Science.gov

Sample records for air mass conditions

  1. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  2. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  3. Influences of atmospheric conditions and air mass on the ratio of ultraviolet to total solar radiation

    SciTech Connect

    Riordan, C.J.; Hulstrom, R.L.; Myers, D.R.

    1990-08-01

    The technology to detoxify hazardous wastes using ultraviolet (UV) solar radiation is being investigated by the DOE/SERI Solar Thermal Technology Program. One of the elements of the technology evaluation is the assessment and characterization of UV solar radiation resources available for detoxification processes. This report describes the major atmospheric variables that determine the amount of UV solar radiation at the earth's surface, and how the ratio of UV-to-total solar radiation varies with atmospheric conditions. These ratios are calculated from broadband and spectral solar radiation measurements acquired at SERI, and obtained from the literature on modeled and measured UV solar radiation. The following sections discuss the atmospheric effects on UV solar radiation and provide UV-to-total solar radiation ratios from published studies, as well as measured values from SERI's data. A summary and conclusions are also given.

  4. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  5. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  6. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  7. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  8. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  9. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  10. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air.

    PubMed

    Juillet, Yannick; Le Moullec, Sophie; Bégos, Arlette; Bellier, Bruno

    2005-06-01

    Among the chemicals belonging to the schedules of the Chemical Weapons Convention (CWC), sampling and analysis of highly volatile compounds such as hydrogen cyanide (HCN) require special consideration. The latter is present in numerous old chemical weapons that are stockpiled awaiting destruction in Northeastern France: thus, sampling on stockpile area and subsequent verification of HCN levels is compulsory to ensure safety of workers on these areas. The ability of several commercial sorbents to trap hydrogen cyanide at various concentration levels and in various humidity conditions, was evaluated. Furthermore, thermal desorption of the corresponding samples, followed by analysis by gas chromatography-mass spectrometry was also optimised. Carbosieve S-III, a molecular sieve possessing a very high specific area, proved the most efficient sorbent for HCN sampling in all conditions tested. Conversely, the presented results show that Tenax, albeit generally considered as the reference sorbent for air monitoring and analysis of CWC-related chemicals, is not suitable for HCN trapping. PMID:15912249

  11. Computer Developments in Air Conditioning.

    ERIC Educational Resources Information Center

    Pancoast, Ferendino, Grafton and Skeels, Architects, Miami, FL.

    Proceedings of a conference on the present and future uses of computer techniques in the air conditioning field. The recommendation of this report is, for the most part, negative insofar as it applies to the use of computers for design by the small office. However, there should be an awareness of their usefulness in controlling the environmental…

  12. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  13. Automobile air-conditioning unit. Final report

    SciTech Connect

    Schaetzle, W.J.

    1982-12-01

    In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

  14. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  15. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  16. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  17. Energy-Efficient Air Conditioning

    SciTech Connect

    Krigger, J.; Stewart, K.

    1999-06-30

    Many people buy or use air conditioners without understanding their designs, components, and operating principles. Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs. This publication discusses both central and room air conditioners. Heat pumps, which provide both home cooling and heating, are not covered in this publication. Contact www.eren.doe.gov/consumerinfo for more information.

  18. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  19. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  20. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  1. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  2. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  3. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  4. Mine ventilation and air conditioning. 3. edition

    SciTech Connect

    Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y.J.

    1998-12-31

    This revised edition presents an engineering design approach to ventilation and air conditioning as part of the comprehensive environmental control of the mine atmosphere. It provides an in-depth look, for practitioners who design and operate mines, into the health and safety aspects of environmental conditions in the underground workplace. The contents include: Environmental control of the mine atmosphere; Properties and behavior of air; Mine air-quality control; Mine gases; Dusts and other mine aerosols; Mine ventilation; Airflow through mine openings and ducts; Mine ventilation circuits and networks; Natural ventilation; Fan application to mines; Auxiliary ventilation and controlled recirculation; Economics of airflow; Control of mine fires and explosions; Mine air conditioning; Heat sources and effect in mines; Mine air conditioning systems; Appendices; References; Answers to selected problems; and Index.

  5. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  6. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  7. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  8. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  9. Thermal analysis of car air conditioning

    NASA Astrophysics Data System (ADS)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  10. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  11. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  12. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  13. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  14. Solar powered desiccant air conditioning system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A solar-powered desiccant air conditioning system using silica gel was developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed.

  15. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  16. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  17. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  18. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  19. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  20. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  1. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  2. Metrics for Air Conditioning & Refrigeration, Heating, Ventilating.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of the air conditioning and refrigeration, heating and ventilating student, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already…

  3. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  4. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  5. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  6. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  7. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  8. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  9. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  10. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  11. Analysing body condition: mass, volume or density?

    PubMed

    Moya-Laraño, Jordi; Macías-Ordóñez, Rogelio; Blanckenhorn, Wolf U; Fernández-Montraveta, Carmen

    2008-11-01

    1. Body condition (defined as the relative amount of energy reserves in the body) is an animal trait with strong ecological implications. In some animal taxa (e.g. arthropods), the external volume of the body part in which most nutrients are stored (e.g. abdomen) is used interchangeably with body mass to estimate body condition, making the implicit assumption that abdomen residual volume is a good surrogate of residual mass. However, the degree of correlation between these two measures should largely depend on the density of the nutrients stored. 2. We simulated two food-supplemented experimental groups of animals, each storing a slightly different amount of lipids either in their abdomens or in their entire bodies, and explored (i) how different estimates of condition were able to detect fixed differences between the groups; and (ii) how the amount of lipids stored could affect the outcome of non-intrusive measures of condition on a dichotomous variable (e.g. survival, mating success). We found that density body condition (body mass statistically controlled for structural body size and body volume) has much greater power to detect differences between experimental groups or effects on binary response variables than do classic mass/size or volume/size condition indices. 3. Using data on Lycosa tarantula (L.), a burrowing wolf spider, we report dramatic differences among these three indices in their ability to detect sex differences in the effect of feeding treatment on body condition at maturity. In particular, a plot of residual mass against residual volume reflecting nutrient density suggests that poorly fed spiders are nutritionally unbalanced, since well-fed spiders invest in nutrients of very different density. 4. Furthermore, using data on Scathophaga stercoraria (L.), the yellow dung fly, we found that an index of density condition was better at distinguishing condition differences among three populations than were mass or volume condition estimates alone. 5

  12. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  13. Conditions for free-air laser communications in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Sica, D. S.; Castro, E. H.

    2005-08-01

    The wavelength, availability, range and power budget of an infrared free-space laser communication system critically depend on the atmospheric channel, which in turn is closely related to local weather conditions. As a result, the atmospheric propagation characteristics of the transmission medium must be taken into account from the beginning in the design of a free-space laser communication link. The most important linear effects that affect the attenuation of laser beam propagation through the atmosphere are absorption, scattering and turbulence. Weather parameters such as humidity, temperature and visibility are essential in determining the performance of a free-space laser communication system. Based on weather data recorded in Buenos Aires city (Argentina) at every hour during two years and made available to us by the Servicio Meteorologico Nacional (National Meteorological Service of the Argentinean Air Force), we calculate attenuation of laser radiation for an horizontal transmission path of 1 km for a near infrared direct detection optical communication system. Then, with these results, we estimate link availability and draw conclusions about when it is more convenient to transfer information.

  14. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  15. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  16. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  17. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  18. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  19. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  20. Refrigeration and Air-Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  1. [A trouble in air conditioning in the operating area].

    PubMed

    Katsumata, Kiyoshi; Kaneko, Takehiko; Owaki, Akira

    2004-07-01

    We experienced malfunction of air conditioning system in the operating area. Rust inside the circulating pipe to the operating area was an obstacle to inflow of cold and hot water. Installing an additional air conditioning system and treatment with chemicals to remove the dust made it possible to adjust room temperature appropriately. Anesthesiologists should be interested and understand equipments used in the operation area such as air conditioning system. PMID:15298259

  2. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  3. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  4. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  6. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  7. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.

    2015-05-01

    A climatology of air-mass origin in the tropical lower stratosphere is presented for the Goddard Earth Observing System Chemistry Climate Model. During late boreal summer and fall, air-mass fractions reveal that as much as 20% of the air in the tropical lower stratosphere last contacted the planetary boundary layer (PBL) over Asia; by comparison, the air-mass fractions corresponding to last PBL contact over North America and over Europe are negligible. Asian air reaches the extratropical tropopause within a few days of leaving the boundary layer and is quasi-horizontally transported into the tropical lower stratosphere, where it persists until January. The rapid injection of Asian air into the lower stratosphere—and its persistence in the deep tropics through late (boreal) winter—is important as industrial emissions over East Asia continue to increase. Hence, the Asian monsoon may play an increasingly important role in shaping stratospheric composition.

  8. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  9. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  10. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  11. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  12. Residential Heat and Air Conditioning. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for residential heat and air conditioning courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for air-conditioning installer-servicer, window unit, and its Dictionary of Occupational Titles…

  13. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  14. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  15. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  16. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  17. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  18. Air-conditioning in the human nasal cavity.

    PubMed

    Elad, David; Wolf, Michael; Keck, Tilman

    2008-11-30

    Healthy humans normally breathe through their nose even though its complex geometry imposes a significantly higher resistance in comparison with mouth breathing. The major functional roles of nasal breathing are defense against infiltrating particles and conditioning of the inspired air to nearly alveolar conditions in order to maintain the internal milieu of the lung. The state-of-the-art of the existing knowledge on nasal air-conditioning will be discussed in this review, including in vivo measurements in humans and computational studies on nasal air-conditioning capacity. Areas where further studies will improve our understanding and may help medical diagnosis and intervention in pathological states will be introduced. PMID:18565805

  19. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  20. Comment on "Improved ray tracing air mass numbers model"

    NASA Astrophysics Data System (ADS)

    van der Werf, Siebren Y.

    2008-01-01

    Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.

  1. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  2. Extreme conditions in a dissolving air nanobubble.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution. PMID:27575216

  3. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  4. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  5. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  6. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  7. Mass Gauging Demonstrator for Any Gravitational Conditions

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Pedersen, Kevin W. (Inventor); Witherow, William K. (Inventor)

    2013-01-01

    The present invention is a mass gauging interferometry system used to determine the volume contained within a tank. By using an optical interferometric technique to determine gas density and/or pressure a much smaller compression volume or higher fidelity measurement is possible. The mass gauging interferometer system is comprised of an optical source, a component that splits the optical source into a plurality of beams, a component that recombines the split beams, an optical cell operatively coupled to a tank, a detector for detecting fringes, and a means for compression. A portion of the beam travels through the optical cell operatively coupled to the tank, while the other beam(s) is a reference.

  8. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  9. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  10. Pioneer developments in self-contained air conditioning

    SciTech Connect

    Steinfeld, H.K.

    1986-01-01

    This is a story covering a chapter in the air conditioning industry when that industry was young. It had created the science through the inventions of Dr. Carrier and had developed the art of large systems to a high degree. But prior to 1930, only big jobs were installed, in all of which the air was pre-conditioned by sprays of water. Air conditioning solely for the benefit of the ordinary citizen was not available, and the progress of developing small equipment was lacking. It was only with the invention of ''Freon 12'' in 1930 by Thomas Midgley that all pieces seemed to fall into place for the design of self-contained units. Large companies and small entrepreneurs were ready to enter the field and combine newly developed components like hermetic compressors, improved electrical equipment, capacitors, etc., and lightweight finned coils.

  11. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  12. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  13. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  14. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  15. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  16. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  17. Winter weather conditions vs. air quality in Tricity, Poland

    NASA Astrophysics Data System (ADS)

    Nidzgorska-Lencewicz, Jadwiga; Czarnecka, Małgorzata

    2015-02-01

    The principal aim of this paper is to assess the influence of meteorological conditions on the variability of sulfur dioxide and PM10 particulate matter concentration of pollutants during winter with consideration of an excess of admissible standards. The basis for the analysis were hourly concentrations of PM10 and sulfur dioxide as well as the basic meteorological elements automatically recorded at five stations located in the Tricity agglomeration, and operating within the weather station network belonging to the Agency of Regional Air Quality Monitoring in the Gdańsk Metropolitan Area (ARMAAG). The analysis covers the calendar winters (December-February) in the years 2004/2005 through 2009/2010. The variability of the concentrations of both pollutants under certain weather conditions, i.e. air temperature and relative humidity, atmospheric pressure, as well as wind speed and direction, were evaluated by means of cluster analysis using k-means belonging to a group of non-hierarchical cluster analysis method. The composite effect of meteorological conditions on the variability of sulfur dioxide and PM10 concentrations in isolated clusters were determined by multiple linear regression, using a stepwise procedure, at the significance level α = 0.05 and α = 0.01. The effect of individual weather elements on the pattern of concentration levels was determined using partial regression coefficients. Clusters grouping the highest concentrations of pollutants were characterised, in most cases, by the lowest air temperature and a lower wind speed, and often a higher pressure, and sometimes slightly lower relative air humidity, i.e. the conditions of anticyclonic weather. Weather conditions had a statistically significant effect on the concentrations of both pollutants in all clusters; however, air temperature and wind speed had the crucial role. Thermal conditions were the decisive factor in the winter season 2005/2006 with the most frequent, overnormative daily

  18. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  19. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  20. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  1. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  2. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  3. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  4. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  5. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  6. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  7. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  8. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  9. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  11. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  12. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. PMID:26139219

  13. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  14. Influence of indoor air quality (IAQ) objectives on air-conditioned offices in Hong Kong.

    PubMed

    Hui, Pui-Shan; Mui, Kwok-Wai; Wong, Ling-Tim

    2008-09-01

    It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions. PMID:17973197

  15. Interaction of Failed Fuel Rods Under Air Ingress Conditions

    SciTech Connect

    Hozer, Zoltan; Windberg, Peter; Nagy, Imre; Maroti, Laszlo; Matus, Lajos; Horvath, Marta; Csordas, Anna Pinter; Balasko, Marton; Czitrovszky, Aladar; Jani, Peter

    2003-03-15

    In the late phase of a severe reactor accident, the molten corium interacts with the vessel wall, and it can lead to the failure of the lower head. Through the failed bottom wall, part of the corium can flow into the cavity, and air can enter the primary circuit. The residual fuel in the core periphery will be further oxidized in air atmosphere. The degradation process will accelerate, and new chemical species will be formed, which can have an impact on the release of radioactive materials.Two experiments were carried out with electrically heated nine-rod pressurized water reactor-type bundles in the CODEX (COre Degradation EXperiment) facility to provide experimental data on the behavior of real fuel bundles under air oxidation conditions. The main objective of the tests was the investigation of oxidation phenomena, and some other important aspects (e.g., enhanced fission product release) were not addressed.The CODEX air ingress tests indicated the acceleration of oxidation phenomena and core degradation processes during the late phase of the vessel melt through accident, when air can have access to the residual fuel bundles in the reactor core. The degradation process was accompanied with zirconium-nitride formation and release of uranium-rich aerosols.

  16. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  17. Volatile organic compounds associated with microbial growth in automobile air conditioning systems.

