Science.gov

Sample records for air mass exchange

  1. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  2. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  3. Extratropical Stratosphere-Troposphere Mass Exchange

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.

  4. Mass exchange processes with input

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.

    2015-05-01

    We investigate a system of interacting clusters evolving through mass exchange and supplemented by input of small clusters. Three possibilities depending on the rate of exchange generically occur when input is homogeneous: continuous growth, gelation, and instantaneous gelation. We mostly study the growth regime using scaling methods. An exchange process with reaction rates equal to the product of reactant masses admits an exact solution which allows us to justify the validity of scaling approaches in this special case. We also investigate exchange processes with a localized input. We show that if the diffusion coefficients are mass-independent, the cluster mass distribution becomes stationary and develops an algebraic tail far away from the source.

  5. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    PubMed

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind.

  6. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  7. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  8. Analytical aspects of hydrogen exchange mass spectrometry

    PubMed Central

    Engen, John R.; Wales, Thomas E.

    2016-01-01

    The analytical aspects of measuring hydrogen exchange by mass spectrometry are reviewed. The nature of analytical selectivity in hydrogen exchange is described followed by review of the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in hydrogen exchange mass spectrometry depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that could be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics. PMID:26048552

  9. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  10. Passive bioventing driven by natural air exchange

    SciTech Connect

    Foor, D.C.; Zwick, T.C.; Hinchee, R.E.; Hoeppel, R.E.; Kyburg, C.; Bowling, L.

    1995-12-31

    Bioventing wells installed in the vadose zone of petroleum-contaminated sites at the Marine Corps Air Ground Combat Center (MCAGCC) in Twentynine Palms, California, naturally inhale and exhale air. This natural air exchange appears to be driven primarily by barometric pressure changes. The natural air exchange was utilized to engineer a passive bioventing system in which a valve allows only air injection and prevents soil gas extraction. The system is effective in aerating petroleum-contaminated, oxygen-limited subsurface soils. This aeration resulted in enhanced biological activity and site remediation. The bioventing wells (vent wells) were fitted with a passive valve mechanism that opens when the atmospheric pressure overcomes the internal vent well pressure. When the valve is open it permits atmospheric air to enter the vent well and infiltrate into the soil, thereby stimulating bioremediation. When the vent well pressure overcomes atmospheric pressure, the valve is closed and inhibits soil gas extraction. The vent wells are installed in a coarse sand where the depth to groundwater is approximately 220 ft (67 m). Generally, deeper vent wells produce greater flowrates. Passive airflow rates of up to 7 cfm (12 m{sup 3}/h) have been achieved at the bioventing wells.

  11. Air-to-air heat exchangers and the indoor environment

    SciTech Connect

    Vine, E.

    1987-02-01

    Air-to-air heat exchangers were installed in 366 energy-efficient homes as part of a demonstration program in the United States. The median incremental cost of AAHX was $1268 ($7.42/mS), and it was less expensive (per square meter) to install this equipment in larger houses than in smaller houses. While most occupants did not notice problems with their AAHX, some households did experience problems related to noise, unpleasant drafts, condensation around the AAHX, and core freezing. Occupants of energy-efficient homes were found to have less problems with their indoor environment (especially mildew/mold and condensation) than a group of control homes.

  12. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  13. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  14. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  15. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    DTIC Science & Technology

    2015-03-26

    Department of Systems Engineering and Management Graduate School of Engineering and Management Air Force Institute of Technology Air University Air...this thesis: the Federal Reserve Foreign Exchange Rate – H.10, the Global Insight forecasts, the Chicago Mercantile Exchange (CME) as taken through...foreign currency units per U.S. dollar for each day of the previous week (Board of Governors of the Federal Reserve System , 2015). Table 3 is a

  16. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  17. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it... under the administrative jurisdiction of the Air Force. FOR FURTHER INFORMATION CONTACT: Mr....

  18. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  19. Metal-air cell with ion exchange material

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  20. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  1. Development of low-cost air-to-air heat exchangers. Final report

    SciTech Connect

    Not Available

    1982-11-08

    In summary, comparing the TMG heat exchanger with the well-constructed and high-performance air-to-air heat exchangers assumed for analysis purposes in the LBL studies, the TMG heat exchanger is cost effective for use in low-infiltration houses heated with natural gas, oil and electricity in climates with 4000 or more heating degree (/sup 0/F) days. Experimental and field testing of the final Prototype B air-to-air heat exchanger gave a strong indication that this unit was ready for the market. A Vermont architect ordered 14 units from a pilot production run for a housing project in St. Johnsbury. These units were installed in the late winter of 1981-1982. The units have given excellent service to the point that the architect has considered the use of air-to-air heat exchangers in every subsequent job. Fabrication of the heat exchangers is being done by a small Vermont firm, Echo Fabrications, established primarily to produce air-to-air heat exchangers for the residential and agricultural market. The unit is being marketed under the tradename ECHOCHANGER and is being marketed, distributed and installed by Memphremagog Heat Exchangers, Inc. of Newport, Vermont.

  2. Thermodynamic analysis and optimization of air-cooled heat exchangers

    NASA Astrophysics Data System (ADS)

    Salimpour, Mohammad Reza; Bahrami, Zabihollah

    2011-01-01

    In the present study, a thermodynamic second-law analysis was performed to investigate the effects of different geometry and flow parameters on the air-cooled heat exchanger performance. For this purpose, the entropy generation due to heat transfer and pressure loss of internal and external flows of the air-cooled heat exchanger was calculated; and it was observed that the total entropy generation has a minimum at special tube-side Reynolds number. Also, it was seen that the increasing of the tube-side Reynolds number resulted in the rise of the irreversibility of the air-cooled heat exchanger. The results also showed when air-side Reynolds number decreased, the entropy generation rate of the external flow reduced. Finally, based on the computed results, a new correlation was developed to predict the optimum Reynolds number of the tube-side fluid flow.

  3. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  4. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2002-03-05

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  5. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  6. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2003-03-18

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  7. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  8. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  9. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  10. Microphysics of Air-Sea Exchanges

    DTIC Science & Technology

    2006-06-30

    Elevation Gauges (LEGs) and a 2-D Imaging Slope Gauge (ISG) so that wave propagation was not disturbed by intrusive measurement techniques. In the LEG system...Technology, 18, 994-1013. Ocampo-Torres, F. J. and M. A. Donelan, 1994: Laboratory measurements of mass transfer of carbon dioxide and water vapour for

  11. Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    NASA Technical Reports Server (NTRS)

    Haynes, Brian D.

    2015-01-01

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the

  12. Membrane device and process for mass exchange, separation, and filtration

    DOEpatents

    Liu, Wei; Canfield, Nathan L.

    2016-11-15

    A membrane device and processes for fabrication and for using are disclosed. The membrane device may include a number of porous metal membranes that provide a high membrane surface area per unit volume. The membrane device provides various operation modes that enhance throughput and selectivity for mass exchange, mass transfer, separation, and/or filtration applications between feed flow streams and permeate flow streams.

  13. Kinetic model of mass exchange with dynamic Arrhenius transition rates

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.; Muradova, Aliki

    2016-02-01

    We study a nonlinear kinetic model of mass exchange between interacting grains. The transition rates follow the Arrhenius equation with an activation energy that depends dynamically on the grain mass. We show that the activation parameter can be absorbed in the initial conditions for the grain masses, and that the total mass is conserved. We obtain numerical solutions of the coupled, nonlinear, ordinary differential equations of mass exchange for the two-grain system, and we compare them with approximate theoretical solutions in specific neighborhoods of the phase space. Using phase plane methods, we determine that the system exhibits regimes of diffusive and growth-decay (reverse diffusion) kinetics. The equilibrium states are determined by the mass equipartition and separation nullcline curves. If the transfer rates are perturbed by white noise, numerical simulations show that the system maintains the diffusive and growth-decay regimes; however, the noise can reverse the sign of equilibrium mass difference. Finally, we present theoretical analysis and numerical simulations of a system with many interacting grains. Diffusive and growth-decay regimes are established as well, but the approach to equilibrium is considerably slower. Potential applications of the mass exchange model involve coarse-graining during sintering and wealth exchange in econophysics.

  14. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  15. Annual sea ice. An air-sea gas exchange moderator

    SciTech Connect

    Gosink, T.A.; Kelley, J.J.

    1982-01-01

    Arctic annual sea ice, particularly when it is relatively warm (> -15/sup 0/C) permits significant gas exchange between the sea and air throughout the entire year. Sea ice, particularly annual sea ice, differs from freshwater ice with respect to its permeability to gases. The presence of brine allows for significant air-sea-ice exchange of CO/sub 2/ throughout the winter, which may significantly affect the global carbon dioxide balance. Other trace gases are also noted to be enriched in sea ice, but less is known about their importance to air-sea-interactions at this time. Both physical and biological factors cause and modify evolution of gases from the surface of sea ice. Quantitative and qualitative descriptions of the nature and physical behavior of sea ice with respect to brine and gases are discussed.

  16. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO2 supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O2 production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use. PMID:14063790

  17. Gas Exchange with Mass Cultures of Algae

    PubMed Central

    Hannan, P. J.; Patouillet, Constance

    1963-01-01

    The performance of a small photosynthetic gas exchanger is described in which simultaneous measurements of suspension density, O2 production, and CO2 absorption are readily accomplished. The volume of suspension was 6200 ml. With the Sorokin strain of Chlorella pyrenoidosa 7-11-05, this unit produced 4500 cc of O2 per hr at a light intensity of 34,000 ft-c from each of six Quartzline lamps. At any given light intensity, the O2 production was proportional to the rate of CO2 input up to a maximum. The impetus for this study was the consideration of the algal system as a means of oxygen generation in a submarine. Based on the performance of this unit, the power requirement per man for a system having the geometry described would be 52 kw, but reasons are given for the hope that this may be reduced to less than 5 kw. PMID:14063789

  18. National Air Space (NAS) Data Exchange Environment Through 2060

    NASA Technical Reports Server (NTRS)

    Roy, Aloke

    2015-01-01

    NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National Air Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking air-traffic modernization (ATM) concepts. Data exchanges over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.

  19. Air-water gas exchange of toxaphene in Lake Superior.

    PubMed

    Jantunen, Liisa M; Bidleman, Terry F

    2003-06-01

    Parallel air and water samples were collected in Lake Superior during August 1996 and May 1997, to determine the levels and air-water exchange direction of toxaphene. Concentration of toxaphene in water did not vary across Lake Superior or between seasons (averaging 918 +/- 218 pg/L) but atmospheric levels were lower in May (12 +/- 4.6 pg/m3) than in August (28 +/- 10 pg/m3). Two recalcitrant congeners, Parlar 26 and 50, also were determined. These congeners were enriched in the air samples, compared to a standard of technical toxaphene, but not in the water. Water-air fugacity ratios varied from 1.4 to 2.6 in August and 1.3 to 4.7 in May, implying volatilization of toxaphene from the lake. Estimated net fluxes ranged from 5.4 to 13 and 1.8 to 6.4 nm/m2d, respectively. The temperature dependence of toxaphene partial pressure (P) in air was log P/Pa = -3.291/T(a) + 1.67, where T(a) is air temperature. By using this relationship, the atmospheric levels of toxaphene, fugacity ratios, and net fluxes were estimated for the entire year. Fugacity ratios were highest in the winter and lowest in the summer; thus toxaphene was predicted to undergo net volatilization from the lake during all months. A net removal of approximately 220 kg/year by gas exchange was estimated.

  20. Mass exchange during simultaneous grinding and dissolution

    SciTech Connect

    Aksel'rud, G.A.; Semenishin, E.M.; Kopyt, S.Ya.; Trotskii, V.I.

    1988-03-20

    Extraction of ore components of interest has a number of disadvantages, one of which being low efficiency. Combining the grinding and dissolution steps in one apparatus makes the process more efficient. Adoption of this technology, however, requires theoretical and mathematical studies. This paper reports the kinetics of simultaneous grinding and dissolution of copper-containing minerals. Simultaneous grinding and dissolution accelerated several fold the mass transfer of components of interest in the interaction of malachite and azurite with sulfuric acid solutions. The complete dissolution time was determined by adding the experimental rates of dissolution and abrasion.

  1. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.

    PubMed

    Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun

    2015-05-05

    Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.

  2. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  3. Onset of freezing in residential air-to-air heat exchangers

    NASA Astrophysics Data System (ADS)

    Fisk, W. J.; Chant, R.; Archer, K.; Hekmat, D.; Offermann, F.; Pedersen, B.

