-specific health of Canadians.

  4. Global iridium anomaly, mass extinction, and redox change at the Devonian-Carboniferous boundary

    SciTech Connect

    Wang, K. Univ. of Calgary, Alberta ); Attrep, M. Jr.; Orth, C.J. )

    1993-12-01

    Iridium abundance anomalies have been found on a global scale in the Devonian-Carboniferous (D-C) boundary interval, which records one of the largest Phanerozoic mass-extinction events, an event that devastated many groups of living organisms, such as plants, ammonoids, trilobites, conodonts, fish, foraminiferans, brachiopods, and ostracodes. At or very close to the D-C boundary, there exists a geographically widespread black-shale interval, and Ir abundances reach anomalous maxima of 0.148 ppb (Montagne Noire, France), 0.138 ppb (Alberta, Canada) 0.140 ppb (Carnic Alps, Austria), 0.156 ppb (Guangxi, China), 0.258 ppb (Guizhou, China), and 0.250 ppb (Oklahoma). The discovery of global D-C Ir anomalies argues for an impact-extinction model. However, nonchondritic ratios of Ir to other important elements and a lack of physical evidence (shocked quartz, microtektites) do not support such a scenario. The fact that all Ir abundance maxima are at sharp redox boundaries in these sections leads us to conclude that the Ir anomalies likely resulted from a sudden change in paleo-redox conditions during deposition and/or early diagenesis. 36 refs., 2 figs., 1 tab.

  5. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  6. Boundary-Layer Development and Low-level Baroclinicity during High-Latitude Cold-Air Outbreaks: A Simple Model

    NASA Astrophysics Data System (ADS)

    Chechin, Dmitry G.; Lüpkes, Christof

    2016-08-01

    A new quasi-analytical mixed-layer model is formulated describing the evolution of the convective atmospheric boundary layer (ABL) during cold-air outbreaks (CAO) over polar oceans downstream of the marginal sea-ice zones. The new model is superior to previous ones since it predicts not only temperature and mixed-layer height but also the height-averaged horizontal wind components. Results of the mixed-layer model are compared with dropsonde and aircraft observations carried out during several CAOs over the Fram Strait and also with results of a 3D non-hydrostatic (NH3D) model. It is shown that the mixed-layer model reproduces well the observed ABL height, temperature, low-level baroclinicity and its influence on the ABL wind speed. The mixed-layer model underestimates the observed ABL temperature only by about 10 %, most likely due to the neglect of condensation and subsidence. The comparison of the mixed-layer and NH3D model results shows good agreement with respect to wind speed including the formation of wind-speed maxima close to the ice edge. It is concluded that baroclinicity within the ABL governs the structure of the wind field while the baroclinicity above the ABL is important in reproducing the wind speed. It is shown that the baroclinicity in the ABL is strongest close to the ice edge and slowly decays further downwind. Analytical solutions demonstrate that the e -folding distance of this decay is the same as for the decay of the difference between the surface temperature of open water and of the mixed-layer temperature. This distance characterizing cold-air mass transformation ranges from 450 to 850 km for high-latitude CAOs.

  7. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    The extended duration of the negative δ13C excursion observed in marine carbonates spanning the Cretaceous-Paleogene (K-Pg) mass extinction event has lead to two main hypothesized post-extinction models ("Strangelove" and "Living Ocean";[1, 2]) for the status of marine primary productivity and the global carbon cycle. However, these models are largely inconsistent with recent paleontological and geochemical evidence suggesting heterogeneous changes in marine productivity and carbon export [3, 4]. While the analysis of lipid biomarkers in the cosmopolitan boundary clay layer allows us to assess changes in primary production by non-calcifying organisms in the immediate aftermath of the mass extinction [4], our poor understanding of the deposition of the clay layer precludes a more detailed reconstruction of short-term variations in marine ecosystem resilience. Here, we present data on extraterrestrial 3He derived from interplanetary dust particles used as a constant flux proxy to constrain fluctuations in mass accumulation rates (MARs) [5] and the duration of the boundary clay deposition in three classic and expanded K-Pg boundary sections: El Kef (Tunisia), Caravaca (Spain), and Kulstirenden (Denmark). Our results from different depositional environments indicate average durations for the sedimentation of the clay layer that are comparable (~10 kyr) to other localities [5], thus confirming its globally brief deposition. Early Paleogene MARs vary among locations when compared to background Late Cretaceous values and do not strictly follow carbonate content as traditionally assumed, thus suggesting variable depositional conditions at different locations. Changes in sediment MARs across the K-Pg will be used to calculate MARs of algal- and bacterial-derived biomarkers, as well as benthic foraminifera, in order to assess the timing and global nature of the recovery of marine primary production and carbon export. 1. Hsu, K.J., He, Q., Mckenzie, J.A., Weissert, H

  8. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  9. Boundary layer stability acts to ballast the mass of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M. B.; Noone, D. C.; Steen-Larsen, H. C.; O'Neill, M.; Raudzens Bailey, A.; Cox, C.; Schneider, D. P.

    2014-12-01

    The mass of the Greenland Ice Sheet has been reduced over recent decades as a consequence of warming, the impact of which is already detectable on global sea level. However, temperature projections suggest that at interior high-altitude sites on the ice it could be decades or more before warming forces these regions to transition from a dry to wet snow facies. Shifts in boundary layer dynamics, including atmosphere-ice sheet hydrological exchange and cloud radiative forcing could expedite or delay this transition. These processes are important with respect to future ice sheet stability, yet they remain difficult to constrain. Using continuous in situ measurements of vertical profiles of the isotopic composition of water vapor at Summit Camp, the highest observatory on the ice sheet, we document the presence of a hydrologic balance between surface sublimation and condensation fluxes. This exists because of a nearly persistent temperature inversion, which hinders the efficiency with which surface water vapor mixes into the free atmosphere. In the presence of a strong temperature inversion, fog and ice particles form near the ice-atmosphere interface from surface moisture fluxes. When this condensate precipitates on or settles to the surface, it ballasts the ice sheet's mass. A decade-long trend towards lower annual accumulation at Summit may therefore reflect continuous replacement of the near surface atmosphere due to reduced atmospheric stability. If this tendency toward destabilization continues, it could accelerate mass loss at interior sites on the ice sheet. The role of boundary layer stability in ice sheet hydrological budgets discussed here is applicable beyond the accumulation zone of the Greenland Ice Sheet.

  10. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts

    SciTech Connect

    Pryor, W.A. )

    1992-01-01

    A simple method is suggested for calculating the time it takes ozone to traverse a biological region, such as a bilayer or a cell, and comparing this time to the halflife of ozone within that region. For a bilayer the calculations suggest that most of the ozone reacts within a bilayer, but a fraction may exit unreacted. For the lung lining fluid layer (LLFL), the calculations show that ozone cannot cross this layer without reacting where the LLFL is thicker than about 0.1 microns. However, since the LLFL varies from 20 to 0.1 microns in thickness with patchy areas in the lower airways that are virtually uncovered, some ozone could reach underlying cells, particularly in the lower airways. For cells (such as alveolar type I epithelial cells), the calculations show that ozone reacts within the cell too rapidly to pass through and exit unreacted from the other side. These calculations have implications for ozone toxicity. In vivo, the toxicity of ozone is suggested to result from the effects of a cascade of products that are produced in the reactions of ozone with primary target molecules that lie close to the air/tissue boundary. These products, which have a lower reactivity and longer lifetime than ozone itself, can transmit the effects of ozone beyond the air/tissue interface. The variation in thickness of the LLFL may modulate the species causing damage to the cells below it. In the lower airways, where the LLFL is thin and patchy, more cellular damage may be caused by ozone itself; in the upper airways where the LLFL is thicker, secondary products (such as aldehydes and hydrogen peroxide) may cause most of the damage. In vitro studies must be designed in an attempt to model the lung physiology.26 references.

  11. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  12. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  13. Mass extinction of ocean organisms at the Paleozoic-Mesozoic boundary: Effects and causes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2012-04-01

    At the end of the Permian, at the boundary between the Paleozoic and Mesozoic (251.0 ± 0.4 Ma), the largest mass extinction of organisms on the Earth occurred. Up to 96% of the species of marine invertebrates and ˜70% of the terrestrial vertebrates died off. A lot of factors were suggested and substantiated to explain this mass mortality, such as the disappearance of environmental niches in the course of the amalgamation of the continental plates into Pangea, sea level fluctuations, anoxia, an elevated CO2 content, H2S intoxication, volcanism, methane discharge from gas-hydrates, climate changes, impact events (collisions with large asteroids), or combinations of many of these reasons. Some of these factors are in subordination to others, while others are independent. Almost all of these factors developed relatively slowly and could not cause the sudden mass mortality of organisms globally. It could have happened when large asteroids, whose craters have been discovered lately, fell to the Earth. It is suggested that the impact events "finished off" the already suppressed biota. A simultaneous change in many of the factors responsible for the biodiversity, including those not connected in a cause-and-effect relationship, proves the existence of a common extrater-restrial cause that affected both the changes in the internal and external geospheres and the activation of asteroid attacks (the Sun's transit of spiral arms of our galaxy, the Sun's oscillations perpendicularly to the galactic plane, etc).

  14. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  15. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  16. Solar wind composition from sector boundary crossings and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.; Geiss, J.

    1992-01-01

    Using the Ion Composition Instrument (ICI) on board the ISEE-3/ICE spacecraft, average abundances of He-4, He-3, O, Ne, Si, and Fe have been determined over extended periods. In this paper the abundances of He-4, O, Ne, Si, and Mg obtained by the ICI in the region of sector boundary crossings (SBCs), magnetic clouds and bidirectional streaming events (BDSs) are compared with the average abundances. Both magnetic clouds and BDSs are associated with coronal mass ejections (CMEs). No variation of abundance is seen to occur at SBCs except for helium, as has already been observed. In CME-related material, the abundance of neon appears to be high and variable, in agreement with recent analysis of spectroscopic observations of active regions. We find that our observations can be correlated with the magnetic topology in the corona.

  17. Abiotic causes of the great mass extinction of marine biota at the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2015-05-01

    In the interval of the Triassic-Jurassic boundary up to 80% of marine species became extinct. The main hypotheses on the causes of this mass extinction are reviewed. The extinction was triggered by a powerful eruption of basalts in the Central Atlantic Magmatic Province. In addition, several impact craters have been found. Extraterrestrial factors resulted in two main sequences of events: terrestrial, leading to strong volcanism, and extraterrestrial (impact events). They produced similar effects: emissions of harmful chemical compounds and aerosols. Consequences included the greenhouse effect, darkening of the atmosphere (which prevented photosynthesis), stagnation of the oceans, and anoxia. Biological productivity decreased; food chains collapsed. As a result, all vital processes were disturbed, and a large portion of the biota went extinct.

  18. New asymptotic effects for the spectrum of problems on concentrated masses near the boundary

    NASA Astrophysics Data System (ADS)

    Nazarov, Sergey A.; Pérez, Eugenia

    2009-08-01

    The Dirichlet and Neumann spectral problems for the Laplace operator in a bounded domain Ω⊂R are considered. We assume that Ω has a piecewise smooth boundary ∂ Ω and the density function is equal to 1+ɛχ in Ω, where ɛ>0 is a small parameter, m∈R and χ is the characteristic function of the union ωɛ0∪⋯∪ωɛJ-1 of small sets (the concentrated masses) distributed periodically near a straight segment Γ⊂∂Ω. We describe asymptotics for the eigenelements of both problems as ɛ→0. To cite this article: S.A. Nazarov, E. Pérez, C. R. Mecanique 337 (2009).

  19. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  20. Ozone in the Boundary Layer air over the Arctic Ocean: Measurements During the TARA Expedition.

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Gascard, J.; Weber, M.; de Marliave, C.; Trouble, R.

    2007-12-01

    It is now well established that after sunrise in polar regions, the atmospheric boundary layer experiences episodes where dramatic loss of ozone can be observed. Virtually all measurements in this respect have been made at coastal observatories on land, but there is strong evidence to surmise that such episodes originate over the frozen ocean. Satellite measurements (GOME, SCIAMACHY, OMI) invariably indicate large areas over the ocean with increased concentrations of BrO which can be interpreted as a smoking gun for ozone depletion processes, but no systematic in-situ measurements of ozone do exist to corroborate the satellite data. The TARA expedition (www.taraexpeditions.org) (IPY project # 238) has enabled us for the first time to make long term ozone measurements in the surface air over the Arctic Ocean, and we report here the first results. As expected ozone was found to be stable at approx. 35 ± 5 nmol~mol-1 during the winter, but shortly after local sunrise in mid March, large depletions of ozone were observed which lasted until well into June. A particularly long episode (> 15 days) of virtually no ozone (mole fraction below or near 1 nmol~mol-1) was experienced during late April. 10-day back trajectories were calculated in an attempt to obtain more insight into the potential origin of the depletion episodes. To place the TARA ozone data into context we will compare the data with land based and satellite observations in 2007 when they become available, as well as the limited record of previous observations made from ice islands. Taking all evidence together it is plausible to speculate that large areas over the Arctic Ocean are devoid of ozone in the atmospheric boundary layer in the first months after polar sunrise, and that if anything, this will increase in the coming years. We speculate what the implications might be. This work is a contribution to IPY project #038 (OASIS, Ocean Atmosphere Sea-Ice and Snow interactions in polar regions), sponsored by

  1. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts?

    PubMed

    Pryor, W A

    1992-01-01

    A simple method is suggested for calculating the time it takes ozone to traverse a biological region, such as a bilayer or a cell, and comparing this time to the halflife of ozone within that region. For a bilayer the calculations suggest that most of the ozone reacts within a bilayer, but a fraction may exit unreacted. For the lung lining fluid layer (LLFL), the calculations show that ozone cannot cross this layer without reacting where the LLFL is thicker than about 0.1 microns. However, since the LLFL varies from 20 to 0.1 microns in thickness with patchy areas in the lower airways that are virtually uncovered, some ozone could reach underlying cells, particularly in the lower airways. For cells (such as alveolar type I epithelial cells), the calculations show that ozone reacts within the cell too rapidly to pass through and exit unreacted from the other side. These calculations have implications for ozone toxicity. In vivo, the toxicity of ozone is suggested to result from the effects of a cascade of products that are produced in the reactions of ozone with primary target molecules that lie close to the air/tissue boundary. These products, which have a lower reactivity and longer lifetime than ozone itself, can transmit the effects of ozone beyond the air/tissue interface. The variation in thickness of the LLFL may modulate the species causing damage to the cells below it. In the lower airways, where the LLFL is thin and patchy, more cellular damage may be caused by ozone itself; in the upper airways where the LLFL is thicker, secondary products (such as aldehydes and hydrogen peroxide) may cause most of the damage. In vitro studies must be designed in an attempt to model the lung physiology. For example, if cells in culture are studied, and if the cells are exposed to ozone while under a supporting medium solution that contains ozone-reactive substances, then the cells may be damaged by products that are formed in the reactions of ozone with the cell medium

  2. Secondary Aerosol Formation in the planetary boundary layer observed by aerosol mass spectrometry on a Zeppelin NT

    NASA Astrophysics Data System (ADS)

    Rubach, Florian; Trimborn, Achim; Mentel, Thomas; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL). In combination with the high scientific payload of more than 1 ton, the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due its lifetime of up to several days secondaray aerosol at a certain location can result from local production or from transport processes. For aerosol measurements on a Zeppelin, a High-Resolution Time-of-Flight Aerosol Mass spectrometer (DeCarlo et al, 2006) was adapted to the requirements posed by an airborne platform. A weight reduction of over 20 % compared to the commercial instrument was achieved, while space occupation and footprint were each reduced by over 25 %. Within the PEGASOS project, the instrument was part of 10 measurement flight days over the course of seven weeks. Three flights were starting from Rotterdam, NL, seven flights were starting from Ozzano in the Po Valley, IT. Flight patterns included vertical profiles to study the dynamics of the PBL and cross sections through regions of interest to shed light on local production and transport processes. Analysis of data from transects between the Apennin and San Pietro Capofiume in terms of "residence time of air masses in the Po valley" indicates that aerosol nitrate has only local sources while aerosol sulfate is dominated by transport. The organic aerosol component has significant contributions of both processes. The local prodcution yields are commensurable with imultaneously observed precursor concentrations and oxidant levels. The PEGASOS project is funded by the European Commission under the Framework Programme 7 (FP7-ENV-2010-265148). DeCarlo, P.F. et al (2006), Anal. Chem., 78, 8281-8289.

  3. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  4. Tectonic activity evolution of the Scotia-Antarctic Plate boundary from mass transport deposit analysis

    NASA Astrophysics Data System (ADS)

    Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.

    2016-04-01

    The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.

  5. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  6. The influence of equivalence ratio and Soret effect on the ignition of hydrogen-air mixtures in supersonic boundary layers

    SciTech Connect

    Figueira da Silva, L.F.; Deshaies, B.

    1994-12-31

    As a result of viscous heating, spontaneous ignition of a supersonic flow of premixed combustible gases can occur in boundary layers. In a previous numerical study, the main structure of the reacting flow related to this specific type of ignition was given in the case of a laminar boundary layer of hydrogen and air developing over a flat plate. To complete the first mapping of the ignition as a function of the boundary conditions, the authors present in this paper the results of a specific study of the influence of the equivalence ratio of the mixture on ignition. The equivalence ratio is found to modify the chemical induction time in the boundary layer as follows: (1) in a direct way, (2) via the dependence of the wall temperature on the composition. Because of these combined effects, the minimum induction length is obtained for unusually lead mixtures. As it modifies local composition, the Soret effect is also found to change the boundary-layer induction length.

  7. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  8. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  9. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  10. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  11. Impact of mass and bond energy difference and interface defects on thermal boundary conductance

    NASA Astrophysics Data System (ADS)

    Choi, ChangJin

    The objective of this study is to use molecular dynamics simulation techniques in order to improve the understanding of phonon transport at the interface of dissimilar materials and the impact of different material properties on thermal boundary conductance (TBC). In order to achieve this goal, we investigated the contributions of mass and bond energy difference and interface defects on TBC at the interface of nanostructured materials using non-equilibrium molecular dynamics (NEMD) simulation and phonon wave-packet (PWP) simulation techniques. NEMD is used to distinguish relative and combined contributions of mass and bond energy difference on TBC. As a result, it is found that the mass has a stronger contribution than the bond energy on lowering the TBC and that the TBC is dependent on the length of interdiffusion region as well as temperature. In addition, evidence of inelastic scattering is observed with interdiffusion regions especially when two materials differ in the bond energy. A detailed description of phonon interactions at the interface is obtained performing PWP simulations. A frequency dependence of the TBC based on phonon dispersion relation is observed. As it is expected, minimum scattering occurs when there exists only vibrational mismatch at the interface and inelastic scattering is to take place at high frequency region when the bond energy of the two materials is different resulting in the strain at the interface. It is also shown that the level of inelastic scattering is dependent on the length of the interdiffusion region. In addition, the TBC calculated with the results of PWP simulations is compared with that of NEMD simulations as well as theoretical predictions from the acoustic mismatch model and the diffuse mismatch model. A simple analytical model, which utilizes knowledge of thermal interface resistance and the interface geometry for the prediction of effective thermal conductivity, is developed. This model is generated based on Si

  12. Studies of acoustic effects on a flow boundary layer in air

    NASA Technical Reports Server (NTRS)

    Mechel, F.; Schilz, W.

    1986-01-01

    Effects of sound fields on the flow boundary layer on a flat plate subjected to a parallel flow are studied. The boundary layer is influenced by controlling the stagnation point flow at the front edge of the plate. Depending on the Reynolds number and sound frequency, excitation or suppression of turbulent is observed. Measurements were taken at wind velocities between 10 and 30 m/sec and sound frequencies between 0.2 and 3.0 kHz.

  13. A new approach to the correlation of boundary layer mass transfer rates with thermal diffusion and/or variable properties

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Rosner, D. E.

    1979-01-01

    A rational approach to the correlation of boundary layer mass transport rates, applicable to many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties, is outlined. The correlation scheme builds upon already available constant property blowing/suction solutions by introducing appropriate correction factors to account for the additional ('pseudo' blowing and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to the particular laminar boundary layer mass transfer problems considered herein (alkali and transition metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors equivalent to about one third of the 'blow off' value. As a useful by-product of the variable property correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include variable property effects.