    PubMed

    Rose, L J; Simmons, R B; Crow, S A; Ahearn, D G

    2000-09-01

    Volatile organic compounds from Penicillium viridicatum and Methylobacterium mesophilicum growing on laboratory media and on component materials of automobile air conditioners were analyzed with gas chromatography and mass spectrometry. P. viridicatum produced compounds such as 4-methyl thiazole, terpenes and alcohols, whereas M. mesophilicum produced dimethyl disulfide, dimethyl trisulfide, and chlorophenol with growth on laboratory media. In comparison with laboratory media, fewer volatiles were detected from colonized foam insulation materials. Biofilms of M. mesophilicum on aluminum evaporator components produced mainly dimethyl disulfide. These biofilms, after inoculation with P. viridicatum, produced offensive smelling alcohols and esters such as 2-methyl propanol, 3-penten-2-ol, and the ethyl ester of butanoic acid. The moisture and substrates innate to the automobile air conditioning systems provided an environment suitable for microbial biofilm development and odor production. Reduction of retained moisture in the air conditioning system coupled with use of less susceptible or antimicrobial substrates are advised for remediation of the noxious odors. PMID:10915209

  18. Solar air conditioning with solid absorbents and earth cooling

    NASA Astrophysics Data System (ADS)

    Mayer, E.

    An experimental design is described for an efficient desiccant cooling system using natural cold sink to reduce the moisture content of the ambient air. Used in a warm, humid, tropical climate, the unit is shown to provide up to 0.77 ton of refrigeration under extreme conditions with an average daily coefficient of performance of 0.5. Solar heat is applied to regenerate the silica gel.

  19. [Simulation and air-conditioning in the nose].

    PubMed

    Keck, T; Lindemann, J

    2010-05-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:20352565

  20. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  1. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  2. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  3. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  4. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrometry.

    PubMed

    Feilberg, Anders; Adamsen, Anders P S; Lindholst, Sabine; Lyngbye, Merete; Schäfer, Annette

    2010-01-01

    Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and selectivity were tested on synthetic samples of selected odorous compounds, and linearity and detection limits in the lower ppb range were demonstrated for all compounds tested (methanethiol, dimethyl sulfide, carboxylic acids, 4-methylphenol, aldehydes, indole, and skatole) except trimethylamine. The method was applied in situ at two full-scale filters installed at swine houses. The results have been compared with analyses by thermal desorption gas chromatography-mass spectrometry (TD-GC/MS), and odor was measured by olfactometry. By comparison with TD-GC/MS, observed MIMS signals were assigned to 4-methylphenol, 4-ethylphenol, indole, skatole, the sum of volatile reduced organic sulfur compounds (ROS), and three subgroups of carboxylic acids. The removal rates were observed to be related to air-water partitioning with removal efficiencies in the range of 0 to 50% for low-soluble organic sulfur compounds and high removal efficiencies (typically 80-100%) for more soluble phenols and carboxylic acids. Based on the results and published odor threshold values, it is estimated that the low removal efficiency of ROS is the main limitation for achieving a higher odor reduction. PMID:20400604

  5. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  6. Particulate composition characteristics under different ambient air quality conditions.

    PubMed

    Tsai, Jiun-Horng; Chang, Lisa Tzu-Chi; Huang, Yao-Sheng; Chiang, Hung-Lung

    2011-07-01

    Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. PMID:21850835

  7. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. PMID:24375376

  8. Can airborne fungal allergens pass through an air-conditioning system. [Aspergillus fumigatus

    SciTech Connect

    Elixmann, J.H. ); Linskens, H.F.; Schata, M.; Jorde, W. )

    1989-01-01

    Fungal spores, an important fraction of aeroplankton particles, can be filtered in an air-conditioning system, resulting in a drastic reduction of the spore count in the air-conditioned rooms. Nevertheless, using the EISA inhibition test against Aspergillus fumigatus, it was found that air samples from air-conditioned rooms show inhibition of the serum activity of a highly sensitized patient. There is evidence that airborne allergens can pass both coarse and fine filters of an air-conditioning system.

  9. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  10. Analysis of non-CFC automotive air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Sullivan, R.A. )

    1991-01-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in searching for alternative non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential (GWP), which could result in their eventual phase-out. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This study discusses the advantages and the limits of some of the alternative automotive cooling methodologies. 19 refs., 6 figs.

  11. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  12. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  13. Use of waste heat for automotive air conditioning

    SciTech Connect

    Hamner, R.M.

    1981-01-01

    The ejector-compression refrigeration system, a heat powered system which can be operated as a heat pump, is described. The operation of the system is discussed in general and the ejector itself is described in more detail. The central thrust of the paper is the application of the system to comfort air conditioning of automobiles. The advantages, limitations, and recommendations for future research and development are given. Several analyses of the theoretical cycle are made and equations describing the operation of the ejector are derived. A brief bibliography is listed.

  14. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  15. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  16. Identification and Tracking of Polluted Air Masses in the South-Central Coast Air Basin.

    NASA Astrophysics Data System (ADS)

    Moore, G. E.; Douglas, S. G.; Kessler, R. C.; Killus, J. P.

    1991-05-01

    Canister samples of air taken during the South-Central Coast Cooperative Air Monitoring Program (SCCCAMP) 1985 field study program were analyzed for concentrations of over 50 hydrocarbons as well as chlorofluorocarbons (CFCs), carbon monoxide, hydrogen, and methane. Additional evidence of location and timing of airmass origin was obtained by utilizing long-lived halocarbons such as F-12 as `tracers of opportunity' in conjunction with known source profiles. Wind trajectories were developed from hourly gridded wind fields produced by a diagnostic wind model utilizing observed wind data. These wind trajectories were used to determine how pollutants from major source areas might be transported to sampling sites. Particulate lidar height-distance traverses were made from aircraft that provided a view of pollutant layering. Mixing height and vertical pollutant concentration distributions were obtained in order to determine if observed pollutant concentrations were consistent with the degree of stagnation present and hypothesized transport pathway.Analyses to track specific polluted air masses were conducted for the 13 September, 21 September, 23-24 September, and 2-3 October 1985 intensive study periods. The analyses find that elevated ozone concentrations during these periods are primarily attributed to transport and storage of ozone-enriched air from Los Angeles. During one type of episode (2-3 October) ozone and ozone precursors are stored near the surface over the Santa Barbara Channel overnight and transported into coastal areas on the following day. In another type of episode (23-24 September) ozone is transported into the study domain from the San Fernando Valley and Los Angeles via flow around the Santa Monica Hills. Transport of pollutant-enriched air takes place in a layer 200-500 m aloft, in many places overlaying cleaner marine-layer air. This advected ozone is mixed down to contribute to ground-level ozone concentrations over terrain where the marine layer

  17. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  18. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  19. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  20. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  1. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  2. Mass measuring instrument for use under microgravity conditions

    SciTech Connect

    Fujii, Yusaku; Yokota, Masayuki; Hashimoto, Seiji; Sugita, Yoichi; Ito, Hitomi; Shimada, Kazuhito

    2008-05-15

    A prototype instrument for measuring astronaut body mass under microgravity conditions has been developed and its performance was evaluated by parabolic flight tests. The instrument, which is the space scale, is applied as follows. Connect the subject astronaut to the space scale with a rubber cord. Use a force transducer to measure the force acting on the subject and an optical interferometer to measure the velocity of the subject. The subject's mass is calculated as the impulse divided by the velocity change, i.e., M={integral}Fdt/{delta}v. Parabolic flight by using a jet aircraft produces a zero-gravity condition lasting approximately 20 s. The performance of the prototype space scale was evaluated during such a flight by measuring the mass of a sample object.

  3. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  4. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  5. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  6. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  7. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Electrical Systems § 3280.813 Outdoor outlets, fixtures, air-conditioning equipment, etc. (a) Outdoor.../or air conditioning equipment located outside the manufactured home, shall have permanently affixed, adjacent to the outlet, a metal tag which reads: This Connection Is for Air Conditioning Equipment Rated...

  8. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  9. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  10. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  11. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  12. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  13. Conditioning of ion sources for mass spectrometry of plasmas

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.

    1983-02-01

    Mass spectrometry is a useful diagnostic technique for monitoring plasma species and plasma-surface interactions. In order to maximize the sensitivity of measurements of hydrogen-fueled fusion plasmas or hydrogen-based discharge cleaning and etching plasmas, the ion sources of mass spectrometers are operated at or near the high pressure limit of 10/sup -4/ Torr (10/sup -2/ Pa). Such high ambient pressures of hydrogen give rise to high background levels of residual gases such as H/sub 2/O, CO, and CH/sub 4/, due to surface reactions on the ion source electrodes. For a commonly used ion source configuration, the residual gas production is a linear function of the ambient H/sub 2/ pressure. Hydrogen conditioning can reduce the absolute residual gas levels. Steady-state residual gas production is observed in a conditioned ion source, which is related to a balance of diffusion and sorption on the electrode surfaces.

  14. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).

  15. Indoor air quality and energy performance of air-conditioned office buildings in Singapore.

    PubMed

    Sekhar, S C; Tham, K W; Cheong, K W

    2003-12-01

    An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues. PMID:14636226

  16. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  17. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  18. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  19. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  20. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  1. Vertical air mass exchange driven by the local circulation on the northern slope of Mount Everest

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Zou, Han; Ma, Shupo; Li, Peng; Zhu, Jinhuan; Huo, Cuiping

    2011-01-01

    To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.

  2. Validation of two air quality models for Indian mining conditions.

    PubMed

    Chaulya, S K; Ahmad, M; Singh, R S; Bandopadhyay, L K; Bondyopadhay, C; Mondal, G C

    2003-02-01

    All major mining activity particularly opencast mining contributes to the problem of suspended particulate matter (SPM) directly or indirectly. Therefore, assessment and prediction are required to prevent and minimize the deterioration of SPM due to various opencast mining operations. Determination of emission rate of SPM for these activities and validation of air quality models are the first and foremost concern. In view of the above, the study was taken up for determination of emission rate for SPM to calculate emission rate of various opencast mining activities and validation of commonly used two air quality models for Indian mining conditions. To achieve the objectives, eight coal and three iron ore mining sites were selected to generate site specific emission data by considering type of mining, method of working, geographical location, accessibility and above all resource availability. The study covers various mining activities and locations including drilling, overburden loading and unloading, coal/mineral loading and unloading, coal handling or screening plant, exposed overburden dump, stock yard, workshop, exposed pit surface, transport road and haul road. Validation of the study was carried out through Fugitive Dust Model (FDM) and Point, Area and Line sources model (PAL2) by assigning the measured emission rate for each mining activity, meteorological data and other details of the respective mine as an input to the models. Both the models were run separately for the same set of input data for each mine to get the predicted SPM concentration at three receptor locations for each mine. The receptor locations were selected such a way that at the same places the actual filed measurement were carried out for SPM concentration. Statistical analysis was carried out to assess the performance of the models based on a set measured and predicted SPM concentration data. The value of coefficient of correlation for PAL2 and FDM was calculated to be 0.990-0.994 and 0

  3. Condition and mass impact oxygen stores and dive duration in adult female northern elephant seals.

    PubMed

    Hassrick, J L; Crocker, D E; Teutschel, N M; McDonald, B I; Robinson, P W; Simmons, S E; Costa, D P

    2010-02-15

    The range of foraging behaviors available to deep-diving, air-breathing marine vertebrates is constrained by their physiological capacity to breath-hold dive. We measured body oxygen stores (blood volume and muscle myoglobin) and diving behavior in adult female northern elephant seals, Mirounga angustirostris, to investigate age-related effects on diving performance. Blood volume averaged 74.4+/-17.0 liters in female elephant seals or 20.2+/-2.0% of body mass. Plasma volume averaged 32.2+/-7.8 liters or 8.7+/-0.7% of body mass. Absolute plasma volume and blood volume increased independently with mass and age. Hematocrit decreased weakly with mass but did not vary with age. Muscle myoglobin concentration, while higher than previously reported (7.4+/-0.7 g%), did not vary with mass or age. Pregnancy status did not influence blood volume. Mean dive duration, a proxy for physiological demand, increased as a function of how long seals had been at sea, followed by mass and hematocrit. Strong effects of female body mass (range, 218-600 kg) on dive duration, which were independent of oxygen stores, suggest that larger females had lower diving metabolic rates. A tendency for dives to exceed calculated aerobic limits occurred more frequently later in the at-sea migration. Our data suggest that individual physiological state variables and condition interact to determine breath-hold ability and that both should be considered in life-history studies of foraging behavior. PMID:20118309

  4. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  5. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  6. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  7. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  8. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  9. Experimental results and modeling tests of an adsorptive air-conditioning unit

    SciTech Connect

    Guilleminot, J.J.; Poyelle, F.; Meunier, F.

    1998-10-01

    Experimental tests have been performed on a zeolite-water adsorptive system suitable for air conditioning and consisting of two adsorbers filled with a consolidated composite made of zeolite mixed with a highly conductive matrix. This paper describes the experimental results of such a heat pump unit operating with a heat and mass recovery cycle. An important enhancement of the specific cooling power (SCP) has been achieved. At evaporating temperature T = 4 C, mass transfer resistance controls the process and limits the expected COP. Tests carried out at higher evaporating pressure make it possible to achieve the predicted COP and SCP. A predictive model developed and validated elsewhere in order to describe the temperature evolution of components and the heat and mass transfer in the adsorbers explains the mass transfer resistance in the adsorbent. Last, a new highly conductive adsorbent composite with good mass transfer properties is developed. The model is used to predict the performances of this new material. Very good SCP and COP can be achieved.

  10. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  11. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  12. Study on the Efficient Drive of a Desiccant Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Jeong, Jong-Soo; Saito, Kiyoshi; Kawai, Sunao

    This paper constructs the static simulation model of a desiccant air conditioning system and gives the guidelines for the efficient drive of the desiccant air conditioning system. The desiccant air conditioning system is composed of a desiccant wheel, a heat exchanger, two evaporative coolers and a heater. The process air and regeneration air are supplied to this system. The desiccant is Silica gel. In the simulation model, two-dimensional model in space is adopted for the desiccant wheel. As the simulation result, it is clarified that optimum outlet temperature of the regeneration air in the heater, rotational speed of the desiccant wheel, the rejected air flow rate of the regeneration air, the process and regeneration air flow rate that maximize COP exist. For example, in case that the regeneration temperature is 63°C and relative humidity is 55% maximum COP is about 0.62.

  13. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  14. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    NASA Astrophysics Data System (ADS)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  15. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  16. Experimental investigation of added mass effects on a hydrofoil under cavitation conditions

    NASA Astrophysics Data System (ADS)

    De La Torre, O.; Escaler, X.; Egusquiza, E.; Farhat, M.

    2013-05-01

    The influence of leading edge sheet cavitation and supercavitation on the added mass effects experienced by a 2-D NACA0009 truncated hydrofoil has been experimentally investigated in a hydrodynamic tunnel. A non-intrusive excitation and measuring system based on piezoelectric patches mounted on the hydrofoil surface was used to determine the natural frequencies of the fluid-structure system. The appropriate hydrodynamic conditions were selected to generate a range of stable partial cavities of various sizes and also to minimize the effects of other sources of flow noise and vibrations. The main tests were performed for different sigma values under a constant flow velocity of 14m/s and for incident angles of both 1° and 2°. Additionally, a series of experiments in which the hydrofoil was submerged in air, partially and completely submerged in still water and without cavitation at 7 and 14m/s were also performed. The maximum added mass effect occurs with still water. When cavitation appears, the added mass decreases because the cavity length is increased, and the added mass is minimum for supercavitation. A linear correlation is found between the added mass coefficients and the entrained mass that accounts for the mean density of the cavity, its dimensions and its location relative to the specific mode shape deformation.