    1984-11-01

    Mechanical ventilation of residences, with heat recovery in air-to-air heat exchangers, is an increasingly common practice. When this technique of ventilation is used in cold climates, however, freezing can occur in the air-to-air heat exchanger and substantially reduce its performance. A laboratory investigation was conducted to determine the indoor and outdoor environmental conditions that lead to freezing. In a cross flow, counterflow, and enthalpy-type cross flow heat exchanger, respectively, freezing was observed when the inlet temperature of the cold airstream was below -7 to -3 C, approximately -6 C, and -8 to 12 C, for a typical range of indoor humidities. These results are in fair agreement with the theoretical predictions presented and with data from two field studies conducted with similar heat exchangers. Data from a previous laboratory study of a counterflow heat exchanger and tabulated data supplied by ASHRAE, however, indicate that freezing is initiated at significantly lower cold airstream temperatures, particularly when the warm airstream is humid.

  4. Evolution of Southern Hemisphere spring air masses observed by HALOE

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  5. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    PubMed

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  6. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios

    PubMed Central

    Shen, Rui; Suuberg, Eric M.

    2016-01-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures. PMID:28090133

  7. Air exchange rates in new energy-efficient manufactured housing

    SciTech Connect

    Hadley, D.; Bailey, S.

    1990-10-01

    During the 1989--1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the whole-house system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem. 6 refs., 6 figs., 5 tabs.

  8. The SOLAS air-sea gas exchange experiment (SAGE) 2004

    NASA Astrophysics Data System (ADS)

    Harvey, Mike J.; Law, Cliff S.; Smith, Murray J.; Hall, Julie A.; Abraham, Edward R.; Stevens, Craig L.; Hadfield, Mark G.; Ho, David T.; Ward, Brian; Archer, Stephen D.; Cainey, Jill M.; Currie, Kim I.; Devries, Dawn; Ellwood, Michael J.; Hill, Peter; Jones, Graham B.; Katz, Dave; Kuparinen, Jorma; Macaskill, Burns; Main, William; Marriner, Andrew; McGregor, John; McNeil, Craig; Minnett, Peter J.; Nodder, Scott D.; Peloquin, Jill; Pickmere, Stuart; Pinkerton, Matthew H.; Safi, Karl A.; Thompson, Rona; Walkington, Matthew; Wright, Simon W.; Ziolkowski, Lori A.

    2011-03-01

    The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive subpolar zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment was conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX's), SAGE was designed as a Lagrangian study, quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO 2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF 6/ 3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at tenths of kilometer scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describe air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties and windspeed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence ( Fv/ Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX's, rates of net primary production and column-integrated chlorophyll a concentrations had

  9. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  10. Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab, Pakistan.

    PubMed

    Syed, Jabir Hussain; Malik, Riffat Naseem; Liu, Di; Xu, Yue; Wang, Yan; Li, Jun; Zhang, Gan; Jones, Kevin C

    2013-02-01

    This study provides the first systematic data on the distribution of organochlorine pesticides (OCPs) in the soils and atmosphere of the Punjab province, Pakistan. Atmospheric concentrations of OCPs were estimated by using the polyurethane foam passive air sampling (PUF-PAS) technique. DDTs (dichlorodiphenyltrichloroethane), HCHs (hexachlorocyclohexane) and chlordane were the dominant OCPs found in both soil and air samples. The average concentrations of DDTs, HCHs and chlordane were 350, 55 and 99 pg m(-3) in air and 40, 7.8 and 3.8 ng g(-1) in soils, respectively. Air-soil exchange of OCPs was estimated by calculating the fugacities in soil and air. Fugacity fraction (ff) values indicate that soils are acting as a secondary source to contaminate the atmosphere at certain sampling stations.

  11. Isentropic mass exchange between the Tropics and extratropics in the stratosphere

    NASA Technical Reports Server (NTRS)

    Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard

    1994-01-01

    The isentropic mass exchange between the Tropics and extratropics in the stratosphere is investigated with a semi-Lagrangian transport model for the periods from 1 June to 31 October 1992 and from 1 December 1992 to 30 April 1993 using winds from the U.K. Meteorological Office data assimilation system. Calculations with an idealized, initially zonally symmetric tracer show that in the middle and upper stratosphere the bulk of tropical air is transported into the midlatitudes of the winter hemisphere although there exist quasi-permeable barriers in the subtropics. The transport takes place in the form of planetary-scale 'tongues' of material that are drawn poleward in association with the episodic amplification of planetary-scale waves in high latitudes of the winter hemisphere. Once air of tropical origin is transported to the midlatitudes it is irreversibly mixed with the midlatitude air in the 'surf zone.' Air of tropical origin can, however, hardly penetrate into the interior of the winter polar vortex until the breakdown of the vortex. Transport of tropical air into the midlatitudes of the summer hemisphere is strongly inhibited. In the lower stratosphere, tropical air is transported into the northern and southern midlatitudes. During the period from 1 June to 31 October 1992, the amount of tropical air transported into the Northern Hemisphere is, however, much smaller than that transported into the Southern Hemisphere, and there exist strong gradients in the tracer field in the equatorial region, indicating that there is a quasi-permeable barrier to cross-equator mass exchange. During the period from 1 December 1992 to 30 April 1993, on the other hand, roughly the same amounts of tropical air are transported into the Southern Hemisphere, and there exist strong gradients in the tracer field in the equatorial region, indicating that there is a quasi-permeable barrier to cross-equator mass exchange. During the period from 1 December 1992 to 30 April 1993, on the

  12. Minimizing back exchange in the hydrogen exchange-mass spectrometry experiment.

    PubMed

    Walters, Benjamin T; Ricciuti, Alec; Mayne, Leland; Englander, S Walter

    2012-12-01

    The addition of mass spectrometry (MS) analysis to the hydrogen exchange (HX) proteolytic fragmentation experiment extends powerful HX methodology to the study of large biologically important proteins. A persistent problem is the degradation of HX information due to back exchange of deuterium label during the fragmentation-separation process needed to prepare samples for MS measurement. This paper reports a systematic analysis of the factors that influence back exchange (solution pH, ionic strength, desolvation temperature, LC column interaction, flow rates, system volume). The many peptides exhibit a range of back exchange due to intrinsic amino acid HX rate differences. Accordingly, large back exchange leads to large variability in D-recovery from one residue to another as well as one peptide to another that cannot be corrected for by reference to any single peptide-level measurement. The usual effort to limit back exchange by limiting LC time provides little gain. Shortening the LC elution gradient by 3-fold only reduced back exchange by ~2%, while sacrificing S/N and peptide count. An unexpected dependence of back exchange on ionic strength as well as pH suggests a strategy in which solution conditions are changed during sample preparation. Higher salt should be used in the first stage of sample preparation (proteolysis and trapping) and lower salt (<20 mM) and pH in the second stage before electrospray injection. Adjustment of these and other factors together with recent advances in peptide fragment detection yields hundreds of peptide fragments with D-label recovery of 90% ± 5%.

  13. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  14. Investigation of ammonia air-surface exchange processes in a ...

    EPA Pesticide Factsheets

    Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 air-surface exchange in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 air-surface exchange in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes

  15. Collection of ambient air phenols using an anion exchange membrane

    SciTech Connect

    Nishioka, M.; Burkholder, H.; Reynolds, S.; Burdick, N.; Pleil, J.

    1994-12-31

    The authors have previously demonstrated the feasibility of collecting vapor phase ambient air phenols by reversible chemical reaction with a solid sorbent. The authors report here enhanced detection limits for ambient phenols using an anion exchange membrane that allows high collection efficiency at 10 L/min sampling rate. The membrane consists of 5 {micro}m particles of the anion exchange resin enmeshed in a Teflon microfibril matrix. This membrane is similar to Empore membranes, with the addition of the anion exchange capacity. Sampling is accomplished using a 10.5 cm (diameter) membrane and a General Metal Works PS-1 sampler. A Teflon-coated glass fiber filter, spiked with deutered phenols, and placed ahead of the membrane, is used to deliver these surrogate recovery standards to the membrane during the sampling. Following sampling, membranes are shaken gently in an acidified mixture of methanol and dichloromethane. The extract is derivatized with BSTFA and analyzed using either GC/FID or EI GC/MS. Analytical methodology allows detection at the 0.02 ppbv level for 12 hrs of sampling ({approximately} 0.1 {micro}g/m{sup 3}).

  16. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  17. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  18. A stability dependent theory for air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Erickson, David J.

    1993-05-01

    The influence of thermal stability at the air-sea interface on computed values of the transfer velocities of trace gases is examined. The novel "whitecap" model for air-sea gas exchange of Monahan and Spillane (1984), extended here to include thermal stability effects, is linked with an atmospheric general circulation model to compute global transfer velocity patterns of a climate reactive gas, CO2. The important terms in the model equations such as the whitecap coverage, friction velocity, neutral and local drag coefficients and the stability parameter ψm(Z/L) are discussed and analyzed. The atmospheric surface level air temperature, relative humidity, wind speed and sea surface temperature, obtained from the National Center for Atmospheric Research Community Climate Model 1 (CCM1) are used to drive algorithms describing the air-sea transfer velocity of trace gases. The transfer velocity for CO2 (kCO2) is then computed for each 2.8° × 2.8° latitudinal-longitudinal area every 24 hours for 5 years of the seasonal-hydro runs of the CCM1. The new model results are compared to previously proposed formulations using the identical CCM1 forcing terms. Air-sea thermal stability effects on the transfer velocity for CO2 are most important at mid-high wind speeds. Where cold air from continental interiors is transported over relatively warm oceanic waters, the transfer velocities are enhanced over neutral stability values. The depression of computed kCO2 values when warm air resides over cold water is especially important, due to asymmetry in the stability dependence of the drag coefficient. The stability influence is 20% to 50% of kCO2 for modest air-sea temperature differences and up to 100% for extreme cases of stability or instability. The stability dependent "whitecap" model, using the transfer velocity coefficients for whitecap and nonwhitecap areas suggested by Monahan and Spillane (1984), produces CO2 transfer velocities that range from 13 to 50 cm h-1 for a

  19. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  20. Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Naoko; Yao, Masaru; Siroma, Zyun; Senoh, Hiroshi; Ioroi, Tsutomu; Yasuda, Kazuaki

    Reversible air electrodes integrated with a polymer electrolyte membrane have been proposed for use in rechargeable metal-air batteries or unitized regenerative fuel cells to reduce the impact of atmospheric carbon dioxide. Reversible air electrodes were prepared with an anion-exchange membrane (AEM) as a polymer electrolyte membrane and platinum-based catalysts. The AEM at the interface between the alkaline electrolyte and the air electrode layer plays major roles in AEM-type air electrodes as follows: it blocks (a) the permeation of cations in the alkaline electrolyte into the air electrode layer to prevent carbonate precipitation, (b) penetration of the alkaline solution itself, and (c) neutralization of the alkaline electrolyte by carbon dioxide, all of which prevent performance degradation of oxygen reactions. Catalysts for decreasing the overvoltage of oxygen reactions were also investigated with the AEM-type air electrode, and the overall efficiency was improved due to a remarkable decrease in the potential for the oxygen evolution reaction with Pt-Ir catalysts.

  1. Air exchange rates from atmospheric CO2 daily cycle.

    PubMed

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-04-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained.

  2. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  3. Evidence of mass exchange between inside and outside of sonoluminescing bubble in aqueous solution of terbium chloride

    NASA Astrophysics Data System (ADS)

    Liang, Jinfu; Chen, Weizhong; Wang, Xun; Yang, Jing; Chen, Zhan

    2016-12-01

    Spectra of single-bubble sonoluminescence (SBSL) were obtained for Tb3+ ions emission lines from bubbles in an aqueous solution of terbium chloride (TbCl3). The spectra provide experimental evidence to prove that an air bubble driven by strong ultrasound will not eventually become a rectified pure argon bubble, which is not as predicted by the argon rectification hypothesis. The time-resolved spectra of SBSL show a mass exchange of material such as Tb3+ ions between the inside and outside of the bubble. With increasing sound pressure, the rate of mass exchange and the SBSL intensity increases.

  4. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  5. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  6. Fu Ori outbursts and the planet-disc mass exchange

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei; Lodato, Giuseppe

    2012-10-01

    It has been recently proposed that giant protoplanets migrating inwards through the disc more rapidly than they contract could be tidally disrupted when they fill their Roche lobes ˜0.1 au away from their parent protostars. Here we consider the process of mass and angular momentum exchange between the tidally disrupted planet and the surrounding disc in detail. We find that the planet's adiabatic mass-radius relation and its ability to open a deep gap in the disc determine whether the disruption proceeds as a sudden runaway or a balanced quasi-static process. In the latter case, the planet feeds the inner disc through its Lagrangian L1 point like a secondary star in a stellar binary system. As the planet loses mass, it gains specific angular momentum and normally migrates in the outward direction until the gap closes. Numerical experiments show that planet disruption outbursts are preceded by long 'quiescent' periods during which the disc inward of the planet is empty. The hole in the disc is created when the planet opens a deep gap, letting the inner disc to drain on to the star while keeping the outer one stalled behind the planet. We find that the mass-losing planet embedded in a realistic protoplanetary disc spawns an extremely rich set of variability patterns. In a subset of parameter space, there is a limit cycle behaviour caused by non-linear interaction between the planet mass-loss and the disc hydrogen ionization instability. We suggest that tidal disruptions of young massive planets near their stars may be responsible for the observed variability of young accreting protostars such as FU Ori, EXor and T Tauri stars in general.