  14. BOUNDARY-LAYER SIMILAR SOLUTIONS FOR EQUILIBRIUM DISSOCIATED AIR AND APPLICATION TO THE CALCULATION OF LAMINAR HEATTRANSFER DISTRIBUTION ON BLUNT BODIES IN HIGH-SPEED FLOW

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Cohen, N. B.

    1963-01-01

    Flat plate and stagnation flow heat transfer coefficients, similarity solutions of the laminar boundary layer for air in dissociation equilibrium and calculation of laminar heat-transfer distribution on blunt three-dimensional bodies in high speed flow

  15. Mass transfer phenomena of gaseous hydrocarbons and nitrogen dioxide across gas-inorganic pigments boundaries

    NASA Astrophysics Data System (ADS)

    Birbatakou, S.; Pagopoulou, I.; Kalantzopoulos, A.; Roubani-Kalantzopoulou, F.

    1998-11-01

    Reversed-flow gas chromatography was used to study the kinetics of the action of five hydrocarbons namely, ethane, ethene, ethyne, propene and butene and of the nitrogen dioxide, on three known and widely used pigments, the white one TiO2, and the yellows CdS and PbCrO4. The calculation of kinetic parameters and mass transfer coefficients is based on an experimental adsorption isotherm. All these calculations are based on a non linear adsorption isotherm model as it is well accepted that the linear one is inadequate for inorganic substances like these mentioned in this work. The inadequacy is mainly attributed to the non-uniformity of the solid surface. Five physicochemical parameters have been obtained for each of the twenty heterogeneous reactions studied. With these systematic experiments under conditions which are similar to the atmospheric ones, an extrapolation of the results obtained to “real" atmospheres with a high degree of confidence is possible. Some of the calculations were based on the linear model for comparison. La cinétique de la réaction de cinq hydrocarbures (éthane, éthylène, acétylène, propène, boutène) et du dioxyde d'azote avec trois pigments (le blanc de TiO2 et les jaunes de CdS et PbCrO4) a été étudiée par chromatographie en phase gazeuse a flux inversé. Le calcul des paramètres cinétiques et des coefficients de transfert de masse a été effectué à partir des isothermes d'adsorption expérimentales en faisant l'hypothèse d`un modèle d'adsorption non-linéaire, qui résulte de la non-uniformité de la surface. Cinq paramètres physico-chimiques ont été obténus pour chacune des vingt réaction hétérogènes étudiées. À partir de ces résultats obténus dans des conditions similaires aux conditions atmosphériques, l'extrapolation à des atmosphères réelles paraît possible avec une bonne confiance. Quelques calculs ont été effectués avec un modèle linéaire pour comparaison.

  16. A numerical study of hydrogen-air combustion within a supersonic boundary layer

    SciTech Connect

    Figueira da silva, L.F.; Deshaies, B.; Champion, M. )

    1992-01-01

    A numerical study of the ignition and spread of combustion within a supersonic boundary layer is presented for case where ignition is triggered by viscous dissipation and/or wall temperature effects. Three important regions are found in the boundary layer in the streamwise direction. They are: (1) an induction region where the process is mainly controlled by streamwise convection and chemical kinetics in the presence of transverse molecular transports, (2) a thermal runaway region corresponding to a large chemical heat release, (3) a flame region which develops at the end of the thermal runaway region where a flame is stabilized at the outer edge of the boundary layer. The whole chemical process becomes endothermic for large values of free-stream Mach numbers due to intense dissociation effects. 11 refs.

  17. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  18. THE IMPACT OF SHRINKING HANFORD BOUNDARIES ON PERMITS FOR TOXIC AIR POLLUTANT EMISSIONS FROM THE HANFORD 200 WEST AREA

    SciTech Connect

    JOHNSON, R.E.

    2005-11-09

    This presentation (CE-580. Graduate Seminar) presents a brief description of an approach to use a simpler dispersion modeling method (SCREEN3) in conjunction with joint frequency tables for Hanford wind conditions to evaluate the impacts of shrinking the Hanford boundaries on the current permits for facilities in the 200 West Area. To fulfill requirements for the graduate student project (CE-702. Master's Special Problems), this evaluation will be completed and published over the next two years. Air toxic emissions play an important role in environmental quality and require a state approved permit. One example relates to containers or waste that are designated as Transuranic Waste (TRU), which are required to have venting devices due to hydrogen generation. The Washington State Department of Ecology (Ecology) determined that the filters used did not meet the definition of a ''pressure relief device'' and that a permit application would have to be submitted by the Central Waste Complex (CWC) for criteria pollutant and toxic air pollutant (TAP) emissions in accordance with Washington Administrative Code (WAC) 173-400 and 173-460. The permit application submitted in 2000 to Ecology used Industrial Source Code III (ISCIII) dispersion modeling to demonstrate that it was not possible for CWC to release a sufficient quantity of fugitive Toxic Air Pollutant emissions that could exceed the Acceptable Source Impact Levels (ASILs) at the Hanford Site Boundary. The modeled emission rates were based on the diurnal breathing in and out through the vented drums (approximately 20% of the drums), using published vapor pressure, molecular weight, and specific gravity data for all 600+ compounds, with a conservative estimate of one exchange volume per day (208 liters per drum). Two permit applications were submitted also to Ecology for the Waste Receiving and Processing Facility and the T Plant Complex. Both permit applications were based on the Central Waste Complex approach, and

  19. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  20. Air pollution of Moscow by the carbon monoxide and aerosols, boundary layer parameters and estimation of the CO sources intensity.

    NASA Astrophysics Data System (ADS)

    Rakitin, V.; Fokeeva, E.; Kuznetsov, R.; Emilenko, A.; Kopeikin, V.

    2009-04-01

    The results of measurements of the carbon monoxide total content, the soot and submicron aerosols content are given for the period 2005-2008 over Moscow. Two identical grating spectrometers of medium resolution (0,2sm-1) are used with appropriate solar tracking systems, one of which is located outside the city at Zvenigorod Scientific Station (ZSS 56oN, 38oE, 60km West from Moscow in the rural zone) and the other one is inside a city center. This method makes possible to determine the characteristics of anthropogenic pollution, urban part of the CO content. Some simultaneously measurements of aerosols content, the CO column and CO background concentrations in Moscow, autumn 2007 are presented. Nephelometer and quartz filters for soot sampling were used for aerosols measurements. Correlations coefficients between aerosols, CO background concentration and urban part of the CO content were obtained. Permanent sounding of boundary layer was carried out using acoustic locator (SODAR) LATAN-3. Applications of SODAR data (profile of wind speed and inversion height) makes possible to forecast of air pollution situations in megacities area. We obtained the correlation coefficients for the urban part of the CO content with the wind speed for cold and warm seasons. Analysis results of measurements demonstrated preeminent influence of the wind in certain boundary layer (up to 500m) upon the CO extension. The intensity of CO sources in Moscow was estimated. The systematization of CO diurnal variations for different meteorological conditions was performed. Comparing our results with the results of the earlier measurements period (1993-2005), we found out that the urban part of the CO content in the surface air layer over the city did not increase in spite of more than tripled number of motor-vehicles in Moscow. So using the applications of this spectroscopic method we can obtain the air pollution trend from the averaged air pollution measured values.

  1. Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.

  2. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  3. A Sharp-Interface Immersed Boundary Method with Improved Mass Conservation and Reduced Spurious Pressure Oscillations.

    PubMed

    Seo, Jung Hee; Mittal, Rajat

    2011-08-10

    A method for reducing the spurious pressure oscillations observed when simulating moving boundary flow problems with sharp-interface immersed boundary methods (IBMs) is proposed. By first identifying the primary cause of these oscillations to be the violation of the geometric conservation law near the immersed boundary, we adopt a cut-cell based approach to strictly enforce geometric conservation. In order to limit the complexity associated with the cut-cell method, the cut-cell based discretization is limited only to the pressure Poisson and velocity correction equations in the fractional-step method and the small-cell problem tackled by introducing a virtual cell-merging technique. The method is shown to retain all the desirable properties of the original finite-difference based IBM while at the same time, reducing pressure oscillations for moving boundaries by roughly an order of magnitude.

  4. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  5. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  6. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  7. The evolution of the boundary layer and its effect on air chemistry in the Phoenix area.

    SciTech Connect

    Fast, J. D.; Doran, J. C.; Shaw, W. J.; Coulter, R. L.; Martin, T. J.; Environmental Research; PNNL

    2000-09-27

    During a 4-week period in May and June of 1998, meteorological and chemical measurements were made as part of a field campaign carried out in the Phoenix area. Data from the field campaign provide the first detailed measurements of the properties of the convective boundary layer in this area and of the effects of these properties on ozone levels. The meteorological and chemical measurements have been combined with results from a set of meteorological, particle, and chemistry models to study ozone production, transport, and mixing in the vicinity of Phoenix. Good agreement between the simulations and observations was obtained, and the results have been used to illustrate several important factors affecting ozone patterns in the region. Heating of the higher terrain north and east of Phoenix regularly produced thermally driven circulations from the south and southwest through most of the boundary layer during the afternoon, carrying the urban ozone plume to the northeast. The combination of deep mixed layers and moderate winds aloft provided good ventilation of the Phoenix area on most days so that multiday buildups of locally produced ozone did not appear to contribute significantly to ozone levels during the study period. Sensitivity simulations determined that 20 to 40% of the afternoon surface ozone mixing ratios (corresponding to 15 to 35 ppb) were due to vertical mixing processes that entrained reservoirs of ozone into the growing convective boundary layer. The model results also indicated that ozone production in the region is volatile organic compound limited.

  8. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  9. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  10. Air temperature variations on the Atlantic - Arctic boundary since 1802: the low-frequency pattern and ocean teleconnections

    NASA Astrophysics Data System (ADS)

    Wood, K. R.; Overland, J. E.; Jónsson, T.; Smoliak, B. V.

    2010-12-01

    A two-hundred year instrumental record of annual surface air temperature (SAT) in the Atlantic - Arctic boundary region was reconstructed from four station-based composite time series (Fig. 1). Credibility is supported by ice core records, other temperature proxies, and historical evidence. This record (designated TNA) provides new perspective on past climate fluctuations in a region where pivotal climate system processes occur and where unexplained low-frequency variations were observed during the 20th century. TNA shows that the low-frequency pattern of the 20th century does not have a clear analog in the previous century. During the 19th century decadal-scale climate fluctuations occurred in irregular episodes; none were as distinctive as the early 20th century warming event (~1920 to mid-century), which is the most striking historical feature in the record. Evidence of a strong teleconnection between TNA and SST anomalies in the western boundary current - southern recirculation gyre (WBC) region of the North Atlantic Ocean provides an opportunity to reframe the problem of low-frequency variability in the region in terms tractable to theory and empirical investigation. Positive fluctuations in both TNA (and by extension other climate variables associated with it) and SST in the WBC region could be initiated by persistent variations in the large-scale atmospheric circulation that promote the advection of warm maritime air into the Atlantic - Arctic region and simultaneously limit flux-induced cooling in the Nordic Seas and the WBC/recirculation gyre region. This leads to enhanced ocean heat storage in both regions and may consequently reinforce anomalous atmospheric circulation patterns like those observed during the early 20th century warming event. Figure 1. Extended annual mean SAT record for the Atlantic - Arctic boundary region (TNA). The early 20th century warming (ETCW) episode is marked. Regions represented by station-based composite SAT records used in

  11. SIMULATING REGIONAL-SCALE AIR QUALITY WITH DYNAMIC CHANGES IN REGIONAL CLIMATE AND CHEMICAL BOUNDARY CONDITIONS

    EPA Science Inventory

    This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...

  12. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    NASA Astrophysics Data System (ADS)

    Giordano, L.; Brunner, D.; Flemming, J.; Hogrefe, C.; Im, U.; Bianconi, R.; Badia, A.; Balzarini, A.; Baró, R.; Chemel, C.; Curci, G.; Forkel, R.; Jiménez-Guerrero, P.; Hirtl, M.; Hodzic, A.; Honzak, L.; Jorba, O.; Knote, C.; Kuenen, J. J. P.; Makar, P. A.; Manders-Groot, A.; Neal, L.; Pérez, J. L.; Pirovano, G.; Pouliot, G.; San José, R.; Savage, N.; Schröder, W.; Sokhi, R. S.; Syrakov, D.; Torian, A.; Tuccella, P.; Werhahn, J.; Wolke, R.; Yahya, K.; Žabkar, R.; Zhang, Y.; Galmarini, S.

    2015-08-01

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality models to simulate the year 2010 over one European and one North American domain. The MACC re-analysis has been used as chemical initial (IC) and boundary conditions (BC) by all participating regional models in AQMEII-2. The aim of the present work is to evaluate the MACC re-analysis along with the participating regional models against a set of ground-based measurements (O3, CO, NO, NO2, SO2, SO42-) and vertical profiles (O3 and CO). Results indicate different degrees of agreement between the measurements and the MACC re-analysis, with an overall better performance over the North American domain. The influence of BC on regional air quality simulations is analyzed in a qualitative way by contrasting model performance for the MACC re-analysis with that for the regional models. This approach complements more quantitative approaches documented in the literature that often have involved sensitivity simulations but typically were limited to only one or only a few regional scale models. Results suggest an important influence of the BC on ozone for which the underestimation in winter in the MACC re-analysis is mimicked by the regional models. For CO, it is found that background concentrations near the domain boundaries are rather close to observations while those over the interior of the two continents are underpredicted by both MACC and the regional models over Europe but only by MACC over North America. This indicates that emission differences between the MACC re-analysis and the regional models can have a profound impact on model performance and points to the need for harmonization of inputs in future linked global/regional modeling studies.

  13. Impact of nocturnal planetary boundary layer on urban air pollutants: measurements from a 250-m tower over Tianjin, China.

    PubMed

    Han, Suqin; Bian, Hai; Tie, Xuexi; Xie, Yiyang; Sun, Meiling; Liu, Aixia

    2009-02-15

    It is well known that nocturnal planetary boundary layer (NPBL) has important effects on urban air pollutants. However, the direct measurements of the interactions between the NPBL height and urban air pollutants are normally difficult, because such measurements require continuous vertical profiles of air pollutants and meteorological parameters. This paper provides an unique data, which temperature, NPBL, NO(x) and O(3) concentrations are measured at a 250-m meteorological tower in the city of Tianjin, China (a much polluted city located in central-eastern China). The results are analyzed to study the trend of NPBL and the impacts of NPBL on air pollutants in the city. The results show that the measured NPBL height ranges from 100m to 150m. The measurement of 10-year trend of the NPBL height suggests that the averaged NPBL height increases by about 20% between 1995 and 2006. The results also show that the NPBL height has important effects on air pollutants. This study suggests that NO(x) and O(3) concentrations are strongly anti-correlated inside of the NPBL height. During nighttime, NO(x) is directly emitted from the surface and is limited to inside of NPBL (40m), resulting in high NO(x) concentrations near the surface. The high NO(x) concentrations depress O(3), producing low O(3) concentrations near the surface. The measurements of vertical gradient of O(3) show that about 30-50ppbv of O(3) concentrations are chemically destroyed due to the surface emission of NO(x) during nighttime, suggesting that NPBL plays important roles in regulating the diurnal cycle of O(3) at the surface.

  14. Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, B.; Payne, J. L.; Tomasovych, A.; Pross, J.; Fiebig, J.; Benbrahim, M.; FöLlmi, K. B.; Quan, T. M.

    2008-04-01

    The Triassic-Jurassic boundary mass-extinction event (T-J; 199.6 Ma) is associated with major perturbations in the carbon cycle recorded in stable carbon isotopes. Two rapid negative isotope excursions in bulk organic carbon (δ13Corg) occur within the immediate boundary interval at multiple locations and have been linked to the outgassing of 12C-enriched CO2 from the Central Atlantic Magmatic Province. In British Columbia, a positive δ13Corg excursion of +5‰ (Vienna Peedee belemnite (V-PDB)) spans part or all of the subsequent Hettangian stage. Here, we examine the significance of these carbon isotope excursions as records of global carbon cycle dynamics across the T-J boundary and test the link between carbon cycle perturbation-stabilization and biotic extinction-recovery patterns. A combination of δ13Corg and palynological analyses from the Late Triassic to Early Jurassic in the Mingolsheim core (Germany) suggests that organic carbon isotope variations are best explained as the result of both compositional changes in terrestrial versus marine input and disturbance and recovery patterns of major terrestrial plant groups across the T-J boundary. A new high-resolution δ13Ccarb record from the Val Adrara section in the Southern Alps (Italy) spanning from the uppermost Rhaetian through Lower Sinemurian does not exhibit a negative excursion at the T-J boundary but does record a large positive δ13Ccarb excursion of +4‰ (V-PDB) in bulk carbonate that begins at the T-J boundary and reaches a local maximum at the Early Late Hettangian boundary. Values then gradually decrease reaching +0.5‰ at the Hettangian-Sinemurian boundary and remain relatively constant into the Early Sinemurian. Complementary δ13Ccarb data from 4 more sections that span the Hettangian-Sinemurian boundary support carbon cycle stabilization within the Upper Hettangian. Our analyses suggest that isotope changes in organic carbon reservoirs do not necessarily require a shift in the global

  15. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  16. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    NASA Astrophysics Data System (ADS)

    Yue, Qing; Kahn, Brian H.; Xiao, Heng; Schreier, Mathias M.; Fetzer, Eric J.; Teixeira, JoãO.; SušElj, Kay

    2013-08-01

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  17. Transitions of Cloud-Topped Marine Boundary Layers Characterized by AIRS, MODIS, and a Large Eddy Simulation Model

    NASA Astrophysics Data System (ADS)

    Yue, Q.; Kahn, B. H.; Xiao, H.; Schreier, M. M.; Fetzer, E. J.; Kay Sušelj, K.; Teixeira, J.

    2013-12-01

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or break-up of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady-state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  18. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    SciTech Connect

    Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay

    2013-08-16

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  19. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    PubMed

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.

  20. Mass transfer through laminar boundary layer in 2-d microchannels with nonuniform cross section: the effect of wall curvature

    NASA Astrophysics Data System (ADS)

    Pedacchia, Augusta; Adrover, Alessandra

    2012-11-01

    We provide an analytical solution for the combined diffusive and convective 2-d mass transport from a surface film (of arbitrary shape at a given uniform concentration) to a pure solvent flowing in creeping flow conditions into a microchannel, delimited by a flat no-slip surface and by the releasing film itself. Such a problem arises in the study of swelling and dissolution of polimeric thin films under the action of a solvent tangential flow simulating the oral thin film dissolution for drug relase towards the buccal mucosa or oral cavity. We present a similarity solution for laminar forced convection mass (or heat) transfer that generalizes the classical boundary layer solution of the Graetz-Nusselt problem (valid for straight channels or pipes) to a solvent flowing in creeping flow conditions into a 2-d channel with cross-section continuously varying along the axial coordinate x. Close to the releasing boundary, parametrized by a curvilinear abscissa s, both tangential and normal velocity components play a role and their scaling behavior, as a function of wall distance r, should be taken into account in order to have an accurate description of the concentration profile in the boundary layer and of the dependence of the Sherwood number on the curvilinear abscissa s.

  1. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary.

    PubMed

    Ivany, L C; Patterson, W P; Lohmann, K C

    2000-10-19

    The Eocene/Oligocene boundary, at about 33.7 Myr ago, marks one of the largest extinctions of marine invertebrates in the Cenozoic period. For example, turnover of mollusc species in the US Gulf coastal plain was over 90% at this time. A temperature change across this boundary--from warm Eocene climates to cooler conditions in the Oligocene--has been suggested as a cause of this extinction event, but climate reconstructions have not provided support for this hypothesis. Here we report stable oxygen isotope measurements of aragonite in fish otoliths--ear stones--collected across the Eocene/Oligocene boundary. Palaeo-temperatures reconstructed from mean otolith oxygen isotope values show little change through this interval, in agreement with previous studies. From incremental microsampling of otoliths, however, we can resolve the seasonal variation in temperature, recorded as the otoliths continue to accrete new material over the life of the fish. These seasonal data suggest that winters became about 4 degrees C colder across the Eocene/Oligocene boundary. We suggest that temperature variability, rather than change in mean annual temperature, helped to cause faunal turnover during this transition. PMID:11057663

  2. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  3. Measured and calculated wall temperatures on air-cooled turbine vanes with boundary layer transition

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Gaugler, R. E.; Gladden, H. J.

    1982-01-01

    Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for one vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surface were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.