  17. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  18. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  19. Air- ice-snow interaction in the Northern Hemisphere under different stability conditions

    NASA Astrophysics Data System (ADS)

    Repina, Irina; Chechin, Dmitry; Artamonov, Arseny

    2013-04-01

    even high latitudes of the Northern Hemisphere because the stable conditions above Arctic ice field dominate. Under such conditions the air flow over the uneven surface behaves in the way it does over the even one. This happens because depressions between ridges are filled with heavier air up to the height of irreguralities. As a result, the air moves at the level of ridges without entering depressions. Increased heat and mass transfer over polynyas and leads through self-organization of turbulent convection is found. The work was sponsored by RFBR grants and funded by the Government of the Russian Federation grants.

  20. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning...

  1. Experimental tests and predictive model of an adsorptive air conditioning unit

    SciTech Connect

    Poyelle, F.; Guilleminot, J.J.; Meunier, F.

    1999-01-01

    An adsorption air conditioning unit has been built operating with a heat nd mass recovery cycle and a zeolite-water pair. A new consolidated adsorbent composite with good heat transfer properties has been developed and implemented in the adsorber. At an evaporating temperature of 4 C, the experimental specific cooling power (SCP) of 97 W/kg achieved represents a real improvement in comparison with those measured with a packed bed technology. At this evaporating pressure, the mass transfer resistance controls the process. Therefore, at higher evaporating temperature a COP of 0.68 and a SCP of 135 W/kg were experimentally achieved. A new model has been developed to take into account the mass transfer limitations. The model has been validated and can predict the average pressure inside the adsorber and the components temperature of the unit. A new high conductive material with enhanced mass transfer properties has been developed. The predictive model shows that a SCP of 600 W/kg and a COP of 0.74 could be achieved with this new material.

  2. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  3. [Design, equipment, and management for air conditioning in operating room].

    PubMed

    Fuji, Kumiko; Mizuno, Ju

    2011-11-01

    In order to maintain air cleanliness in the operating room (OR) permanently, air exchange rate in the OR should be more than 15 times x hr(-1), the laminar air flow should be kept, and the numbers of the persons in the OR and the numbers of opening and closing OR door should be limited. High efficiency particulate air (HEPA) filter is effective in collection and removal of airborne microbes, and is used in the biological clean room. We need to design, equip, and manage the OR environment according to Guideline for Design and Operation of Hospital HVAC Systems HEAS-02-2004 established by Healthcare Engineering Association of Japan and Guideline for Prevention of Surgical Site Infection (SSI) established by the Center for Disease Control and Prevention (CDC) in the USA. PMID:22175178

  4. Aerosol composition in a stagnant air mass impacted by dense fogs: preliminary results

    SciTech Connect

    Jacob, D.J.; Munger, J.W.; Waldman, J.M.; Hoffman, M.R.

    1984-01-01

    Over the last two winters, our research group has been investigating the chemical composition of fogwater and haze aerosol during wintertime stagnation episodes in the San Joaquin Valley of California. The valley is encompassed by mountain ranges. During the winter a strong subsidence inversion based below the natural boundaries of the valley restricts the ventilation of the air masses below the inversion. The residence time of an air parcel in the valley under these stagnation conditions is on the order of 8 days. Because the trapped air is very humid, stagnation episodes are associated with a persistent thick haze and frequent widespread nighttime fogs. During the winter 1982-1983 the authors sampled fog and haze at one site (Bakersfield); results from this preliminary study have been discussed in detail in a previous report. In the winter 1983-1984 the scale of the program was expanded in order to test hypotheses formulated as a result of first year data. The present paper first reports briefly on the 1982-1983 results and outlines the essential conclusions. They then describe the large-scale experiment conducted during the winter of 1983-1984, and discuss some preliminary fogwater data.

  5. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  6. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  7. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  8. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  9. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  10. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  11. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  12. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  13. Charge and discharge of polar cold air mass in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Kanno, Yuki; Abdillah, Muhammad Rais; Iwasaki, Toshiki

    2015-09-01

    This study shows the variability of polar cold air mass amount below potential temperature of 280 K, and north of 45°N can be understood with a concept of charge and discharge, where anomalously large daily discharge indicates an intermittent occurrence of cold air outbreak. The polar cold air mass amount north of 45°N gradually charges up due to diabatic cooling but dramatically discharges due to cold air outbreak with a pulse width of about 5 days. Cold air outbreaks tend to bring colder winter in East Asia and the east coast of North America, while warmer winter prevails on the northern side of these regions. The cold air mass amount south of 45°N increases just after a cold air outbreak but returns to the normal level soon because of its life time of about 3 days. Therefore, monthly mean of total cold air mass amount in the Northern Hemisphere is negatively correlated with the monthly mean discharge.

  14. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  15. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  16. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  17. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Ueda, Yuki; Shindoh, Shinji; Godo, Masazumi; Takatsuka, Takeshi

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The role of the system is the dehumidification of the outdoor fresh air to be supplied to an air-conditioned room. Hence, the latent heat load of the air-conditioner in the room can be mitigated. The system consisted of two pairs of a desiccant unit and a heat storage unit. The microwave irradiation to the desiccant unit was examined as a candidate of the regeneration method of the system, and the performance of the microwave regeneration was compared with that of the hot air regeneration in terms of the supply air humidity ratio, outdoor air based COP, and the process air temperatures. The results revealed the effects of the switching time and the irradiation timing on the performance of the microwave irradiation.

  18. Comprehensive Assessment of Influence of Enhanced Component in Vapor Compression Air Conditioning System on Performance

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki

    System performance prediction model for air-cooled air conditioner has been developed, and influences of Grooved tubes on performance of air conditioners with R410A were quantitatively investigated. Calculated results with simulation model correspond approximately to measured results by the authors and other researchers. After that, performances of air conditioners with grooved tubes were predicted. Results show that condensation heat transfer coefficients decrease with the rise of air conditioning load rate, and boiling heat transfer coefficients increase with the rise of air conditioning load rate. On the other hand, pressure drops increase 1.2-1.4 times in evaporator. Then, COPs of air conditioners with the grooved tube are 1.16 times higher than COP of air-conditioners with the smooth tube.

  19. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  20. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  1. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  2. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  3. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  4. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  5. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  6. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  7. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  8. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  9. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  10. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  11. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  12. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  13. Critical Mass Academic Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Jones, Larry R.

    Methods of academic resource planning for research-oriented colleges and universities are explored. Focus is on resource allocation that is not strictly related to overall institutional enrollment level, but with the desirability of maintaining a minimum or "critical mass" levels of program breadth and quality. The purpose of critical mass…

  14. Supporting Air-Conditioning Controller Design Using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kojima, Kazuyuki; Watanuki, Keiichi

    In recent years, as part of the remarkable development of electronic techniques, electronic control has been applied to various systems. Many sensors and actuators have been implemented into those systems, and energy efficiency and performance have been greatly improved. However, these systems have been complicated, and much time has been required to develop system controllers. In this paper, a method of automatic controller design for those systems is described. In order to automate the design of an electronic controller, an evolutionary hardware is applied. First, the framework for applying the genetic algorithm to the automation of controller design is described. In particular, the coding of a chromosome is shown in detail. Then, how to make a fitness function is represented, with an air conditioner as an example, and the controller of the air conditioner is developed automatically using our proposed framework. Finally, an evolutionary simulation is performed to confirm our framework.

  15. Reduction of air ion mobility to standard conditions

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  16. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. PMID:23803502

  17. Experimental Investigation of Soil and Atmospheric Conditions on the Momentum, Mass, and Thermal Boundary Layers Above the Land Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.

    2014-12-01

    The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil

  18. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  19. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  20. The Design of Research Laboratories. Part I: A General Assessment. Part II: Air Conditioning and Conditioned Rooms.

    ERIC Educational Resources Information Center

    Legget, R. F.; Hutcheon, N. B.

    Design factors in the planning of research laboratories are described which include--(1) location, (2) future expansion, (3) internal flexibility, (4) provision of services, (5) laboratory furnishing, (6) internal traffic, (7) space requirements, and (8) building costs. A second part discusses air-conditioning and conditioned rooms--(1)…

  1. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  2. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  3. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  4. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  5. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  6. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  7. Alternate working fluids for solar air conditioning applications

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  8. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    PubMed

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  9. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo

    PubMed Central

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-01-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of

  10. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  11. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants

    NASA Astrophysics Data System (ADS)

    Factor, H. M.; Grossman, G.

    1980-01-01

    A packed column air-liquid contactor has been studied in application to air dehumidification and regeneration in solar air conditioning with liquid desiccants. A theoretical model has been developed to predict the performance of the device under various operating conditions. Computer simulations based on the model are presented which indicate the practical range of air to liquid flux ratios and associated changes in air humidity and desiccant concentration. An experimental apparatus has been constructed and experiments performed with Monoethylene Glycol (MEG) and Lithium Bromide as desiccants. MEG experiments have yielded inaccurate results and have pointed out some practical problems associated with the use of Glycols. LiBr experiments show very good agreement with the theoretical model. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.

  12. SCHOOL AIR CONDITIONING/CASE STUDY, MCPHERSON HIGH SCHOOL.

    ERIC Educational Resources Information Center

    OSTENBERG, JOE W.

    THE STANFORD UNIVERSITY SCHOOL PLANNING LABORATORIES CONDUCTED AN EDUCATIONAL SURVEY OF THE EDUCATIONAL NEEDS OF THE MCPHERSON CITY SCHOOLS BY STUDYING THE EXISTING CONDITIONS, LOCAL ECONOMIES, AND POTENTIAL POPULATION GROWTH. IT WAS RECOMMENDED THAT A NEW SENIOR HIGH BE BUILT TO HOUSE 700-750 STUDENTS, THE ANTICIPATED ENROLLMENT 10 YEARS AFTER…

  13. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  14. Air conditioning in a tropical climate: Impacts upon European residents in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Auliciems, A.; Dedear, R.

    1986-09-01

    The efficacy of current practices in air conditioning is investigated in the two monsoonal seasons in Darwin. Assessment is made of atmospheric parameters, clothing, metabolic rate. Some 1000 questionnaires are applied dealing with adaptations, health perceptions and preferences as related to air cooling and ventilation. The findings are discussed with reference to energy balance calculations and current models of psychological control in thermoregulation. The results indicate that Darwin's population is considerably overcooled, and contrary to assumptions and practice, air conditioning is not desired in office buildings during the “Dry”. In the home, air conditioning is not regarded as essential. The indications are that a rationalization of air cooling to comply with natural variability in warmth would lead to a significant reduction in energy consumption, and an overall enhancement to the health and comfort of the population through the greater ventilation rates that would be economically feasible were design temperatures lifted.

  15. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  16. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  17. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  18. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  19. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  20. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  1. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  2. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  3. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  4. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false AC17 Air Conditioning Emissions Test Procedure. 86.167-17 Section 86.167-17 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  5. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  6. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  7. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning idle test procedure. 86.165-12 Section 86.165-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year...

  8. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  9. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  10. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  11. Variability of local PM10 mass concentrations in connection with blocking air circulation

    NASA Astrophysics Data System (ADS)

    Ştefan, Sabina; Roman, Iuliana

    2015-06-01

    The aim of this paper is to analyze the temporal variability of Particulate Matter mass concentrations in connection with air circulation, for eight rural sites situated in the Central and Eastern parts of Europe. The stations from Poland, Hungary and Romania are rural stations without sources of pollutants. The analysis covers four winters, between December 2004 and February 2008. The pollution episodes were selected to explain air circulation influence. The results show that the causes of pollution were local, due to high mean sea level pressure and the blocking, as air circulation on large scale, was dominant in the cases of enhanced pollution in the selected area.

  12. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  13. Air pollution and hospital admissions for respiratory conditions in Rome, Italy.

    PubMed

    Fusco, D; Forastiere, F; Michelozzi, P; Spadea, T; Ostro, B; Arcà, M; Perucci, C A

    2001-06-01

    Most of the evidence regarding the association between particulate air pollution and emergency room visits or hospital admissions for respiratory conditions and asthma comes from the USA. European time-series analyses have suggested that gaseous air pollutants are important determinants of acute hospitalization for respiratory conditions, at least as important as particulate mass. The association between daily mean levels of suspended particles and gaseous pollutants (sulphur dioxide, nitrogen dioxide, carbon monoxide, ozone) was examined. The daily emergency hospital admissions for respiratory conditions in the metropolitan area of Rome during 1995-1997 were also recorded. Daily counts of hospital admissions for total respiratory conditions (43 admissions day(-1)), acute respiratory infections including pneumonia (18 day(-1)), chronic obstructive pulmonary disease (COPD) (13 day(-1)), and asthma (4.5 day(-1)) among residents of all ages and among children (0-14 yrs) were analysed. The generalized additive models included spline smooth functions of the day of study, mean temperature, mean humidity, influenza epidemics, and indicator variables for day of the week and holidays. Total respiratory admissions were significantly associated with same-day level of NO2 (2.5% increase per interquartile range (IQR) change, 22.3 microg x m(-3)) and CO (2.8% increase per IQR, 1.5 mg x m(-3)). No effect was found for particulate matter and SO2, whereas O3 was associated with admissions only among children (lag 1, 5.5% increase per IQR, 23.9 microg x m3). The effect of NO2 was stronger on acute respiratory infections (lag 0, 4.0% increase) and on asthma among children (lag 1, 10.7% increase). The admissions for all ages for asthma and COPD were associated only with same-day level of CO (5.5% and 4.3% increase, respectively). Multipollutant models confirmed the role of CO on all respiratory admissions, including asthma and COPD, and that of NO2 on acute respiratory infections

  14. Influence of Boundary Conditions on Simulated U.S. Air Quality

    EPA Science Inventory

    One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...

  15. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  16. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  17. Analytical study of a gas-fired adsorptive air-conditioning system

    SciTech Connect

    Poyelle, F.; Guilleminot, J.J.; Meunier, F.

    1996-11-01

    Adsorptive air conditioning represents a potential alternative to chlorofluorocarbon (CFC) systems. But to compete with other systems, adsorption systems must exhibit sufficient figures of merit and energetic densities. An analytical study to predict the overall heat transfer coefficient in an adsorber has been conducted and is presented here. This study, based on a method-of-moment analysis, shows the influence of three parameters limiting the heat transfer in adsorbent beds. Heat transfer in adsorbent beds has been intensified. Using new consolidated materials, the machine utilizes two uniform temperature adsorbent beds in a cycle that incorporates both heat and mass recovery. It uses a zeolite-water pair. It is designed to produce 3 kW of cooling. Expected cooling performances are 300 W/kg of adsorbent with a coefficient of performance (COP) close to 0.8 and a cycle time of 20 minutes. The thermal conditions used to test the cycle are: the heater, 220 C; the cooler, 40 C; and the evaporation temperature, 3 C.

  18. Fundamental mass transfer model for indoor air emissions from surface coatings

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1994-01-01

    The paper discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architectural coatings. As a first step, a simple model based on Fick's Law of Diffusion has been developed. In the model, the mass transfer rate is assumed to be controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining in the source at any point in time. Both static and dynamic chamber tests were conducted to obtain model validation data. Further validation experiments were conducted in a test house. Results of these tests are presented.