  7. Testing of heat exchangers in membrane oxygenators using air pressure.

    PubMed

    Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg

    2006-03-01

    All heat exchangers (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with air. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the air-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.

  8. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  9. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O2 supply depends on the ability to avoid O2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O2 supply and utilization. Fish were instrumented with opercular catheters to measure the O2 tension (PO2) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O2 loss, as reflected by higher PO2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O2 binding affinity when sampled in normoxia (P50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity

  10. Multiphase, multicomponent numerical model of bioventing with nonequilibrium mass exchange

    SciTech Connect

    Lang, J.R.; Rathfelder, K.M.; Abriola, L.M.

    1995-12-31

    A numerical model is presented that has been specifically designed to simulate the combined processes of soil vapor extraction and enhanced bioremediation known as bioventing. In this model, equations describing multiphase flow, multicomponent advective diffusive transport, and biodegradation are coupled. An entrapped organic residual, mobile gas and aqueous phases, and a reactive biophase are modeled. Components include n organic contaminants, oxygen, nitrogen, and water. Rate-limited mass exchange between the phases is simulated using linear driving force expressions. These expressions model volatilization and dissolution of the entrapped organic residual, rate-limited transport between the gas and aqueous phases, and rate-limited transport to the biophase. Monod-type kinetic expressions are employed to describe biophase utilization of substrates, the electron acceptor, and a limiting nutrient, as well as the growth of the microbial population. The coupled nonlinear governing equations are solved using a set iterative finite element method. Numerical simulations are presented for one-dimensional bench-scale column studies. These simulations illustrate the potential importance of biological degradation in the remediation of systems that are subject to mass transfer limitations.

  11. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    EPA Science Inventory

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  12. The Area Between Exchange Curves as a Measure of Conformational Differences in Hydrogen-Deuterium Exchange Mass Spectrometry Studies

    NASA Astrophysics Data System (ADS)

    Mazur, Sharlyn J.; Weber, Daniel P.

    2017-02-01

    Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides information about protein conformational mobility under native conditions. The area between exchange curves, A bec , a functional data analysis concept, was adapted to the interpretation of HDX-MS data and provides a useful measure of exchange curve dissimilarity for tests of significance. Importantly, for most globular proteins under native conditions, A bec values provide an estimate of the log ratio of exchange-competent fractions in the two states, and thus are related to differences in the free energy of microdomain unfolding.

  13. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  14. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  15. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    months likely from primary production and spatially there is less suppression of air-sea gas exchange with increasing distance from the shoreline, which is likely due to riverine inputs. REFERENCES Bock, E. J., Hara, T., Frew, N. M., and McGillis, W. R., 1999. Relationship between air-sea gas transfer and short wind waves. Journal of Geophysical Research-Oceans 104, 25821-25831. Brockmann, U. H., Huhnerfuss, H., Kattner, G., Broecker, H. C., and Hentzschel, G., 1982. Artificial surface-films in the sea area near sylt. Limnology and Oceanography 27, 1050-1058. Goldman, J. C., Dennett, M. R., and Frew, N. M., 1988. Surfactant effects on air sea gas-exchange under turbulent conditions. Deep-Sea Research Part a-Oceanographic Research Papers 35, 1953-1970. McKenna, S. P. and McGillis, W. R., 2004. The role of free-surface turbulence and surfactants in air-water gas transfer. International Journal of Heat and Mass Transfer 47, 539-553. Salter, M. E., R. C. Upstill-Goddard, P. D. Nightingale, S. D. Archer, B. Blomquist, D. T. Ho, B. Huebert, P. Schlosser, and M. Yang (2011), Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II, J. Geophys. Res., 116, C11016, doi:10.1029/2011JC00702 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 554-577.

  16. Cold energy release characteristics of an ice/air direct contact heat exchanger

    SciTech Connect

    Ohira, Akiyoshi; Yanadori, Michio; Iwabuchi, Kunihiko; Kimura, Toshikatsu; Tsubota, Yuji

    1998-12-31

    This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger in a refined cold energy conveyance system. Characteristics of the outlet temperature, the humidity, and time history of released heat are examined when the initial height of the ice-cube-packed bed in the heat exchanger is changed. The following are the results obtained in these experiments: (1) Inlet air of 30 C is lowered to about 0 C by passing the air through the heat exchanger, and absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice-cube-packed bed for maximizing the amount of cold energy released. (3) This heat exchange method can supply about twice the amount of cold energy released by an ordinary fin-tube-type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin-tube-type heat exchanger.

  17. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  18. Spatiotemporally‐Resolved Air Exchange Rate as a Modifier of Acute Air Pollution‐Related Morbidity in AtlantaMorbidity in Atlanta

    EPA Science Inventory

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site c...

  19. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate

    PubMed Central

    Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind

    2012-01-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates. PMID:23001651

  20. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate.

    PubMed

    Frankel, Mika; Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind; Madsen, Anne Mette

    2012-12-01

    Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and air exchange rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and air exchange rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m(3)) and were lowest in winter (median, 26 CFU/m(3)). Indoor bacteria peaked in spring (median, 2,165 CFU/m(3)) and were lowest in summer (median, 240 CFU/m(3)). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and air exchange rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and air exchange rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and air exchange rates.

  1. Hydrogen exchange mass spectrometry of proteins at Langmuir monolayers

    PubMed Central

    Pirrone, Gregory F.; Vernon, Briana C.; Kent, Michael S.; Engen, John R.

    2015-01-01

    Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef) which adopts a different conformation depending on if it can insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than isolated use of either method. PMID:26134943

  2. Gas circulation and mass exchange between animal and plant units

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Tong, Ling; Hu, Enzhu

    To investigate the gas circulation and mass exchange relations among animal, plant and other biological units in the bioregenarative life support system, a closed cultivating system consisting of animal breeding chamber and plant growing chamber was established. This facility is 1.4 m high with the bottom area measuring 1.4 m X 0.8 m. In the animal chamber, silkworms in the multistage instars from the first instar to the third day in the fifth instar were bred; in the plant chamber, lettuce with sharp leaves were grown in a staggered manner. After transferring the silkworms in different instars hatched in the artificial climate box proportionally, utilizing mulberry leaves supplied from the outside of the closed cultivating system to feed the silkworms from the first instar to the third instar; fed the silkworms after the third instar to the third day in the fifth instar with the lettuce leaves grown in the closed facility, meanwhile, took out silkworms' excretion whose amount was in proportion to that of the mulberry leaves input into the facility. Furthermore, the silkworms on the third day in the fifth instar were took out to provide animal protein with high quality for astronauts at certain intervals and the next batch of the silkworms in the first instar were put into the animal chamber. In this cultivating process, the O2 cycle period and CO2 concentration change were investigated, moreover, the transfer and transforming ways of carbon and other elements were determined.

  3. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  4. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  5. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate.

    PubMed

    Butchart, N; Scaife, A A

    2001-04-12

    Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively.

  6. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  7. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  8. Authentic Assessment in the Geometry Classroom: Calculating the Classroom Air-Exchange Rate.

    ERIC Educational Resources Information Center

    Erich, David J.

    2002-01-01

    Introduces a room air-exchange activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)

  9. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  10. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  11. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  12. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange.

    PubMed

    Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard

    2016-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.

  13. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  14. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  15. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  16. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004 2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-10-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  17. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004-2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-06-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration (PM1 and PM10) by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  18. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    EPA Science Inventory

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  19. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.

  20. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  1. Tunneled central venous catheter exchange: techniques to improve prevention of air embolism.

    PubMed

    Rossi, Umberto G; Torcia, Pierluca; Rigamonti, Paolo; Colombo, Francesca; Giordano, Antonino; Gallieni, Maurizio; Cariati, Maurizio

    2016-01-01

    Malfunctioning tunneled hemodialysis central venous catheters (CVCs), because of thrombotic or infectious complications, are frequently exchanged. During the CVC exchanging procedure, there are several possible technical complications, as in first insertion, including air embolism. Prevention remains the key to the management of air embolism. Herein, we emphasize the technical tricks capable of reducing the risk of air embolism in long-term CVC exchange. In particular, adoption of a 5 to 10 degrees Trendelenburg position, direct puncture of the previous CVC venous lumen for guide-wire insertion, as opposed to guide-wire introduction after cutting the CVC, a light manual compression of the internal jugular vein venotomy site after catheter removal. The Valsalva maneuvre in collaborating patients, valved introducers, and correction of hypovolemia are also useful precautions. Principles of air embolism diagnosis and treatment are also outlined in the article.

  2. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    SciTech Connect

    Greiner, Miles; Childress, Amy; Hiibel, Sage; Kim, Kwang; Park, Chanwoo; Wirtz, Richard

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  3. Age of air and air exchange efficiency in high-rise urban areas and its link to pollutant dilution

    NASA Astrophysics Data System (ADS)

    Hang, Jian; Li, Yuguo

    2011-10-01

    By means of computational fluid dynamic (CFD) simulations, this paper investigated how rural winds transport relatively clean air into high-rise urban areas to dilute airborne pollutants. Two ventilation concepts for indoor environments were applied: the age of air to quantify the time taken by rural young air to reach a given place after it enters an urban area and the air exchange efficiency to evaluate the efficiency of rural winds flushing the entire urban canopy layer. Several square building arrays with street aspect ratios (building height/street width, H/ W) ranging from 1.5 to 5.3 and building area densities of 0.25 (medium) or 0.4 (compact) were considered as the approaching wind is parallel to the main street whose length varies from street scales to neighborhood scales (330-510 m to 1.03-1.65 km in full-scale). Results show that considerable young rural air enters windward entries but a major fraction of air is vertically driven out as flowing deeper into such high-rise building arrays. So air exchange efficiencies are less than 50% in street-scale arrays, and smaller in longer (neighborhood-scale) or narrower arrays. For the neighborhood-scale medium arrays, considering the power-law velocity profile in the upstream free flow, a taller array gains a larger inflow rate across its windward entry and experiences younger air and greater air exchange efficiency than a lower one. If all buildings are theoretically open-based in a neighborhood-scale compact array, air becomes much younger everywhere and the air exchange efficiency doubles. In arrays of buildings with different heights, the secondary streets in front of taller buildings get younger air due to the downward flows within them. Although further investigations are still required before providing a practical framework, this paper is one of the first attempts to find ways in improving the ventilation performance in high-rise cities like Hong Kong.

  4. Water-air and soil-air exchange rate of total gaseous mercury measured at background sites

    NASA Astrophysics Data System (ADS)

    Poissant, Laurier; Casimir, Alain

    In order to evaluate and understand the processes of water-air and soil-air exchanges involved at background sites, an intensive field measurement campaign has been achieved during the summer of 1995 using high-time resolution techniques (10 min) at two sites (land and water) in southern Québec (Canada). Mercury flux was measured using a dynamic flux chamber technique coupled with an automatic mercury vapour-phase analyser (namely, Tekran®). The flux chamber shows that the rural grassy site acted primarily as a source of atmospheric mercury, its flux mimicked the solar radiation, with a maximum daytime value of ˜ 8.3 ng m -2 h -1 of TGM. The water surface location (St. Lawrence River site located about 3 km from the land site) shows deposition and evasion fluxes almost in the same order of magnitude (-0.5 vs 1.0 ng m -2 h -1).The latter is influenced to some extent by solar radiation but primarily by the formation of a layer of stable air over the water surface in which some redox reactions might promote evasion processes over the water surface. This process does not appear over the soil surface. As a whole, soil-air exchange rate is about 6-8 fold greater than the water-air exchange.

  5. Flipping the thin film model: Mass transfer by hyporheic exchange in gaining and losing streams

    NASA Astrophysics Data System (ADS)

    McCluskey, Alexander H.; Grant, Stanley B.; Stewardson, Michael J.