  4. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  5. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  8. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  9. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  10. Evaluating the impact of chemical boundary conditions on near surface ozone in regional climate-air quality simulations over Europe

    NASA Astrophysics Data System (ADS)

    Akritidis, D.; Zanis, P.; Katragkou, E.; Schultz, M. G.; Tegoulias, I.; Poupkou, A.; Markakis, K.; Pytharoulis, I.; Karacostas, Th.

    2013-12-01

    A modeling system based on the air quality model CAMx driven off-line by the regional climate model RegCM3 is used for assessing the impact of chemical lateral boundary conditions (LBCs) on near surface ozone over Europe for the period 1996-2000. The RegCM3 and CAMx simulations were performed on a 50 km × 50 km grid over Europe with RegCM3 driven by the NCEP meteorological reanalysis fields and CAMx with chemical LBCs from ECHAM5/MOZART global model. The recent past period (1996-2000) was simulated in three experiments. The first simulation was forced using time and space invariant LBCs, the second was based on ECHAM5/MOZART chemical LBCs fixed for the year 1996 and the third was based on ECHAM5/MOZART chemical LBCs with interannual variability. Anthropogenic and biogenic emissions were kept identical for the three sensitivity runs.

  11. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    PubMed

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  12. From pores to eddies - linking diffusion-based evaporative fluxes from porous surfaces with a turbulent air boundary layer

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Or, D.

    2012-04-01

    Evaporation affects hydration and energy balance of terrestrial surfaces. Evaporation rates exhibit complex dynamics reflecting interactions between external conditions and internal transport properties of a the drying porous surface Motivated by recent progress in estimating evaporative fluxes from isolated pores across laminar air sublayer, we seek to expand the description and quantify evaporation across a turbulent boundary layer. We adopt concepts from surface renewal (SR) theory focusing on turbulent exchange with individual eddies and linking eddies surface footprint and their local boundary layer over patches of a drying surface. The model resolves diffusive exchange during limited residence time and integrates fluxes over the entire surface to quantify mean evaporative fluxes from drying surfaces into turbulent airflows accounting for subsurface internal transport processes and diffusive exchanges. Input parameters and model evaluation would be based on data from spatially and temporally resolved Infrared (IR) thermography of drying surfaces under prescribe turbulent regimes conducted in a wind-tunnel experiment. The study provides basic ingredients and building blocks essential for upscaling the results to estimation of evaporative fluxes at the field and landscape scales. Keywords: Evaporation; Turbulent Coupling; Surface Renewal; Infrared Imaging.

  13. Laboratory investigations of the heat and momentum transfer in the stably stratified air turbulent boundary layer above the wavy surface

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim

    2015-04-01

    Investigation of small scale transfer processes between the ocean and atmosphere in the boundary and its parameterization on the meteorological conditions (wind and surface waves parameters) is very important for weather forecasts modeling [1]. The accuracy of the predictions taking in to account the so named bulk-formulas strongly depends on the quality empirical data. That is why the laboratory modeling sometimes is preferable (see [2]) then in situ measurements for obtaining enough ensembles of the data with a good accuracy in control conditions, first of all in a case of severe conditions (strong winds with intensive wave breaking and sprays generation). In this investigation laboratory modeling was performed on the Thermostratified Wind-Wave Channel of the IAP RAS (see. [3]). Experiments were carried out for the wind speeds up to 18.5 m/s (corresponding the equivalent 10-m wind speed 30 m/s). For the possibility of varying parameters of surface roughness independently on the wind flow a special system basing on the submerged mosquito mesh (cell of 2*2 mm) was used (see [4]). The roughness was controlled by the depth of the mesh installation under the free surface (no waves when the mesh was on the surface and maximum wave amplitude for the maximum depth). So, for each wind speed several cases of the waves parameters were investigated. During experiments a stable stratification of the boundary layer of air flow was obtained. Temperature of the heating air was 33-37 degrees (depending on the reference wind speed), and the water temperature was 14-16 degrees. The Pitote gauge and hotwire were used together for measuring velocity and temperature profiles. Also indirect estimations of the total volume of the phase of sprays were obtained by analyzing hotwire signals errors during droplets hits. Then aerodynamic drag CD and heat transfer Ch coefficients were obtained by profiling method. It was shown that that these parameters are very sensitive to the intensity of

  14. The Role of Wave Cyclones in Transporting Boundary Layer Air to the Free Troposphere During the Spring 2001 NASA / TRACE-P Experiment

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.; Hannan, J. R.; Crawford, J. H.; Sachse, G. W.; Blake, D. R.

    2003-01-01

    Transport of boundary layer air to the free troposphere by cyclones during NASA's Transport and Chemical Evolution over the Pacific (TRACE-P) experiment is investigated. Airstreams responsible for boundary layer venting are diagnosed using results from a high-resolution meteorological model (MM5) together with in situ and remotely sensed chemical data. Hourly wind data from the MM5 are used to calculate three-dimensional grids of backward air trajectories. A reverse domain filling (RDF) technique then is employed to examine the characteristics of airstreams over the computational domain, and to isolate airstreams ascending from the boundary layer to the free troposphere during the previous 36 hours. Two cases are examined in detail. Results show that airstreams responsible for venting the boundary layer differ considerably from those described by classic conceptual models and in the recent literature. In addition, airstreams sampled by the TRACE-P aircraft are found to exhibit large variability in chemical concentrations. This variability is due to differences in the boundary layer histories of individual airstreams with respect to anthropogenic sources over continental Asia and Japan. Complex interactions between successive wave cyclones also are found to be important in determining the chemical composition of the airstreams. Particularly important is the process of post-cold frontal boundary layer air being rapidly transported offshore and recirculated into ascending airstreams of upstream cyclones.

  15. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  16. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  17. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  18. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  19. Boundary lubrication of formulated C-ethers in air to 300 C

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1975-01-01

    Friction and wear measurements were made in dry and moist air on CVM M-50 steel lubricated with six C-ether formulations containing phosphorus ester and organic acid additives. Results were compared to those obtained with a formulated Type 2 ester and the C-ether base fluid. A ball-on-disk sliding friction apparatus was used. Experimental conditions were a 1-kilogram load, 17 meter-per-minute (100 rpm) surface speed, and a 25 to 300 C disk temperature range. The C-ether base fluid and the C-ether formulations yielded lower wear than the ester under most test conditions. The C-ether formulations exhibited higher friction coefficients than the ester from 150 to 300 C and similar or lower values from 25 to 150 C.

  20. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  1. Assessing the Influence of Western Boundary Ozone Inflow for the Pacific Northwest Using the AIRPACT-4 Air-Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Vaughan, J. K.; Chung, S. H.; Herron-Thorpe, F. L.; Lamb, B. K.; Zhang, R.; Mount, G. H.; Emmons, L. K.

    2013-12-01

    The AIRPACT project has provided state, local and tribal air quality managers in the Pacific and Inland Northwest with state-of-the-art near-real time air quality forecasts, beginning in 2001 (Vaughan et al., 2004). Air-quality modeling is also an important tool for evaluating strategies for complying with the NAAQS, especially as the ozone standard is likely to be tightened from 75 ppb to 60 - 70 ppb. For the Pacific Northwest a perennial issue is the significance of trans-boundary transport effects on air quality. Under the EPA Exceptional Events Policy, for example, a nominal exceedance can be excluded from design value calculation if it can be credibly ascribed to long-range transport (LRT); air-quality modeling is an accepted tool for making a case that LRT contributes to an exceedance, and thus qualifies as an Exceptional Event. Also, evidence is accumulating that local air pollution should sometimes be viewed in the context of baseline pollution levels, and that these baseline levels are influenced by LRT (Wigder et al., 2013). AIRPACT4, a WRF-SMOKE-CMAQ air quality modeling system, uses chemical boundary conditions from global MOZART4 model runs that assimilate MOPITT/TERRA satellite CO (Herron-Thorpe et al., 2012). Here we use a non-reactive tracer species version of CMAQv4.7.1 to develop a chemical climatology describing trans-boundary ozone contributions (across the western boundary only) to the ozone background of the Pacific Northwest, including ozone input to the domain from trans-Pacific transport originating in Asia. Discrete tracers are assigned to the boundary condition ozone from each of the 21 model layers. The modeling results are analyzed for ozone-season months to determine: 1) monthly statistics on the ratio of trans-boundary tracer ozone to standard AIRPACT4 ground level ozone, and 2) the contribution of trans-boundary tracer ozone to episodes of high ozone concentration. Preliminary results will be presented along with discussion of

  2. Ozone in the Boundary Layer air over the Arctic Ocean - measurements during the TARA expedition

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Nghiem, S. V.

    2009-03-01

    A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N - 88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30-40 nmol mol-1 and summer minima of ca. 20 nmol mol-1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above -20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.

  3. Effects of tangential-type boundary condition discontinuities on the accuracy of the lattice Boltzmann method for heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Li, Like; AuYeung, Nick; Mei, Renwei; Klausner, James F.

    2016-08-01

    We present a systematic study on the effects of tangential-type boundary condition discontinuities on the accuracy of the lattice Boltzmann equation (LBE) method for Dirichlet and Neumann problems in heat and mass transfer modeling. The second-order accurate boundary condition treatments for continuous Dirichlet and Neumann problems are directly implemented for the corresponding discontinuous boundary conditions. Results from three numerical tests, including both straight and curved boundaries, are presented to show the accuracy and order of convergence of the LBE computations. Detailed error assessments are conducted for the interior temperature or concentration (denoted as a scalar ϕ) and the interior derivatives of ϕ for both types of boundary conditions, for the boundary flux in the Dirichlet problem and for the boundary ϕ values in the Neumann problem. When the discontinuity point on the straight boundary is placed at the center of the unit lattice in the Dirichlet problem, it yields only first-order accuracy for the interior distribution of ϕ, first-order accuracy for the boundary flux, and zeroth-order accuracy for the interior derivatives compared with the second-order accuracy of all quantities of interest for continuous boundary conditions. On the lattice scale, the LBE solution for the interior derivatives near the singularity is largely independent of the resolution and correspondingly the local distribution of the absolute errors is almost invariant with the changing resolution. For Neumann problems, when the discontinuity is placed at the lattice center, second-order accuracy is preserved for the interior distribution of ϕ; and a "superlinear" convergence order of 1.5 for the boundary ϕ values and first-order accuracy for the interior derivatives are obtained. For straight boundaries with the discontinuity point arbitrarily placed within the lattice and curved boundaries, the boundary flux becomes zeroth-order accurate for Dirichlet problems

  4. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  5. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  6. Influence of the added mass effect and boundary conditions on the dynamic response of submerged and confined structures

    NASA Astrophysics Data System (ADS)

    Valentín, D.; Presas, A.; Egusquiza, E.; Valero, C.

    2014-03-01

    The dynamic response of submerged and confined disk-like structures is of interest in the flied of hydraulic machinery, especially in hydraulic turbine runners. This response is difficult to be estimated with accuracy due to the strong influence of the boundary conditions. Small radial gaps as well as short axial distances to rigid surfaces greatly modify the dynamic response because the fact of the added mass and damping effects. Moreover, the effect of the shaft coupling is also important for certain mode-shapes of the structure. In the present study, the influence of the added mass effect and boundary conditions on the dynamic behavior of a submerged disk attached to a shaft is evaluated through experimental tests and structural- acoustic coupling numerical simulations. For the experimentation, a test rig has been developed. It consists of a confined disk attached to a shaft inside a cylindrical container full of water. The disk can be fixed at different axial positions along the shaft. Piezoelectric patches are used to excite the disk and the response is measured with submersible accelerometers. For each configuration tested, the natural frequencies of the disk and the shaft are studied. Numerical results have been compared with experimental results.

  7. Uncertainties in Modelling Glacier Melt and Mass Balances: the Role of Air Temperature Extrapolation and Type of Melt Models

    NASA Astrophysics Data System (ADS)

    Pellicciotti, F.; Ragettli, S.; Carenzo, M.; Ayala, A.; McPhee, J. P.; Stoffel, M.

    2014-12-01

    While glacier responses to climate are understood in general terms and in their main trends, model based projections are affected by the type of model used and uncertainties in the meteorological input data, among others. Recent works have attempted at improving glacio-hydrological models by including neglected processes and investigating uncertainties in their outputs. In this work, we select two knowledge gaps in current modelling practices and illustrate their importance through modelling with a fully distributed mass balance model that includes some of the state of the art approaches for calculations of glacier ablation, accumulation and glacier geometry changes. We use an advanced mass balance model applied to glaciers in the Andes of Chile, Swiss Alps and Nepalese Himalaya to investigate two issues that seem of importance for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and the large uncertainty in model outputs associated with it. The ablation models are calibrated with a large amount of data from in-situ campaigns, and distributed observations of air temperature used to calculate lapse rates and calibrate a thermodynamic model of temperature distribution. We show that no final assessment can be made of what type of melt model is more appropriate or accurate for simulation of glacier ablation at the glacier scale, not even for relatively well studied glaciers. Both models perform in a similar manner at low elevations, but important differences are evident at high elevations, where lack of data prevents a final statement on which model better represent the actual ablation amounts. Accurate characterization of air temperature is important for correct simulations of glacier mass balance and volume changes. Substantial differences are

  8. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  9. Measurement of mass attenuation coefficients in air by application of detector linearity tests

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Chantler, C. T.; Paterson, D.; McMahon, P. J.; Irving, T. H.; Lin, J. J.; Nugent, K. A.; Brunton, A. N.; McNulty, I.

    2002-10-01

    Accurate knowledge of x-ray mass attenuation coefficients is essential for studies as diverse as atomic physics, materials science, and radiation safety. However, a significant discrepancy exists between theoretical tabulated results for air at soft x-ray energies. We outline a precision measurement of the mass attenuation coefficients for air at various energies using two types of detectors and a simple test of detector response. We discuss whether sufficient accuracy can be obtained using this data to distinguish between competing theoretical estimates. In the process, we investigate the intensity response of two common synchrotron x-ray detectors: an x ray to optical charge-coupled device camera using a crystal scintillator and an x-ray sensitive photodiode.

  10. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  11. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  12. Impacts of Typhoon and Air-Mass Pathways on Rainwater Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Cheng, M.; You, C.

    2006-12-01

    To assess the importance of chemical fluxes on trace elements by wet precipitation, we have collected time- series rain waters between 06/20/04 and 09/20/05 for ICPMS and IC measurements. The sampling site is located at Tainan city in southwest Taiwan and there were four typhoons, namely Mindulle, Rananim, Aere, and Haima, hit the island during this period. Combining trace element compositions with HYSPLIT model for air-mass transportation designed by NOAA, we were able to understand possible source, flux and migration pathway of pollutants in rainwater. Our results show that seasalt contribution and trace element fluxes were higher during typhoon events. The Na and Pb flux varied largely, between 0.03~1388 and 0.0002~2000 mg/m2/day respectively, depended on the pathways of air mass trajectory and wind strength. It is clear that typhoons carry not only sea spray but also major anthropogenic pollutants from south Asia. Among the four typhoons, the Mindulle carried the largest fluxes of seasalt and trace elements while Rananim was weak in strength and brought the lowest Na and Pb due to less degree of mixing with air mass on land. The calculated enriched factors normalized to seawater (EFsea) were near unity for Na and Mg, but were much larger for K and Ca possibly due to crust source contamination and biomass burning. The EFcrust or EFsea values of various trace metals (e.g., V, Cr, Mn, Co, Ni, Cu, Zn, As, Ba and Pb were all significantly larger than 10 indicating the importance of anthropogenic sources. Interestingly, the PCA results confirm that rain waters with similar chemical characteristics have shared common air mass backward trajectory history.

  13. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  14. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  15. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  17. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  18. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  19. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    , deployment, operation, and recovery of R/P FLIP. These problems ranged from the U.S.N.S. Sioux cutting a mooring line, which delayed deployment by more than 4 days, nearly loosing Tommy during the first attempt at deployment, inadequate air conditioning in the lab spaces, causing at least one instrument to temporarily fail, and problems associated with too many people and too many sensors on board. These issues will be discussed and recommendations will be made to improve future microwave and electro-optical experiments at sea.

  20. Heat and mass transfer at a free surface with diabatic boundaries in a single-species system under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Eckart; Dreyer, Michael E.

    2014-06-01

    In this paper, we analyzed the heat and mass transfer at a free surface under microgravity conditions. The SOURCE-II (Sounding Rocket COMPERE Experiment) experiment was performed on a suborbital flight in February 2012 from Esrange in North Sweden. It provided representative data with respect to solid, liquid, and vapor temperatures as well as the visible surface position. The objectives were to quantify the deformation of the free liquid surface and to correlate the apparent contact angle to a characteristic temperature difference between subcooled liquid and superheated wall. Furthermore, the influence of evaporation and condensation at the liquid/vapor interface and at the superheated wall must be taken into account to analyze heat and mass fluxes due to a characteristic temperature difference. In the following, we show evidently that the magnitude of the apparent contact angle depends on the exerted specific pressurizations of the vapor phase during the experiment and hence on the change in the saturation temperature at the free surface. The characteristic temperature difference is defined with respect to the wall temperature in the vicinity of the contact line and the saturation temperature. Therefore, apparent contact angle and temperature difference can be correlated and indicate a specific characteristic. Concerning the heat and mass transfer at the free liquid surface and the contact line, two different methods are presented to evaluate the net mass due to phase change within a certain time interval. In the first approach, the mass flow rate is calculated by means of the ideal gas law and its derivatives with respect to temperature and pressure. The second approach calculates the heat flux as well as the mass flux at the wall and in the region of the free liquid surface. In these cases, a specific heat transfer coefficient and a thermal boundary layer thickness are used.

  1. The relation between air pollution data and planetary boundary layer quantities in a complex coastal industrial site nearby populated areas.

    NASA Astrophysics Data System (ADS)

    Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.

    2010-09-01

    The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and

  2. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  3. Combustion of a Methane-Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment

    NASA Astrophysics Data System (ADS)

    Krainov, A. Yu.; Moiseeva, K. M.

    2016-03-01

    A problem on combustion of a methane-air mixture in a slot burner with an internal insert in mass transfer from the burner's exterior wall to the environment has been solved. A mathematical formulation of the problem takes account of the dependence of the diffusion, thermal-conductivity, and heat-transfer coefficients on temperature, and also of the heat removal from the gas to the environment by convective and radiant heat transfer. A numerical investigation has been carried out in a one-dimensional mathematical formulation of the problem in dimensional variables. The boundary of existence of a stable high-temperature regime of combustion of the methane-air mixture has been determined as a function of the rate of feed of the gas, the environmental temperature, and the width of the flow area of the burner.

  4. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  5. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  6. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  7. Modeling of Trans-boundary Transport of Air Pollutants in the California-Mexico Border Region during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Bei, N.; Zavala, M. A.; Lei, W.; Li, G.; Molina, L. T.

    2010-12-01

    The US and Mexico share a common air basin along the ~200 km border between California and Baja California. The economical activities in this region are heavily influenced by the international trade and commerce between Mexico and the US that mainly occurs through the borders of the sister cities of San Diego-Tijuana and Calexico-Mexicali. The diversity and differences in the characteristics of emissions sources of air pollutants in the California-Mexico border region make this an important area for the study of the chemistry and trans-boundary transport of air pollutants. During May-June of 2010, the Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region and assessing the possible impacts of these emissions on local and regional air quality. In this work we will present the results of the use of the Comprehensive Air quality model with extensions (CAMx) in a modeling domain that includes the sister cities of San Diego-Tijuana and Calexico-Mexicali for studying events of trans-boundary transport of air pollutants during Cal-Mex 2010. The measurements obtained during the Cal-Mex 2010 field campaign are used in the evaluation of the model performance and in the design of air quality improvement policies in the California-Mexico border region.

  8. An upper boundary in the mass-metallicity plane of exo-Neptunes

    NASA Astrophysics Data System (ADS)

    Courcol, Bastien; Bouchy, François; Deleuil, Magali

    2016-09-01

    With the progress of detection techniques, the number of low-mass and small-size exoplanets is increasing rapidly. However their characteristics and formation mechanisms are not yet fully understood. The metallicity of the host star is a critical parameter in such processes and can impact the occurrence rate or physical properties of these planets. While a frequency-metallicity correlation has been found for giant planets, this is still an ongoing debate for their smaller counterparts. Using the published parameters of a sample of 157 exoplanets lighter than 40 M⊕, we explore the mass-metallicity space of Neptunes and super-Earths. We show the existence of a maximal mass that increases with metallicity, that also depends on the period of these planets. This seems to favour in situ formation or alternatively a metallicity-driven migration mechanism. It also suggests that the frequency of Neptunes (between 10 and 40 M⊕) is, like giant planets, correlated with the host star metallicity, whereas no correlation is found for super-Earths (<10 M⊕).