  19. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  20. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  1. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented. PMID:17716909

  2. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  3. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  4. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  5. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  6. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-01

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  7. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    NASA Astrophysics Data System (ADS)

    Vayenas, Constantinos G.; Fokas, Athanasios; Grigoriou, Dimitrios

    2015-09-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, mg, rather than the rest masses, mo, of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, mi, and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (mPl/mo)2 where mpi is the Planck mass (ħc/G)1/2. We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR.

  8. Small impact of surrounding oceanic conditions on 2007-2012 Greenland Ice Sheet surface mass balance

    NASA Astrophysics Data System (ADS)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-03-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North-Atlantic Oscillation (NAO), favouring warmer than normal conditions over the GrIS. In addition, it has been suggested that significant anomalies in sea ice cover (SIC) and sea surface temperature (SST) may partially explain recent anomalous GrIS surface melt. To assess the impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR. These simulations suggest that changes in SST and SIC in the seas surrounding Greenland do not significantly impact GrIS SMB, due to the katabatic winds blocking effect. These winds are strong enough to prevent oceanic near-surface air, influenced by SIC and SST variability, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds are weaker. However, anomalies in SIC and SST could have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, favouring more frequent warm air advection to the GrIS.

  9. Dust and Pollution Aerosol Air Mass Mapping from Satellite Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.; Nelson, D. L.; Yau, K. S.; Martonchik, J.; Diner, D. J.; Gaitley, B. J.; Russell, P.; Livingston, J.; Redemann, J.; Quinn, P. R.; Clarke, A. R.; Howell, S.; McNaughton, C.; Reid, J.; Holben, B.; Wendisch, M.; Petzold, A.

    2006-12-01

    One objective of the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) is to map aerosol air mass types, based on retrieved column-average particle microphysical properties. Early results demonstrated the ability to distinguish three-to-five bins over the 0.1 to 2.5 micron aerosol size range, about two-to-four groupings of single-scattering albedo, and to separate spherical from randomly oriented non- spherical particles, under good but not ideal viewing conditions. These results relied heavily on the MISR Research Aerosol Retrieval algorithm, which allows flexibility in choosing retrieval patch size and location, component aerosol properties and mixtures, and mixture acceptance criteria, compared to early versions of the MISR Standard algorithm, designed to routinely process the entire global data set. Early mid-visible column aerosol optical depth results were validated against surface-based sun photometer measurements. The corresponding particle property results appeared qualitatively promising, but formal validation requires quantitative constraints on component particle properties and mixtures in a range of natural settings, available mainly from the combination of height-resolved and total column data collected by surface and airborne instruments during field campaigns. This presentation will highlight the latest detailed, multi-platform case studies, as well as MISR regional mapping, of smoke, Saharan dust, and mixtures of pollution aerosol and desert dust collected during the INTEX, SAMUM, and UAE-2 campaigns, respectively. The broader implications of these results for global, and especially regional, aerosol climate and air quality studies will also be discussed. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  11. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  12. Deriving realistic source boundary conditions for a CFD simulation of concentrations in workroom air.

    PubMed

    Feigley, Charles E; Do, Thanh H; Khan, Jamil; Lee, Emily; Schnaufer, Nicholas D; Salzberg, Deborah C

    2011-05-01

    Computational fluid dynamics (CFD) is used increasingly to simulate the distribution of airborne contaminants in enclosed spaces for exposure assessment and control, but the importance of realistic boundary conditions is often not fully appreciated. In a workroom for manufacturing capacitors, full-shift samples for isoamyl acetate (IAA) were collected for 3 days at 16 locations, and velocities were measured at supply grills and at various points near the source. Then, velocity and concentration fields were simulated by 3-dimensional steady-state CFD using 295K tetrahedral cells, the k-ε turbulence model, standard wall function, and convergence criteria of 10(-6) for all scalars. Here, we demonstrate the need to represent boundary conditions accurately, especially emission characteristics at the contaminant source, and to obtain good agreement between observations and CFD results. Emission rates for each day were determined from six concentrations measured in the near field and one upwind using an IAA mass balance. The emission was initially represented as undiluted IAA vapor, but the concentrations estimated using CFD differed greatly from the measured concentrations. A second set of simulations was performed using the same IAA emission rates but a more realistic representation of the source. This yielded good agreement with measured values. Paying particular attention to the region with highest worker exposure potential-within 1.3 m of the source center-the air speed and IAA concentrations estimated by CFD were not significantly different from the measured values (P = 0.92 and P = 0.67, respectively). Thus, careful consideration of source boundary conditions greatly improved agreement with the measured values. PMID:21422277

  13. Analytic and experimental evaluation of flowing air test conditions for selected metallics in a shuttle TPS application

    NASA Technical Reports Server (NTRS)

    Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.

    1975-01-01

    A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.

  14. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  15. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  16. Study of the extensive air shower mass sensitive parameters in prototype of ALBORZ array

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2015-03-01

    In this work we have used muon production depth distribution as well as the lateral distribution of the secondary particles of Extensive Air Showers (EAS) as two main parameters to infer the mass composition of primary cosmic rays. In order to achieve a realistic estimate of the mass composition, a sample of showers initiated by proton and iron particles as primaries have been simulated by CORSIKA code with zenith angle between 0° and 18° and discrete energies in a range between 1014 and 1016 eV for ALBORZ (1200 m a.s.l, Tehran, Iran) and KASKADE (110 m a.s.l, Karlsruhe, Germany) observation levels. Moreover lateral density distribution functions of energy for charged particles of air showers have been proposed for both proton and Iron primaries. We have indicated that among these two EAS parameters, lateral distribution of secondary particles provides better mass discrimination.

  17. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  20. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  1. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  2. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  3. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  4. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  5. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  6. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  7. Constraints on Neutron Density and Temperature Conditions for Astrophysical r-PROCESS from Updated Nuclear Masses

    NASA Astrophysics Data System (ADS)

    Xu, X. D.; Sun, B.; Niu, Z. M.; Li, Z.; Meng, J.

    2013-11-01

    Based on the (n, γ) ⇌ (γ, n) equilibrium, the neutron density and temperature conditions required for the r-process are constrained with updated nuclear masses. It is found that the uncertainty of determined neutron density and temperature ranges can be greatly minimized when mass values tabulated in the latest Atomic Mass Evaluation AME2011-preview are employed.

  8. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  9. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  10. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Harris, Joyce M.; Smith, George I.; Johnson, Craig A.

    2002-10-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (δD) and oxygen-18 (δ18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  11. Heterogeneous copper-catalyzed hydroxylation of aryl iodides under air conditions.

    PubMed

    Ding, Guodong; Han, Hongling; Jiang, Tao; Wu, Tianbin; Han, Buxing

    2014-08-21

    In this work, the ligand-free heterogeneous copper Cu-g-C3N4 was synthesized and used for the hydroxylation of aryl iodides to synthesize phenols using cheap bases. The catalyst was conveniently prepared, air-tolerant, reusable and scalable, and is very efficient for a wide range of substrates. The synthesis of substituted phenols can be carried out under air conditions and has great potential for practical applications. PMID:24947007

  12. DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS

    EPA Science Inventory

    Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

  13. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type

    NASA Astrophysics Data System (ADS)

    Weimer, S.; Alfarra, M. R.; Schreiber, D.; Mohr, M.; PréVôT, A. S. H.; Baltensperger, U.

    2008-05-01

    Wood-burning for domestic heating purposes is becoming more important owing to the increasing use of wood as a renewable fuel. Particle emissions from residential wood combustion contribute substantially to particulate matter during winter. An Aerodyne quadrupole aerosol mass spectrometer was used to study the variability of the mass spectra of organic aerosol particles emitted from the burning of different wood types as a function of burning conditions and burning technologies. Previously found wood-burning mass fragment markers in ambient air and for levoglucosan such as m/z 60, 73, and 29 were confirmed as a feature of wood-burning aerosol. They were enhanced during the flaming phase and reduced in the smoldering phase when burning was conducted in a small wood stove. The mass spectra during the smoldering phase were dominated by oxygenated species and exhibited a strong resemblance to the mass spectrum of fulvic acid which is used as a model compound for highly oxidized aerosol. A strong resemblance between the mass spectra of fulvic acid and organic particles emitted during wood-burning in an automatic furnace was found. In general, we found larger differences in the mass spectra between flaming and smoldering phases of one wood type than between different wood types within the same phase. Furthermore it was observed that during one experiment where white fir bark was burned the contribution of polycyclic aromatic hydrocarbons to the total organic matter was very high (˜30%) compared to other wood-burning experiments (0.4-2.2%).

  14. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  15. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  16. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  17. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal. PMID:22051345

  18. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  19. Spectral effects on latitude-tilt and vertical PV modules as affected by latitude, air mass, and climate

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.

    2007-09-01

    Using the same SMARTS radiative code as for the development of improved reference spectra for PV rating, an analysis of the spectral sensitivity of specific PV technologies to varying air mass and other factors is presented. To the difference of previous studies, the approach taken here considers realistic atmospheric conditions, as measured at five North- American sites from widely different climatic zones. Two different PV applications (latitude-tilted flat-plates and vertical building-integrated modules) are showcased with seven possible materials, including a-Si, m-Si, and triple junctions. Considering the most frequent clear-sky conditions around the summer solstice at the selected sites, the Spectral Enhancement Factor (SEF) is calculated both for a fixed air mass (1.5) and daily-average spectral conditions. This analysis provides a preliminary assessment of how latitude, local climatic conditions, and PV geometry affect the relative merits of different technologies relatively to standard rating conditions. In particular, it is shown that, in summer, latitude-tilt PV modules experience bluer incident spectra than the reference spectrum, therefore favoring the a-Si modules (SEF > 1). For vertical-tilt PV systems, the SEF is generally lower than for latitude-tilt systems, with the notable exception of m- Si. When considering daily-average results, the effective SEF can become extremely low in the case of a-Si (down to 0.65) and moderately high for m-Si (up to 1.09). It is concluded that the effects of location, season, and PV material on the spectral effect needs to be investigated in detail, particularly for applications involving vertical building-integrated systems.

  20. SUMMARY OF ELECTRIC SERVICE COSTS FOR TOTALLY AIR CONDITIONED SCHOOLS PREPARED FOR HOUSTON INDEPENDENT SCHOOL DISTRICT, MAY 31, 1967.

    ERIC Educational Resources Information Center

    WHITESIDES, M.M.

    THIS REPORT IS A COMPILATION OF DATA ON ELECTRIC AIR CONDITIONING COSTS, OPERATIONS AND MAINTENANCE. AIR CONDITIONING UNITS ARE COMPARED IN TERMS OF ELECTRIC VERSUS NON-ELECTRIC, AUTOMATIC VERSUS OPERATED, AIR COOLED VERSUS WATER COOLED, RECIPROCATING VERSUS CENTRIFUGAL COMPRESSORS, SPACE AND NOISE, REHEAT, MAINTENANCE AND ORIGINAL COST. DATA ARE…

  1. Minimum Energy type of Air Conditioning Controlby Switching Equilibrium Point of Control Variables

    NASA Astrophysics Data System (ADS)

    Takahata, Akihiko; Uchida, Kenko; Taira, Utaro

    In this paper, we propose an algorithm realizing minimum energy control for air conditioning. In the air conditioning system, control inputs are valve-open-value of cooler, heater and humidifier, and controlled variables are indoor temperature and humidity. That is, this system has three inputs and two outputs. The main step of the minimum energy algorithm is to switch two of the three actuators, depending on setpoints, for minimizing consumption energy. We apply this algorithm to a real plant, and show validity of the algorithm.

  2. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  3. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  4. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  5. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  6. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  7. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  8. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  9. Analysis of air mass trajectories in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2015-11-01

    Air masses reaching the Iberian Peninsula, which is located between two continents and two seas, have been classified. 24-h backward air trajectories were calculated each hour for three years using the METEX model at a site in the centre of the northern plateau of the Iberian Peninsula where the air flow has scarcely been investigated to date. Rather than the usual Euclidean geometry, spherical trigonometry, together with the kernel regression method, was considered to calculate trajectory distances to the site. Numerical indicators allow for an accurate description of the results. Ranges surrounding the site from E to S evidenced a restriction in the movement of the arriving flow. However, the range to the N showed only a slight effect. A noticeable seasonal contrast was observed between winter, whose distances were the greatest, and summer, which displayed the shortest distances. Trajectory clusters, initially not considered in the METEX model, were obtained with different metrics to determine the air mass pathways reaching the site. Five clusters of trajectories were selected so as to easily explain the directions and distances covered. Regional and long range transport were observed in clusters from the NE, NW and SW. The NE cluster presented an orographic deviation and local processes were limited to the SE cluster. Finally, seasonal analysis revealed singular behaviour during autumn, when local processes centred on the N-S direction.

  10. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  11. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  12. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  13. Unique, low-energy air-conditioning system using naturally-frozen ice

    SciTech Connect

    Kirkpatrick, D.L.; Masoero, M.; Socolow, R.H.; Taylor, T.B.

    1981-01-01

    An effective low-energy-consumption air-conditioning system, using naturally-frozen ice as the heat sink, has been successfully demonstrated. During the summer of 1980, a test building at Princeton University was cooled using ice frozen during the previous winter. The ice is produced outdoors by spraying water into winter air, and stored until summer in an excavated reservoir under an insulating blanket. During the air-conditioning season, melt water from the bottom of the lined, ice-filled reservoir is pumped through a conventional water-to-air heat exchanger within the conditioned space, to provide air cooling and dehumidification. The water warmed in the exchange is returned to the reservoir, to be recooled to 0/sup 0/C by the remaining ice. This approach not only significantly reduces the total energy required to produce a given cooling effect relative to other means in current use, but also shifts the time of major energy use away from the electric utility's summer load peak period.

  14. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  15. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  16. High-efficiency, one-sun (22. 3% at air mass 0; 23. 9% at air mass 1. 5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Chung, B.; Virshup, G.F.; Werthen, J.G.

    1988-05-30

    A high-efficiency monolithic two-junction solar cell consisting of an Al/sub 0.37/Ga/sub 0.63/As (E/sub g/ = 1.93 eV) upper cell and a GaAs lower cell has been grown by metalorganic vapor phase epitaxy. Since both component cells have the n-on-p configuration, the unwanted p-n junction has been eliminated with the use of metal-interconnect contact during post-growth processing. As a two-terminal device, an efficiency of 22.3% has been achieved under 1 sun, air mass 0 illumination conditions, whereas an efficiency of 23.9% was obtained when the cascade cell was operated as a three-terminal device under 1 sun, air mass 1.5 illumination. This result represents the highest 1 sun efficiency ever reported. The advantages of utilizing this multijunction solar cell for terrestrial and space applications are also described.