    2016-10-01

    The exchange of mass between a stream and its hyporheic zone, or "hyporheic exchange," is central to many important ecosystem services. In this paper we show that mass transfer across the streambed by linear mechanisms of hyporheic exchange in a gaining or losing stream can be represented by a thin film model in which (a) the mass transfer coefficient is replaced with the average Darcy flux of water downwelling into the sediment and (b) the driving force for mass transfer is "flipped" from normal to the surface (concentration difference across a boundary layer) to parallel to the surface (concentration difference across downwelling and upwelling zones). Our analysis is consistent with previously published analytical, computational, and experimental studies of hyporheic exchange in the presence of stream-groundwater interactions, and links stream network, advection-dispersion, and stochastic descriptions of solute fate and transport in rivers.

  6. [Transfer of organisms during exchange of heat and moisture in air conditioning installations (author's transl)].

    PubMed

    Beckert, J; Sinner, G

    1975-07-01

    With the exhaust air from ventilation and air conditioning installations escaping into the open, the heat content is also lost which fresh air from outside obtains at considerable expense of energy and technical equipment. The heat content, on the other hand, consists of about equal proportions of sensible heat and latent heat which is associated with the moisture content of the air. In order to regain the heat content of the escaping air so as to be able to use it again - and this is becoming increasingly important with rising energy costs - heat exchangers are necessary which remove the heat content from the exhaust air and transfer it to the fresh air from outside. With the high proportion of latent heat, this energy exchange is only effective if the latent heat can also be regained. For this purpose it is essential to have exchange surfaces which store and transfer both heat and moisture. To achieve this they must come into contact with the exhaust air stream and the fresh air stream alternately. Technically, this is done in a simple way by resolving rotor-like storage material. But a rigid separation of the air streams is no longer possible. Even if it is known that there are very highly developed sealing elements between the fixed and moving parts, the question whether particles from the exhaust air can get into the newly introduced outside air through the rotating storage material still gains in importance in certain types of usuage. For example, this is of importance for hospitals, especially in the operation areas in which air conditioning is desirable for 24 hours daily on hygienic grounds, but also in schools and offices where the present normal practice, for economic reasons, of recirculating air is to be avoided to stop the transference of infections pathogens and odours. In various places, experiments have been carried out earlier with heat exchangers consisting of asbestos board and with rotating storage material coated with lithium chloride and a

  7. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  8. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  9. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  10. Where do the air masses between double tropopauses come from?

    NASA Astrophysics Data System (ADS)

    Parracho, A. C.; Marques, C. A. F.; Castanheira, J. M.

    2014-01-01

    An analysis of the origin of air masses that end up between double tropopauses (DT) in the subtropics and midlatitudes is presented. The double tropopauses were diagnosed in the ERA-Interim reanalysis (1979-2010), and the origin of air masses was analysed using the Lagrangian model FLEXPART. Different processes for the formation of double tropopauses (DT) have been suggested in the literature. Some studies have suggested that double tropopauses may occur as a response to the vertical profile of adiabatic heating, due to the residual meridional circulation, while others have put forward contradicting explanations. Whereas some studies have suggested that double tropopauses result from poleward excursions of the tropical tropopause over the extratropical one, others have argued that DTs develop in baroclinic unstable processes involving transport of air from high latitudes. In some regions, the DT structure has a semipermanent character which cannot be explained by excursions of the tropical tropopause alone. However, the results presented in this paper confirm that processes involving excursions of the tropical tropopause over the extratropical tropopause, which are therefore accompanied by intrusions of air from the tropical troposphere into the lower extratropical stratosphere, make a significant contribution for the occurrence of DTs in the subtropics and midlatitudes. Specifically, it is shown that the air between double tropopauses comes from equatorward regions, and has a higher percentage of tropospheric particles and a lower mean potential vorticity.

  11. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  12. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  13. Performance Assessment of Sodium to Air Finned Heat Exchanger for FBR

    SciTech Connect

    Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.; Vinod, V.; Suresh Kumar, V.A.

    2006-07-01

    In pool type Fast Breeder Reactors (FBR) a passive Safety Grade Decay Heat Removal (SGDHR) system removes decay heat produced in the core when normal heat removal path through steam water system is not available. This is essential to maintain the core temperatures within limits. A Decay Heat Exchanger (DHX) picks the heat from the pool and transfers the heat to atmosphere through sodium to Air Heat Exchanger (AHX) situated at high elevation. Due to the temperature differences existent in the system density differences are generated causing a buoyant convective heat transfer. The system is completely passive as primary sodium, secondary sodium and air flows under natural convection. DHX is a sodium to sodium counter flow heat exchanger with primary sodium on shell side and secondary sodium on tube side. AHX is a cross flow heat exchanger with sodium on tube side and air flows in cross flow across the finned tubes. Capacity of a single loop of SGDHR is 8 MW. Four such loops are available for the decay heat removal. It has been seen that the decay heat removal to a large extent depends on the AHX performance. AHX tested have shown reduced heat removal capacity much as 30 to 40%, essentially due to the bypassing of the finned tubes by the air. It was felt that a geometrically similar AHX be tested in sodium. Towards this a 2 MW Sodium to air heat exchanger (AHX) was tested in the Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Center for Atomic Research (IGCAR), Kalpakkam. The casing arrangement of the AHX was designed to minimise bypassing of air. (authors)

  14. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  15. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  16. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    PubMed

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed.

  17. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  18. Use of the mass exchange theory for describing soil erosion by water and wind

    NASA Astrophysics Data System (ADS)

    Gendugov, V. M.; Glazunov, G. P.; Larionov, G. A.; Nazarov, N. F.

    2012-02-01

    It was shown that the soil loss equation for different types of erosion should and can be theoretically derived in a general form. An analogy was drawn between the detachment of soil particles by water or air flows, on the one hand, and the heat and mass exchange in the boundary layer on a plate flowed around by a flow, on the other hand, which allowed finding the thermodynamic parameters of the circumfluent flow analogous to the mechanical parameters of a flow eroding the soil. On this basis, the Clausius-Clapeyron equation for equilibrium sublimation was transformed into an equation describing the removal of soil by both water and wind. The validity of the obtained equation for the description of the soil loss rate as a function of the eroding flow parameters was confirmed using the data on the physical simulation of wind erosion in wind tunnels and water erosion in hydraulic flumes. The confirmed adequacy of the derived equation to the phenomena of soil erosion by water and wind provides the theoretical substantiation of the equations previously derived for soil loss by washing [6] and blowing [3] and forms the basis for the further development of the theory of soil erosion.

  19. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  20. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  1. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  2. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure.

    PubMed

    Park, J H; Spengler, J D; Yoon, D W; Dumyahn, T; Lee, K; Ozkaynak, H

    1998-01-01

    The air exchange rates or air changes per hour (ACH) were measured under 4 conditions in 3 stationary automobiles. The ACH ranged between 1.0 and 3.0 h-1 with windows closed and no mechanical ventilation, between 1.8 and 3.7 h-1 for windows closed with fan set on recirculation, between 13.3 and 26.1 h-1 for window open with no mechanical ventilation, and between 36.2 and 47.5 h-1 for window closed with the fan set on fresh air. ACHs for windows closed with no ventilation were higher for the older automobile than for the newer automobiles. With the windows closed and fan turned off, ACH was not influenced by wind speed (p > 0.05). When the window was open, ACH appeared to be greatly affected by wind speed (R2 = 0.86). These measurements are relevant to understanding exposures inside automobiles to sources such as dry-cleaned clothes, cigarettes and airbags. Therefore, to understand the in-vehicle exposure to these internal sources, perchloroethylene (PCE) emitted from dry-cleaned clothes and environmental tobacco smoke (ETS) inside a vehicle were modeled for simulated driving cycles. Airbag deployment was also modeled for estimating exposure level to alkaline particulate and carbon monoxide (CO). Average exposure to PCE inside a vehicle for 30 minutes period was high (approximately 780 micrograms/m3); however, this is only 6% of the two-week exposure that is influenced by the storage of dry cleaned clothing at home. On the other hand, the exposure levels of respirable suspended particulate (RSP) and formaldehyde due to ETS could reach 2.1 mg/m3 and 0.11 ppm, respectively, when a person smokes inside a driving car even with the window open. In modeling the in-vehicle concentrations following airbag deployment, the average CO level over 20 minutes would not appear to present problem (less than 28 ppm). The peak concentration of respirable particulate would have exceeded 140 mg/m3. Since most of the particle mass is composed of alkaline material, these high levels

  3. Use of stable lead isotopes and trace metals to characterize air mass sources into the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    VéRon, Alain J.; Church, Thomas M.

    1997-12-01

    Stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) and trace metals (Mn, Al, Fe, Ni, Cu, Cd, Zn, Pb) have been analyzed in aerosol collected during the Atlantic Stratocumulus Transition Experiment-Marine Aerosol and Gas Exchange (ASTEX-MAGE) cruise that transited between Miami and the Azores from May to July 1992. Our goal was to define the continental signatures of the air masses encountered between the Azores and the subtropical regions. The combination of air mass trajectories, trace metal concentrations and stable lead isotopes allowed us to characterize the anthropogenic character of encountered air masses. The average 206Pb/207Pb ratio was 1.148±0.021 and corresponded to a mixing between well defined European (such as Great Britain with 1.115<206Pb/207Pb<1.125 and France with 206Pb/207Pb=1.141±0.000) and North American sources (with 206Pb/207Pb=1.184±0.000). On the basis of air mass trajectories and trace metal concentrations, the background isotopic signature associated with the trade winds (206Pb/207Pb=1.161±0.004) is consistent with previous reports by Church et al. [1990] such as 206Pb/207Pb=1.154±0.004 in 1988, (Véron et al., 1993), 206Pb/207Pb=1.155±0.004 in 1989, and Hamelin et al. [1996] (206Pb/207Pb=1.158±0.006) in 1991. Short-term variations of continental air mass sources was particularly investigated by considering the anthropogenic character of aerosols collected during two Lagrangian experiments conducted as part of the ASTEX-MAGE cruise. We demonstrated the utility of stable lead isotopes to assign a "continental source signature" (or mixture thereof) to air masses beyond that normally possible by conventional air mass trajectory analysis in remote oceanic regions.

  4. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  5. Heat exchanger design for hot air ericsson-brayton piston engine

    NASA Astrophysics Data System (ADS)

    Ďurčanský, P.; Lenhard, R.; Jandačka, J.

    2014-03-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  6. HEAT exchanger design for hot air Ericsson-Brayton piston engine

    NASA Astrophysics Data System (ADS)

    Ďurčanský, Peter; Lenhard, Richard; Jandačka, Jozef

    2013-10-01

    One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.

  7. Coupling of phytoplankton uptake and air-water exchange of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Baker, J.E.; Ko, F.C.; Jeremiason, J.D.

    1999-10-15

    A dynamic model that couples air-water exchange and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that air-water exchange dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production results in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains air and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive air-water exchange. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.

  8. GAS EXCHANGE WITH MASS CULTURES OF ALGAE. II. RELIABILITY OF A PHOTOSYNTHETIC GAS EXCHANGER.

    PubMed

    HANNAN, P J; PATOUILLET, C

    1963-09-01

    Comparisons of oxygen production and carbon dioxide absorption by an algal gas exchanger were made over a 3-month period. The data do not represent a continuous test, but they do represent results obtained when identical light intensities, CO(2) supply rates, and dilution rates with fresh culture medium had been used for more than 1 day. Steady-state conditions were thus assured, and the agreement in the data was excellent. Under the same experimental conditions, the unit was operated continuously for a 5-day period, and the daily variability in this test was less than in the results obtained from month to month. The variation between the average O(2) production during the 5-day test and the average of the tests over a several-month period was less than 3%. It is concluded, therefore, that the reliability of the algae in producing oxygen is sufficient to warrant their use in either submarine or space ship use.

  9. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  10. Soil-air exchange model of persistent pesticides in the United States cotton belt.

    PubMed

    Harner, T; Bidleman, T F; Jantunen, L M; Mackay, D

    2001-07-01

    Measurements of organochlorine pesticides (lindane, cis-chlordane [CC], trans-chlordane [TC], trans-nonachlor [TN]), dieldrin, p,p'-dichlorodiphenyldichloroethylene [DDE], and toxaphene) in Alabama, USA, air and soil were used to assess the soil-air equilibrium status and to identify compounds with significant contributions to observed air burdens. Of the compounds tested, p,p'-DDE and toxaphene showed a significant potential for outgasing, followed by dieldrin and trans-nonachlor, which showed moderate outgasing potentials. Lindane, cis-chlordane, and trans-chlordane were near soil-air equilibrium. A fugacity-based, multilayered soil-air exchange model was used to predict temporal trends of chemical in air and soil resulting from reemission of soil residues to a presumed clean atmosphere (maximum emission scenario). Results showed that p,p'-DDE and toxaphene accounted for up to 50% of the observed air burden and that approximately 200 to 600 kg of p,p'-DDE and 3,000 to 11,000 kg to toxaphene are released to the atmosphere each year by soils in Alabama (area = 1.23 x 10(11) m2). High annual net fluxes were also predicted for dieldrin and trans-nonachlor (300-1,100 kg and 150-500 kg, respectively), but these only account for up to approximately 20% of their observed air burdens.