  9. Smart tetroons for Lagrangian air-mass tracking during ACE 1

    NASA Astrophysics Data System (ADS)

    Businger, Steven; Johnson, Randy; Katzfey, Jack; Siems, Steven; Wang, Qing

    1999-05-01

    A series of "smart" tetroons was released from shipboard during the recent ACE 1 field experiment designed to monitor changes in the sulfur budget in a remote marine boundary layer (MBL) south of Tasmania, Australia. The smart tetroons were designed at NOAA Air Resources Laboratory Field Research Division to provide air parcel tracking information. The adjective smart here refers here to the fact that the buoyancy of the tetroons automatically adjusts through the action of a pump and valves when the tetroon travels vertically outside a range of pressures set prior to tetroon release. The smart tetroon design provides GPS location, barometric pressure, temperature, relative humidity, and tetroon status data via a transponder to the NCAR C-130 research aircraft flying in the vicinity of the tetroons. In this paper we will describe (1) the design and capability of the smart tetroons and their performance during the two Lagrangian experiments conducted during ACE 1, (2) the synoptic context of the Lagrangians, including the origin of the air parcels being tracked, and (3) the results of trajectory predictions derived from the National Center for Environmental Prediction (NCEP) Global Spectral Model (GSM) and Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Atmospheric Research (DAR) limited-area model.

  10. Octopods: Nude ammonoids that survived the Cretaceous-Tertiary boundary mass extinction

    NASA Astrophysics Data System (ADS)

    Lewy, Z.

    1996-07-01

    Certain ammonoids changed the mode of coiling or the growth angle of their last body chamber, constricted the terminal aperture, or developed apertural processes, which restricted all life functions. The modified terminal body chamber of macroconchs apparently functioned as a floating egg case for a single breeding phase. The young that hatched from tiny eggs fed on the enclosed female corpse. This same breeding strategy is executed by the extant octopod Argonauta. As a nude cephalopod, the sexually mature female secretes an egg case, which resembles Cretaceous ammonites, for the tiny eggs. The remarkable similarity in mode of breeding between Argonauta and ammonoids with modified terminal body chambers suggests that the ancestral argonautid was a nude ammonoid. Other octopods, which lay large, yolk-rich eggs attached onto substrates, likewise originate from ancestral nude ammonoids, which, however, did not breed in a floating egg case. Nude ammonoids crossed the Cretaceous-Tertiary boundary, as did the genuine coleoids comprising rudimentary endoskeletons.

  11. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  12. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  13. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction.

    PubMed

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-07-14

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

  14. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction.

    PubMed

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-01-01

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid-high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years. PMID:27414998

  15. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction

    PubMed Central

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-01-01

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid–high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years. PMID:27414998

  16. Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Oshima, Naga; Adachi, Kouji; Adachi, Yukimasa; Mizukami, Takuya; Fujibayashi, Megumu; Saito, Ryosuke

    2016-07-01

    The mass extinction of life 66 million years ago at the Cretaceous/Paleogene boundary, marked by the extinctions of dinosaurs and shallow marine organisms, is important because it led to the macroevolution of mammals and appearance of humans. The current hypothesis for the extinction is that an asteroid impact in present-day Mexico formed condensed aerosols in the stratosphere, which caused the cessation of photosynthesis and global near-freezing conditions. Here, we show that the stratospheric aerosols did not induce darkness that resulted in milder cooling than previously thought. We propose a new hypothesis that latitude-dependent climate changes caused by massive stratospheric soot explain the known mortality and survival on land and in oceans at the Cretaceous/Paleogene boundary. The stratospheric soot was ejected from the oil-rich area by the asteroid impact and was spread globally. The soot aerosols caused sufficiently colder climates at mid–high latitudes and drought with milder cooling at low latitudes on land, in addition to causing limited cessation of photosynthesis in global oceans within a few months to two years after the impact, followed by surface-water cooling in global oceans in a few years. The rapid climate change induced terrestrial extinctions followed by marine extinctions over several years.

  17. Locking, mass flux and topographic response at convergent plate boundaries - the Chilean case

    NASA Astrophysics Data System (ADS)

    Oncken, Onno

    2016-04-01

    On the long term, convergent plate boundaries have been shown to be controlled by either accretion/underplating or by subduction erosion. Vertical surface motion is coupled to convergence rate - typically with an uplift rate of the coastal area ranging from 0 to +50% of convergence rate in accretive systems, and -20 to +30% in erosive systems. Vertical kinematics, however, are not necessarily linked to horizontal strain mode, i.e. upper plate shortening or extension, in a simple way. This range of kinematic behaviors - as well as their acceleration where forearcs collide with oceanic ridges/plateau - is well expressed along the Chilean plate margin. Towards the short end of the time scale, deformation appears to exhibit a close correlation with the frictional properties and geodetic locking at the plate interface. Corroborating analogue experiments of strain accumulation during multiple earthquake cycles, forearc deformation and uplift focus above the downdip and updip end of seismic coupling and slip and are each related to a particular stage of the seismic cycle, but with opposite trends for both domains. Similarly, barriers separating locked domains along strike appear to accumulate most upper plate faulting interseismically. Hence, locking patters are reflected in topography. From the long-term memory contained in the forearc topography the relief of the Chilean forearc seems to reflect long term stability of the observed heterogeneity of locking at the plate interface. This has fundamental implications for spatial and temporal distribution of seismic hazard. Finally, the nature of locking at the plate interface controlling the above kinematic behavior appears to be strongly controlled by the degree of fluid overpressuring at the plate interface suggesting that the hydraulic system at the interface takes a key role for the forearc response.

  18. Analytic solution for magnetohydrodynamic boundary layer flow of Casson fluid over a stretching/shrinking sheet with wall mass transfer

    NASA Astrophysics Data System (ADS)

    Krishnendu, Bhattacharyya; Tasawar, Hayat; Ahmed, Alsaedi

    2013-02-01

    In this analysis, the magnetohydrodynamic boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet in the presence of wall mass transfer is studied. Using similarity transformations, the governing equations are converted to an ordinary differential equation and then solved analytically. The introduction of a magnetic field changes the behavior of the entire flow dynamics in the shrinking sheet case and also has a major impact in the stretching sheet case. The similarity solution is always unique in the stretching case, and in the shrinking case the solution shows dual nature for certain values of the parameters. For stronger magnetic field, the similarity solution for the shrinking sheet case becomes unique.

  19. Changes in environmental conditions as the cause of the marine biota Great Mass Extinction at the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2016-02-01

    In the interval of the Triassic-Jurassic boundary, 80% of the marine species became extinct. Four main hypotheses about the causes of this mass extinction are considered: volcanism, climatic oscillations, sea level variations accompanied by anoxia, and asteroid impact events. The extinction was triggered by an extensive flooding of basalts in the Central Atlantic Magmatic Province. Furthermore, a number of meteoritic craters have been found. Under the effect of cosmic causes, two main sequences of events developed on the Earth: terrestrial ones, leading to intensive volcanism, and cosmic ones (asteroid impacts). Their aftermaths, however, were similar in terms of the chemical compounds and aerosols released. As a consequence, the greenhouse effect, dimming of the atmosphere (impeding photosynthesis), ocean stagnation, and anoxia emerged. Then, biological productivity decreased and food chains were destroyed. Thus, the entire ecosystem was disturbed and a considerable part of the biota became extinct.

  20. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  1. Observation study on the structure of wind and temperature in the boundary layer and its impact on air quality over the Pearl River Delta,China

    NASA Astrophysics Data System (ADS)

    Fan, S.; Zhu, W.; Wu, M.; Li, H.; Liao, Z.; Fan, Q.

    2015-12-01

    The structure of wind and temperature in the boundary layer and its impact on air quality over the Pearl River Delta(PRD) were examined through five intensive observations in October 2004 July 2006, November 2008 December 2013 and October 2014.The results show that the structure of wind and temperature in boundary layer has significant relationship with the underlying surface, geographical environment, season, weather systems, and has direct impact on air quality. Two types of typical weather conditions associated with poor air quality over PRD. The first is the warm period before a cold front (WPBCF) and the second is the subsidence period controlled by a tropical cyclone (SPCTC). In both cases, quiet small wind and stabilize weather obvious wind shear and multi-layer inversion appear. There will be a phenomenon "the gray in near ground layer, but blue sky in upper layer" some time, the reason is that the Mountain of Nanling and the heat island effect of urban area of PRD has weakened effect to the low-level cold air the upper-level cold air has reached, but the low-level cold air has not reach or is not strength enough to remove pollutants. Within the boundary layer, especially near ground small wind speed, ground inversion or multi-layer inversion, stable stratification, lower mixing layer height, insufficient horizontal transportation and vertical diffusion ability, combination with the negative impact of sea-land breeze urban heat island circulation, would be the main reasons of the most time poor air quality of PRD.

  2. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  3. Nanoparticle volume fraction with heat and mass transfer on MHD mixed convection flow in a nanofluid in the presence of thermo-diffusion under convective boundary condition

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Jeyabalan, C.; Sivagnana Prabhu, K. K.

    2016-02-01

    This article examines the influence of thermophoresis, Brownian motion of the nanoparticles with variable stream conditions in the presence of magnetic field on mixed convection heat and mass transfer in the boundary layer region of a semi-infinite porous vertical plate in a nanofluid under the convective boundary conditions. The transformed boundary layer ordinary differential equations are solved numerically using Maple 18 software with fourth-fifth order Runge-Kutta-Fehlberg method. Numerical results are presented both in tabular and graphical forms illustrating the effects of these parameters with magnetic field on momentum, thermal, nanoparticle volume fraction and solutal concentration boundary layers. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles reveal interesting phenomenon, some of these qualitative results are presented through plots. It is interesting to note that the magnetic field plays a dominant role on nanofluid flow under the convective boundary conditions.

  4. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  5. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  6. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  7. Abrupt ocean anoxia and mass extinction at the Hangenberg crisis, Devonian-Carboniferous boundary

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Davydov, V. I.

    2012-12-01

    The late Devonian period hosts a set of profound biotic crises accompanying episodes of tropical ocean anoxia, positive carbon isotope excursions, relative sea level rise and fall, and apparent global climatic cooling. The Hangenberg event, at the close of the Devonian, is the last of these crises which ushered in a new and long-lived icehouse climate regime spanning the Carboniferous and early Permian. New high-precision U-Pb zircon ages for bracketing volcanic tuffs constrain the timing and tempo of the Hangenberg biotic crisis. When combined with quantitative biostratigraphic analysis, these data constrain the duration of tropical ocean anoxia, mass extinction and carbon cycle perturbation to less than 100 thousand years. This rapidity and duration is consistent with a model of orbitally-forced cooling resulting in enhancement of oceanic circulation, in turn promoting catastrophic overturn, upwelling of anoxic bottom waters onto the tropical continental shelves, and consequent biotic reorganization. Enhanced organic carbon burial evidenced by a positive carbon isotope spike is also revealed as rapid and short-lived, but sufficient to draw down atmospheric CO2 and initiate a glacial pulse restricted to a single short period eccentricity cycle at the end-Devonian.

  8. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  9. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  10. Climatological perspectives of air transport from atmospheric boundary layer to tropopause layer over Asian monsoon regions during boreal summer inferred from Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Chen, B.; Xu, X. D.; Yang, S.; Zhao, T. L.

    2012-02-01

    The Asian Summer Monsoon (ASM) region has been recognized as a key region that plays a vital role in troposphere-to-stratosphere transport (TST), which can significantly impact the budget of global atmospheric constituents and climate change. However, the details of transport from the boundary layer (BL) to tropopause layer (TL) over this region, particularly from a climatological perspective, remains an issue of uncertainty. In this study, we present the climatological properties of BL-to-TL transport over the ASM region during boreal summer season (June-July-August) from 2001 to 2009. A comprehensive tracking analysis is conducted based on a large ensemble of TST-trajectories departing from the atmospheric BL and arriving at TL. Driven by the winds fields from the NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) Global Forecast System, all TST-trajectories are selected from the high resolution datasets generated by the Lagrangian particle transport model FLEXPART using a domain-filling technique. Three key atmospheric boundary layer sources for BL-to-TL transport are identified with their contributions: (i) 38% from the region between tropical Western Pacific region and South China Seas (WP), (ii) 21% from Bay of Bengal and South Asian subcontinent (BOB), and (iii) 12% from the Tibetan Plateau, which includes the South Slope of the Himalayas (TIB). Controlled by the different patterns of atmospheric circulation, the air masses originating from these three source regions are transported along the different tracks into the TL. The spatial distributions of these three source regions remain similarly from year to year. The timescales of transport from BL to TL by the large-scale ascents range from 1 to 7 weeks, contributing up to 60-70% of the overall TST; whereas the transport governed by the deep convection overshooting becomes faster, with timescales of 1-2 days and contributions of 20-30%. These results provide

  11. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  12. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM 2.5 forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Madhavan, B. L.; Gross, Barry; Moshary, Fred

    2011-12-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRF-derived planetary boundary layer (PBL) height exhibits a strong linear correlation ( R > 0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (≈0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRF-CMAQ model forecasts of surface PM 2.5 (particulate matter has aerodynamic diameter <2.5 μm). Strong overestimations in the surface PM 2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM 2.5 measurements are better correlated to path-integrated CMAQ PM 2.5 than the near-surface measurements during these periods.

  13. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Bomidi, L. M.; Gross, Barry; Moshary, Fred

    2011-11-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRFderived planetary boundary layer (PBL) height exhibits a strong linear correlation (R>0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (~0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRFCMAQ model forecasts of surface PM2.5 (particulate matter has aerodynamic diameter <2.5μm). Strong overestimations in the surface PM2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM2.5 measurements are better correlated to pathintegrated CMAQ PM2.5 than the near-surface measurements during these periods.

  14. Aircraft observations of East-Asian cyclone induced uplift and long-range transport of polluted boundary layer air to the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinrich; Baumann, Robert; Priola, Lisa; Roiger, Anke; Sailer, Tomas; Wirth, Martin; Schumann, Ulrich

    2013-04-01

    We report on the airborne detection of a large-scale stratified pollution layer in the lowermost stratosphere which contained increased concentrations of sulfur dioxide, reactive nitrogen, water vapour and sulfate aerosols. The measurements were performed over Central Europe with a chemical ionization mass spectrometer and a high spectral resolution Lidar on board the new German research aircraft HALO. Transport model simulations indicate the East-Asian planetary boundary layer (PBL) as the source region of this layer. The PBL air was uplifted by an East Asian warm conveyor belt (WCB) and thereafter experienced mostly horizontal transport and dispersion covering significant part of the northern hemisphere. The pollution layer extent up to 2 km above the thermal tropopause and appears to be trapped in the upper part of the tropopause inversion layer (TIL). Accompanying chemistry and aerosol model simulations indicate efficient SO2 conversion to sulfuric acid during the horizontal transport in the TIL, accelerated by increased OH resulting from the increased water vapour. Low temperature and increased water vapour led to efficient binary H2SO4/H2O nucleation. The uplifted anthropogenic nitrogen oxides experienced OH and particle mediated conversion to HNO3. The layer of sulfate particles formed in the upper part of the TIL was observed in the Lidar backscatter signal. Since mid-latitude East Asia is a region with very large SO2 emissions and a very high frequency of WCBs, SO2 uplift into the lowermost stratosphere from this region may occur frequently, eventually leading very often to corresponding pollution layers in the northern-hemisphere TIL.

  15. Solitary fibrous tumor of the pleura manifesting as an air-containing cystic mass: radiologic and histopathologic correlation.

    PubMed

    Baek, Ji Eun; Ahn, Myeong Im; Lee, Kyo Young

    2013-01-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that typically presents as a well-defined lobular soft tissue mass commonly arising from the pleura. We report an extremely rare case of an SFT containing air arising from the right major fissure in a 58-year-old woman. Chest CT showed an ovoid air-containing cystic mass with an internal, homogeneously enhancing solid nodule. To our knowledge, this is the first case in the literature. The histopathologic findings were correlated with the radiologic findings, and the mechanism of air retention within the tumor is discussed.

  16. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  17. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Van Grieken, René

    2008-06-25

    The levels of particulate polycyclic aromatic hydrocarbons (PAHs) were determined with a fast analytical approach to study their seasonal variations at Menen (Belgium) during 2003; they were found to be 5-7 times higher in January, February and December, in comparison to May, June and August. The annual average concentration of the sum of 16 US Environmental Protection Agency (EPA) criteria PAHs was 6.7 ng/m3 and around 63% of it was found to be probably carcinogenic to humans. The application of diagnostic ratio and principal component analysis showed vehicular emission as a major source. An increased ratio of 'combustion PAHs' to 'total EPA-PAHs' during the winter season indicated towards combustion activities. Further, the differences in PAHs concentration were assessed with relation to backward air mass trajectories, which show that the levels of PAHs increase when there is an air mass movement from Central and Western Europe and a fall when the trajectories spend most of their 4-day time over the Atlantic Ocean or in the Arctic region.

  18. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  19. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  20. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary.

    PubMed

    Wilf, Peter; Johnson, Kirk R; Huber, Brian T

    2003-01-21

    Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact. We estimate paleotemperatures for the last approximately 1.1 million years of the Cretaceous ( approximately 66.6-65.5 million years ago, Ma) by using fossil plants from North Dakota and employ paleomagnetic stratigraphy to correlate the results to foraminiferal paleoclimatic data from four middle- and high-latitude sites. Both plants and foraminifera indicate warming near 66.0 Ma, a warming peak from approximately 65.8 to 65.6 Ma, and cooling near 65.6 Ma, suggesting that these were global climate shifts. The warming peak coincides with the immigration of a thermophilic flora, maximum plant diversity, and the poleward range expansion of thermophilic foraminifera. Plant data indicate the continuation of relatively cool temperatures across the Cretaceous-Paleogene boundary; there is no indication of a major warming immediately after the boundary as previously reported. Our temperature proxies correspond well with recent pCO(2) data from paleosol carbonate, suggesting a coupling of pCO(2) and temperature. To the extent that biodiversity is correlated with temperature, estimates of the severity of end-Cretaceous extinctions that are based on occurrence data from the warming peak are probably inflated, as we illustrate for North Dakota plants. However, our analysis of climate and facies considerations shows that the effects of bolide impact should be regarded as the most significant contributor to these plant extinctions.

  1. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  2. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  3. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  4. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  5. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  6. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  7. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  8. Finite element analysis of an inflatable torus considering air mass structural element

    NASA Astrophysics Data System (ADS)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  9. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  10. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  11. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  12. Precession-driven monsoon variability at the Permian-Triassic boundary — Implications for anoxia and the mass extinction

    NASA Astrophysics Data System (ADS)

    Winguth, Arne; Winguth, Cornelia

    2013-06-01

    By the end of the Late Permian, most continents had collided to form the supercontinent of Pangea. The associated climatic changes at the Permian-Triassic boundary coincided with the most severe mass extinction in the Phanerozoic. One extinction hypothesis favors a climatic response to an increase in large-scale volcanism resulting in ocean stagnation and widespread anoxia with fatal consequences for marine and land organisms. Recent interpretations of geochemical data suggest that orbitally-driven periodic upwelling of toxic hydrogen-sulfide rich water masses contributed to the extinction of species. In this paper, we use the Community Climate System Model (CCSM3) in order to explore the effect of eccentricity-modulated changes of the precession on the strength of Pangean megamonsoons and their impact on productivity and oxygen distribution. The climate model simulates high variability in monsoonal precipitation, trade winds and equatorial upwelling in response to precessional extremes, leading to remarkable fluctuations in the export of carbon from the euphotic zone and hence reduction in dissolved oxygen concentrations in subsurface layers. These findings are in general agreement with increased primary productivity, intensified euxinia within the oxygen-minimum zone, and decimation of the radiolarian zooplankton community as inferred from Japanese marine sections. Strong changes in river run-off linked to precipitation oscillations possibly led to a high variability in the nutrient supply to the Tethys Ocean, thus affecting regional productivity and oxygen distribution. The model results suggest that orbital variability in the sedimentary record and the associated extinction of species are related rather to periodic anoxia in near surface-to-intermediate depth than to widespread anoxic events in the Panthalassic deep-sea.