  17. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    PubMed

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions. PMID:23243841

  18. Study of indoor radon levels in high-rise air-conditioned office buildings.

    PubMed

    Chao, C Y

    1999-12-01

    A series of measurements were conducted to study the indoor radon pollution in air-conditioned high-rise office buildings. Continuous monitoring of indoor radon levels in nine air-conditioned premises located in six office buildings in Hong Kong was conducted from August 1996 to February 1998. Each of the tests lasted for at least 48 hours. The measurement covered both day time monitoring while the air-conditioning was on and night time monitoring while the air-conditioning was off. The indoor radon level followed inversely the operation pattern of the mechanical ventilation systems in the buildings. During office hours when the mechanical ventilation was on, the indoor radon level decayed and after the mechanical ventilation was off during non-office hours, the radon level increased. The average indoor radon level during office hours on the nine premises varied from 87 Bq/m3 to 296 Bq/m3, and the indoor averaged radon levels over both day time and night time periods without mechanical ventilation were about 25 percent higher. The air infiltration rate and the radon emission characteristics from the building materials were estimated from the radon build-up curves which were observed after the mechanical ventilation was off. The radon decay curve observed after the mechanical ventilation system was turned on was used to calculate the total fresh air intake rate. Average radon emanation rates of the building materials in the six buildings varied from 0.0019 to 0.0033 Bq/m2s. It has been found that building infiltration rate accounted for about 10-30 percent of the total building ventilation rate in the buildings depending on building tightness. PMID:10633952

  19. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Outdoor outlets, fixtures, air-conditioning equipment, etc. 3280.813 Section 3280.813 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  20. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  1. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  2. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  3. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  4. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  5. Getting Down to Business: Air Conditioning and Heating Service, Module 36. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  6. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  7. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  8. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) FORMATION UNDER PYROLYTIC AND STARVED AIR CONDITIONS

    EPA Science Inventory

    A comprehensive program of laboratory studies based on the non-flame mode of thermal decomposition produced much data on PIC (Products of Incomplete Combustion) formation, primarily under pyrolytic and starved air conditions. Most significantly, laboratory results from non-flame ...

  9. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  10. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  11. Military Curricula for Vocational & Technical Education. Refrigeration & Air Conditioning Specialist, Blocks I-II.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, workbooks, and programmed texts for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the first section of a…

  12. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  13. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  14. Military Curricula for Vocational & Technical Education. Refrigeration and Air Conditioning Specialist, Blocks VI-IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, and workbooks for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the third section of a three-part course (see…

  15. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  16. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  17. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  18. V-TECS Guide for Automobile Air Conditioning and Electrical System Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This curriculum guide provides an outline for an eight-unit course to train automobile air conditioning and electrical system technicians. Each unit focuses on a duty that is composed of a number of performance objectives. For each objective, these materials are provided: a task, a standard of performance of task, source of standard, conditions…

  19. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS...

  20. A GUIDE FOR USE IN DEVELOPING TRAINING PROGRAMS IN VOCATIONAL REFRIGERATION AND AIR CONDITIONING (DOMESTIC).

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College.

    THE MATERIAL IN THIS CURRICULUM GUIDE WAS DEVELOPED TO HELP THE INSTRUCTOR TRAIN STUDENTS TO MEET THE ENTRY REQUIREMENTS FOR REFRIGERATION AND AIR CONDITIONING TRADESMEN. EXPERIENCED TEACHERS DETERMINED OBJECTIVES, DEVELOPED A JOB ANALYSIS, IDENTIFIED THE INSTRUCTIONAL CONTENT, SEQUENCED LEARNING EXPERIENCES, AND SELECTED PERTINENT LITERATURE. THE…

  1. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    ERIC Educational Resources Information Center

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  2. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    EPA Science Inventory

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  3. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  4. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  5. VESL for Heating and Air Conditioning: A Competency-based Curriculum Guide. Project OSCAER.

    ERIC Educational Resources Information Center

    Lopez-Valadez, Jeanne, Ed.; Pankratz, David, Ed.

    This guide is intended for vocational educators developing the vocational English as a second language (VESL) component of a course in heating and air conditioning. The introductory section examines assumptions about second language learning and instruction and VESL classes, local adaptations of the curriculum, and sample VESL lessons. The chapter…

  6. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  7. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  8. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  10. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  11. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  12. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  13. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  14. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  15. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  16. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  17. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  18. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%. PMID:23159846

  19. Massive Infrared-Quiet Dense Cores: Unveiling the Initial Conditions of High-Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Motte, F.; Bontemps, S.; Schneider, N.; Schilke, P.; Menten, K. M.

    2008-05-01

    As Th. Henning said at the conference, cold precursors of high-mass stars are now ``hot topics''. We here propose some observational criteria to identify massive infrared-quiet dense cores which can host the high-mass analogs of Class~0 protostars and pre-stellar condensations. We also show how far-infrared to millimeter imaging surveys of entire complexes forming OB stars are starting to unveil the initial conditions of high-mass star formation.

  20. Mathematical model of quasistationary conditions of mass transfer in an electrodialysis cell

    NASA Astrophysics Data System (ADS)

    Khanmamedov, M. N.

    2000-07-01

    The author suggests a quasistationary mathematical model of the mass-transfer conditions in an electrodialysis cell in which the main operating parameters of the electrodialysis apparatus are expressed as a function of the dimensionless diluate concentration.

  1. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  2. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  3. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  4. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  5. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    PubMed

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. PMID:27055570

  6. A multivariate/chemical mass balance model for air pollution in China: A hybrid methodology

    SciTech Connect

    Zelenka, M.P.

    1992-01-01

    This research explores the possibility of using a two step method of identifying and quantifying air pollution emissions in an urban environment. The procedure uses a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace element air concentration data. A source profile is analogous to a fingerprint since it is unique to each source of air pollution. It is important to use source profiles that are measured or estimated for the specific location under study. The profiles estimated by TTFA are then employed in a Chemical Mass Balance (CMB) source apportionment analysis for the airshed. Other known sources are estimated using source signatures from the literature. Applying the TTFA and CMB models in this fashion is called receptor modeling. Generically, a receptor model is the combination of measured air pollution concentration data with a numerical technique which apportions the measured air pollution among distinct source types. The results show that TTFA can be used to provide quantitative estimates of air pollution source profiles for an urban center in China. The number of profiles for unique source types was limited for this data set since emissions from certain types of sources co-varied during each sampling day. Consequently, the CMB analyses that applied the TTFA source profiles needed to be supplemented with standard US EPA source profiles. The application of TTFA for estimating source profiles from ambient data and the subsequent use of those profiles in CMB analyses with source profiles obtained from the EPA's source library can improve the statistical quality of the source apportionment analysis. TTFA can identify source categories of airborne pollution for specific cities, as well as give quantitative data on the composition of the emissions from those source types.

  7. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  8. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure. PMID:11332544

  9. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-01

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER. PMID:24911276

  10. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  11. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  12. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  13. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition.

    PubMed

    Fougère, Bertrand; Vellas, Bruno; Billet, Sylvain; Martin, Perrine J; Gallucci, Maurizio; Cesari, Matteo

    2015-11-01

    The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions. PMID:26462883

  14. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  15. Maximum mixing times of methane and air under non-reacting and reacting conditions

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    Mixing times between methane and air under non-reacting or reacting conditions in the presence of rates of temperature and pressure and velocity gradients are examined using a mixing model based on the ideal gas law and the equation of continuity. The model is valid for low pressure combustors under non-reacting conditions. The model is also valid under reacting conditions for the fresh mixture which contains only trace amounts of combustion products. The effects of initial pressure, temperature and fluid composition on mixing time are also analyzed. In general, the exact mixing time has to be determined numerically. Nevertheless maximum values of mixing times can be determined analytically for a broad range of operational conditions. Results show that under both reacting and non-reacting conditions, the maximum mixing time is directly proportional to the initial pressure and temperature of mixture and inversely proportional to rates of pressure and temperature, and to velocity divergence. Mixing through fuel dispersion into the surrounding air is shown to be faster than via air penetration into the fuel flow. Rates of pressure of less than 1 atm/s acting along provide a mixing time in excess of one second which is unacceptably long for many applications, in particular gas turbine combustion. Rates of temperature produced by flame may provide mixing times shorter than 0.1 s. Mixing times of the order of a few milliseconds for efficient combustion and low emission, require high velocity gradients at the fuel-air boundary. Results show that enhanced mixing is achieved by combining temperature and velocity gradients. This analysis of mixing time is intended to provide important design guidelines for the development of high intensity, high efficiency and low emission combustors.

  16. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  17. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  18. Accelerator Mass Spectrometric determination of radiocarbon in stratospheric CO2, retrieved from AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Been, Henk A.; Chen, Huilin; Kivi, Rigel; Meijer, Harro A. J.

    2015-04-01

    In this decade, understanding the impact of human activities on climate is one of the key issues of discussion globally. The continuous rise in the concentration of greenhouse gases, e.g., CO2, CH4, etc. in the atmosphere, predominantly due to human activities, is alarming and requires continuous monitoring to understand the dynamics. Radiocarbon is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases like CO2 and CH4. Measurement of 14C (or radiocarbon) in atmospheric CO2 generally requires collection of large air samples (few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined. Currently, Accelerator Mass Spectrometry (AMS) is the most precise, reliable and widely used technique for atmospheric radiocarbon detection. However, the regular collection of air samples from troposphere and stratosphere, for example using aircraft, is prohibitively expensive. AirCore is an innovative atmospheric sampling system, developed by NOAA. It comprises of a long tube descending from a high altitude with one end open and the other closed, and has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ~ 30 km) measurements of CH4and CO2(Karion et al. 2010). In Europe, AirCore measurements are being performed on a regular basis near Sodankylä since September 2013. Here we describe the analysis of two such AirCore samples collected in July 2014, Finland, for determining the 14C concentration in stratospheric CO2. The two AirCore samples were collected on consecutive days. Each stratospheric AirCore sample was divided into six fractions, each containing ~ 35 μg CO2 (~9.5 μg C). Each fraction was separately trapped in 1 /4 inch coiled stainless steel tubing for radiocarbon measurements. The procedure for CO2 extraction from the stratospheric air samples; the sample preparation, with samples containing < 10

  19. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  20. A thunderstorm cell-lightning activity analysis: The new concept of air mass catchment

    NASA Astrophysics Data System (ADS)

    Mona, Tamás; Horváth, Ákos; Ács, Ferenc

    2016-03-01

    Thunderstorm cell-lightning activity is discussed in terms of analysing a thunderstorm's lightning frequency-equipotential temperature relationship. Thunderstorms were tracked using Doppler radars in five-minute time steps. Lightning is assigned to the nearest thunderstorm cell, it is characterised by lightning frequency data using LINET. Equipotential temperature is not directly estimated, instead the notion of air mass catchment is introduced to represent it. It is shown in this paper that the thunderstorm cell with maximum lightning frequency in the current time step is almost always the so-called leading storm cell. The lightning frequency activity of the non-leading storm cells is not significant.

  1. [The main ways of improvement of medical support of the Air Forces in modern conditions].

    PubMed

    Blaginin, A A; Grebeniuk, A N; Lizogub, I N

    2014-02-01

    Blaginin A.A., Grebenyuk A.N., Lizogub LN. - The main ways of improvement of medical support of the Air Forces in modern conditions. Aircrew conducting active hostilities suffers from the whole spectrum of factors and conditions of the combat situation. The main task for the medical service of the Air Force is to carry out preventive and curative action for aviation specialists who are responsible for the combat capability of aircraft formations. The medical service of the Air Force must have forces and facilities for planning, organization and implementation of the treatment of lightly wounded and sick aviation professionals with short periods of recovery, medical rehabilitation of aircrew qfter suffering injuries, diseases, sanatorium therapy of aircrew with partial failure of health, outpatient and inpatient medical examination aircrew - flight commissions, preventive rest of aviation specialists with symptoms of chronic fatigue. Should be trained aviation physicians, including both basic military medical education and in-depth study of the medical aspects of various fields of personnel of the Air Force. PMID:25046924

  2. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  3. Do digestive contents confound body mass as a measure of relative condition in nestling songbirds?

    USGS Publications Warehouse

    Streby, Henry M.; Peterson, Sean M.; Lehman, Justin A.; Kramer, Gunnar R.; Vernasco, Ben J.; Andersen, David E.

    2014-01-01

    Relative nestling condition, typically measured as nestling mass or as an index including nestling mass, is commonly purported to correlate with fledgling songbird survival. However, most studies directly investigating fledgling survival have found no such relationship. We weighed feces and stomach contents of nestling golden-winged warblers (Vermivora chrysoptera) to investigate the potential contribution of variation in digestive contents to differences in nestling mass. We estimated that the mass of a seventh-day (near fledging) nestling golden-winged warbler varies by 0.65 g (approx. 9% of mean nestling mass) depending on the contents of the nestling's digestive system at the time of weighing, and that digestive contents are dissimilar among nestlings at any moment the brood is removed from the nest for weighing. Our conservative estimate of within-individual variation in digestive contents equals 72% and 24% of the mean within-brood and population-wide range in nestling mass, respectively. Based on our results, a substantive but typically unknown amount of the variation in body mass among nestlings is confounded by differences in digestive contents. We conclude that short-term variation in digestive contents likely precludes the use of body mass, and therefore any mass-dependent index, as a measure of relative nestling condition or as a predictor of survival in golden-winged warblers and likely in many other songbirds of similar size.

  4. Performance tests of air source heat pumps under frosting conditions. Quality of results

    NASA Astrophysics Data System (ADS)

    Fahlen, P.

    This report focuses on the analysis of uncertainties in research regarding air-source heat pumps. The principles recommended by the Western European Calibration Conference (WECC) are applied and the generated information is condensed in the form of uncertainty budgets. The ensuring discussion, and the Measurement Assurance Program that was applied during the research work are also relevant to general testing of cooling coils, e.g. for air source heat pumps. The general conclusion of the analysis is that the method of determining frost mass by continuous weighing and frost density by inference from pressure drop considerations, which is presented in the report, has the potential to produce results with an accuracy on a par with the best previously used techniques to investigate frosting and defrosting phenomena. Furthermore, the methodology has the distinct advantage of yielding online measuring possibilities and being much less time consuming than traditional techniques.

  5. Bivariate conditional sampling of buoyancy flux during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1989-01-01

    The joint frequency distribution technique was used to analyze buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime noted during the Genesis of Atlantic Lows Experiment. It is found that for the lower half of the MABL, the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top. If the buoyancy flux is primarily driven by the temperature flux, these buoyancy-flux generating processes should be the same for the lower boundary layers over land and ocean. The results of the scale analysis of the buoyancy flux agree well with those obtained for mesoscale cellular convection during the Air-Mass Transformation Experiment.

  6. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets.

    PubMed

    Miller, M F; Kessler, W J; Allen, M G

    1996-08-20

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O(2) density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1-2% of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm/s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages. PMID:21102916

  7. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  8. An efficient new automobile air-conditioning system based on CO{sub 2} vapor compression

    SciTech Connect

    Pettersen, J.

    1994-12-31

    A new, efficient, and environmentally safe automobile air-conditioning system based on carbon dioxide (CO{sub 2}) vapor compression has been developed. Although working pressures and component design are different, the basic principles are similar to those of current chlorofluorocarbon/hydrofluorocarbon (CFC/HFC) units. With the construction and testing of a laboratory prototype, it has been documented that the new system is highly competitive with current CFC-12 and HFC-134a units in terms of efficiency, capacity, cost, weight, and dimensions. The CO{sub 2} concept thus offers a solution to the environmental problem associated with automobile air conditioning and eliminates all uncertainties with respect to possible unforeseen effects from new refrigerant compounds. Further advantages of the natural fluid CO{sub 2} as a refrigerant are: no need for recycling or recovery, low cost of fluid, excellent availability, well-known properties, and more compact machinery and components.