  11. Air-water gas exchange of organochlorine compounds in Lake Baikal, Russia

    SciTech Connect

    McConnell, L.L.; Kucklick, J.R.; Bidleman, T.F.; Ivanov, G.P.; Chernyak, S.M.

    1996-10-01

    Air and surface water samples were collected at Lake Baikal, Russia, during June 1991 to determine concentrations of organochlorine pesticides and polychlorinated biphenyl (PCB) congeners. These data were combined with Henry`s law constants to estimate the gas flux rate across the air-water interface of each compound class. Air samples were collected at Lake Baikal and from nearby Irkutsk. Water samples were collected from three mid-lake stations and at the mouth of two major tributaries. Average air concentrations of chlorinated bornanes (14 pg m{sup -3}), chlordanes (4.9 pg m{sup -3}), and hexachlorobenzene (HCB) (194 pg m{sup -3}) were similar to global backgound of Arctic levels. However, air concentrations of hexachlorocyclohexanes (HCHs), DDTs, and PCBs were closer to those observed in the Great Lakes region. Significantly higher levels of these three compound classes in air over Irkutsk suggests that regional atmospheric transport and deposition may be an important source of these persistent compounds to Lake Baikal. Air-water gas exchange calculations resulted in net depositional flux values for {alpha}-HCH, {gamma}-HCH, DDTs, and chlorinated bornanes at 112, 23, 3.6, and 2.4 ng m{sup -2} d{sup -1}, respectively. The total net flux of 22 PCB congeners, chlordanes, and HCB was from water to air (volatilization) at 47, 1.8, and 32 ng m{sup -2} d{sup -1}, respectively. 50 refs., 7 figs., 5 tabs.

  12. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  13. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  14. Evidence of interface exchange magnetism in self-assembled cobalt-fullerene nanocomposites exposed to air

    NASA Astrophysics Data System (ADS)

    Lavrentiev, V.; Stupakov, A.; Lavrentieva, I.; Motylenko, M.; Barchuk, M.; Rafaja, D.

    2017-03-01

    We report on the establishing of an exclusive magnetic effect in air-exposed CoxC60 nanocomposites (x > 2) created through self-assembling in the depositing mixture. In order to verify the influence of ambient air on the CoxC60 mixture film, we have studied in detail the film magnetization at rather low temperatures, which provides their ferromagnetic behavior. Tracing the possible exchange bias effect, we distinguished a clear vertical shift of the hysteresis loops recorded for the air-exposed CoxC60 films in the field cooling (FC) regime. The detected vertical shift of the FC loops is caused by an uncompensated magnetic moment M u induced by exchange coupling of the Co spins at the Co/CoO interface. This interface arises due to the oxidation of small Co clusters distributed in a C60-based matrix of self-assembled composite films, which occurs during air exposure. The core–shell structure of the Co/CoO magnetic clusters (about 2–3 nm in size) consisting of a ε-Co core and fcc-CoO shell was confirmed by means of transmission electron microscopy. Established interface magnetism testifies to a composite nanostructure in the CoxC60 mixture film with x > 2 and explains the influence of air exposure on the film structure. The discovered magnetic effect implies a new application potential for cobalt-fullerene composites in sensors and catalysis.

  15. Exchange of organohalogen compounds between air and tree bark in the Yellow River region.

    PubMed

    He, Chang; Jin, Jun; Li, Guangyao; Wang, Ying

    2016-06-01

    Organohalogen compound concentrations in paired air and bark samples from the Yellow River region were determined. Overall, the organohalogen compound concentrations were higher in the samples from the lower than from the upper Yellow River region. The polybrominated diphenyl ether, polychlorinated biphenyl, and organochlorine pesticide concentrations were 310-5200, 0.92-3.8, and 120-6700 pg m(-3), respectively, in the air samples and 29,000-190,0000, 220-1400, and 49,000-220,0000 pg g(-1) lipid weight, respectively, in the bark samples. The concentrations in the air samples were significantly positively correlated with the concentrations in the bark samples. Constant B, related to the partitioning of a contaminant between the gas and particle phases in the air, was calculated for each compound. This was the first time constant B was simultaneously been determined for a range of different organohalogen compounds. An air-tree bark exchange model was calibrated and verified. The exchange coefficients (K(BA)) that were determined were compared with the model results, and the optimum K(OA) values for use in the model were found to be 10(9)-10(16). The compound of interest needed to be detected in more than 50% of the samples for the model results to be valid.

  16. Air side thermal performance of wavy fin heat exchangers produced by selective laser melting

    NASA Astrophysics Data System (ADS)

    Kuehndel, J.; Kerler, B.; Karcher, C.

    2016-09-01

    Wavy fins are widely used for off-road vehicle coolers, due to their dust resistance. In this study, heat exchanger elements with wavy fins were examined in an experimental study. Due to independence of tooling and degrees of freedom in design, rapid prototyping technique selective laser melting was used to produce heat exchanger elements with high dimensional accuracy. Tests were conducted for air side Reynolds number Re of 1400-7400 varying wavy amplitude and wave length at a constant water flow rate of 9.0m3/h inside the tubes. The effects of wavy amplitude and wave length on the air side thermal performance were studied. Experimental correlation equations for Nu and ­ were derived by regression analysis.

  17. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2014-04-01

    The diurnal variation of NOx and O3 exchange between a street canyon and the overlying air in two dimensions is investigated to understand reactive pollutant removal and entrainment across the roof level of the street canyon. The computational fluid dynamics (CFD) model used in this study is a Reynolds-averaged Navier-Stokes equations (RANS) model and includes the urban surface and radiation processes and the comprehensive chemical processes. The CFD model is used for the one-day simulation in which the easterly ambient wind blows perpendicular to the north-south oriented street canyon with a canyon aspect ratio of 1. In the morning when the surface temperature of the downwind building wall is higher than that of the upwind building wall, two counter-rotating vortices appear in the street canyon (flow regime II). In the afternoon when the surface temperature of the upwind building wall is higher than that of the downwind building wall, an intensified primary vortex appears in the street canyon (flow regime I). The NOx and O3 exchange is generally active in the region close to the building wall with the higher temperature regardless of flow regime. The NOx and O3 exchange by turbulent flow is dominant in flow regime II, whereas the NOx and O3 exchange by mean flow becomes comparable to that by turbulent flow in a certain period of flow regime I. The NOx and O3 exchange velocities are similar to each other in the early morning, whereas these are significantly different from each other around noon and in the afternoon. This behavior indicates that the exchange velocity is dependent on flow regime. In addition, the diurnal variability of O3 exchange velocity is found to be dependent on photochemistry rather than dry deposition in the street canyon. This study suggests that photochemistry as well as flow in a street canyon is needed to be taken into account when exchange velocities for reactive pollutants are estimated.

  18. Heat Exchange with Air and Temperature Profile of a Moving Oversize Tire

    NASA Astrophysics Data System (ADS)

    Grinchuk, P. S.; Fisenko, S. P.

    2016-11-01

    A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat exchange of a moving tire with air has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.

  19. Processes of Ammonia Air-Surface Exchange in a Fertilized Corn Canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Bash, J. O.; Jones, M.; Nemitz, E.; Robarge, W. P.

    2009-12-01

    Processes of ammonia (NH3) air-surface exchange in fertilized crops include bi-directional flux (emission or deposition) from the soil, surface litter, leaf stomatal cavity, and leaf cuticle. These component fluxes establish the net exchange between the canopy and atmosphere. We conducted an experiment in the summer of 2007 in eastern North Carolina to quantify the net flux of NH3 from a fertilized corn canopy over the course of the growing season. A primary objective was to examine the relative importance of soil vs. foliage exchange pathways with respect to net canopy-scale fluxes. Continuous wet rotating denuder and photoacoustic spectroscopic NH3 measurement methods were configured in a gradient mode to measure canopy-scale fluxes using the modified Bowen-ratio technique. In-canopy source-sink relationships were examined by inverse modeling of NH3 concentration, temperature, and turbulence profiles. Additionally, measurements of NH4+ and H+ in the soil solution, leaf apoplast, and leaf surface water were used in combination with resistance modeling to examine the relationships between net canopy-scale fluxes and soil, stomatal, and cuticular exchange pathways. Measurement and modeling results are presented and the relevance of this work to national NH3 emission inventories and regional air quality modeling is discussed.

  20. The air-water exchange of C{sub 15}-C{sub 31} n-alkanes in a precipitation-dominated seepage lake.

    SciTech Connect

    Doskey, P. V.; Environmental Research

    2000-01-01

    The air-water exchange of semivolatile n-alkanes in Crystal Lake, a small precipitation-dominated seepage lake in northern Wisconsin, was investigated with modeling and mass balance approaches. The results suggest that atmospheric deposition contributes approximately 80% of the allochthonous input of n-alkanes to Crystal Lake. Atmospheric deposition accounts for about 50% of the total annual input of n-alkanes to Crystal Lake, and an additional 30% is contributed by in situ production of planktonic n-alkanes ({Sigma}C{sub 15}, C{sub 17}, C{sub 19}). Contributions to the particle dry flux of terrestrial n-alkanes ({Sigma}C{sub 25}, C{sub 27}, C{sub 29}, C{sub 31}) by pine pollen dispersal and by dry deposition of particles containing leaf waxes are similar in magnitude and constitute about 60% of the atmospheric input, with particle wet deposition being responsible for the remainder. Approximately 30% of the atmospheric input of the n-alkanes occurs during a two-week episode of pine pollen dispersal in spring. Concentration gradients between gaseous n-alkanes in the atmosphere and dissolved n-alkanes in the water column of Crystal Lake favor volatilization of n-alkanes from the lake surface; however, distributions of dissolved n-alkanes are characteristic of bacteria, and therefore are contained in organic matter and not available for air-water exchange. The estimated net atmospheric input of terrestrial n-alkanes is about 20% less than the settling sediment flux. Additional allochthonous sources of the terrestrial n-alkanes might include diffuse surface runoff or episodes of coarse-particle deposition. The discrepancies in the results from the modeling and mass balance approaches indicate that direct measurements of air-water exchange rates and measurements of the seasonal variations of particle size distributions in air and rain would greatly improve our ability to quantify air-water exchange rates of n-alkanes.

  1. Spatiotemporally-Resolved Air Exchange Rate as a Modifier of Acute Air Pollution-Related Morbidity

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  2. Finned tube heat exchangers: state of the art for the air side

    SciTech Connect

    McQuiston, F. C.

    1980-01-01

    The findings of various investigators during the past ten years has greatly enhanced our ability to analyze, model, design, and optimize the finned tube heat exchangers so widely used in the HVAC business. The effect of rows, fin pitch, and other geometric parameters are now well understood and generalized heat transfer correlations are available. The relation between heat and mass transfer has been much better defined and good correlations have been developed. Some advances have also been made in modeling techniques especially where partially dry cooling and dehumidifying coils are involved. All of these factors are reviewed to concisely summarize what is now available to the heat exchanger analyst.

  3. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS.

  4. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  5. Effectiveness and humidification capacity investigation of liquid-to-air membrane energy exchanger under low heat capacity ratios at winter air conditions

    NASA Astrophysics Data System (ADS)

    Kassai, Miklos

    2015-06-01

    In this research, a novel small-scale single-panel liquid-to-air membrane energy exchanger has been used to numerically investigate the effect of given number of heat transfer units (4.5), different cold inlet air temperature (1.7, 5.0, 10.0 °C) and different low heat capacity ratio (0.4, 0.5, 0.6, 0.7, 0.8, 0.9) on the steady-state performance of the energy exchanger. This small-scale energy exchanger represents the full-scale prototypes well, saving manufacturing costs and time. Lithium chloride is used as a salt solution in the system and the steady-state total effectiveness of the exchanger is evaluated for winter inlet air conditions. The results show that total effectiveness of the energy exchanger decreases with heat capacity ratio in the mentioned range. Maximum numerical total effectiveness of 97% is achieved for the energy exchanger. Increasing the heat capacity ratio values on given inlet air temperature, the humidification capacity of energy exhanger is also investigated in this paper. The humidification performance increases with heat capacity ratio. The highest humidification performance (4.53 g/kg) can be reached when inlet air temperature is 1.7 °C, and heat capacity ratio is 1.0 in winter inlet air conditions in the range of low heat capacity ratio.

  6. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields.