  13. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  14. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  15. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  16. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  17. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  18. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  19. Simultaneous measurement of mass and rotation of trapped absorbing particles in air.

    PubMed

    Bera, Sudipta K; Kumar, Avinash; Sil, Souvik; Saha, Tushar Kanti; Saha, Tanumoy; Banerjee, Ayan

    2016-09-15

    We trap absorbing micro-particles in air by photophoretic forces generated using a single loosely focused Gaussian trapping beam. We measure a component of the radial Brownian motion of a trapped particle cluster and determine the power spectral density, mean squared displacement, and normalized position and velocity autocorrelation functions to characterize the photophoretic body force in a quantitative fashion for the first time. The trapped particles also undergo spontaneous rotation due to the action of this force. This is evident from the spectral density that displays clear peaks at the rotation and the particles' inertial resonance frequencies. We fit the spectral density to the well-known analytical function derived from the Langevin equation, measure the resonance and rotation frequencies, and determine the values for particle mass that we verify at different trapping laser powers with reasonable accuracy. PMID:27628396

  20. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.

  1. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  2. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  3. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  4. Critical-Point Boundary for the Nuclear Quantum Phase Transition Near A=100 from Mass Measurements of {sup 96,97}Kr

    SciTech Connect

    Naimi, S.; Audi, G.; Lunney, D.; Beck, D.; Herfurth, F.; Blaum, K.; Boehm, Ch.; Borgmann, Ch.; George, S.; Kowalska, M.; Kreim, S.; Breitenfeldt, M.; Rosenbusch, M.; Schweikhard, L.; Herlert, A.; Neidherr, D.; Schwarz, S.; Zuber, K.

    2010-07-16

    Mass measurements of {sup 96,97}Kr using the ISOLTRAP Penning-trap spectrometer at CERN-ISOLDE are reported, extending the mass surface beyond N=60 for Z=36. These new results show behavior in sharp contrast to the heavier neighbors where a sudden and intense deformation is present. We interpret this as the establishment of a nuclear quantum phase transition critical-point boundary. The new masses confirm findings from nuclear mean-square charge-radius measurements up to N=60 but are at variance with conclusions from recent gamma-ray spectroscopy.

  5. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  6. Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia.

    PubMed

    Saavedra, S; Rodríguez, A; Taboada, J J; Souto, J A; Casares, J J

    2012-12-15

    High levels of ozone are frequently measured at the Galicia (NW Iberian Peninsula) air quality monitoring stations from March to October. However, there have been very few studies on surface ozone in the northwestern Iberian Peninsula, most likely because the climate of this region is not favourable to photochemical ozone generation. The occurrence of these episodes may be related to either local-scale photochemical pollution or regional-scale transport from other polluted regions. In addition, high ozone episodes usually are developed under specific synoptic conditions. The main purposes of this study are to characterise the atmospheric conditions that lead to the ozone episodes in this region and to identify possible advection paths of ozone and precursors. A surface hourly ozone dataset (2002-2007) measured at rural sites in Galicia was analysed to identify high ozone episodes together with their associated synoptic patterns using a subjective classification with 23 different synoptic types. The synoptic weather patterns revealed that most of the episodes occur with high surface pressures centred over the British Isles and/or Central Europe while a high-altitude anticyclonic ridge crosses the Peninsula from North Africa, causing easterly or southeasterly winds. This analysis was completed with 3-day backward air mass trajectories obtained with HYSPLIT to assess the contribution of long-range transport, resulting in the following main routes: Mediterranean-Peninsular, South Atlantic-Portuguese, local and French-Cantabric.

  7. Body mass penalties in the physical fitness tests of the Army, Air Force, and Navy.

    PubMed

    Vanderburgh, Paul M; Crowder, Todd A

    2006-08-01

    Recent research has empirically documented a consistent penalty against heavier service members for events identical or similar to those in the physical fitness tests of the Army, Air Force, and Navy. These penalties, which are not related to body fatness, are based on biological scaling models and have a physiological basis. Using hypothetical cases, we quantified the penalties for men, with body mass of 60 vs. 90 kg, and women, 45 vs. 75 kg, to be 15% to 20% for the fitness tests of these three services. Such penalties alone can adversely affect awards and promotions for heavier service members. To deal equitably with these penalties in a practical manner, we offer two recommendations, i.e., (1) implementation of revised fitness tests with balanced events, in which the penalties of one event for heavier service members are balanced by an equal and opposite bias against lighter service members, or (2) development of correction factors that can be multiplied by raw scores to yield adjusted scores free of body mass bias.

  8. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  9. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  10. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  11. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    EPA Science Inventory

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality m...

  12. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 31-Inch Mach 10 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, 3-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 5.1 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  13. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  14. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    PubMed

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context. PMID:23825249

  15. Reconstruction of the boundary between climate science and politics: the IPCC in the Japanese mass media, 1988-2007.

    PubMed

    Asayama, Shinichiro; Ishii, Atsushi

    2014-02-01

    The Intergovernmental Panel on Climate Change (IPCC) plays a significant role in bridging the boundary between climate science and politics. Media coverage is crucial for understanding how climate science is communicated and embedded in society. This study analyzes the discursive construction of the IPCC in three Japanese newspapers from 1988 to 2007 in terms of the science-politics boundary. The results show media discourses engaged in boundary-work which rhetorically separated science and politics, and constructed the iconic image of the IPCC as a pure scientific authority. In the linkages between the global and national arenas of climate change, the media "domesticate" the issue, translating the global nature of climate change into a discourse that suits the national context. We argue that the Japanese media's boundary-work is part of the media domestication that reconstructed the boundary between climate science and politics reflecting the Japanese context.

  16. Experimental determination of the boundary layer at air-sample inlet positions on the NASA CV 990 aircraft

    NASA Technical Reports Server (NTRS)

    Bowen, S. W.; Vedder, J. F.; Condon, E. P.

    1984-01-01

    Full-scale, in-flight measurements of the boundary-layer thickness, velocity profile, and flow angle have been made at several sample collection stations on the fuselage of the NASA CV 990. These results are given as functions of Mach number, Reynolds number, yaw, and angle of attack.

  17. Representing the Effects of Long-Range Transport and Lateral Boundary Conditions in Regional Air Pollution Models

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system was applied to a domain covering the northern hemisphere; meteorological information was derived from the Weather Research and Forecasting (WRF) model run on identical grid and projection configuration, while the emissio...

  18. THE PROCESS OF MASS TRANSFER ON THE SOLID-LIQUID BOUNDARY LAYER DURING THE RELEASE OF DICLOFENAC SODIUM AND PAPAVERINE HYDROCHLORIDE FROM TABLETS IN A PADDLE APPARATUS.

    PubMed

    Kasperek, Regina; Zimmer, Lukasz; Poleszak, Ewa

    2016-01-01

    The release study of diclofenac sodium (DIC) and papaverine hydrochloride (PAP) from two formulations of the tablets in the paddle apparatus using different rotation speeds to characterize the process of mass transfer on the solid-liquid boundary layer was carried out. The dissolution process of active substances was described by values of mass transfer coefficients, the diffusion boundary layer thickness and dimensionless numbers (Sh and Re). The values of calculated parameters showed that the release of DIC and PAP from tablets comprising potato starch proceeded faster than from tablets containing HPMC and microcrystalline cellulose. They were obtained by direct dependencies between Sh and Re in the range from 75 rpm to 125 rpm for both substances from all tablets. The description of the dissolution process with the dimensionless numbers make it possible to plan the drug with the required release profile under given in vitro conditions. PMID:27008811

  19. On the association between daily mortality and air mass types in Athens, Greece during winter and summer

    NASA Astrophysics Data System (ADS)

    Kassomenos, Pavlos A.; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  20. Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions

    NASA Astrophysics Data System (ADS)

    Hristov, Jordan

    2016-03-01

    Closed form approximate solutions to nonlinear heat (mass) diffusion equation with power-law nonlinearity of the thermal (mass) diffusivity have been developed by the integral-balance method avoiding the commonly used linearization by the Kirchhoff transformation. The main improvement of the solution is based on the double-integration technique and a new approach to the space derivative. Solutions to Dirichlet and Neumann boundary condition problems have been developed and benchmarked against exact numerical and approximate analytical solutions available in the literature.

  1. Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.

    PubMed

    Michels, Nathalie; Huybrechts, Inge; Bammann, Karin; Lissner, Lauren; Moreno, Luis; Peeters, Maarten; Sioen, Isabelle; Vanaelst, Barbara; Vyncke, Krishna; De Henauw, Stefaan

    2013-04-28

    The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5-11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  2. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  3. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  4. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  5. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  6. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  7. Innovation of Ozone Initial Concentration and Boundary Condition for Models-3 Community Multi-scale Air Quality (CMAQ) Modeling System Using Ozone Climatology and Its Impacts

    NASA Astrophysics Data System (ADS)

    He, S.; Vukovich, F. M.; Ching, J.; Gilliland, A.

    2002-05-01

    Models-3/CMAQ system is designed to provide a comprehensive and flexible modeling tool for states and other government agencies, and for scientific studies. The current setting of initial concentrations and boundary condition (ICBC) of air species for CMAQ system represents clean ambient condition in the eastern-half of the US, and as such. The ozone ICBC differed from observational values, significantly at upper troposphere. Because of the stratosphere-troposphere exchange, the upper troposphere may contain high concentrations of ozone (hundreds of ppbv). However the current ICBC artificially set ozone level as 70ppbv in upper troposphere throughout model domain. The large difference of standard ozone ICBC from realistic situation becomes considerable uncertainty source of CMAQ system. The purpose of this research is to improve ICBC setting for Models-3/CMAQ modeling system, and to assess the influence of introducing stratospheric ozone into troposphere on regional and urban air quality and on the tropospheric ozone budget. The approach taken is to perform a series of sensitivity studies on ICBC with CMAQ. The simulation covers the entire US with 108km grid resolution from July 2 to 12 of 1988. The domain divide in 34 layers vertically up to 40mbar. In addition to the base case with standard ICBC, ozone initial concentration and boundary condition are generated based on ozone climatology (Logan, 1999), which was derived from surface, satellite, and ozonesonde data across the globe. This new ICBC enables CMAQ model to study ozone cross-tropopause flux transporting to lower troposphere, and to analyze the impact of intercontinental ozone transport. The tropospheric ozone residue (TOR) data is used to compare with modeling tropospheric ozone budget for evaluation of CMAQ performance. Since ozone climatology was based on observation, the derived ozone ICBC are in better agreement with the ``real'' atmosphere than standard ICBC. CMAQ simulations with ozone climatology

  8. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  9. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  10. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  11. A controlling role for the air-sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer.

    PubMed

    Kim, Michelle J; Farmer, Delphine K; Bertram, Timothy H

    2014-03-18

    The lifetime of reactive nitrogen and the production rate of reactive halogens in the marine boundary layer are strongly impacted by reactions occurring at aqueous interfaces. Despite the potential importance of the air-sea interface in serving as a reactive surface, few direct field observations are available to assess its impact on reactive nitrogen deposition and halogen activation. Here, we present direct measurements of the vertical fluxes of the reactant-product pair N2O5 and ClNO2 to assess the role of the ocean surface in the exchange of reactive nitrogen and halogens. We measure nocturnal N2O5 exchange velocities (Vex = -1.66 ± 0.60 cm s(-1)) that are limited by atmospheric transport of N2O5 to the air-sea interface. Surprisingly, vertical fluxes of ClNO2, the product of N2O5 reactive uptake to concentrated chloride containing surfaces, display net deposition, suggesting that elevated ClNO2 mixing ratios found in the marine boundary layer are sustained primarily by N2O5 reactions with aerosol particles. Comparison of measured deposition rates and in situ observations of N2O5 reactive uptake to aerosol particles indicates that N2O5 deposition to the ocean surface accounts for between 26% and 42% of the total loss rate. The combination of large Vex, N2O5 and net deposition of ClNO2 acts to limit NOx recycling rates and the production of Cl atoms by shortening the nocturnal lifetime of N2O5. These results indicate that air-sea exchange processes account for as much as 15% of nocturnal NOx removal in polluted coastal regions and can serve to reduce ClNO2 concentrations at sunrise by over 20%. PMID:24591613

  12. A controlling role for the air-sea interface in the chemical processing of reactive nitrogen in the coastal marine boundary layer.

    PubMed

    Kim, Michelle J; Farmer, Delphine K; Bertram, Timothy H

    2014-03-18

    The lifetime of reactive nitrogen and the production rate of reactive halogens in the marine boundary layer are strongly impacted by reactions occurring at aqueous interfaces. Despite the potential importance of the air-sea interface in serving as a reactive surface, few direct field observations are available to assess its impact on reactive nitrogen deposition and halogen activation. Here, we present direct measurements of the vertical fluxes of the reactant-product pair N2O5 and ClNO2 to assess the role of the ocean surface in the exchange of reactive nitrogen and halogens. We measure nocturnal N2O5 exchange velocities (Vex = -1.66 ± 0.60 cm s(-1)) that are limited by atmospheric transport of N2O5 to the air-sea interface. Surprisingly, vertical fluxes of ClNO2, the product of N2O5 reactive uptake to concentrated chloride containing surfaces, display net deposition, suggesting that elevated ClNO2 mixing ratios found in the marine boundary layer are sustained primarily by N2O5 reactions with aerosol particles. Comparison of measured deposition rates and in situ observations of N2O5 reactive uptake to aerosol particles indicates that N2O5 deposition to the ocean surface accounts for between 26% and 42% of the total loss rate. The combination of large Vex, N2O5 and net deposition of ClNO2 acts to limit NOx recycling rates and the production of Cl atoms by shortening the nocturnal lifetime of N2O5. These results indicate that air-sea exchange processes account for as much as 15% of nocturnal NOx removal in polluted coastal regions and can serve to reduce ClNO2 concentrations at sunrise by over 20%.

  13. Chiral Signatures of Anthropogenic Semi-Volatile Organic Compounds in Asian, trans- Pacific, and Pacific Northwestern Air Masses

    NASA Astrophysics Data System (ADS)

    Genualdi, S.; Primbs, T.; Bidleman, T.; Jantunen, L.; Simonich, S.

    2006-12-01

    The goal of this research is to use the chiral signatures of Semi-Volatile Organic Compounds (SOCs) to distinguish between new and old sources in Asian, trans-Pacific, and regional air masses. During 2004, a six week air sampling campaign was conducted at a remote site in Okinawa, Japan to determine the chemical composition of Eurasian air masses. During 2003 and 2004, high volume air samples were collected at three different locations in the Pacific Northwest of the United States. These sampling locations were; Mary's Peak Observatory (MPO) located at 1250m in the Oregon Coast Range, Mt. Bachelor located at 2800m in Oregon's Cascade Range, and Cheeka Peak Observatory (CPO) located at 500m in the state of Washington. The air samples consisted of both polyurethane foam and XAD-2 resin to collect the gas phase SOCs, and glass fiber filters to collect the particulate phase SOCs. The samples were extracted using accelerated solvent extraction and enantiomer fractions were determined using GCMS-ECNI with the use of a BGB Analytik chiral column. The chiral SOCs, á-Hexachlorocyclohexane, cis and trans chlordane, heptachlor epoxide, and o'p' DDT, were measured, the enantiomer ratios were determined, and potential new and historical sources of these compounds were identified.

  14. Experimental Evaluation of the Effect of Angle-of-attack on the External Aerodynamics and Mass Capture of a Symmetric Three-engine Air-breathing Launch Vehicle Configuration at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Frate, Franco C.

    2001-01-01

    A subscale aerodynamic model of the GTX air-breathing launch vehicle was tested at NASA Glenn Research Center's 10- by 10-Foot Supersonic Wind Tunnel from Mach 2.0 to 3.5 at various angles-of-attack. The objective of the test was to investigate the effect of angle-of-attack on inlet mass capture, inlet diverter effectiveness, and the flowfield at the cowl lip plane. The flow-through inlets were tested with and without boundary-layer diverters. Quantitative measurements such as inlet mass flow rates and pitot-pressure distributions in the cowl lip plane are presented. At a 3deg angle-of-attack, the flow rates for the top and side inlets were within 8 percent of the zero angle-of-attack value, and little distortion was evident at the cowl lip plane. Surface oil flow patterns showing the shock/boundary-layer interaction caused by the inlet spikes are shown. In addition to inlet data, vehicle forebody static pressure distributions, boundary-layer profiles, and temperature-sensitive paint images to evaluate the boundary-layer transition are presented. Three-dimensional parabolized Navier-Stokes computational fluid dynamics calculations of the forebody flowfield are presented and show good agreement with the experimental static pressure distributions and boundary-layer profiles. With the boundary-layer diverters installed, no adverse aerodynamic phenomena were found that would prevent the inlets from operating at the required angles-of-attack. We recommend that phase 2 of the test program be initiated, where inlet contraction ratio and diverter geometry variations will be tested.

  15. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    {sup {minus}7}, 10{sup {minus}5}, and 10{sup {minus}5} respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10{sup {minus}5}, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  16. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  17. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1985-01-01

    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  18. Boundary lubrication of formulated C-ether in air to 300 deg C. 1: Phosphorus ester additives

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.

    1972-01-01

    Friction and wear measurements were made on CVM M-50 steel lubricated with three C-ether (modified polyphenyl ether) formulations in dry and wet air. Results were compared to those obtained with a formulated Type 2 ester and the C-ether base fluid. A ball-on-disk sliding friction apparatus was used. Experimental conditions were a 1-kilogram load, a 17-meter-perminute (100-rpm) surface speed, and a 25 to 300 C (77 to 572 F) disk temperature range. The C-ether base fluid and the three formulated C-ether fluids yielded lower wear than the Type 2 ester over the entire temperature range. All C-ether fluids exhibited slightly higher friction coefficients than the ester from 150 to 300 C (302 to 572 F) and similar values from 25 to 150 C (77 to 302 F). In general, lower wear rates were observed with the C-ethers when tested in wet air as compared to a dry air atmosphere.

  19. Acoustic particle manipulation in a 40 kHz quarter-wavelength standing wave with an air boundary.

    PubMed

    Trippa, Giuliana; Trine, Stéphanie; Ventikos, Yiannis; Coussios, Constantin-C

    2012-05-01

    An implementation of a quarter-wavelength standing wave separator that exploits an air drum to achieve the pressure node is presented and characterized experimentally. The air drum configuration was implemented and tested in a set-up with a 40 kHz transducer immersed in a water tank with the quarter-wavelength gap being approximately 9 mm wide. Injection of suspensions of 5 μm and 45 μm diameter polystyrene particles at flow rates of 30 ml/h and 60 ml/h was studied and particle deflection towards the pressure node at the air drum surface was observed for a range of acoustic pressures. Computational results on single particle trajectories show good agreement with the experimental findings for the 45 μm particles, but not for the 5 μm particles. These were considered to behave as aggregates of higher effective dimension, due to their much higher number density relative to the 45 μm particles in the suspensions used. The set-up developed in this study includes a robust method for achieving a pressure node in a quarter-wavelength system and can represent the first step toward the development of an alternative separator configuration in respect to small channel MHz range operated systems for the manipulation of particles streams.

  20. Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry.

    PubMed

    Tumbiolo, Simonetta; Gal, Jean-François; Maria, Pierre-Charles; Zerbinati, Orfeo

    2004-11-01

    The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 microg/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 microg/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.