  9. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    PubMed

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  10. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  11. Nitrogen mass balances for pilot-scale biofilm stabilization ponds under tropical conditions.

    PubMed

    Babu, M A; van der Steen, N P; Hooijmans, C M; Gijzen, H J

    2011-02-01

    Nitrogen removal in biofilm waste stabilization ponds were modeled using nitrogen mass balance equations. Four pilot-scale biofilm maturation ponds were constructed in Uganda. Pond 1 was control; the others had 15 baffles in each of them. Two loading conditions were investigated (period 1, 18.2g and period 2, 26.8 g NH(4)-Nd(-1)). Total nitrogen and TKN mass balances were made. Bulk water and biofilm nitrification rates were determined and used in the TKN mass balance. Results for total nitrogen mass balance showed that for both periods, denitrification was the major removal mechanism. Nitrogen uptake by algae was more important during period 1 than in period 2. The TKN mass balance predicted well effluent TKN for period 2 than period 1. This could be due to fluctuations in algae density and ammonia uptake during period 1, no conclusions on reliability of mass balance model in period 1 was made. PMID:21183339

  12. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method. PMID:12732918

  13. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  14. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  15. The feasibility study of the waste heat air-conditioning system for automobile

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Ping; Yuan, Xiu-Gan; Mei, Zhi-Guang

    1994-06-01

    In this paper, the feasibility of application of a solid-absorption system using ammonia and chlorides as working pair to automobile air-conditioning system is investigated. This system has the advantages of minimum environmental problem and utilizing waste heat from the automobile engine as thermal energy input. Analyses show that the main problem associated with the application of solid-absorption system is the size of the reactors. Techniques to solve this problem are discussed.

  16. Industry sector analysis, Hong Kong: Air conditioning equipment. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the air conditioning equipment market in Hong Kong. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Hong Kong consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  17. Application information on typical hygrometers used in heating, ventilating and air conditioning (HVAC) systems

    SciTech Connect

    Kao, J.Y.; Snyder, W.J.

    1982-01-01

    Hygrometer selection information is provided for application in heating, ventilating and air-conditioning (HVAC) systems. A general review of hygrometer literature has been provided and the most commonly used ones for HVAC are discussed. Typical hygrometer parameters are listed to indicate the type of performance that can be expected. Laboratory test results of self-regulating, salt-phase transition hygrometers are presented and discussed in detail.

  18. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGESBeta

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  19. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models. PMID:25103722

  20. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    PubMed

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  1. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  2. Consistent pattern of elevated symptoms in air-conditioned office buildings: a reanalysis of epidemiologic studies.

    PubMed Central

    Mendell, M J; Smith, A H

    1990-01-01

    Published studies of the relation between type of building ventilation system and work-related symptom prevalence in office workers have been contradictory. A reanalysis was performed of six studies meeting specific eligibility criteria, combining published data with unpublished information obtained from study authors. Five eligible studies were from the United Kingdom, and one was from Denmark. Standardized categories of building ventilation type were created to allow comparison of effects across studies. Within each study, prevalence odds ratios (PORs) were calculated for symptoms in each ventilation category relative to a baseline category of naturally ventilated buildings. Air-conditioned buildings were consistently associated with increased prevalence of work-related headache (POR = 1.3-3.1), lethargy (POR = 1.4-5.1), and upper respiratory/mucus membrane symptoms (POR = 1.3-4.8). Humidification was not a necessary factor for the higher symptom prevalence associated with air-conditioning. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. The consistent associations found between type of building ventilation and reported symptom prevalence have potentially important public health and economic implications. PMID:2400029

  3. Tourists’ attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand

    PubMed Central

    Viriyachaiyo, V; Lim, A

    2009-01-01

    Background: Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists’ attitudes toward the ban was conducted. Methods: A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Results: Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Conclusion: Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand. PMID:19364754

  4. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  5. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  6. The Structure of Gas-accreting Protoplanets and the Condition of the Critical Core Mass

    NASA Astrophysics Data System (ADS)

    Kanagawa, Kazuhiro D.; Fujimoto, Masayuki Y.

    2013-03-01

    In the core accretion model for the formation of gas giant planets, runaway gas accretion onto a core is the primary requisite, triggered when the core mass reaches a critical value. The recently revealed wide diversity of the extrasolar giant planets suggests the necessity to further the understanding of the conditions resulting in the critical core mass that initiates runaway accretion. We study the internal structure of protoplanets under hydrostatic and thermal equilibria represented in terms of a polytropic equation of state to investigate what factors determine and affect the critical core mass. We find that the protoplanets, embedded in protoplanetary disks, have the same configuration as red giants, characterized by the envelope of the centrally condensed type solution. Applying the theory of stellar structure with homology invariants, we demonstrate that there are three types of criteria for the critical core mass depending on the stiffness of polytrope and the nature of outer boundary condition. For the stiff polytropes of index N <= 3 with the Bondi radius as the outer boundary, the criterion governing the critical core mass occurs at the surface. For stiff polytropes with the Hill outer boundary and for soft polytropes of N > 3, this criterion acts at the bottom of gaseous envelope. Further, we elucidate the roles and effects of coexistent radiative and convective zones in the envelope of critical core mass. Based on the results, we discuss the relevance of Bondi and Hill surface conditions and explore the parameter dependences of critical core mass.

  7. THE STRUCTURE OF GAS-ACCRETING PROTOPLANETS AND THE CONDITION OF THE CRITICAL CORE MASS

    SciTech Connect

    Kanagawa, Kazuhiro D.; Fujimoto, Masayuki Y.

    2013-03-01

    In the core accretion model for the formation of gas giant planets, runaway gas accretion onto a core is the primary requisite, triggered when the core mass reaches a critical value. The recently revealed wide diversity of the extrasolar giant planets suggests the necessity to further the understanding of the conditions resulting in the critical core mass that initiates runaway accretion. We study the internal structure of protoplanets under hydrostatic and thermal equilibria represented in terms of a polytropic equation of state to investigate what factors determine and affect the critical core mass. We find that the protoplanets, embedded in protoplanetary disks, have the same configuration as red giants, characterized by the envelope of the centrally condensed type solution. Applying the theory of stellar structure with homology invariants, we demonstrate that there are three types of criteria for the critical core mass depending on the stiffness of polytrope and the nature of outer boundary condition. For the stiff polytropes of index N {<=} 3 with the Bondi radius as the outer boundary, the criterion governing the critical core mass occurs at the surface. For stiff polytropes with the Hill outer boundary and for soft polytropes of N > 3, this criterion acts at the bottom of gaseous envelope. Further, we elucidate the roles and effects of coexistent radiative and convective zones in the envelope of critical core mass. Based on the results, we discuss the relevance of Bondi and Hill surface conditions and explore the parameter dependences of critical core mass.

  8. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  9. sup 222 Rn, sup 222 Rn progeny and sup 220 Rn progeny as atmospheric tracers of air masses at the Mauno Loa Observatory

    SciTech Connect

    Hutter, A.R.; George, A.C.; Maiello, M.L.; Fisenne, I.M.; Larsen, R.J.; Beck, H.L.; Wilson, F.C.

    1990-03-01

    {sup 222}Rn, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations in air were measured at the Mauna Loa Observatory (MLO) in Hawaii during March 1989 in order to investigate the feasibility of using them as atmospheric tracers to help determine local air mass flow patterns. Charcoal traps, cooled to dry ice temperatures, were used to collect {sup 222}Rn, which was subsequently measured in pulse ionization chambers at the Environmental Measurements Laboratory (EML). {sup 222}Rn progeny and {sup 220}Rn progeny for 37 samples were measured at the Observatory by sampling high volumes of air through filters, which were counted for up to 11 h in alpha scintillation counters. Individual progeny concentrations were calculated using both least squares and maximum likelihood techniques. In general, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations were low when free tropospheric air was present (downslope and tradewind conditions), and consistently higher when surface air from the island broke through the trade wind inversion layer (upslope conditions). The data suggest that {sup 222}Rn, {sup 222}Rn progeny, or {sup 220}Rn progeny monitoring may provide new and useful information to help indicate the different air flow patterns present at MLO. 17 refs., 5 figs., 2 tabs.

  10. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  11. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  12. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  13. A database and tool for boundary conditions for regional air quality modeling: description and evaluation

    NASA Astrophysics Data System (ADS)

    Henderson, B. H.; Akhtar, F.; Pye, H. O. T.; Napelenok, S. L.; Hutzell, W. T.

    2014-02-01

    Transported air pollutants receive increasing attention as regulations tighten and global concentrations increase. The need to represent international transport in regional air quality assessments requires improved representation of boundary concentrations. Currently available observations are too sparse vertically to provide boundary information, particularly for ozone precursors, but global simulations can be used to generate spatially and temporally varying lateral boundary conditions (LBC). This study presents a public database of global simulations designed and evaluated for use as LBC for air quality models (AQMs). The database covers the contiguous United States (CONUS) for the years 2001-2010 and contains hourly varying concentrations of ozone, aerosols, and their precursors. The database is complemented by a tool for configuring the global results as inputs to regional scale models (e.g., Community Multiscale Air Quality or Comprehensive Air quality Model with extensions). This study also presents an example application based on the CONUS domain, which is evaluated against satellite retrieved ozone and carbon monoxide vertical profiles. The results show performance is largely within uncertainty estimates for ozone from the Ozone Monitoring Instrument and carbon monoxide from the Measurements Of Pollution In The Troposphere (MOPITT), but there were some notable biases compared with Tropospheric Emission Spectrometer (TES) ozone. Compared with TES, our ozone predictions are high-biased in the upper troposphere, particularly in the south during January. This publication documents the global simulation database, the tool for conversion to LBC, and the evaluation of concentrations on the boundaries. This documentation is intended to support applications that require representation of long-range transport of air pollutants.

  14. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    SciTech Connect

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    2016-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase, and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.

  15. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  16. Study on an Efficient Dehumidifying Air-conditioning System utilizing Phase Change of Intermediate Pressure Refrigerant

    NASA Astrophysics Data System (ADS)

    Maeda, Kensaku; Inaba, Hideo

    The present study has proven a new dehumidifying system that aimed to reduce the sensible heat factor(SHF) of cooling process without using additional heat to relieve the internationally indicated conflict between energy saving and dehumidification necessary for keeping adequate indoor air quality (IAQ). In this system, we used intermediate pressure refrigerant in a vapor compression refrigerating cycle as heat transfer medium of a characteristic heat exchanger to precool the process air entering into an evaporator as well as to reheat the process air leaving from the evaporator. By this system, the present results achieved higher moisture removal and consequently higher efficiency of dehumidifying process. In addition to this fact, since this system has capability of integration into air-conditioning apparatus(HVAC system), it will be able to work for wide range of cooling load by variable SHF function. In the present paper, technical information, experimental results, and simulation results which assumed to apply this system into HVAC system are reported.

  17. TECNAIRE winter field campaign: turbulent characteristics and their influence on air quality conditions

    NASA Astrophysics Data System (ADS)

    Yagüe, Carlos; Román Cascón, Carlos; Maqueda, Gregorio; Sastre, Mariano; Arrillaga, Jon A.; Artíñano, Begoña; Diaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier

    2016-04-01

    An urban field campaign was conducted at an air pollution hot spot in Madrid city (Spain) during winter 2015 (from 16th February to 2nd March). The zone selected for the study is a square (Plaza Fernández Ladreda) located in the southern part of the city. This area is an important intersection of several principal routes, and therefore a significant impact in the air quality of the area is found due to the high traffic density. Meteorological data (wind speed and direction, air temperature, relative humidity, pressure, precipitation and global solar radiation) were daily recorded as well as micrometeorological measurements obtained from two sonic anemometers. To characterize this urban atmospheric boundary layer (uABL), micrometeorological parameters (turbulent kinetic energy -TKE-, friction velocity -u∗- and sensible heat flux -H-) are calculated, considering 5-minute average for variance and covariance evaluations. Furthermore, synoptic atmospheric features were analyzed. As a whole, a predominant influence of high pressure systems was found over the Atlantic Ocean and western Spain, affecting Madrid, but during a couple of days (17th and 21st February) some atmospheric instability played a role. The influence of the synoptic situation and specially the evolution of the micrometeorological conditions along the day on air quality characteristics (Particulate Matter concentrations: PM10, PM2.5 and PM1, and NOx concentrations) are analyzed and shown in detail. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).

  18. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  19. Indoor air pollution by organic emissions from textile floor coverings. Climate chamber studies under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Sollinger, S.; Levsen, K.; Wünsch, G.

    The time dependence of the emission of organic compounds from a polyamide floor covering with styrene-butadiene-rubber (SBR) backing was studied in three climate chambers (0.03, 1.0 and 38 m 3) at 23°C 5nd 45% RH. While volatile compounds such as toluene reach a maximum concentration in the gas phase within 1 h and decrease in concentration to less than 2% within 60 h, the concentration of less volatile compounds, such as 4-phenylcyclohexene, decreases slowly over a period of months. If the chamber is well mixed and a defined chamber loading is maintained the observed concentrations do not depend on the chamber size, the wall material and air velocity. The concentration of the observed emissions is roughly proportional to the chamber loading. Surprisingly it is not inversely proportional to the air exchange rate. Rather, at high air exchange rates mass transfer from the carpet to the gas phase is enhanced. The "decreasing source models" of Dunn and Tichenor ( Atmospheric Environment22, 885-894, 1988) have been applied to the data. They allow the extrapolation of experimental data beyond the time available for measurement. The model calculations reveal the presence of sink effects. The role of the chamber walls as sinks can be determined more reliably if constant sources of an organic compound are placed into the chamber and their increase in concentration with time is compared with the theoretical predictions neglecting sink effects.

  20. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  1. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. PMID:27233094

  2. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  3. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests. PMID:26764309

  4. Ground-water conditions at Beale Air Force Base and vicinity, California

    USGS Publications Warehouse

    Page, R.W.

    1980-01-01

    Ground-water conditions were studied in a 168-square-mile area between the Sierra Nevada and the Feather River in Yuba County, Calif. The area is in the eastern part of the Sacramento Valley and includes most of Beale Air Force Base. Source, occurrence, movement, and chemical quality of the ground water were evaluated. Ground water occurs in sedimentary and volcanic rocks of Tertiary and Quaternary age. The base of the freshwater is in the undifferentiated sedimentary rocks of Oligocene and Eocene age, that contain water of high dissolved-solids concentration. The ground water occurs under unconfined and partly confined conditions. At Beale Air Force Base it is at times partly confined. Recharge is principally from the rivers. Pumpage in the study area was estimated to be 129,000 acre-feet in 1975. In the 1960's, water levels in most parts of the study area declined less rapidly than in earlier years or became fairly stable. In the 1970's, water levels at Beale Air Force Base declined only slightly. Spacing of wells on the base and rates of pumping are such that excessive pumping interference is avoided. Water quality at the base and throughout the study area is generally good. Dissolved-solids concentrations are 700 to 900 milligrams per liter in the undifferentiated sedimentary rocks beneath the base well field. (USGS)

  5. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  6. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  7. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  8. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  9. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  10. LiCl dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    SciTech Connect

    Ko, S.M.