  7. Kinetic study of the mass transfer of bovine serum albumin in anion-exchange chromatography.

    PubMed

    Miyabe, K; Guiochon, G

    2000-01-14

    A kinetic study was made on the mass transfer phenomena of bovine serum albumin (BSA) in two different anion-exchange columns (Resource-Q and TSK-GEL-DEAE-5PW). The analysis of the concentration dependence of the lumped mass transfer rate coefficient (km,L) provided the information about the kinetics of the several mass transfer processes in the columns and the anion exchangers, i.e., the axial dispersion, the fluid-to-particle mass transfer, the intraparticle diffusion, and the adsorption/desorption. In the Resource-Q column, the intraparticle diffusion had a dominant contribution to the band broadening compared with those of the other processes. The surface diffusion coefficient (Ds) of BSA showed a positive concentration dependence, by which the linear dependence of km,L on the BSA concentration seemed to be interpreted. On the other hand, in the TSK-GEL-DEAE-5PW column, the contribution of the adsorption/desorption was also important and almost same as that due to the intraparticle diffusion. There are some differences between the intrinsic properties of the mass transfer kinetics inside the two anion exchangers. It was likely that the positive concentration dependence of Ds was explained by the heterogeneous surface model.

  8. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (

  9. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  10. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  11. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  12. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  13. Ion mobility spectrometry-hydrogen deuterium exchange mass spectrometry of anions: part 1. Peptides to proteins.

    PubMed

    Donohoe, Gregory C; Khakinejad, Mahdiar; Valentine, Stephen J

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  14. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  15. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  16. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  17. Air Mass Frequency during Precipitation Events in the United States Northern Plains

    NASA Astrophysics Data System (ADS)

    Loveless, D. M.; Sharr, N. J.; Baum, A.; Contract, J. S.; DePasquale, R.; Godek, M. L.

    2013-12-01

    Since 1980, numerous billion-dollar disasters have affected the Northern Plains of the United States, including nine droughts and four floods. Given the region's large agricultural sector, the ability to accurately forecast the frequency and quantity of precipitation events here is imperative as it has a major impact on the economy of states in the region. The atmospheric environment present during precipitation events can largely be described by the presiding air mass conditions since air masses characterize a multitude of meteorological variables at one time over a large region. Therefore, understanding the relationship between air masses and rainfall episodes can contribute to improved precipitation forecasts. The goal of this research is to add knowledge to current understandings of the factors responsible for precipitation in the Northern Plains through an assessment of synoptic air mass conditions. The Spatial Synoptic Classification is used to categorize 30 years of daily air mass types across the region and daily precipitation is acquired from the United States Historical Climatological Network at stations in close proximity. Air mass frequencies are then analyzed for all regional precipitation events and rainfall categories are developed based on precipitation quantity. Both annual and seasonal air mass frequencies are assessed at the time of precipitation events. Additionally, air mass frequencies are obtained for positive and negative phases of the Pacific/North American Pattern to examine the influence of a teleconnection forcing factor on the air mass types responsible for producing precipitation quantities. Results indicate that the Transitional (TR) air mass, associated with changing air mass conditions commonly related to passing fronts, is not the leading producer of rainfall in the region. The TR is generally responsible for only 10-20% of regional precipitation, which often is classed in a heavy rainfall category. All moist air mass varieties are

  18. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  19. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls.

    PubMed

    Gouin, T; Thomas, G O; Cousins, I; Barber, J; Mackay, D; Jones, K C

    2002-04-01

    Air and leaf-litter samples were collected from a rural site in southern Ontario under meteorologically stable conditions in the early spring, prior to bud burst, over a three-day period to measure the simultaneous diurnal variations in polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). PBDEs are used in a wide range of commercial products as flame retardants and are being assessed internationally as potential persistent organic pollutants. Total PBDE concentrations in the air ranged between 88 and 1250 pg m(-3), and were dominated primarily by the lighter congeners PBDEs 17, 28, and 47, and concentrations of total PCBs ranged between 96 and 950 pg m(-3), and were dominated by the lower chlorinated (tri- to tetra-) congeners. Slopes of Clausius-Clapeyron plots indicate that both PCBs and PBDEs are experiencing active air-surface exchange. Fugacities were estimated from concentrations in the air and leaf-litter and suggest near equilibrium conditions. Following the three-day intensive sampling period, 40 air samples were collected at 24-hour intervals in an attempt to evaluate the effect of bud burst on atmospheric concentrations. Total PBDE concentrations in the daily air samples ranged between 10 and 230 pg m(-3), and were dominated by the lighter congeners PBDE 17, 28, and 47, whereas concentrations of total PCBs ranged between 30 and 450 pg m(-3) during this period. It is hypothesized thatthe high PBDE concentrations observed at the beginning of the sampling period are the result of an "early spring pulse" in which PBDEs deposited in the snowpack over the winter are released with snowmelt, resulting in elevated concentrations in the surface and air. Later in the sampling period, following bud burst, PBDE concentrations in air fell to 10 to 20 pg m(-3), possibly due to the high sorption capacity of this freshly emerging foliage compartment.

  20. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  1. Evidence of interface exchange magnetism in self-assembled cobalt-fullerene nanocomposites exposed to air.

    PubMed

    Lavrentiev, V; Stupakov, A; Lavrentieva, I; Motylenko, M; Barchuk, M; Rafaja, D

    2017-03-24

    We report on the establishing of an exclusive magnetic effect in air-exposed CoxC60 nanocomposites (x > 2) created through self-assembling in the depositing mixture. In order to verify the influence of ambient air on the CoxC60 mixture film, we have studied in detail the film magnetization at rather low temperatures, which provides their ferromagnetic behavior. Tracing the possible exchange bias effect, we distinguished a clear vertical shift of the hysteresis loops recorded for the air-exposed CoxC60 films in the field cooling (FC) regime. The detected vertical shift of the FC loops is caused by an uncompensated magnetic moment M u induced by exchange coupling of the Co spins at the Co/CoO interface. This interface arises due to the oxidation of small Co clusters distributed in a C60-based matrix of self-assembled composite films, which occurs during air exposure. The core-shell structure of the Co/CoO magnetic clusters (about 2-3 nm in size) consisting of a ε-Co core and fcc-CoO shell was confirmed by means of transmission electron microscopy. Established interface magnetism testifies to a composite nanostructure in the CoxC60 mixture film with x > 2 and explains the influence of air exposure on the film structure. The discovered magnetic effect implies a new application potential for cobalt-fullerene composites in sensors and catalysis.

  2. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    PubMed

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  3. Linking air-sea energy exchanges and European anchovy potential spawning ground

    NASA Astrophysics Data System (ADS)

    Grammauta, R.; Molteni, D.; Basilone, G.; Guisande, C.; Bonanno, A.; Aronica, S.; Giacalone, G.; Fontana, I.; Zora, M.; Patti, B.; Cuttitta, A.; Buscaino, G.; Sorgente, R.; Mazzola, S.

    2008-10-01

    The physical and chemical processes of the sea greatly affect the reproductive biology of fishes, mainly influencing both the numbers of spawned eggs and the survivorship of early stages up to the recruitment period. In the central Mediterranean, the European anchovy constitutes one of the most important fishery resource. Because of its short living nature and of its recruitment variability, associated to high environmental variability, this small pelagic species undergo high interannual fluctuation in the biomass levels. Despite several efforts were addressed to characterize fishes spawning habitat from the oceanographic point of view, very few studies analyze the air-sea exchanges effects. To characterize the spawning habitat of these resources a specific technique (quotient rule analysis) was applied on air-sea heat fluxes, wind stress, sea surface temperature and turbulence data, collected in three oceanographic surveys during the summer period of 2004, 2005 and 2006. The results showed the existence of preferred values in the examined physical variables, associated to anchovy spawning areas. Namely, for heat fluxes the values were around -40 W/m2, for wind stress 0.04-0.11 N/m2, for SST 23°C, and 300 - 500 m3s-3 for wind mixing. Despite the obtained results are preliminary, this is the first relevant analysis on the air-sea exchanges and their relationship with the fish biology of pelagic species.

  4. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  5. US residential building air exchange rates: new perspectives to improve decision making at vapor intrusion sites.

    PubMed

    Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G

    2017-02-22

    Vapor intrusion (VI) is well-known to be difficult to characterize because indoor air (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building air exchange rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor air quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and air conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to air conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.

  6. A determination of character and frequency changes in air masses using a spatial synoptic classification

    NASA Astrophysics Data System (ADS)

    Kalkstein, Laurence S.; Sheridan, Scott C.; Graybeal, Daniel Y.

    1998-09-01

    Of the numerous climate change studies which have been performed, few of these have analyzed recent trends using an air mass-based approach. The air mass approach is superior to simple trend analysis, as it can identify patterns which may be too subtle to influence the entire climate record. The recently-developed spatial synoptic classification (SSC) is thus used to identify trends over the contiguous United States for summer and winter seasons from 1948 to 1993. Both trends in air mass frequency and character have been assessed.The most noteworthy trend in frequency is a decline in air mass transitional days (TR) during both seasons. In winter, decreases of up to 1% per decade are noted in parts of the central U.S. Other notable trends include a decrease in moist tropical (MT) air in winter, and an increase in MT in summer over the southeastern states.Numerous national and local air mass character changes have been uncovered. A large overall upward trend in cloudiness is noted in summer. All air masses feature an overnight increase, yet afternoon cloudiness increases are generally limited to the three dry air masses. Also in summer, a significant warming and increase in dew point of MT air has occurred at many locales. The most profound winter trend is a large decrease in dew point (up to 1.5°C per decade) in the dry polar (DP) air mass over much of the eastern states.

  7. Mass exchange in an experimental new-generation LSS model based on biological regeneration of envirnment

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.; Gros, J.; Lasseur, C.

    Experimental model of a biological life support system (LSS) was used to evaluate qualitative and quantitative parameters of inner mass exchange. The photosynthesizing block was the higher plants component (wheat, 3 radish), the heterotroph block consisted of the soil-like substrate (SLS) California worms, mushrooms and microbial microflora. In terms of gas composition the mass exchange process involved emission of oxygen by the photosynthesiz ing component and its uptake by the heterotroph component along with formation and maintaining the SLS structure, growth of mushrooms, California worms, human respiration and several other processes. Human presence in the system had the form of a "part of virtual human" that at regular intervals took part in the respiration gas exchange to get engaged in the respiration gas exchange in the course of calculated period of time. Experimental data demonstrated good agreement of ? 2 /? ? 2 balance which, in these gas components, was close to complete. Basic component in the water mass exchange were transpiration water and aqueous watering solution with mineral elements. Human consumption of the harvest biomass of plants (seeds and roots) was simulated by processing hese production by a genuine physical - chemicalt method of oxidizing to inorganic mineral compounds that were returned into the system and fully assimilated by the plants. Such an oxidation was achieved by "wet incineration" of organic biomass using hydrogen peroxide by a special process where high temperature and pressure are not needed, and hydrogen peroxide is produced from the water inside the system. The turnover was estimated in terms of individual biogenous elements. Specifically, experiments showed that in terms of sulfur, carbon and several other elements the closedness was almost 100%. Applications opportunities of the experimental biological system considered are under discussion.

  8. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  9. Development of a passive waste heat recovery system. Final report. [Air to air heat exchangers

    SciTech Connect

    Garriss, J.E.

    1984-02-15

    The invention described operates as an effective waste heat reclamation device without the disadvantages of requiring operating power or imposing spatial requirements on equipment location. Electrical power, if used at all, is only for control purposes. The two air streams can be far apart, and may have significantly different elevations. Accordingly, this invention offers some distinct advantages over existing concepts. The first step in this project was to review the basic concept, as described by the patent, for its applicability to industrial waste heat recovery systems. System specifications for a demonstration unit were then developed. A simplified mathematical model was developed to study system performance and size certain equipment items. To facilitate this work, the mathematical model was programmed for use on a Texas Instruments-59 programmable calculator. Following this, specific equipment was specified and layout drawings were prepared. The discussion details these efforts. The equipment was then built and its performance measured.

  10. Air-water CO2 exchange in five hypereutrophic lakes in Bangalore, India

    NASA Astrophysics Data System (ADS)

    Singh, G.; Ghosh, P.; Bala, G.; Bastviken, D.