  1. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2015-09-01

    We present the characterization and application of a new gas chromatography-time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δ m of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 Th/Th and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found around 5 ppm after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits were as low as a few femtograms as mass traces could be made highly specific for selected molecule fragments with the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. The TOFMS was found to be linear within a concentration range from about 1 pg to 1 ng of analyte per Liter of air. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straight-forward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well-suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, low resolution quadrupole MS and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  2. Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2015-12-01

    The Pacific decadal oscillation (PDO) recently emerged in the literature as a robust signal in the Northern Hemisphere climate variability. Many studies reported that the relationships between PDO and East Asian monsoon (EAM) and climate variability in China are significant. However, the possible mechanisms are still unclear. The present study investigates the interdecadal relationship between Pacific decadal oscillation (PDO) and interhemispheric air mass imbalance or oscillation (IHO) between the Northern and Southern Hemispheres. The possible connection of PDO and IHO with both East Asian monsoon and climate variability in China are also assessed in this study. It is found that the interdecadal components (11-38 years) of PDO, IHO, and EAM contribute large variance to low frequency variations, and they are well-matched with each other on (inter)decadal timescale. In particular, their negative phases mainly appeared in the 1970s and late 1990s, while positive phase in period from 1980s to mid 1990s. Decadal change of global mean air columnar temperature may be the key factor for the notable difference between PDO and IHO from mid 1970s to mid 1990s. The spatial distributions of PDO and IHO associated surface air temperature and surface pressure anomalies exhibit highly similar and large scale characteristics, indicative of their intimate linkage with air mass redistribution over global domain especially over 300S-500N. The PDO associated columnar integral of velocity potential anomalies that maintain the air mass redistribution, show a dipole pattern with air mass flux emanating mainly from the eastern hemisphere to the Pacific regions in positive PDO phase. This contributes to hemispherical and land-sea mass exchange and redistribution, and also leads to the decadal displacement of both upward and downward branch of Walker circulation. In positive phase of PDO, an anomalous anticyclone is found in the Mongolian region in both boreal summer and winter seasons

  3. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; van Eijk, Alexander M.; Fedorovich, Evgeni

    2013-09-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple realizations of the CBL flow field reproduced by a large-eddy simulation (LES) of the atmosphere. The Cn2 values yielded by LES-based approach agree fairly well with Cn2 values predicted by the Monin-Obukhov similarity theory. In this respect, the Cn2 retrieval from the LES data is promising for evaluating the vertical profile of Cn2 throughout the entire CBL. Under the considered CBL conditions and for the selected optical wavelength of 0.55 μm the value of Cn2 was found to be dominated by the CT2 contribution in the first few hundred meters above the surface, whereas the CTq contribution became significant aloft.

  4. Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S.

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Fuentes, J. D.; Collins, D. R.; Cleveland, M. J.; Keene, W. C.

    During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s -1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm -3), corresponding surface area (142 μm 2 cm -3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s -1), mean number concentrations were higher (>6000 cm -3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.

  5. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  6. Some observational and modeling studies of the atmospheric boundary layer at Mississippi gulf coast for air pollution dispersion assessment.

    PubMed

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D; Hardy, Mark G; Swanier, Shelton

    2008-12-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25-29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28-30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region.

  7. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  8. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  9. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  10. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.

  11. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction, volume 2. [computer programs

    NASA Technical Reports Server (NTRS)

    Omori, S.

    1973-01-01

    As described in Vol. 1, the eddy viscosity is calculated through the turbulent kinetic energy, in order to include the history of the flow and the effect of chemical reaction on boundary layer characteristics. Calculations can be performed for two different cooling concepts; that is, transpiration and regeneratively cooled wall cases. For the regenerative cooling option, coolant and gas side wall temperature and coolant bulk temperature in a rocket engine can be computed along the nozzle axis. Thus, this computer program is useful in designing coolant flow rate and cooling tube geometry, including the tube wall thickness as well as in predicting the effects of boundary layers along the gas side wall on thrust performances.

  12. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  13. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  14. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  15. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  16. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    USGS Publications Warehouse

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  17. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  18. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  19. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  20. An examination of boundary layer structure under the influence of the gap winds in Urumqi, China, during air pollution episode in winter.

    PubMed

    Li, Xia; Xia, Xiangao; Xin, Yu; Ma, Yufen; Yang, Jing; Li, Jinglin; Yang, Xinghua

    2012-01-01

    Tethered-sonde measurements of atmospheric profiles were performed at Urumuqi, capital of the Xinjiang Uyghur Autonomous Region of China, from 29 December 2008 to 14 January 2009. The data were used to examine the boundary layer structure during this severe air pollution period. Diurnal evolution of local wind flow near Urumqi was simulated using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5). Measurements from operational radiosonde data showed that a southeasterly elevated low-level jet often intruded upon Urumqi through the middle Tianshan Mountain pass to the south of the city. The tethered-sonde measurements showed that calm and northwesterly winds prevailed near the surface in Urumqi, whereas the southeasterly winds of relatively higher speed were dominant above approximately 400 m. Both temperature inversion and humidity inversion frequently occured during day and nighttime. Temperature inversion intensity could sharply rise as the stronger elevated southeasterly gale (ESEG) happened. Model simulations showed that the winds near the surface around Urumqi remained calm during nighttime and developed toward the mountains during daytime. As cool airflow in the basin confronted the southeasterly winds from the pass in the lower layer, they formed a convergence line around Urumqi city, which was not favor for dilution of air pollutants.

  1. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  2. Comparison of experimental and fossil leaf morphospace occupation suggests a role for atmospheric composition in driving morphospace change across a mass extinction boundary

    NASA Astrophysics Data System (ADS)

    Bacon, Karen; McElwain, Jennifer

    2016-04-01

    The Triassic-Jurassic boundary (~201 mya) marks a period of intense climate change associated with a mass extinction event and major volcanism. The impact of these environmental stresses has been well-documented; however, a detailed analysis of the morphospace response of plants across the boundary has not been conducted. In order to determine the impact of changing atmospheric composition on leaf morphospace occupation, we compared a fossil flora to controlled environment experiments. We analysed morphometric data for over 2,000 well-preserved leaf fossils from nine plant beds across the TJ of Astartekløft, East Greenland. Data including leaf length, width, area, and shape were used to determine morphospace occupation for each bed at the site. In the lower Triassic beds, morphospace occupation is high compared to a severe reduction at and across the boundary, contemporaneous with peak reconstructed CO2 and hypothesised elevated SO2 and other volcanic gases. These findings were compared to controlled environment experiments, where the same measurements were made on leaves from nearest living equivalent taxa grown in simulated palaeoatmospheric conditions. These experiments revealed that exposure to SO2, but not to variations in either CO2 or O2, produced a similar sever reduction in morphospace occupation. These findings together suggest that atmospheric composition change across the TJ, and particularly an elevation in SO2, had a role in heavily disrupting the plant community morphospace of East Greenland.

  3. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  4. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  5. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  6. Ozone in the boundary layer air over the Arctic Ocean: measurements during the TARA transpolar drift 2006-2008

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Nghiem, S. V.

    2009-07-01

    A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N-88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year, ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30-40 nmol mol-1 and summer minima of ca. 20 nmol mol-1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above -20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads and polynyas developed in the spring of 2007.

  7. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  8. Long-term Trend of Cold Air Mass Amount below a Designated Potential Temperature in Northern and Southern Hemisphere Winters with 7 Different Reanalysis Datasets

    NASA Astrophysics Data System (ADS)

    Kanno, Y.; Abdillah, M. R.; Iwasaki, T.

    2015-12-01

    This study addresses that the hemispheric total cold air mass amount defined below a threshold potential temperature of 280 K is a good indicator of the long-term trend of climate change in the polar region. We demonstrate quantitative analyses of warming trend in the Northern Hemisphere (NH) and Southern Hemisphere (SH) winters, using 7 different reanalysis datasets (JRA-55, JRA-55C, JRA-55AMIP, ERA-interim, CFSR, JRA-25, NCEP-NCAR). Hemispheric total cold air mass amount in the NH winter exhibit a statistically significant decreasing trend in all reanalysis datasets at a rate about -1.37 to -0.77% per decade over the period 1959-2012 and at a rate about -1.57 to -0.82% per decade over 1980-2012. There is no statistically significant trend in the equatorward cold air mass flux across latitude of 45N, which is an indicator for hemispheric-scale cold air outbreak, over the period 1980-2012 except for NCEP-NCAR reanalysis dataset which shows substantial decreasing trend of about -3.28% per decade. The spatial distribution of the long-term trend of cold air mass amount in the NH winter is almost consistent among reanalysis datasets except for JRA-55AMIP over the period 1980-2012. Cold air mass amount increases over Central Siberia, Kamchatka peninsula, and Bering Sea, while it decreases over Norwegian Sea, Barents Sea, Kara Sea, Greenland, Canada, Northern part of United States, and East Asia. In the SH winter, on the other hand, there is a large discrepancy in hemispheric total cold air mass amount and equatorward cold air mass flux across latitude of 50S over the period 1980-2010 among reanalysis datasets. This result indicate that there is a large uncertainty in the long-term trend of cold air mass amount in the SH winter.

  9. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. PMID:26838378

  10. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  11. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  12. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening.

  13. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  14. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  15. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  16. High precision dating of mass extinction events: a combined zircon geochronology, apatite tephrochronology, and Bayesian age modelling approach of the Permian-Triassic boundary extinction

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2016-04-01

    Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206

  17. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  18. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  19. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  20. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  1. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  2. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  3. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  4. The Araguainha impact crater at the Permo-Triassic boundary: implications for the carbon isotope excursion and the mass extinction.

    NASA Astrophysics Data System (ADS)

    Lana, C.; Tohver, E.; Siret, D.; Cawood, P.; Sherlock, S.; Marangoni, Y. R.; Trindade, R. I.; Souza, R.

    2007-12-01

    The Araguainha crater is a complex crater with a diameter of 40 km exposed on the northern margin of the Parana Basin of central Brazil. This intracontinental basin, correlated to the Karoo Basin of southern Africa, was the locus of marine sedimentation over an area of 5 million km2 throughout the late Paleozoic. Carbonate sedimentation in the early Permian was marked by large accumulations of organic carbon in pyrite-bearing oil shales such as the Irati Fm, considered to be the world's second largest oil shale. Regional borehole data from outside the crater reveals a thickness of 40m for the oil shale horizon, which is partly to completely absent within the crater. Our structural and stratigraphic survey of the Araguainha crater reveal the post-impact rebound of the crater has removed ca. 2-2.5 km of sediments from the ca. 10 km diameter central uplift, with minimal subsequent erosion (<250m). Vaporization of the colliding body and the approximate shadowed target region are assumed, with energy models for impact craters suggesting a body of 2-3 km diameter. Ongoing radiogenic isotope dating of the impact melts and breccias is being undertaken by U-Pb SHRIMP analysis of shocked zircons and 40Ar/39Ar analysis of glassy vein material interpreted as pseudotachylite. Preliminary U-Pb age data yield an impact age of 252.7 +/- 3.8 Ma (2 sigma error), essentially synchronous with the Permo-Triassic boundary. The minimum amount of isotopically light carbon (-17 to -25 per mill PDB) available in the target rocks for release by the impact is estimated at 10 Gigatons, considering only the area of the central uplift. Possible sources of additional, isotopically-light carbon include the remainder of the 20-25 km transient crater, as well as methane clathrates released by impact-induced slope destabilization. We propose that the Araguainha impact could have been responsible for observed shifts shift in global carbon isotopes at the Permo-Triassic boundary. The possible effect of

  5. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  6. A Variational Analysis of Divergence Profiles Based upon Column-Integrated Mass, Moisture and Energetic Constraints with Satellite-Derived Boundary Fluxes

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Lin; Robertson, Franklin R.

    2003-01-01

    A diagnostic study is made of the mean global divergent circulation based upon a constrained least action principle that minimizes column-integrated divergent kinetic energy subject to constraints on mass, moisture, available potential energy (ape) and total kinetic energy. The concept of gross moist stability was incorporated in the prescription of Lagrange weight function associated with the ape constraint in order to simulate the net effects of cumulus convective heating in the tropics. The variational analyses were validated satisfactorily with the original NCEP/NCAR-reanalysis divergence fields for the Septembers of 1987 and 1988. Further analyses show that in the tropical ascending regions, the analyzed divergences are dominated by the mass and ape constraints; the moisture constraint is implicitly satisfied while the kinetic energy constraint is highly dependent on the ape constraint. In the subtropical descending regions, the analyzed divergences are dominated by the mass, moisture and kinetic energy constraints; the ape constraint is implicitly satisfied. When the constraint integrals were blended with the satellite-derived boundary flux data from GPCP precipitation and ERBE/SRB radiation estimates, the newly analyzed divergences are significantly stronger than the reanalysis divergences in the areas where the estimates of precipitation rates are higher. With few exceptions, the increases in upper-layer divergences are coupled with nearly equal increases in lower-layer convergences.

  7. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  8. Quantifying Magnitude, Timing, And Distribution of Mass Flux at a River-Aquifer Boundary using Head and Temperature Response to Step and Seasonal Changes in River Stage and a Variable River Edge Boundary

    NASA Astrophysics Data System (ADS)

    Thoma, M. J.; Barrash, W.; Bradford, J. H.

    2012-12-01

    -year simulations were run to quantify mass and energy flux at the river-aquifer boundary. Physical changes in boundary conditions, particularly river bank position and river wetted perimeter, produce significant alterations to the flow regime and must be incorporated into the model to correctly estimate riverbed and aquifer parameters and to accurately evaluate river-aquifer fluxes.

  9. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  10. The Arctic Ocean in summer: A quasi-synoptic inverse estimate of boundary fluxes and water mass transformation

    NASA Astrophysics Data System (ADS)

    Tsubouchi, T.; Bacon, S.; Naveira Garabato, A. C.; Aksenov, Y.; Laxon, S. W.; Fahrbach, E.; Beszczynska-MöLler, A.; Hansen, E.; Lee, C. M.; Ingvaldsen, R. B.

    2012-01-01

    The first quasi-synoptic estimates of Arctic Ocean and sea ice net fluxes of volume, heat and freshwater are calculated by application of an inverse model to data around the ocean boundary. Hydrographic measurements from four gateways to the Arctic (Bering, Davis, and Fram Straits and the Barents Sea Opening) completely enclose the ocean, and were made within the same 32-day period in summer 2005. The inverse model is formulated as a set of full-depth and density-layer-specific volume and salinity transport conservation equations, with conservation constraints also applied to temperature, but only in non-outcropping layers. The model includes representations of Fram Strait sea ice export and of interior Arctic Ocean diapycnal fluxes. The results show that in summer 2005 the transport-weighted mean properties are, for water entering the Arctic: potential temperature 4.49°C, salinity 34.50 and potential density (σ0) 27.34 kg m-3; and for water leaving the Arctic, including sea ice: 0.25°C, 33.81, and 27.13 kg m-3, respectively. The net effect of the Arctic in summer is to freshen and cool the inflows by 0.69 in salinity and 4.23°C, respectively, and to decrease density by 0.21 kg m-3. The volume transport into the Arctic of waters above ˜1000 m depth is 9.2 Sv (1 Sv = 106 m3 s-1), and the export (similarly) is 9.3 Sv. The net oceanic and sea ice freshwater flux is 187 ± 48 mSv. The net heat flux (including sea ice) is 189 ± 37 TW, representing loss from the ocean to the atmosphere.

  11. A distributed air index based on maximum boundary rectangle over grid-cells for wireless non-flat spatial data broadcast.

    PubMed

    Im, Seokjin; Choi, JinTak

    2014-06-17

    In the pervasive computing environment using smart devices equipped with various sensors, a wireless data broadcasting system for spatial data items is a natural way to efficiently provide a location dependent information service, regardless of the number of clients. A non-flat wireless broadcast system can support the clients in accessing quickly their preferred data items by disseminating the preferred data items more frequently than regular data on the wireless channel. To efficiently support the processing of spatial window queries in a non-flat wireless data broadcasting system, we propose a distributed air index based on a maximum boundary rectangle (MaxBR) over grid-cells (abbreviated DAIM), which uses MaxBRs for filtering out hot data items on the wireless channel. Unlike the existing index that repeats regular data items in close proximity to hot items at same frequency as hot data items in a broadcast cycle, DAIM makes it possible to repeat only hot data items in a cycle and reduces the length of the broadcast cycle. Consequently, DAIM helps the clients access the desired items quickly, improves the access time, and reduces energy consumption. In addition, a MaxBR helps the clients decide whether they have to access regular data items or not. Simulation studies show the proposed DAIM outperforms existing schemes with respect to the access time and energy consumption.

  12. A Distributed Air Index Based on Maximum Boundary Rectangle over Grid-Cells for Wireless Non-Flat Spatial Data Broadcast

    PubMed Central

    Im, Seokjin; Choi, JinTak

    2014-01-01

    In the pervasive computing environment using smart devices equipped with various sensors, a wireless data broadcasting system for spatial data items is a natural way to efficiently provide a location dependent information service, regardless of the number of clients. A non-flat wireless broadcast system can support the clients in accessing quickly their preferred data items by disseminating the preferred data items more frequently than regular data on the wireless channel. To efficiently support the processing of spatial window queries in a non-flat wireless data broadcasting system, we propose a distributed air index based on a maximum boundary rectangle (MaxBR) over grid-cells (abbreviated DAIM), which uses MaxBRs for filtering out hot data items on the wireless channel. Unlike the existing index that repeats regular data items in close proximity to hot items at same frequency as hot data items in a broadcast cycle, DAIM makes it possible to repeat only hot data items in a cycle and reduces the length of the broadcast cycle. Consequently, DAIM helps the clients access the desired items quickly, improves the access time, and reduces energy consumption. In addition, a MaxBR helps the clients decide whether they have to access regular data items or not. Simulation studies show the proposed DAIM outperforms existing schemes with respect to the access time and energy consumption. PMID:24940864

  13. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems. PMID:21793569

  14. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  15. Determination of cooling air mass flow for a horizontally-opposed aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Ghomi, N. A.; Bridges, P. D.

    1979-01-01

    The relationship between the amount of cooling air flow and the corresponding flow pressure difference across an aircraft engine was investigated in flight and on the ground. The flight test results were consistent with theory, but indicated a significant installation leakage problem. A ground test blower system was used to identify and reduce the leakage. The correlation between ground test cell determined engine orifice characteristics and flight measurements showed good agreement if the engine pressure difference was based on total pressure rather than static pressure.

  16. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  17. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  18. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  19. The analysis of heat and mass transfer during frying of food using a moving boundary solution procedure

    NASA Astrophysics Data System (ADS)

    Farid, M. M.; Chen, X. D.

    Heat and mass transfer during frying of food was analysed using the heat conduction equation. The model developed assumes the presence of two regions, the fried and the unfried regions. The heat convected from the oil to the surface of the food is transferred by conduction through the fried region to an evaporating interface. Most of the transferred heat is utilised to vaporise the water at the interface, while the remaining smaller amount is used for sensible heating. The generated water vapour at the interface was assumed to flow in the fried region with minimum resistance, exchanging heat with the solid. The model was tested against some experimental results available for frying of thick and thin potato chips. The agreement between the predicted and measured temperature distribution was reasonable except at the end of the frying period at which the bounded water may vaporise with a different mechanism and oil may penetrate deep into the potato chips. In all the experiments, the centre temperature of the potato chips remained constant at almost 100∘C for a long period which gave a good support to the model developed.

  20. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  1. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  2. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  3. Triggers of Permo-Triassic boundary mass extinction in South China: The Siberian Traps or Paleo-Tethys ignimbrite flare-up?

    NASA Astrophysics Data System (ADS)

    He, Bin; Zhong, Yu-Ting; Xu, Yi-Gang; Li, Xian-Hua

    2014-09-01

    Assessment of the synchroneity between the Siberian Traps and the Permo-Triassic boundary (PTB) mass extinction has led to the proposition that the Siberian flood volcanism was responsible for the severest biotic crisis in the Phanerozoic. However, recent studies suggest that the Siberian Traps may have postdated the main extinction horizon. In this paper, we demonstrate, using stratigraphy, a time and intensity coincidence between PTB volcanic ash and the main extinction horizon. Geochemistry of the PTB volcanic ashes in five sections in South China indicates that they were derived from continental magmatic arc. Zircons extracted from the PTB volcanic ashes have negative εHf(t) (- 12.9 to - 2.0) and δ18O (6.8 to 10.9‰), consistent with an acidic volcanism and a crustal-derived origin, and therefore exclude a genetic link between the PTB mass extinction and the Siberian Traps. On the basis of spatial variation in the number of the PTB volcanic ash layers and the thickness of the ash layers in South China, we propose that the PTB volcanic ash may be related to Paleo-Tethys continental arc magmatism in the Kunlun area. Ignimbrite flare-up related to rapid plate subduction during the final assemblage of the Pangea super-continent may have generated a volcanic winter, which eventually triggered the collapse of ecosystem and ultimately mass extinction at the end of the Permian. The Siberian Traps may have been responsible for a greenhouse effect and so have been responsible for both a second pulse of the extinction event and Early Triassic ecological evolution.

  4. Chemical composition of tropospheric air masses encountered during high altitude flights (>11.5 km) during the 2009 fall Operation Ice Bridge field campaign

    NASA Astrophysics Data System (ADS)

    Yang, Mei Ying Melissa; Vay, Stephanie A.; Stohl, Andreas; Choi, Yonghoon; Diskin, Glenn S.; Sachse, Glen W.; Blake, Donald R.