    1980-06-03

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system. 4 figs.

  11. Analysis of bidirectional PWM converter for application of residential solar air conditioning system

    SciTech Connect

    Kim, H.S.; Choe, G.H.; Yu, G.J.; Song, J.S.

    1994-12-31

    In the conventional solar air conditioning system the diode rectifier is used to build up DC link voltage from ac utility source. The diode rectifier is simple and cheap but the reverse of power flow cannot be made. It can derate the utilization of solar cell and also there have occurred the problems of low power factor and plentiful harmonics at the ac input side. Hence in addition to peak power cutting in summer, some advantages can be obtained by adopting the PWM converter to the solar air conditioner. As a result, obtained are the characteristics of the PWM converter such as low distorted current waveform, unity power factor. Also the proposed system is verified by examining the dynamics to step load change and also power reversal testing.

  12. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    SciTech Connect

    2010-09-01

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant with a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.

  13. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  14. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    PubMed

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute. PMID:23523729

  15. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  16. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  17. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  18. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  19. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  20. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  1. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  2. Commentary: Air-conditioning as a risk for increased use of healthservices

    SciTech Connect

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  3. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, Y. X.; Hao, J. M.

    2014-10-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January~2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg m-3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m-2, 3.2 °C, 0.8 m s-1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model's performances in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real

  4. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wang, Yuxuan; Hao, Jiming

    2015-04-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions during January 2013 are simulated using the fully coupled on-line Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the impact of aerosol radiative (direct and semi-direct) and indirect effects on meteorological variables and air quality. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg/m3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W/m2, 3.2 oC, 0.8 m/s, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and wind speeds, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2) and PM2.5. The aerosol feedbacks on secondary pollutants such as surface ozone and PM2.5 mass concentrations show some spatial variations. Surface O3 mixing ratio is reduced by up to 6.9 ppb due to reduced incoming solar radiation and lower temperature. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River Delta, the Pearl River Delta, and Central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air

  5. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Christopher, Sundar A.

    2003-11-01

    We explore the relationship between column aerosol optical thickness (AOT) derived from the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satellites and hourly fine particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama for 2002. Results indicate that there is a good correlation between the satellite-derived AOT and PM2.5 (linear correlation coefficient, R = 0.7) indicating that most of the aerosols are in the well-mixed lower boundary layer during the satellite overpass times. There is excellent agreement between the monthly mean PM2.5 and MODIS AOT (R > 0.9), with maximum values during the summer months due to enhanced photolysis. The PM2.5 has a distinct diurnal signature with maxima in the early morning (6:00 ~ 8:00AM) due to increased traffic flow and restricted mixing depths during these hours. Using simple empirical linear relationships derived between the MODIS AOT and 24hr mean PM2.5 we show that the MODIS AOT can be used quantitatively to estimate air quality categories as defined by the U.S. Environmental Protection Agency (EPA) with an accuracy of more than 90% in cloud-free conditions. We discuss the factors that affect the correlation between satellite-derived AOT and PM2.5 mass, and emphasize that more research is needed before applying these methods and results over other areas.

  6. Cool Roofs in Guangzhou, China: Outdoor Air Temperature Reductions during Heat Waves and Typical Summer Conditions.

    PubMed

    Cao, Meichun; Rosado, Pablo; Lin, Zhaohui; Levinson, Ronnen; Millstein, Dev

    2015-12-15

    In this paper, we simulate temperature reductions during heat-wave events and during typical summer conditions from the installation of highly reflective "cool" roofs in the Chinese megacity of Guangzhou. We simulate temperature reductions during six of the strongest historical heat-wave events over the past decade, finding average urban midday temperature reductions of 1.2 °C. In comparison, we simulate 25 typical summer weeks between 2004 and 2008, finding average urban midday temperature reductions of 0.8 °C, indicating that air temperature sensitivity to urban albedo in Guangzhou varies with meteorological conditions. We find that roughly three-fourths of the variance in air temperature reductions across all episodes can be accounted for by a linear regression, including only three basic properties related to the meteorological conditions: mean daytime temperature, humidity, and ventilation to the greater Guangzhou urban area. While these results highlight the potential for cool roofs to mitigate peak temperatures during heat waves, the temperature reductions reported here are based on the upper bound case, which increases albedos of all roofs (but does not modify road albedo or wall albedo). PMID:26523605

  7. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  8. Aggregated Modeling and Control of Air Conditioning Loads for Demand Response

    SciTech Connect

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit

    2013-06-21

    Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly-accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategies are validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction.

  9. Home air-conditioning, traffic exposure, and asthma and allergic symptoms among preschool children.

    PubMed

    Zuraimi, Mohamed Sultan; Tham, Kwok-Wai; Chew, Fook-Tim; Ooi, Peng-Lim; Koh, David

    2011-02-01

    Epidemiological data suggest that traffic exposures can influence asthma and allergic symptoms among preschool children; however, there is no information on risk reduction via home air-conditioning (AC). The aim of this study is to evaluate the associations of self-reported traffic densities with asthma and allergic symptoms among preschool children and determine whether AC is an effect modifier. A cross-sectional study adopting an expanded and modified ISAAC--International Study of Asthma and Allergies in Childhood conducted on randomly selected 2994 children living in homes without any indoor risk factors. Specific information on demographics, indoor home risk factors, and traffic variables were obtained. Adjusted prevalence ratios (PR) and 95% confidence interval (CI) were determined by Cox proportional hazard regression model with assumption of a constant risk period controlled for covariates. We found dose-response significant relationships between validated self-reported traffic densities and asthma and rhinitis symptoms. Among children sleeping in non-air-conditioned homes, there were stronger associations between asthma and rhinitis symptoms studied. PRs for heavy traffic density were 2.06 for wheeze (95% CI 0.97-4.38), 2.89 for asthma (1.14-7.32), 1.73 for rhinitis (1.00-2.99), and 3.39 for rhinoconjunctivitis (1.24-9.27). There were no associations found for children sleeping in air-conditioned homes. Our results suggest that AC in the bedroom modifies the health effects of traffic among preschool children. This finding suggests that attention should also be paid to ventilation characteristics of the homes to remediate health-related traffic pollution problems. PMID:20561230

  10. Evidence of rapid production of organic acids in an urban air mass

    NASA Astrophysics Data System (ADS)

    Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.; Gilman, Jessica B.; Kuster, William C.; Holloway, John S.; Graus, Martin; Flynn, James; Lefer, Barry; Warneke, Carsten; de Gouw, Joost

    2011-09-01

    Gas-phase acids (nitric, formic, acrylic, methacrylic, propionic, and pyruvic/butryic acid) were measured using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) in Pasadena, CA as part of the CalNex 2010 (Research at the Nexus of Air Quality and Climate Change) study in May-June 2010. Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to several parts per billion by volume (ppbv), with the largest concentrations observed for formic and propionic acids. Photochemically processed urban emissions transported from Los Angeles were frequently sampled during the day. Analysis of transported emissions demonstrates a strong correlation of organic acid concentrations with both nitric acid and odd oxygen (Ox = O3 + NO2) showing that the organic acids are photochemically and rapidly produced from urban emissions.

  11. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  12. An approach to monitoring HVAC (heating ventilating and air conditioning) technology developments in Japan

    SciTech Connect

    Lewis, P.M.; Ashton, W.B.; McDonald, S.C.

    1987-12-01

    This paper presents a discussion of methods for periodicaly monitoring Japanese advanced technology developments for equipment and components in the heating ventilating and air conditioning (HVAC) industry. The emphasis in the approach recommended is on evaluation of foreign literature - both technical and trade publications - because of both the increasing availability of these materials and the usefulness of information they present. Although not a comprehensive nor completely detailed source of information, HVAC technology literature is an important component of ''scanning the business/technical environmental'' for many purposes. Moreover, despite obstacles in obtaining and translating some important literature, useful knowledge can be obtained from many foreign literature sources for relatively modest costs.

  13. Design and experimental investigation of an ejector in an air-conditioning and refrigeration system

    SciTech Connect

    AL-Khalidy, N.; Zayonia, A.

    1995-12-31

    This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.

  14. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  15. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  16. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  17. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  18. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Noone, David; Galewsky, Joseph; Sharp, Zachary D.; Worden, John; Barnes, John; Baer, Doug; Bailey, Adriana; Brown, Derek P.; Christensen, Lance; Crosson, Eric; Dong, Feng; Hurley, John V.; Johnson, Leah R.; Strong, Mel; Toohey, Darin; van Pelt, Aaron; Wright, Jonathon S.

    2011-11-01

    Water vapor in the subtropical troposphere plays an important role in the radiative balance, the distribution of precipitation, and the chemistry of the Earth's atmosphere. Measurements of the water vapor mixing ratio paired with stable isotope ratios provide unique information on transport processes and moisture sources that is not available with mixing ratio data alone. Measurements of the D/H isotope ratio of water vapor from Mauna Loa Observatory over 4 weeks in October-November 2008 were used to identify components of the regional hydrological cycle. A mixing model exploits the isotope information to identify water fluxes from time series data. Mixing is associated with exchange between marine boundary layer air and tropospheric air on diurnal time scales and between different tropospheric air masses with characteristics that evolve on the synoptic time scale. Diurnal variations are associated with upslope flow and the transition from nighttime air above the marine trade inversion to marine boundary layer air during daytime. During easterly trade wind conditions, growth and decay of the boundary layer are largely conservative in a regional context but contribute ˜12% of the nighttime water vapor at Mauna Loa. Tropospheric moisture is associated with convective outflow and exchange with drier air originating from higher latitude or higher altitude. During the passage of a moist filament, boundary layer exchange is enhanced. Isotopic data reflect the combination of processes that control the water balance, which highlights the utility for baseline measurements of water vapor isotopologues in monitoring the response of the hydrological cycle to climate change.

  19. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  20. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  1. Estimating the risks of smoking, air pollution, and passive smoke on acute respiratory conditions

    SciTech Connect

    Ostro, B.D. )

    1989-06-01

    Five years of the annual Health Interview Survey, conducted by the National Center for Health Statistics, are used to estimate the effects of air pollution, smoking, and environmental tobacco smoke on respiratory restrictions in activity for adults, and bed disability for children. After adjusting for several socioeconomic factors, the multiple regression estimates indicate that an independent and statistically significant association exists between these three forms of air pollution and respiratory morbidity. The comparative risks of these exposures are computed and the plausibility of the relative risks is examined by comparing the equivalent doses with actual measurements of exposure taken in the homes of smokers. The results indicate that: (1) smokers will have a 55-75% excess in days with respiratory conditions severe enough to cause reductions in normal activity; (2) a 1 microgram increase in fine particulate matter air pollution is associated with a 3% excess in acute respiratory disease; and (3) a pack-a-day smoker will increase respiratory restricted days for a nonsmoking spouse by 20% and increase the number of bed disability days for young children living in the household by 20%. The results also indicate that the estimates of the effects of secondhand smoking on children are improved when the mother's work status is known and incorporated into the exposure estimate.

  2. The interaction of water mists and premixed propane-air flames under low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, Angel; Riedel, Edward P.; McKinnon, J. Thomas

    1999-01-01

    A preliminary investigation of the effect of water mists on premixed flame propagation in a cylindrical tube under low-gravity conditions has been conducted to define the scientific and technical objectives of the experiments to be performed on the Space Shuttle and International Space Station microgravity environments. The inhibiting characteristics of water mists in propagating flames of propane-air mixtures at various equivalence ratios are studied. The effects of droplet size and concentration on the laminar flame speed are used as the measure of fire suppression efficacy. Flame speed and propagation behavior are monitored by a video camera. Reduced gravity is obtained with an aircraft flying parabolic trajectories. Measurements and qualitative observations from the low-gravity experiments clearly show the effect of water mist on flame speed abatement, flame shape, and radiant emission. For lean propane-air mixtures, the flame speed increases at first with low water-mist concentrations and then decreases below its dry value when higher water-mist volumes are introduced in the tube. This phenomenon may be due in part to the heating of the unburned mixture ahead of the flame as a result of radiation absorption by the water droplets. For rich propane-air mixtures, similar behavior of flame speed vs. water concentration is encountered but in this case is mostly due to the formation of cellular flames. At high water loads both lean and rich flames exhibit extinction before reaching the end of the tube.

  3. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    NASA Astrophysics Data System (ADS)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  4. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    NASA Astrophysics Data System (ADS)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  5. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    NASA Astrophysics Data System (ADS)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  6. Meteorological factors and air pollution in Lithuanian forests: possible effects on tree condition.

    PubMed

    Ozolincius, Remigijus; Stakenas, Vidas; Serafinaviciute, Brigita

    2005-10-01

    This study investigates changes in tree condition and environmental factors in Lithuania during the active growing season in 1991-2001. The average crown defoliation and the proportion of healthy trees of Pinus sylvestris, Picea abies, Betula sp., Fraxinus excelsior, Alnus incana, Alnus glutinosa, Populus tremula, and Quercus robur, meteorological (average temperature, amount of precipitation, hydrothermal coefficient) and air pollution data (acidity of precipitation, concentrations of SO2, NO2 and exposure of O3) were analysed. During the period 1991-2001 the condition of Pinus sylvestris, Populus tremula showed a tendency of improvement, while defoliation of Fraxinus excelsior significantly increased. The proportion of healthy trees correlated well with the average temperature and O3 (AOT40), while defoliation correlated well with the acidity of precipitation and the concentrations of SO2 and NO2. Deciduous species appeared to be more sensitive to O3 exposure and conifers to the concentrations of SO2 and NO2. PMID:16005769

  7. Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst

    SciTech Connect

    Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

    2012-07-06

    Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

  8. Adverse foraging conditions may impact body mass and survival of a high Arctic seabird

    USGS Publications Warehouse

    Harding, A.M.A.; Welcker, J.; Steen, H.; Hamer, K.C.; Kitaysky, A.S.; Fort, J.; Talbot, S.L.; Cornick, L.A.; Karnovsky, N.J.; Gabrielsen, G.W.; Gremillet, D.

    2011-01-01

    Tradeoffs between current reproduction and future survival are widely recognized, but may only occur when food is limited: when foraging conditions are favorable, parents may be able to reproduce without compromising their own survival. We investigated these tradeoffs in the little auk (Alle alle), a small seabird with a single-egg clutch. During 2005-2007, we examined the relationship between body mass and survival of birds breeding under contrasting foraging conditions at two Arctic colonies. We used corticosterone levels of breeding adults as a physiological indicator of the foraging conditions they encountered during each reproductive season. We found that when foraging conditions were relatively poor (as reflected in elevated levels of corticosterone), parents ended the reproductive season with low body mass and suffered increased post-breeding mortality. A positive relationship between body mass and post-breeding survival was found in one study year; light birds incurred higher survival costs than heavy birds. The results of this study suggest that reproducing under poor foraging conditions may affect the post-breeding survival of long-lived little auks. They also have important demographic implications because even a small change in adult survival may have a large effect on populations of long-lived species. ?? 2011 Springer-Verlag.

  9. Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China.