    2014-12-01

    Inland water bodies play a significant role in terrestrial carbon cycling, rather than being just conduits for the transport of terrestrial carbon to the oceans. Recent syntheses estimate that freshwaters emit substantial amounts of CO2 (1.4 Pg C yr-1) (Tranvik et al. 2009) and CH4 (0.65 Pg C yr-1) (Bastviken et al. 2011), which are similar in magnitude to the global terrestrial carbon sink (2.5 ± 1.7 Pg C yr-1) (IPCC 2013). However, eutrophic waters, which constitute the majority of the global freshwater supply (ILEC/UNEP 1994, Liu et al. 2012, Carpenter et al. 1998), are vastly underrepresented in these estimates. These waters, due to high primary productivity leading to CO2 undersaturation, can act as sinks rather than sources of CO2, thus reversing the role of lakes in the carbon cycle (Balmer and Downing 2011, Pacheco et al. 2013). We are investigating the air-water CO2 exchange of five hypereutrophic lakes in urban Bangalore using a novel Non-Dispersive Infrared (NDIR)-based CO2 sensor installed in flux chambers that can be used to measure CO2 exchange in lakes in situ. This work is a part of a larger study called Bangalore Carbon Mapping Study that aims to track the spatial flows of carbon in an urban area of a developing country. Preliminary observations reveal that these lakes absorb CO2 during the photosynthetic hours, at an average rate of 3.4 mg C m-2 h-1. The ongoing study will characterize the complete diurnal cycle of CO2 exchange, its variation over different seasons, and its relationships with various limnological and catchment characteristics. The flux estimates thus produced will also be compared with those predicted by the current models for air-water gas exchange based on wind speed.

  11. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  12. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.

    PubMed

    Yang, Hong; Xing, Yangping; Xie, Ping; Ni, Leyi; Rong, Kewen

    2008-02-01

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO(2) and CH(4) causing a net release of CO(2) and CH(4) to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO(2) and CH(4)) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange.

  13. Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of alphaA-crystallin truncation.

    PubMed

    Aquilina, J Andrew; Benesch, Justin L P; Ding, Lin Lin; Yaron, Orna; Horwitz, Joseph; Robinson, Carol V

    2005-04-15

    The small heat shock protein, alpha-crystallin, plays a key role in maintaining lens transparency by chaperoning structurally compromised proteins. This is of particular importance in the human lens, where proteins are exposed to post-translational modifications over the life-time of an individual. Here, we examine the structural and functional consequences of one particular modification of alphaA-crystallin involving the truncation of 5 C-terminal residues (alphaA(1-168)). Using novel mass spectrometry approaches and established biophysical techniques, we show that alphaA(1-168) forms oligomeric assemblies with a lower average molecular mass than wild-type alphaA-crystallin (alphaA(WT)). Also apparent from the mass spectra of both alphaA(WT) and alphaA(1-168) assemblies is the predominance of oligomers containing even numbers of subunits; interestingly, this preference is more marked for alphaA(1-168). To examine the rate of exchange of subunits between assemblies, we mixed alphaB crystallin with either alphaA(WT) or alphaA(1-168) and monitored in a real-time mass spectrometry experiment the formation of heteroligomers. The results show that there is a significant decrease in the rate of exchange when alphaA(1-168) is involved. These reduced exchange kinetics, however, have no effect upon chaperone efficiency, which is found to be closely similar for both alphaA(WT) and alphaA(1-168). Overall, therefore, our results allow us to conclude that, in contrast to mechanisms established for analogous proteins from plants, yeast, and bacteria, the rate of subunit exchange is not the critical parameter in determining efficient chaperone behavior for mammalian alphaA-crystallin.

  14. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  15. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  16. Predicting Residential Air Exchange Rates from Questionnaires and Meteorology: Model Evaluation in Central North Carolina

    PubMed Central

    2010-01-01

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h−1) and 40% (0.17 h−1) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h−1). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies. PMID:21069949

  17. Air exchange rates and migration of VOCs in basements and residences

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu

    2015-01-01

    Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. Air flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281

  18. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  19. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  20. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  1. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    SciTech Connect

    Hinckley, D.A.; Bidleman, T.F. ); Rice, C.P. )

    1991-04-15

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average {alpha}-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg/m{sup 3} and 2.4 ng/l, respectively, and average {gamma}-HCH concentrations were 68 pg/m{sup 3} in the atmosphere and 0.6 ng/l in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations ({alpha}-HCH, average 79% saturation; {gamma}-HCH, average 28% saturation). The flux for {alpha}-HCH ranged from {minus}47 ng/m{sup 2} day (sea to air) to 122 ng/m{sup 2} day (air to sea) and averaged 25 ng/m{sup 2} day air to sea. All fluxes of {gamma}-HCH were from air to sea, ranged from 17 to 54 ng/m{sup 2} day, and averaged 31 ng/m{sup 2} day.

  2. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  3. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    NASA Astrophysics Data System (ADS)

    Rotach, Mathias; Gohm, Alexander; Lang, Moritz; Leukauf, Daniel; Stiperski, Ivana; Wagner, Johannes

    2015-12-01

    The role of the atmospheric boundary layer (ABL) in the atmosphere-climate system is the exchange of heat, mass and momentum between 'the earth's surface' and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit) assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF) surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative) and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (sub)meso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models). In this contribution we summarize the available evidence of the contribution of (sub)meso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective - so as to identify possible limitations and areas of necessary future research.

  4. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR.

    PubMed Central

    Yi, Q.; Baker, D.

    1996-01-01

    We use mass spectrometry in conjunction with hydrogen-deuterium exchange and NMR to characterize the conformational dynamics of the 62-residue IgG binding domain of protein L under conditions in which the native state is marginally stable. Mass spectra of protein L after short incubations in D2O reveal the presence of two distinct populations containing different numbers of protected protons. NMR experiments indicate that protons in the hydrophobic core are protected in one population, whereas all protons are exchanged for deuterons in the other. As the exchange period is increased, molecules are transferred from the former population to the latter. The absence of molecules with a subset of the core protons protected suggests that exchange occurs in part via a highly concerted transition to an excited state in which all protons exchange rapidly with deuterons. A steady increase in the molecular weight of the population with protected protons, and variation in the exchange rates of the individual protected protons indicates the presence of an additional exchange mechanism. A simple model in which exchange results from rapid (> 10(5)/s) local fluctuations around the native state superimposed upon transitions to an unfolded excited state at approximately 0.06/s is supported by qualitative agreement between the observed mass spectra and the mass spectra simulated according to the model using NMR-derived estimates of the proton exchange rates. PMID:8762137

  5. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  6. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2013-01-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein–protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent. PMID:22298288

  7. Modified perfluorocarbon tracer method for measuring effective multizone air exchange rates.

    PubMed

    Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi

    2010-09-01

    A modified procedure was developed for the measurement of the effective air exchange rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective air exchange rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.

  8. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  9. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h-1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m-2 d-1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  10. [Heat and moisture exchangers for conditioning of inspired air of intubated patients in intensive care. The humidification properties of passive air exchangers under clinical conditions].

    PubMed

    Rathgeber, J; Züchner, K; Kietzmann, D; Weyland, W

    1995-04-01

    Heat and moisture exchangers (HME) are used as artificial noses for intubated patients to prevent tracheo-bronchial or pulmonary damage resulting from dry and cold inspired gases. HME are mounted directly on the tracheal tube, where they collect a large fraction of the heat and moisture of the expired air, adding this to the subsequent inspired breath. The effective performance depends on the water-retention capacity of the HME: the amount of water added to the inspired gas cannot exceed the stored water uptake of the previous breath. This study evaluates the efficiency of four different HME under laboratory and clinical conditions using a new moisture-measuring device. METHODS. In a first step, the absolute efficiency of four different HME (DAR Hygrobac, Gibeck Humid-Vent 2P, Pall BB 22-15 T, and Pall BB 100) was evaluated using a lung model simulating physiological heat and humidity conditions of the upper airways. The model was ventilated with tidal volumes of 500, 1,000, and 1,500 ml and different flow rates. The water content of the ventilated air was determined between tracheal tube and HME using a new high-resolution humidity meter and compared with the absolute water loss of the exhaled air at the gas outlet of a Siemens Servo C ventilator measured with a dew-point hygrometer. Secondly, the moisturizing efficiency was evaluated under clinical conditions in an intensive care unit with 25 intubated patients. Maintaining the ventilatory conditions for each patient, the HME were randomly changed. The humidity data were determined as described above and compared with the laboratory findings. RESULTS AND DISCUSSION. The water content at the respirator outlet is inversely equivalent to the humidity of the inspired gases and represents the water loss from the respiratory tract if the patient is ventilated with dry gases. Moisture retention and heating capacity decreased with higher volumes and higher flow rates. These data are simple to obtain without affecting the

  11. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  12. Design and experimental analysis of counter-flow heat and mass exchanger incorporating (M-cycle) for evaporative cooling

    NASA Astrophysics Data System (ADS)

    Khalid, Omar; Butt, Zubair; Tanveer, Waqas; Rao, Hasan Iqbal

    2016-09-01

    In this paper, the functioning of dew-point cooler is improved in terms of its thermal effectiveness. For this reason, a heat and mass exchanger has been designed by using a counter-flow pattern incorporating Maisotsenko cycle (M-cycle) having effective absorbing material called Kraft paper on wet channel side and improved width to height ratio. Experimentation has been performed under various inlet air working parameters such as humidity, velocity and temperature in addition with changing feed water temperature. The results from the experiments specify that the dew-point and the wet-bulb effectiveness is achieved between 67-87 % and 104-120 % respectively. Analysis is performed with temperature variation between 25 and 45 °C at different absolute humidity levels ranging from 14.4 to 18 g/kg, while the inlet air velocity is varied between 0.88 and 1.50 m/s. Thus, the working ability of the improved design has been found 5 % more effective in terms of wet bulb effectiveness as compared to previous counter-flow designs.

  13. Observing the Invisible through Imaging Mass Spectrometry, a Window into the Metabolic Exchange Patterns of Microbes

    PubMed Central

    Gonzalez, David J.; Xu, Yuquan; Yang, Yu-Liang; Esquenazi, Eduardo; Liu, Wei-Ting; Edlund, Anna; Duong, Tram; Du, Liangcheng; Molnár, István; Gerwick, William H.; Jensen, Paul R.; Fischbach, Michael; Liaw, Chih-Chuang; Straight, Paul; Nizet, Victor; Dorrestein, Pieter C.

    2012-01-01

    Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates. PMID:22641157

  14. Diffusive exchange of PAHs across the air-water interface of the Kaohsiung Harbor lagoon, Taiwan.

    PubMed

    Fang, Meng-Der; Lee, Chon-Lin; Jiang, Jheng-Jie; Ko, Fung-Chi; Baker, Joel E

    2012-11-15

    Instantaneous air-water polycyclic aromatic hydrocarbons (PAHs) exchange fluxes were calculated in 22 pairs of ambient air and water samples from Kaohsiung Harbor lagoon, from December 2003 to January 2005. The highest net volatilization (3135 ng m(-2) day(-1)) and absorptive (-1150 ng m(-2) day(-1)) fluxes in the present study were obtained for the three-ring PAH phenanthrene on 7 April and 27 January 2004, respectively. All PAH diffusive fluxes for three-ring PAHs except phenanthrene were mainly volatilization exchange across the air-water interface. Phenanthrene and the four-ring PAHs were absorbed primarily from the atmosphere and deposited to the surface water, although some minor volatilization fluxes were also observed. Differences in flux magnitude and direction between the dry and wet seasons were also evident for PAHs. Strong absorptive/weaker volatilization PAH fluxes occurred in the dry season, but the opposite was found in the wet season. The mean daily PAH diffusive fluxes were an in flux of -635 ng m(-2) day(-1) in the dry season and an efflux of 686 ng m(-2) day(-1) in the wet season. The integrated absorbed and emitted fluxes of PAHs for harbor lagoon surface waters in the dry and wet seasons were 3.1 kg and 3.4 kg, respectively. Different from water bodies located in temperate zone, phenanthrene diffusive fluxes in Kaohsiung Harbor lagoon was favored in volatilization from surface waters during the wet season (April to September) because of scavenging by precipitation and dilution by prevailing southwesterly winds. In addition, this study used both of salinity and temperature to improve estimation of Henry's law constants (H) of PAHs in a tropical coastal area and show that correction for salinity produced 13-15% of differences in H values.

  15. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  16. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  17. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  18. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties.

    PubMed

    Shi, Xiangguo Eric; Wales, Thomas E; Elkin, Carl; Kawahata, Noriyuki; Engen, John R; Annis, D Allen

    2013-12-03

    Peptide drugs have traditionally suffered from poor pharmacokinetic properties due to their conformational flexibility and the interaction of proteases with backbone amide bonds. "Stapled Peptides" are cyclized using an all-hydrocarbon cross-linking strategy to reinforce their α-helical conformation, yielding improved protease resistance and drug-like properties. Here we demonstrate that hydrogen exchange-mass spectrometry (HX-MS) effectively probes the conformational dynamics of Stapled Peptides derived from the survivin-borealin protein-protein interface and predicts their susceptibility to proteolytic degradation. In Stapled Peptides, amide exchange was reduced by over five orders-of-magnitude versus the native peptide sequence depending on staple placement. Furthermore, deuteration kinetics correlated directly with rates of proteolysis to reveal the optimal staple placement for improved drug properties.