    2012-09-01

    As part of the 2009 Operation Ice Bridge campaign, the NASA DC-8 aircraft was used to fill the data-time gap in laser observation of the changes in ice sheets, glaciers and sea ice between ICESat-I (Ice, Cloud, and land Elevation Satellite) and ICESat-II. Complementing the cryospheric instrument payload were four in situ atmospheric sampling instruments integrated onboard to measure trace gas concentrations of CO2, CO, N2O, CH4, water vapor and various VOCs (Volatile Organic Compounds). This paper examines two plumes encountered at high altitude (12 km) during the campaign; one during a southbound transit flight (13°S) and the other at 86°S over Antarctica. The data presented are especially significant as the Southern Hemisphere is heavily under-sampled during the austral spring, with few if any high-resolution airborne observations of atmospheric gases made over Antarctica. Strong enhancements of CO, CH4, N2O, CHCl3, OCS, C2H6, C2H2 and C3H8 were observed in the two intercepted air masses that exhibited variations in VOC composition suggesting different sources. The transport model FLEXPART showed that the 13°S plume contained predominately biomass burning emissions originating from Southeast Asia and South Africa, while both anthropogenic and biomass burning emissions were observed at 86°S with South America and South Africa as indicated source regions. The data presented here show evidence that boundary layer pollution is transported from lower latitudes toward the upper troposphere above the South Pole, which may not have been observed in the past.

  5. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  6. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  7. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke

    2016-03-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  8. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  9. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  10. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  11. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  12. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  13. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  14. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  15. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  16. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  17. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  18. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system.

  19. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  20. Alpine lee cyclogenesis influence on air-sea heat exchanges and marine atmospheric boundary layer thermodynamics over the western Mediterranean during a Tramontane/Mistral event

    NASA Astrophysics Data System (ADS)

    Flamant, Cyrille

    2003-02-01

    Data from a recent field campaign are used to analyze the nonstationary aspects of air-sea heat exchanges and marine atmospheric boundary layer (MABL) thermodynamics over the Gulf of Lion (GoL) in connection with synoptic forcing. The data set includes measurements made from a wide range of platforms (sea-borne, airborne, and space-borne) as well as three-dimensional atmospheric modeling. The analysis focuses on the 24 March 1998 Tramontane/Mistral event. It is shown that the nonstationary nature of the wind regime over the GoL was controlled by the multistage evolution of an Alpine lee cyclone over the Tyrrhenian Sea (between Sardinia and continental Italy). In the early stage (low at 1014 hPa) the Tramontane flow prevailed over the GoL. As the low deepened (1010 hPa), the prevailing wind regime shifted to a well-established Mistral that peaked around 1200 UTC. In the afternoon the Mistral was progressively disrupted by a strengthening outflow coming from the Ligurian Sea in response to the deepening low over the Tyrrhenian Sea (1008 hPa) and the channelling induced by the presence of the Apennine range (Italy) and the Alps. In the evening the Mistral was again well established over the GoL as the depression continued to deepen (1002 hPa) but moved to the southeast, reducing the influence of outflow from the Ligurian Sea on the flow over the GoL. The air-sea heat exchanges and the structure of the MABL over the GoL were observed to differ significantly between the established Mistral period and the disrupted Mistral period. In the latter period, surface latent and sensible heat fluxes were reduced by a factor of 2, on average. During that latter period, air-sea moisture exchanges were mainly driven by dynamics, whereas during the former period, both winds and vertical moisture gradients controlled moisture exchanges. The MABL was shallower during the latter period (0.7 km instead of 1.2 km) because of reduced surface turbulent heat fluxes and increased wind shear

  1. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  2. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  3. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-02-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with the mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons of the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air mass from south direction are always associated with pollution events during the summertime of Beijing. In August 2008, the frequency of air mass arriving from south has been twice higher compared to the average of the previous years, these southerly air masses did however not result in elevated particle volume concentrations in Beijing. This result implied that the air mass history was not the key factor, explaining reduced particle number and volume concentrations during the Beijing 2008 Olympic Games. Four factors were found influencing particle concentrations using a Positive matrix factorization (PMF) model. They were identified to local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  4. Avian eggs: barriers to the exchange of heat and mass.

    PubMed

    Sotherland, P R; Spotila, J R; Paganelli, C V

    1987-01-01

    Measured boundary-layer conductance to heat exchange for bird eggs varies with egg mass to the 0.53 power. Calculations based on the Nusselt-Reynolds relationship for a sphere and the thermal properties of air indicate that the conductance of the boundary layer to heat and to mass at any wind speed other than still air should scale with mass to the 0.53 power. Although the boundary layer contributes little to the total barrier to mass flux between bird eggs and their environment, we show that it is the major barrier to the exchange of heat. From these observations we infer that birds incubating eggs in natural nests can alter only the gradient affecting mass flux between their eggs and the environment while having the capability to change both the gradient and conductance affecting heat flux.

  5. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  6. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  7. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  8. Boundary Crossing and Boundary Objects

    ERIC Educational Resources Information Center

    Akkerman, Sanne F.; Bakker, Arthur

    2011-01-01

    Diversity and mobility in education and work present a paramount challenge that needs better conceptualization in educational theory. This challenge has been addressed by educational scholars with the notion of "boundaries", particularly by the concepts of "boundary crossing" and "boundary objects". Although studies on boundary crossing and…

  9. On-line analysis of volatile chlorinated hydrocarbons in air by gas chromatography-mass spectrometry Improvements in preconcentration and injection steps.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna; Pastorini, Elisabetta

    2010-06-11

    An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC-MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC-MS system to realize cryo-concentration (at -120 degrees C), thermal desorption (at 200 degrees C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column-capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica.

  10. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  11. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.

    PubMed

    Wondimu, Taddese; Wang, Rui; Ross, Brian

    2014-09-01

    The discovery that hydrogen sulphide (H2S) acts as a gasotransmitter when present at very low concentrations (sub-parts per billion (ppbv)) has resulted in the need to quickly quantify trace amounts of the gas in complex biological samples. Selected ion flow tube mass spectrometry (SIFT-MS) is capable of real-time quantification of H2S but many SIFT-MS instruments lack sufficient sensitivity for this application. In this study we investigate the utility of combining thermal desorption with SIFT-MS for quantifying H2S in the 0.1-1 ppbv concentration range. Human orally or nasally derived breath, and background ambient air, were collected in sampling bags and dried by passing through CaCl2 and H2S pre-concentrated using a sorbent trap optimised for the capture of this gas. The absorbed H2S was then thermally desorbed and quantified by SIFT-MS. H2S concentrations in ambient air, nasal breath and oral breath collected from 10 healthy volunteers were 0.12  ±  0.02 (mean ± SD), 0.40  ±  0.11 and 3.1  ±  2.5 ppbv respectively, and in the oral cavity H2S, quantified by SIFT-MS without pre-concentration, was present at 13.5  ±  8.6 ppbv. The oral cavity H2S correlates well with oral breath H2S but not with nasal breath H2S, suggesting that oral breath H2S derives mainly from the oral cavity but nasal breath is likely pulmonary in origin. The successful quantification of such low concentrations of H2S in nasal air using a rapid analytical procedure paves the way for the straightforward analysis of H2S in breath and may assist in elucidating the role that H2S plays in biological systems.

  12. Deev Jahi Model of the Permian Triassic boundary mass extinction: a case for gas hydrates as the main cause of biological crisis on Earth

    NASA Astrophysics Data System (ADS)

    Heydari, E.; Hassanzadeh, J.

    2003-12-01

    The smoking gun revealing the secrets of the end-Permian mass mortality is a unique 1-2-m-thick layer consisting of 5-20-cm-long crystals of calcite that occurs precisely at the Permian-Triassic boundary (PTB) in Iran, Armenia, Turkey, and China. This layer is interpreted as synsedimentary, abiotic, seafloor cement indicative of precipitation from a highly carbonate supersaturated seawater. Its δ13C composition ( δ13C=0‰ PDB) is 4‰ to 5‰ PDB lower than the typical Upper Permian values (4‰ to 5‰ PDB), suggesting the involvement of massive amounts of gas hydrate CH 4 ( δ13C=-60‰ PDB). The temporal coincidence of the cement layer with the PTB suggests that the process that promoted seafloor cementation was also responsible for the biological crisis. A cementation model is developed based on accumulation-dissociation cycle of gas hydrates which also explains the mass extinction at the PTB. The Upper Permian accumulation period of gas hydrates ended abruptly adjacent to the PTB and the dissociation event began releasing 3.2 to 4.7×10 18 g CH 4 into the ocean. Oxidation of CH 4 in the water column created a seawater that was charged with CO 2 (an oceanic acid bath) and had lower than normal O 2 content (but not anoxic). This oceanic acid bath first dissolved suspended fine-grained carbonate particles and small calcareous organisms, followed by extensive dissolution of platform carbonates raising Ca 2+ and HCO 3- concentrations of seawater. When the release of CH 4 declined, the acid-bath ocean became a soda ocean precipitating massive amount of seafloor cements observed globally at the PTB. The study suggests that prior to cement precipitation, the PTB ocean was charged with CO 2, warm, had low oxygen, high Ca 2+, and high HCO 3- concentrations. These conditions collectively created stressful conditions causing the marine mass mortality. The leakage of CH 4 to the atmosphere produced a super-hot climate resulting in the biological devastation on land. The

  13. Automated high-speed analysis of selected organic compounds in urban air by on-line isotopic dilution cryofocusing gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Maggi, M; Fanelli, R

    1994-11-01

    An automated environmental air monitor has been developed to measure selected organic compounds in urban air. The instrument is based on a cryofocusing-thermal desorption gas chromatographic mass spectrometry technique where the mass spectrometer is a slightly modified residual gas analyzer (RGA). The RGA was chosen as a detector because the whole system must be robust for long periods, with 24-h continuous air monitoring. RCA are extremely simple and seemed the most reliable mass spectrometers for this purpose. Moreover, because they have no physically limited ion source, contamination is considerably reduced, so maintenance intervals are longer.The gas chromatograph is equipped with a computer-controlled six-way sampling valve, with a 100-mL sampling loop and thermal desorption cold trap injector. Environmental air is enriched with an isotopically labeled internal standard in the sampling line. This internal standard is added with a validated, custom-made, permeation tube device. The "on-line" internal standard provides for high quality quantitative data because all variations in instrument sensitivity in cryofocusing or in thermal desorption efficiency are taken into account. High repetition rates (down to 5 min for a full analytical cycle) are obtained with the use of an isothermal gas chromatography program, microbore capillary column, and environmental air sampling during the gas chromatography run.

  14. Influence of air mass origin on the wet deposition of nitrogen to Tampa Bay, Florida—An eight-year study

    NASA Astrophysics Data System (ADS)

    Strayer, Hillary; Smith, Ronald; Mizak, Connie; Poor, Noreen

    Rainfall delivers on the average ˜10% of the total annual nitrogen load directly to Tampa Bay, based on precipitation monitoring at a National Atmospheric Deposition Program (NADP) Atmospheric Integrated Research Monitoring Network (AIRMoN) site located adjacent to Tampa Bay in urban Tampa. We coupled the chemical analyses for 606 daily precipitation samples collected from 1996 to 2004 with corresponding air mass trajectory information to investigate if wet-deposited nitrogen originated from near versus removed source regions. Air mass trajectories were obtained using the National Oceanic and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and were classified into six trajectory categories by the direction of their approach to Tampa Bay. Rainfall nitrate and ammonium concentrations were significantly lower for over-water air mass trajectories than for over-land trajectories as expected, but contributed to 40% of the total wet-deposited nitrogen, a likely consequence of the higher frequency of rain events for these trajectories. Average rainfall nitrate concentrations were significantly higher for air masses that stagnated over the urbanized bay region. We estimated that local sources contributed 1kgNha-1yr-1 or 25% of the total inorganic nitrogen wet-deposited to Tampa Bay.

  15. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  16. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  17. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-01

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities.

  18. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  19. Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Barkley, M. P.; Gonzalez Abad, G.; Bösch, H.; Kurosu, T.; Spurr, R.

    2015-01-01

    Space-borne observations of formaldehyde (HCHO) are frequently used to derive surface emissions of isoprene, an important biogenic volatile organic compound. The conversion of retrieved HCHO slant column concentrations from satellite line of sight measurements to vertical columns is determined through application of an air mass factor (AMF), accounting for instrument viewing geometry, radiative transfer, and vertical profile of the absorber in the atmosphere. This step in the trace gas retrieval is subject to large errors. This work presents the AMF algorithm in use at the University of Leicester (UoL), which introduces scene specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument specific scattering weight calculation, and inclusion of an ozone vertical profile climatology. Application of these updates to HCHO slant columns from the GOME-2 instrument is shown to typically adjust the AMF by ±10%, compared to a~reference algorithm without these advanced parameterisations. Furthermore, the new UoL algorithm also incorporates a full radiative transfer error calculation for each scene to help characterise AMF uncertainties. Global median AMF errors are typically 50-60%, and are dominated by uncertainties in the HCHO profile shape and its corresponding seasonal variation.

  20. Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin Charles

    Problem-solving strategies in the physical sciences have been characterized by a dependence on algorithmic techniques often devoid of any reasoning skills. The purpose of this study was to examine student responses to a task relating to Boyle's Law for gases, which did not demand the use of a mathematical equation for its solution. Students (17- to 18-year-olds) in lower sixth form from two colleges in the Leeds district of Yorkshire in England were asked to respond to a task relating to pressure and volume measurements of air within a sealed syringe in different states of compression. Both qualitative and quantitative tasks for the sealed syringe system were examined. It was found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under such circumstances. Performance on an inverse ratio (2:1) task was shown to depend on gender and those students who performed well on the 2:1 inverse ratio task did not necessarily perform well on a different inverse ratio task when an arithmetic averaging principle was present. Tasks which draw upon qualitative knowledge as well as quantitative knowledge have the potential to reduce dependence on algorithms, particularly equation substitution and solution. The implications for instructional design are discussed.Received: 14 April 1993; Revised: 29 June 1994;

  1. Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry.

    PubMed

    Laakso, I; Seppänen-Laakso, T; Hiltunen, R; Müller, B; Jansen, H; Knobloch, K

    1989-06-01

    Combined headspace gas chromatography-mass spectrometry (HSGC-MS) was used in the analysis of garlic volatile compounds. Twenty major components were identified in the gas phases enriched by fresh, sliced garlic cloves ( ALLIUM SATIVUM L, Allioceae, Liliidae). Suspended dry garlic powder and crushed garlic, incubated in vegetable oil, revealed a different pattern since mainly the amounts of di- and trisulfides were decreased. The considerable compositional differences found in the analyses for the gas phase of garlic cloves, kept in oil, are likely associated with the poor stability of allicin in a lipophilic environment; a marked increase in the amounts of 2-propene-1-thiol, acetic acid, and ethanol was observed in the gas phase, whereas trisulfides were present in traces only. The occurrence of 2-propene-1-thiol and diallyl disulfide, the two principal sulfur components in exhaled air, also may indicate a rapid degradation of most garlic volatile components probably caused by the enzymatically active human salivary or digestive system. PMID:17262412

  2. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    PubMed

    Gunter, Nicole L; Weir, Tom A; Slipinksi, Adam; Bocak, Ladislav; Cameron, Stephen L

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  3. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    PubMed Central

    Gunter, Nicole L.; Weir, Tom A.; Cameron, Stephen L.

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed “out of Africa” hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  4. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    PubMed

    Gunter, Nicole L; Weir, Tom A; Slipinksi, Adam; Bocak, Ladislav; Cameron, Stephen L

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  5. Two modes in the southern boundary location of the YSBCW

    NASA Astrophysics Data System (ADS)

    Yang, H.; Cho, Y.; Seo, G.

    2012-12-01

    Sea water temperature is important for primary producers and marine life. The Yellow Sea Bottom Cold Water (YSBCW) of ≤10°C is observed below the thermocline in summer. The cold water persists round the year in spite of surface heating. Many scientists are interested to study this unique water mass. The temperature observed by the National Fisheries Research & Development Institute(NFRDI) in the southern Yellow Sea shows two remarkable modes in the southern boundary of the YSBCW. This study investigates interannual variability of the YSBCW along with the mechanisms responsible for this. This quantified variation of southern boundary of the YSBCW in summer has strong relation with the previous winter air temperature and southerly wind stress, while weak relation with northerly wind stress in winter. . This implies that winter sea water temperature changed by the previous winter air temperature affects the southern bondary location of the YSBCW. And southerly wind may play an important role in driving southward flow of the YSBCW. Because southerly wind piles up water in the northern coastal boundary of yellow sea, resultant sea level increases in the coastal boundary which causes southward counter flow in the bottom. The numerical model result also shows consistency with the variation of southern boundary location of YSBCW found in the observed NFRDI temperature data. Detail dynamics of changing wind and winter air temperature will be explained based on the data analysis and numerical experiment.

  6. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  7. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  8. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  9. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-01

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  10. Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Barkley, M. P.; Gonzalez Abad, G.; Bösch, H.; Kurosu, T.; Spurr, R.; Tilstra, L. G.

    2015-10-01

    Space-borne observations of formaldehyde (HCHO) are frequently used to derive surface emissions of isoprene, an important biogenic volatile organic compound. The conversion of retrieved HCHO slant column concentrations from satellite line-of-sight measurements to vertical columns is determined through application of an air mass factor (AMF), accounting for instrument viewing geometry, radiative transfer, and vertical profile of the absorber in the atmosphere. This step in the trace gas retrieval is subject to large errors. This work presents the AMF algorithm in use at the University of Leicester (UoL), which introduces scene-specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument-specific scattering weight calculation, and inclusion of an ozone vertical profile climatology. Application of these updates to HCHO slant columns from the GOME-2 instrument is shown to typically adjust the AMF by ±20 %, compared to a reference algorithm without these advanced parameterisations. On average the GOME-2 AMFs increase by 4 %, with over 70 % of locations having an AMF of 0-20 % larger than originally, largely resulting from the use of the latest GOME-2 reflectance product. Furthermore, the new UoL algorithm also incorporates a full radiative transfer error calculation for each scene to help characterise AMF uncertainties. Global median AMF errors are typically 50-60 %, and are driven by uncertainties in the HCHO profile shape and its vertical distribution relative to clouds and aerosols. If uncertainty on the a priori HCHO profile is relatively small (< 10 %) then the median AMF total error decreases to about 30-40 %.

  11. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  12. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  13. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  14. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  15. Easy dual-mode ambient mass spectrometry with Venturi self-pumping, canned air, disposable parts and voltage-free sonic-spray ionization.

    PubMed

    Schwab, Nicolas V; Porcari, Andreia M; Coelho, Mirela B; Schmidt, Eduardo M; Jara, Jose L; Visentainer, Jesui V; Eberlin, Marcos N

    2012-06-01

    An exceptionally easy to assemble source for ambient mass spectrometry is described. Based on Venturi easy ambient sonic-spray ionization (V-EASI), the source was further simplified by the use of a can of compressed air which simultaneously provides solution or solvent Venturi self-pumping and continuous, stable and abundant low-noise ion signal via voltage-free sonic-spraying. Further simplification was also attained by the use of inexpensive and readily commercially available parts: a surgical 2-way catheter, an aerosol can of compressed air, a 30 cm long fused-silica capillary and a hypodermic needle. This "Spartan" V-EASI source seems to offer one of the easiest and cheapest ways to make ions for ambient desorption/ionization mass spectrometry analysis of both liquid and solid samples. PMID:22349120

  16. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  17. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  18. Characterization of volatile organic compounds (VOCs) in Asian and North American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Meinardi, S.; Simpson, I. J.; Atlas, E. L.; Beyersdorf, A. J.; Baker, A. K.; Blake, N. J.; Yang, M.; Midyett, J. R.; Novak, B. J.; McKeachie, R. J.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Campos, T.; Weinheimer, A. J.; Sherwood Rowland, F.; Blake, D. R.