    PubMed

    Xue, Dan; Li, Chengfan; Liu, Qian

    2015-06-01

    In China, visibility condition has become an important issue that concerns both society and the scientific community. In order to study visibility characteristics and its influencing factors, visibility data, air pollutants, and meteorological data during the year 2013 were obtained over Shanghai. The temporal variation of atmospheric visibility was analyzed. The mean value of daily visibility of Shanghai was 19.1 km. Visibility exhibited an obvious seasonal cycle. The maximum and minimum visibility occurred in September and December with the values of 27.5 and 7.7 km, respectively. The relationships between the visibility and air pollutant data were calculated. The visibility had negative correlation with NO2, CO, PM2.5, PM10, and SO2 and weak positive correlation with O3. Meteorological data were clustered into four groups to reveal the joint contribution of meteorological variables to the daily average visibility. Usually, under the meteorological condition of high temperature and wind speed, the visibility of Shanghai reached about 25 km, while visibility decreased to 16 km under the weather type of low wind speed and temperature and high relative humid. Principle component analysis was also applied to identify the main cause of visibility variance. The results showed that the low visibility over Shanghai was mainly due to the high air pollution concentrations associated with low wind speed, which explained the total variance of 44.99 %. These results provide new knowledge for better understanding the variations of visibility and have direct implications to supply sound policy on visibility improvement in Shanghai. PMID:25980729

  10. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  11. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  12. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. PMID:24997256

  13. Review of open-cycle desiccant air-conditioning concepts and systems

    SciTech Connect

    Wurm, J.

    1986-08-01

    This paper attempts to overview the development status of desiccant cooling. Over the past 30 years of progressively intensifying attention, this promising technology has become a domain of interest of many research agencies and manufacturing companies. As a result, the market potential for machines based on desiccant processes, particularly in comfort cooling and agricultural applications, is getting close to realization. One of the most important incentives of developing heat-activated, open-cycle desiccant cooling machines (air conditioners) has always been its potential simplicity. Such premise has been deceiving to a degree that in many instances has slowed the progress. However, the persistent analytical and material research brought some desiccant systems close to the marketplace. They provide attractive alternatives to consumers and utilities, offering particularly effective humidity and temperature control in cases of high fresh-air-makeup requirements. The control of bacteria, airborne particulates, as well as CO/sub 2/, combined with effective heating capability make them attractive for controlled-atmosphere agriculture. Finally, the capability of using low-temperature waste heat to drive the cycle becomes an important attribute of a desiccant concept, specifically when combined with a regular vapor-compression cooling machine in energy saving space-conditioning concepts. The presented assessment concludes that, particularly for specialized applications, machines based on open-cycle desiccant cooling processes are very close to playing an important role in the space-conditioning (including comfort control) marketplace.

  14. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  15. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  16. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  17. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  18. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  19. Jumping the gap: the formation conditions and mass function of `pebble-pile' planetesimals

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-03-01

    In a turbulent proto-planetary disc, dust grains undergo large-density fluctuations and under the right circumstances, grain overdensities can collapse under self-gravity (forming a `pebble-pile' planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate of formation and mass function of self-gravitating planetesimal-mass bodies formed by this mechanism. This depends sensitively on the grain size, disc surface density, and turbulent Mach numbers. However, when it occurs, the resulting planetesimal mass function is broad and quasi-universal, with a slope dN/dM ∝ M-(1-2), spanning size/mass range ˜10-104 km (˜10-9-5 M⊕). Collapse to planetesimal through super-Earth masses is possible. The key condition is that grain density fluctuations reach large amplitudes on large scales, where gravitational instability proceeds most easily (collapse of small grains is suppressed by turbulence). This leads to a new criterion for `pebble-pile' formation: τs ≳ 0.05 ln (Q1/2/Zd)/ln (1 + 10 α1/4) ˜ 0.3 ψ(Q, Z, α) where τs = ts Ω is the dimensionless particle stopping time. In a minimum-mass solar nebula, this requires grains larger than a = (50, 1, 0.1) cm at r=(1, 30, 100) au}. This may easily occur beyond the ice line, but at small radii would depend on the existence of large boulders. Because density fluctuations depend strongly on τs (inversely proportional to disc surface density), lower density discs are more unstable. Conditions for pebble-pile formation also become more favourable around lower mass, cooler stars.

  20. The effect of simulated air conditions on N95 filtering facepiece respirators performance.

    PubMed

    Ramirez, Joel A; O'Shaughnessy, Patrick T

    2016-07-01

    The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity. PMID:26861653

  1. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  2. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  3. Characterizing Air Masses in the Lower Troposphere (< 2 km) during the 2011 Student Airborne Program (SARP) Mission in Southern California

    NASA Astrophysics Data System (ADS)

    Lee, H.; Elder, C.; Kauffman, E. J.; Weathers, E.; Thomas, E.; Johnson, E.; Turrentine, H.; Saad, K.; Nighelli, K.; Burns, M.; Heath, N.; Shetter, R. E.; Schaller, E.; Webster, A.; Buzay, E.; Peterson, J.; Simpson, I. J.; Rowland, F. S.; Blake, D. R.

    2011-12-01

    During the NASA Student Airborne Program (SARP) mission, high frequency whole air sampling during a missed-approach to Los Angeles International airport (LAX) provided air mass signatures collected in close proximity to their urban and oceanic sources. Each whole air sample was analyzed for 80 halocarbons, hydrocarbons and organic nitrates. Unlike other airborne missions, high frequency whole air sampling of about 70 samples collected over a 20 minute period (15 second fill per sample) during a 150 km flight path at low altitude (< 2 km) provided a more detailed profile of the Los Angeles air shed than has been previously accomplished. Correlations between CH3I, CHBr3, and MeONO2 (marine tracers) versus C2Cl4 and HCFC-22 (anthropogenic tracers) were used to distinguish between purely marine air and air influenced by emissions from Los Angeles (Figure 1). Of the 80 C1-C10 volatile organic compounds that were measured, 60 were elevated in air from the Los Angeles air shed. These included C1-C10 alkanes, C6-C8 aromatics, C2-C3 alkenes, halons, HCFCs, HFCs, CH3CCl3, chlorinated solvents (e.g., C2Cl4, CHCl3, CH2Cl2), and organic nitrates. Marine species emitted in this region of the Pacific were found to include MeONO2, EtONO2, CH2Br2, CHBr3, CH3I and DMS. Note that the C3 organic nitrates were not enhanced in the marine influenced air, and instead they are attributed to urban photochemistry. Overall, high-frequency and low-altitude whole air sampling during the LAX missed-approach clearly distinguished urban and oceanic sources and allowed a detailed chemical signature for Los Angeles air to be determined.

  4. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

    NASA Astrophysics Data System (ADS)

    Feng, Xiao; Li, Qi; Zhu, Yajie; Hou, Junxiong; Jin, Lingyan; Wang, Jingjie

    2015-04-01

    In the paper a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented. The model was developed from 13 different air pollution monitoring stations in Beijing, Tianjin, and Hebei province (Jing-Jin-Ji area). The air mass trajectory was used to recognize distinct corridors for transport of "dirty" air and "clean" air to selected stations. With each corridor, a triangular station net was constructed based on air mass trajectories and the distances between neighboring sites. Wind speed and direction were also considered as parameters in calculating this trajectory based air pollution indicator value. Moreover, the original time series of PM2.5 concentration was decomposed by wavelet transformation into a few sub-series with lower variability. The prediction strategy applied to each of them and then summed up the individual prediction results. Daily meteorological forecast variables as well as the respective pollutant predictors were used as input to a multi-layer perceptron (MLP) type of back-propagation neural network. The experimental verification of the proposed model was conducted over a period of more than one year (between September 2013 and October 2014). It is found that the trajectory based geographic model and wavelet transformation can be effective tools to improve the PM2.5 forecasting accuracy. The root mean squared error (RMSE) of the hybrid model can be reduced, on the average, by up to 40 percent. Particularly, the high PM2.5 days are almost anticipated by using wavelet decomposition and the detection rate (DR) for a given alert threshold of hybrid model can reach 90% on average. This approach shows the potential to be applied in other countries' air quality forecasting systems.

  5. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    PubMed

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted. PMID:11288304

  6. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California

    PubMed Central

    Delamater, Paul L.; Finley, Andrew O.; Banerjee, Sudipto

    2012-01-01

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Ozone (O3), Particulate Matter < 10 μ m (PM10), Particulate Matter < 2.5 μ m (PM2.5), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO2, were significant and positively correlated with asthma hospitalizations. PM2.5 also had a positive, significant association with asthma hospitalizations. PM10, relative humidity, and maximum temperature produced mixed results, whereas O3 was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO2, and PM2.5. PMID:22475217

  7. Variation of atmospheric air pollution under conditions of rapid economic change—Estonia 1994-1999

    NASA Astrophysics Data System (ADS)

    Kimmel, V.; Tammet, H.; Truuts, T.

    Estonia is an example of a country with economy in transition whose atmospheric air pollution has been remarkably influenced by economic changes. During the period of 1994-1999 GDP increased by one-fourth, while agricultural production, electricity and heat production dropped by one-sixths during the studied period. These processes are reflected in the quantity of emissions and structure of air pollution. The study is based on the measurements of concentrations of pollutants at six Estonian Euroairnet monitoring stations—at three sites in the capital city and at three sites in remote areas. The pollutants concerned are the first-priority pollutants in the European Union legislation—nitrogen oxides, SO 2, O 3, particulate matter, and additionally CO. The study reveals that concentrations of gaseous pollutants in Estonia remain within the EU limit values except for ozone in remote areas. The main trend during the studied period was a significant, up to several times, decrease in concentrations of SO 2 and CO while the decrease of nitrogen oxides was less remarkable. The paper propose ratio of NO x/SO 2 as an index describing increasing transport loads and drop in use of sulphur-rich fuels—thus of structure of economy. The annual variation of pollutants is explained by seasonal variations of anthropogenic activity in conditions where local fuels are widely used for heating during winter. Air pollution in Estonian rural stations mostly originated from transboundary fluxes. The 1-3 day delay of the weekly minimum of pollutant concentrations and the wind roses allow to conclude that essential part of pollutants is imported from West Europe.

  8. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  9. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  10. [Obtaining of egg masses of the snail, Strombus pugilis (Mesogastropoda: Strombidae) under laboratory conditions].

    PubMed

    Góngora Gómez, Andrés Martin; Domínguez Orozco, Ana Laura; Muñoz Sevilla, Norma Patricia; Rodríguez Gil, Luis Alfonso

    2007-03-01

    The survival, reproduction and embryonic development of Strombus pugilis, were determined during a period of ten months under laboratory conditions. Seven progenitors were collected in Contoy Island, Quintana Roo, Mexico and later transferred to the laboratory, where they were placed in aquarium with 80 1 of sea water and fed with "pellets". A total of 30 egg masses were collected, one on September and the other on April. The estimated total length of one egg mass was 11.24 m; the mean number of embryos obtained per 2 cm was 264, obtaining an estimated total of 157 500 embryos in the egg mass. The means of the physical-chemical parameters during the study were: salinity 37.6 +/- 0.5% per hundred, pH 7.5 +/- 0.5 and temperature 28 +/- 0.2 degrees C. The maintenance and water recirculation system used to sustain the breading stock is excellent both for reproduction of the organism and for obtaining egg masses under controlled conditions. PMID:18457126

  11. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  12. Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry.

    PubMed

    Karaca, Gizem; Tasdemir, Yucel

    2013-01-01

    Removal of polycyclic aromatic hydrocarbons (PAHs) existed in automotive industry treatment sludge was examined by considering the effects of temperature, UV, titanium dioxide (TiO2) and diethyl amine (DEA) in different dosages (i.e., 5% and 20%) in this study. Application of TiO2 and DEA to the sludge samples in ambient environment was studied. Ten PAH (Σ10 PAH) compounds were targeted and their average value in the sludge was found to be 4480 ± 1450 ng/g dry matter (DM). Total PAH content of the sludge was reduced by 25% in the ambient air environment. Meteorological conditions, atmospheric deposition, evaporation and sunlight irradiation played an effective role in the variations in PAH levels during the tests carried out in ambient air environment. Moreover, it was observed that when the ring numbers of PAHs increased, their removal rates also increased. Total PAH level did not change with the addition of 5% DEA and only 10% decreased with 5% TiO2 addition. PAH removal ratios were 8% and 32% when DEA (20%) and TiO2 (20%) were added, respectively. It was concluded that DEA was a weak photo-sensitizer yet TiO2 was effective only at 20% dosage. PMID:23485234

  13. Turbulent Drag Reduction with Surfactant Additives — Basic Research and Application to an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Li, F. C.; Yu, B.; Wei, J. J.

    It is well known that a small amount of chemicals such as water-soluble polymers or surfactants dramatically suppresses turbulence when they are added to liquid flow at large Reynolds number. In the last two decades, the application of surfactants to heat transportation systems such as district heating and cooling systems has attracted much interest among researchers. It has been revealed that 70% of the pumping power used to drive hot water in primary pipelines or district heating systems was saved by adding only a few hundred ppm of surfactant into the circulating water. The technological achievement requires a new design strategy for pipeline networks and heat exchangers to handle the drag reducing liquid flow. In the case of a Newtonian fluid such as water or air, the knowledge for designing fluid systems has been accumulated and the accuracy of numerical prediction is sufficient. On the other hand, the design system for surfactant solutions is not mature because drag-reducing flow phenomena are much more complicated than for Newtonian flow, for example, the friction factor for a surfactant solution depends not only on Reynolds number but also pipe diameter. In order to provide a design strategy for heat transportation systems using surfactant additives, we are now carrying out both experimental and numerical studies for surfactant solutions. In this lecture, experimental and numerical studies on the turbulence structure in drag reducing flow will be introduced. The result of an application study relating to the air conditioning system will be also shown.

  14. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    SciTech Connect

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-09-22

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X{sub max}) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  15. Experimental Investigation of Pressure-volume-Temperature Mass Gauging Method Under Microgravity Condition by Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Seo, Mansu; Park, Hana; Yoo, DonGyu; Jung, Youngsuk; Jeong, Sangkwon

    Gauging the volume or mass of liquid propellant of a rocket vehicle in space is an important issue for its economic feasibility and optimized design of loading mass. Pressure-volume-temperature (PVT) gauging method is one of the most suitable measuring techniques in space due to its simplicity and reliability. This paper presents unique experimental results and analyses of PVT gauging method using liquid nitrogen under microgravity condition by parabolic flight. A vacuum-insulated and cylindrical-shaped liquid nitrogen storage tank with 9.2 L volume is manufactured by observing regulation of parabolic flight. PVT gauging experiments are conducted under low liquid fraction condition from 26% to 32%. Pressure, temperature, and the injected helium mass into the storage tank are measured to obtain the ullage volume by gas state equation. Liquid volume is finally derived by the measured ullage volume and the known total tank volume. Two sets of parabolic flights are conducted and each set is composed of approximately 10 parabolic flights. In the first set of flights, the short initial waiting time (3 ∼ 5 seconds) cannot achieve sufficient thermal equilibrium condition at the beginning. It causes inaccurate gauging results due to insufficient information of the initial helium partial pressure in the tank. The helium injection after 12 second waiting time at microgravity condition with high mass flow rate in the second set of flights achieves successful initial thermal equilibrium states and accurate measurement results of initial helium partial pressure. Liquid volume measurement errors in the second set are within 11%.

  16. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  17. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  18. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  19. An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels.

    PubMed

    Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán

    2006-07-01

    This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels. PMID:16575583

  20. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    SciTech Connect

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.