    2009-03-01

    We present results from the Intercontinental Chemical Transport Experiment - Phase B (INTEX-B) aircraft mission conducted in spring 2006. By analyzing the mixing ratios of volatile organic compounds (VOCs) measured during the second part of the field campaign, together with kinematic back trajectories, we were able to identify five plumes originating from China, four plumes from other Asian regions, and three plumes from the United States. To identify specific tracers for the different air masses, we focused on characterizing the VOC composition of these different pollution plumes. The Chinese and other Asian air masses were significantly enhanced in carbonyl sulfide (OCS) and methyl chloride (CH3Cl), while all CFC replacement compounds were elevated in US plumes, particularly HCFC-134a. Although elevated mixing ratios of Halon-1211 were measured in some of the Chinese plumes, several measurements at background levels were also observed. After analyzing the VOC distribution in the Chinese pollution plumes and the correlations among selected compounds, we suggest the use of a suite of species, rather than the use of a single gas, to be used as specific tracers of Chinese air masses (namely OCS, CH3Cl, 1,2-dichloroethane, and Halon-1211). In an era of constantly changing halocarbon usage patterns, this suite of gases best reflects new emission characteristics from China.

  19. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  20. Retrieval of Vertical Columns of Sulfur Dioxide From SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation

    NASA Astrophysics Data System (ADS)

    Lee, C.; Martin, R. V.; Donkelaar, A. V.; O'Byrne, G.; Krotkov, N.; Richter, A.; Huey, G.; Holloway, J. S.

    2009-05-01

    Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Outstanding questions exist about SO2 emissions and its atmospheric chemistry. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of its atmospheric chemistry. Here, we present an improved retrieval of sulfur dioxide (SO2) vertical columns from satellite instruments (SCIAMACHY and OMI) that measure solar backscattered UV radiance. Particular attention is devoted to development of a local air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each SCIAMACHY and OMI observation, we calculate an AMF from the relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem), weighted by altitude-dependent scattering weights computed with a radiative transfer model (LIDORT). Seasonal mean instrument sensitivity to SO2 (AMF) is generally twice as high over ocean than land. Mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean relative vertical profiles of SO2 simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated (r = 0.9) with coincident airborne in-situ measurements (INTEX-A, INTEX-B, and a campaign over East China). A global uniform AMF would reduce the correlation with aircraft measurements by 0.1 - 0.2. The overall error assessment leads to 45 - 80% errors for yearly averages over the polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the

  1. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  2. Release of PCDD/PCDF to air and land during open burning of sugarcane and forest litter over soil fortified with mass labelled PCDD/PCDF

    NASA Astrophysics Data System (ADS)

    Black, Robert R.; (Mick) Meyer, Carl P.; Yates, Alan; Van Zwieten, Lukas; Chittim, Brock G.; Mueller, Jochen F.

    2012-11-01

    The contribution of PCDD/PCDF emissions from soil during open burning of biomass was examined. Mass labelled PCDD/PCDF was added to soil containing native PCDD/PCDF and biomass was laid out on this soil and burnt, simulating sugarcane trash and forest fires. Smoke samples were collected using a high volume portable field sampler. After each fire the concentration of all mass labelled PCDD/PCDF congeners in the surface soil decreased, however, the concentration of some native 2,3,7,8 substituted congeners increased, indicating that formation was occurring. Mass labelled PCDD/PCDF congeners were detected in all ash samples, mean 2.8 pg g-1 (range 0.5-8 pg g-1), demonstrating release from the soil. Additionally, mass labelled PCDD/PCDF congeners were detected in all air samples mean 1.2 μg (t fuel)-1 (range 0.2-2.0 μg (t fuel)-1), again demonstrating release from the soil. Native 2,3,7,8 substituted congeners detected in the air samples were dominated (in terms of contribution to total congener mass) by Cl8DD (90% for forest litter and 77% for sugarcane). The major contributor to TEQ of emissions from both forest litter and sugarcane was 1, 2, 3, 7, 8-Cl5DD (40-64% and 57-75%, respectively). These results demonstrate that release of PCDD/PCDF from soil to air and land occurs during open burning of biomass when soil temperatures are sufficiently elevated.

  3. A Comparison between 2010 and 2006 Air Quality and Meteorological Conditions, andEmissions and Boundary Conditions used in Simulations of the AQMEII-2 North American Domain

    EPA Science Inventory

    Several participants in Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2) who are applying coupled models to the North American domain are comparing model results for two years: 2006 and 2010. While a key difference of interest between these two yea...

  4. Grain boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1991-01-01

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990--February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: Study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  5. Characterization of particle cloud droplet activity and composition in the free troposphere and the boundary layer during INTEX-B

    SciTech Connect

    Roberts, G. C.; Day, D. A.; Russell, Lynn M.; Dunlea, E. J.; Jimenez, J. L.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Y.; Clarke, A. D.

    2010-07-20

    Measurements of cloud condensation nuclei (CCN), aerosol size distributions, and submicron aerosol composition were made as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign during spring 2006. Measurements were conducted from an aircraft platform over the northeastern Pacific and western North America with a focus on how the transport and evolution of Asian pollution across the Pacific Ocean affected CCN properties. A broad range of air masses were sampled and here we focus on three distinct air mass types defined geographically: the Pacific free troposphere (FT), the marine boundary layer (MBL), and the polluted continental boundary layer in the California Central Valley (CCV). These observations add to the few observations of CCN in the FT. CCN concentrations showed a large range of concentrations between air masses, however CCN activity was similar for the MBL and CCV ({kappa} {approx} 0.2-0.25). FT air masses showed evidence of long-range transport from Asia and CCN activity was consistently higher than for the boundary layer air masses. Bulk chemical measurements predicted CCN activity reasonably well for the CCV and FT air masses. Decreasing trends in {kappa} with organic mass fraction were observed for the combination of the FT and CCV air masses and can be explained by the measured soluble inorganic chemical components. Changes in hygroscopicity associated with differences in the non-refractory organic composition were too small to be distinguished from the simultaneous changes in inorganic ion composition in the FT and MBL, although measurements for the large organic fractions (0.6-0.8) found in the CCV showed values of the organic fraction hygroscopicity consistent with other polluted regions ({kappa}{sub org} {approx} 0.1-0.2). A comparison of CCN-derived {kappa} (for particles at the critical diameter) to H-TDMA-derived {kappa} (for particles at 100 nm diameter) showed similar trends, however the CCN-derived {kappa

  6. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  7. Soot and radiation in combusting boundary layers

    SciTech Connect

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  8. Grain boundary segregation of boron in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chaturvedi, M. C.; Richards, N. L.; McMahon, G.

    1998-07-01

    The segregation behavior of boron at grain boundaries in two INCONEL 718+ based alloys with different B concentrations was studied. The alloys, one containing 11 ppm of B and the other 43 ppm, were homogenized at 1200 °C for 2 hours followed by water quenching and air cooling. A strong segregation of boron at grain boundaries was observed using secondary ion mass spectrometry after the heat treatment in both the alloys. The segregation was found mainly to be of nonequilibrium type. The homogenized samples were also annealed at 1050 °C for various lengths of time. During annealing, boride particles were observed to first form at grain boundaries and then to dissolve on continued annealing at 1050 °C. The mechanisms of segregation and desegregation of B are discussed.

  9. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  10. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  11. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  12. High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Lindberg, Steven E.

    1994-03-01

    We constructed an atmospheric sampling system for Hg vapor that utilizes a single vacuum pump connected via a manifold to six separate mass flow controllers (MFC). The manifold system reduces the size and power requirements for collection of replicate samples, is ideally suited for use on meteorological towers, and achieves the precise control of air-sampling volumes required for computing air/surface exchange rates from concentration gradients of Hg vapor. In testing our air sampling systems, we found consistent calibration errors between the manufacturer's calibrations and a standard bubble flow meter. Errors as high as 30% decreased systematically with increasing flow rate to values of 3-5% at near-maximum flow. The relative error patterns established between adjacent MFC units in each system were found to be relatively stable over time. Using gold-coated sand amalgamation traps for Hg vapor and the flow correction factors computed from our calibrations, we routinely achieve precision for replicate measurements of Hg vapor in background air of 0.5-2% (expressed as relative standard errors of mean concentrations of 1.5-3.5 ng/m3). Application of the flow correction factors measurably decreases the level of bias between mean concentrations of Hg vapor measured with adjacent sampling systems and is necessary to reduce uncertainty associated with quantifying gradients in atmospheric concentrations.

  13. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  14. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  15. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  16. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  17. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  18. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  19. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA ® passive tubes.

    PubMed

    Raeppel, Caroline; Appenzeller, Brice M; Millet, Maurice

    2015-01-01

    A method coupling thermal desorption and gas chromatography/mass spectrometry (GC/MS) was developed for the simultaneous determination of 7 pyrethroids (allethrin, bifenthrin, cyphenothrin, imiprothrin, permethrin, prallethrin and tetramethrin) and piperonyl butoxide adsorbed on Tenax TA(®) passive samplers after exposure in indoor air. Thermal desorption was selected as it permits efficient and rapid extraction without solvent used together with a good sensitivity. Detection (S/N>3) and quantification (S/N>10) limits varied between 0.001 ng and 2.5 ng and between 0.005 and 10 ng respectively with a reproducibility varied between 14% (bifenthrin) and 39% (permethrin). The method was used for the comparison indoor air contamination after low-pressure spraying and fumigation application in a rubbish chute situated in the basement of a building.

  20. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  1. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  2. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  3. Light extinction by fine atmospheric particles in the White Mountains region of New Hampshire and its relationship to air mass transport.

    PubMed

    Slater, John F; Dibb, Jack E; Keim, Barry D; Talbot, Robert W

    2002-03-27

    Chemical, optical, and physical measurements of fine aerosols (aerodynamic diameter < or = 2.5 microm) have been performed at a mountaintop location adjacent to the White Mountain National Forest in northern NH, USA. A 1-month long sampling campaign was conducted at Cranmore Mountain during spring 2000. We report on the apportionment of light extinction by fine aerosols into its major chemical components, and relationships between variations in aerosol parameters and changes in air mass origin. Filter-based, 24-h integrated samples were collected and analyzed for major inorganic ions, as well as organic (OC), elemental (EC), and total carbon. Light scattering and light absorption coefficients were measured at 5-min intervals using an integrating nephelometer and a light absorption photometer. Fine particle number density was measured with a condensation particle counter. Air mass origins and transport patterns were investigated through the use of 3-day backward trajectories and a synoptic climate classification system. Two distinct transport regimes were observed: (1) flow from the north/northeast (N/NE) occurred during 9 out of 18 sample-days; and (2) flow from the west/southwest (W/SW) occurred 8 out of 18 sample-days. All measured and derived aerosol and meteorological parameters were separated into two categories based on these different flow scenarios. During W/SW flow, higher values of aerosol chemical concentration, absorption and scattering coefficients, number density, and haziness were observed compared to N/NE flow. The highest level of haziness was associated with the climate classification Frontal Atlantic Return, which brought polluted air into the region from the mid-Atlantic corridor. Fine particle mass scattering efficiencies of (NH4)2SO4 and OC were 5.35 +/- 0.42 m2 g(-1) and 1.56 +/- 0.40 m2 g(-1), respectively, when transport was out of the N/NE. When transport was from the W/SW the values were 4.94 +/- 0.68 m2 g(-1) for (NH4)2SO4 and 2.18 +/- 0

  4. Is PM(10) mass measurement a reliable index for air quality assessment? An environmental study in a geographical area of north-eastern Italy.

    PubMed

    Cozzi, F; Adami, G; Barbieri, P; Reisenhofer, E; Bovenzi, M

    2008-09-01

    The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.

  5. Sensitive indoor air monitoring of monoterpenes using different adsorbents and thermal desorption gas chromatography with mass-selective detection.

    PubMed

    Hollender, Juliane; Sandner, Frank; Möller, Manfred; Dott, Wolfgang

    2002-07-12

    A simple method using active trapping on adsorbents and thermal desorption followed by GC-MS analysis was developed for the indoor air monitoring of monoterpenes. The study was carried out using a dynamically generated atmosphere consisting of 11 monoterpenes: camphene, camphor, delta 3-carene, 1,8-cineol, limonene, linalool, alpha-pinene, beta-pinene, alpha-terpinene, gamma-terpinene, fenchyl alcohol. The influence of the different adsorbents Tenax TA, Tenax GR, Carbosieve SIII, Chromosorb 106 on the yield of six selected monoterpenes at indoor air concentrations was studied. The adsorbent Tenax GR gave relatively the best yields followed by Tenax TA. Detection limits of approximately 1 microgram m3 were determined with Tenax GR for most of the monoterpenes.

  6. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    NASA Astrophysics Data System (ADS)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  7. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  8. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  9. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  10. Quantification of VX vapor in ambient air by liquid chromatography isotope dilution tandem mass spectrometric analysis of glass bead filled sampling tubes.

    PubMed

    Evans, Ronald A; Smith, Wendy L; Nguyen, Nam-Phuong; Crouse, Kathy L; Crouse, Charles L; Norman, Steven D; Jakubowski, E Michael

    2011-02-15

    An analysis method has been developed for determining low parts-per-quadrillion by volume (ppqv) concentrations of nerve agent VX vapor actively sampled from ambient air. The method utilizes glass bead filled depot area air monitoring system (DAAMS) sampling tubes with isopropyl alcohol extraction and isotope dilution using liquid chromatography coupled with a triple-quadrupole mass spectrometer (LC/MS/MS) with positive ion electrospray ionization for quantitation. The dynamic range was from one-tenth of the worker population limit (WPL) to the short-term exposure limit (STEL) for a 24 L air sample taken over a 1 h period. The precision and accuracy of the method were evaluated using liquid-spiked tubes, and the collection characteristics of the DAAMS tubes were assessed by collecting trace level vapor generated in a 1000 L continuous flow chamber. The method described here has significant improvements over currently employed thermal desorption techniques that utilize a silver fluoride pad during sampling to convert VX to a higher volatility G-analogue for gas chromatographic analysis. The benefits of this method are the ability to directly analyze VX with improved selectivity and sensitivity, the injection of a fraction of the extract, quantitation using an isotopically labeled internal standard, and a short instrument cycle time.

  11. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    PubMed Central

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  12. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    PubMed

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  13. Student Understanding of the Volume, Mass, and Pressure of Air within a Sealed Syringe in Different States of Compression.

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    1995-01-01

    Investigation of (n=101) 17- to 18-year-old students' responses to a task relating to Boyle's Law for gases found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under the given circumstances. (Author/MKR)

  14. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  15. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  16. Climatological classification of five sectors in the Iberian Peninsula using columnar (AOD, α) and surface (PM10, PM2.5) aerosol data supported by air mass apportioning

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria; Mateos, David; Toledano, Carlos; Burgos, Maria A.; Bennouna, Yasmine; Torres, Benjamín; Fuertes, David; González, Ramiro; Guirado, Carmen; Román, Roberto; Velasco-Merino, Cristian; Marcos, Alberto; Calle, Abel; de Frutos, Angel M.

    2015-04-01

    The study of atmospheric aerosol over the Iberian Peninsula (IP) under a climatologic perspective is an interesting and meaningful aim due to the wide variety of conditions (geographical position, air masses, topography, among others) which cause a complex role of the distribution of aerosol properties. In the deeply investigation on the annual cycle and time evolution of the particulate matter lower than 10 µm (PM10, surface) and aerosol optical depth (AOD, columnar) in a large number of sites covering the period 2000-2013, five sectors can be distinguished in the IP. Both set of data belong to EMEP and AERONET networks respectively, as representative of aerosol air quality and climate studies, are complementary elements for a global aerosol research. The prevalence of fine-coarse particles is also analyzed over each sector. Seasonal bimodality of the PM10 annual cycle with a strong North-South gradient is observed in most sites, but this is only reported in the AOD climatology for the southern IP. The northern coast is clearly governed by the Atlantic Ocean influence, while the northeastern area is modulated by the Mediterranean Sea. The southern area, very close to the African continent, presents a large influence of desert dust intrusions. However, the southern Atlantic and Mediterranean coast present discrepancies and two sectors have been defined in this area. Finally, the center of the Peninsula is a mix of conditions, with north-south and east-west gradients of different magnitude. Overall, there is a relationship between PM10 and AOD with a proportional factor varying from 20 to 90, depending on the sector. The particular characteristic of PM10-AOD annual cycle of each geographical sector can be understood by the different climatology of the air mass origins observed at 500 and 1500 m (a.s.l.) and its apportioning to PM10 and AOD, respectively.

  17. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  18. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  19. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  20. Lidar observations of ozone changes induced by subpolar air mass motion over Table Mountain, California (34.4 deg N)

    NASA Technical Reports Server (NTRS)

    Mcgee, Thomas J.; Newman, Paul; Ferrare, Richard; Whiteman, David; Burris, John; Butler, James; Godin, Sophie; Mcdermid, I. Stuart

    1990-01-01

    Between October 15 and November 8, 1988, the Goddard Space Flight Center mobile stratospheric lidar was in place at the (JPL) Table Mountain Facility (located at 34.4 deg N, 117.7 deg W) for the purpose of intercomparing with the JPL lidar permanently stationed at the observatory. During the course of the intercomparison both lidar systems detected a significant change in the vertical profile of ozone lasting for several days. An analysis of meteorological data available from the National Meteorological Center has shown this change to be dynamical in origin due to the transport of subpolar air over Table Mountain.

  1. Associations between Prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index

    PubMed Central

    Coull, Brent A.; Just, Allan C.; Maxwell, Sarah L.; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Wright, Rosalind J.; Wright, Robert O.

    2015-01-01

    Background Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. Objectives We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Methods Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Results Median birth weight was 3.3±0.6 kg; 33% of mothers were obese (BMI ≥30 kg/m3). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (−0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: −0.79 to −0.06) ( PM2.5 × sex × obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Conclusions Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. PMID:25601728

  2. Summertime PAN on boundary layer over the Northern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Song, D.; Lee, S.; Lee, G.; Rhee, T. S.

    2012-12-01

    As a part of SHIPPO ( Shipborne Pole to Pole Observation), peroxyacetyl nitrate (PAN) and NO2 have been measured at aboard the R/V Araon during the ship track from Inchon, South Korea to Norm, Alaska, USA from July 14th to 30th, 2012. PAN and NO2 were sampled every 2 minute by a fast chromatograph with luminol-based chemiluminescence detection. In order to assure their detections in remote background airs, we successfully reduced random noise mainly from PMT using ensemble averaging from the 2 min chromatograms in each one hour time interval. With this post-processing analysis, we were able to lower detection limits to 0.01 ppbv and 0.04 ppbv for PAN and NO2, respectively. The preliminary results indicate that the background values ranged from the below the detection limit to 0.37 ppbv (average of 0.06 ppbv) for PAN and 2.05 ppbv (average of 0.24 ppbv) for NO2. It was confirmed that PAN was significant portions of reactive nitrogens in remote marine boundary airs. Occasional enhancements of PAN and NO2 were mainly attributed to the air masses originated from nearby source regions in the Northestern Asia and influenced by ships exhausts. We were able to observe the shifting of equilibrium between PAN and NO2 according to air temperature changes in very clean air masses.

  3. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  4. Open-path TDL-Spectrometry for a Tomographic Reconstruction of 2D H2O-Concentration Fields in the Soil-Air-Boundary-Layer of Permafrost

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2013-04-01

    The melting of permafrost soils in arctic regions is one of the effects of climate change. It is recognized that climatically relevant gases are emitted during the thawing process, and that they may lead to a positive atmospheric feedback [1]. For a better understanding of these developments, a quantification of the gases emitted from the soil would be required. Extractive sensors with local point-wise gas sampling are currently used for this task, but are hampered due to the complex spatial structure of the soil surface, which complicates the situation due to the essential need for finding a representative gas sampling point. For this situation it would be much preferred if a sensor for detecting 2D-concentration fields of e.g. water vapor, (and in the mid-term also for methane or carbon dioxide) directly in the soil-atmosphere-boundary layer of permafrost soils would be available. However, it also has to be kept in mind that field measurements over long time periods in such a harsh environment require very sturdy instrumentation preferably without the need for sensor calibration. Therefore we are currently developing a new, robust TDLAS (tuneable diode laser absorption spectroscopy)-spectrometer based on cheap reflective foils [2]. The spectrometer is easily transportable, requires hardly any alignment and consists of industrially available, very stable components (e.g. diode lasers and glass fibers). Our measurement technique, open path TDLAS, allows for calibration-free measurements of absolute H2O concentrations. The static instrument for sampling open-path H2O concentrations consists of a joint sending and receiving optics at one side of the measurement path and a reflective element at the other side. The latter is very easy to align, since it is a foil usually applied for traffic purposes that retro-reflects the light to its origin even for large angles of misalignment (up to 60°). With this instrument, we achieved normalized detection limits of up to 0