  19. An Efficient and Inexpensive Refrigerated LC System for H/D Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Keppel, Theodore R.; Jacques, Martin E.; Young, Robert W.; Ratzlaff, Kenneth L.; Weis, David D.

    2011-08-01

    Loss of deuterium label during the LC step in amide hydrogen/deuterium exchange mass spectrometry (H/D-MS) is minimized by maintaining an acidic mobile phase pH and low temperature (pH 2.5, 0 °C). Here we detail the construction and performance of a low-cost, thermoelectrically refrigerated enclosure to house high-performance liquid chromatography (HPLC) components and cool mobile phases. Small volume heat exchangers rapidly decrease mobile phase temperature and keep the temperature stable to ±0.2 °C. Using a superficially porous reversed-phase column, we obtained excellent chromatographic performance in the separation of peptides with a median peak width of 4.4 s. Average deuterium recovery was 80.2% with an average relative precision of 0.91%.

  20. Heat exchangers of gas turbine engines

    NASA Astrophysics Data System (ADS)

    Baranov, Iu. F.; Mitin, B. M.

    1991-07-01

    The papers presented in this volume focus on methods for studying the thermal and hydraulic characteristics of heat exchangers used in gas turbine engines and methods for the analysis and experimental investigation of the dynamic characteristics of heat exchangers with different coolant flow schemes, including cryogenic heat exchangers. In particular, attention is given to the effect of tube bundle parameters on the dimensional and mass characteristics of high-temperature heat exchangers, a numerical method for calculating the dynamic characteristics of a fuel-air heat exchanger with a buffer cavity, and an experimental study of the air drying process in air coolers.

  1. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  2. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  3. Utilizing Microchip Capillary Electrophoresis Electrospray Ionization for Hydrogen Exchange Mass Spectrometry

    PubMed Central

    Black, William A.; Stocks, Bradley B.; Mellors, J. Scott; Engen, John R.; Ramsey, J. Michael

    2015-01-01

    Hydrogen exchange (HX) mass spectrometry (MS) of complex mixtures requires a fast, reproducible, and high peak capacity separation prior to MS detection. The current paradigm relies on liquid chromatography (LC) with fast gradients performed at low temperatures to minimize back exchange. Unfortunately, under these conditions, the efficiency of LC is limited due to resistance to mass transfer, reducing the capability to analyze complex samples. Capillary electrophoresis (CE), on the other hand, is not limited by resistance to mass transfer, enabling very rapid separations that are not adversely affected by low temperature. Previously, we have demonstrated an integrated microfluidic device coupling CE with electrospray ionization (ESI) capable of very rapid and high efficiency separations. In this work, we demonstrate the utility of this microchip CE-ESI device for HX MS. High speed CE-ESI of a bovine hemoglobin pepsin digestion was performed in 1 minute with a peak capacity of 62 versus a similar LC separation performed in 7 minutes with peak capacity of 31. A room temperature CE method performed in 1.25 minutes provided similar deuterium retention as an 8.5 minute LC method conducted at 0 °C. Separation of a complex mixture with CE was done with considerably better speed and nearly triple the peak capacity than the equivalent separation by LC. Overall the results indicate the potential utility of microchip CE-ESI for HX MS. PMID:25992468

  4. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Yang, Sheng-Wei; Ting, Hsiu-Chi; Lo, Yi-Ting; Wu, Ting-Yuan; Huang, Hung-Wei; Yang, Chia-Jung; Chan, Jui-Fen Riva; Chuang, Min-Chieh; Hsu, Yuan-Hao Howard

    2016-01-01

    Cdc42 regulates pathways related to cell division. Dysregulation of Cdc42 can lead to cancer, cardiovascular diseases and neurodegenerative diseases. GTP induced activation mechanism plays an important role in the activity and biological functions of Cdc42. P-loop, Switch I and Switch II are critical regions modulating the enzymatic activity of Cdc42. We applied amide hydrogen/deuterium exchange coupled with liquid chromatography mass spectrometry (HDXMS) to investigate the dynamic changes of apo-Cdc42 after GDP, GTP and GMP-PCP binding. The natural substrate GTP induced significant decreases of deuteration in P-loop and Switch II, moderate changes of deuteration in Switch I and significant changes of deuteration in the α7 helix, a region far away from the active site. GTP binding induced similar effects on H/D exchange to its non-hydrolysable analog, GMP-PCP. HDXMS results indicate that GTP binding blocked the solvent accessibility in the active site leading to the decrease of H/D exchange rate surrounding the active site, and further triggered a conformational change resulting in the drastic decrease of H/D exchange rate at the remote α7 helix. Comparing the deuteration levels in three activation states of apo-Cdc42, Cdc42-GDP and Cdc42-GMP-PCP, the apo-Cdc42 has the most flexible structure, which can be stabilized by guanine nucleotide binding. The rates of H/D exchange of Cdc42-GDP are between the GMP-PCP-bound and the apo form, but more closely to the GMP-PCP-bound form. Our results show that the activation of Cdc42 is a process of conformational changes involved with P-loop, Switch II and α7 helix for structural stabilization.

  5. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  6. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  7. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  8. The arc of Mass Spectrometry Exchange Formats is long, but it bends toward HDF5.

    PubMed

    Askenazi, Manor; Ben Hamidane, Hisham; Graumann, Johannes

    2016-10-14

    The evolution of data exchange in Mass Spectrometry spans decades and has ranged from human-readable text files representing individual scans or collections thereof (McDonald et al., 2004) through the official standard XML-based (Harold, Means, & Udemadu, 2005) data interchange standard (Deutsch, 2012), to increasingly compressed (Teleman et al., 2014) variants of this standard sometimes requiring purely binary adjunct files (Römpp et al., 2011). While the desire to maintain even partial human readability is understandable, the inherent mismatch between XML's textual and irregular format relative to the numeric and highly regular nature of actual spectral data, along with the explosive growth in dataset scales and the resulting need for efficient (binary and indexed) access has led to a phenomenon referred to as "technical drift" (Davis, 2013). While the drift is being continuously corrected using adjunct formats, compression schemes, and programs (Röst et al., 2015), we propose that the future of Mass Spectrometry Exchange Formats lies in the continued reliance and development of the PSI-MS (Mayer et al., 2014) controlled vocabulary, along with an expedited shift to an alternative, thriving and well-supported ecosystem for scientific data-exchange, storage, and access in binary form, namely that of HDF5 (Koranne, 2011). Indeed, pioneering efforts to leverage this universal, binary, and hierarchical data-format have already been published (Wilhelm et al., 2012; Rübel et al., 2013) though they have under-utilized self-description, a key property shared by HDF5 and XML. We demonstrate that a straightforward usage of plain ("vanilla") HDF5 yields immediate returns including, but not limited to, highly efficient data access, platform independent data viewers, a variety of libraries (Collette, 2014) for data retrieval and manipulation in many programming languages and remote data access through comprehensive RESTful data-servers. © 2016 Wiley Periodicals, Inc. Mass

  9. Droplet infiltration and OM composition of intact soil structural surfaces for studying mass exchange

    NASA Astrophysics Data System (ADS)

    Leue, Martin, ,, Dr.; Gerke, PD Horst H., ,, Dr.; Godow, Sophie Ch.; Ellerbrock, PD Ruth H., ,, Dr.

    2014-05-01

    During rapid percolation through macropores with local nonequilibrium conditions water and solute mass exchange with the porous matrix and sorption of reactive components is both taken place at the surface of preferential flow paths. Aggregate surfaces can be coated by illuviated clayey particles and biopores covered by plant residues or earthworm casts. By controlling wettability and sorption properties, the organic matter (OM) of surface coatings may also affect the transport properties of structured soils. Composition of OM in wall coatings was found spatially distributed at the mm-scale; thus, it remained unclear if water absorption by the soil matrix (i.e., mass exchange) was affected by locally-distributed OM. For samples with intact aggregate surfaces and biopore walls taken at clay-illuvial subsoil horizon of Luvisols developed from Loess and glacial till, the mm-scale spatial distribution of OM composition was measured using diffuse reflectance infrared spectroscopy (DRIFT). Spectra were analysed with respect to alkyl and carboxyl functional groups in OM to obtain an estimate for its potential wettability. The infiltration dynamic of water droplets was evaluated using contact angle measurements and droplet penetration time. The potential wettability of OM differed for coatings and burrow walls and was generally lower for the Loess-derived than for the till-derived samples. The droplet infiltration times were significantly lower only for the Loess Luvisol samples. The results suggest that mass exchange between flow path and matrix can be affected by OM composition of structural surfaces among other factors such as texture, moisture, and chemical status (pH).

  10. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  11. Higher order structure characterization of protein therapeutics by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Huang, Richard Y-C; Chen, Guodong

    2014-10-01

    Characterization of therapeutic drugs is a crucial step in drug development in the biopharmaceutical industry. Analysis of protein therapeutics is a challenging task because of the complexities associated with large molecular size and 3D structures. Recent advances in hydrogen/deuterium-exchange mass spectrometry (HDX-MS) have provided a means to assess higher-order structure of protein therapeutics in solution. In this review, the principles and procedures of HDX-MS for protein therapeutics characterization are presented, focusing on specific applications of epitope mapping for protein-protein interactions and higher-order structure comparison studies for conformational dynamics of protein therapeutics.

  12. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  13. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  14. Validation and Application of the Mass Balance Model To Determine the Effectiveness of Portable Air Purifiers in Removing Ultrafine and Submicrometer Particles in an Apartment.

    PubMed

    Lee, Wan-Chen; Catalano, Paul J; Yoo, Jun Young; Park, Chan Jung; Koutrakis, Petros

    2015-08-18

    We validated the use of the mass balance model to determine the effectiveness of portable air purifiers in removing ultrafine (<0.10 μm) and submicrometer particles (0.10-0.53 μm) in an apartment. We evaluated two identical portable air purifiers, equipped with high efficiency particulate air filters, for their performance under three different air flow settings and three target air exchange rates: 0.60, 0.90, and 1.20 h(-1). We subsequently used a mixed effects model to estimate the slope between the measured and modeled effectiveness by particle size. Our study showed that effectiveness was highly particle size-dependent. For example, at the lowest target air exchange rate, it ranged from 0.33 to 0.56, 0.51 to 0.75, and 0.60 to 0.81 for the three air purifier flow settings, respectively. Our findings suggested that filtration was the dominant removal mechanism for submicrometer particles, whereas deposition could play a more important role in ultrafine particle removal. We found reasonable agreement between measured and modeled effectiveness with size-resolved slopes ranging from 1.11 ± 0.06 to 1.25 ± 0.07 (mean ± SE), except for particles <35 nm. Our study design can be applied to investigate the performances of other portable air purifiers as well as the influences of various parameters on effectiveness in different residential settings.

  15. Protein Conformation in Amorphous Solids by FTIR and by Hydrogen/Deuterium Exchange with Mass Spectrometry

    PubMed Central

    Sinha, Sandipan; Li, Yunsong; Williams, Todd D.; Topp, Elizabeth M.

    2008-01-01

    Solid-state hydrogen/deuterium exchange (ssHDX) with electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopy were used to assess protein conformation in amorphous solids. Myoglobin, lysozyme, β-lactoglobulin, ribonuclease A, E-cadherin 5, and concanavalin A were co-lyophilized with carbohydrates (trehalose, raffinose, and dextran 5000), linear polymers (polyvinyl alcohol and polyvinyl pyrrolidone) or guanidine hydrochloride (negative control). For ssHDX, samples were exposed to D2O vapor at 33% relative humidity and room temperature, and then reconstituted at low temperature (4°C) and pH 2.5 and analyzed by ESI-MS. Peptic digestion of selected proteins was used to provide region-specific information on exchange. FTIR spectra were acquired using attenuated total reflectance. FTIR and ssHDX of intact proteins showed preservation of structure by raffinose and trehalose, as indicated by FTIR band intensity and protection from exchange. ssHDX of peptic digests further indicated that these protective effects were not exerted uniformly along the protein sequence but were observed primarily in α-helical regions, a level of structural resolution not afforded by FTIR. The results thus demonstrate the utility of HDX with ESI-MS for analyzing protein conformation in amorphous solid samples. PMID:18835903

  16. Towards a theory of tropical/midlatitude mass exchange from the earth's surface through the stratosphere

    NASA Technical Reports Server (NTRS)

    Hartley, Dana

    1995-01-01

    The main focus of this work is to understand the dynamics of mass exchange between the tropics and the midlatitudes and to determine any links between tropospheric exchange and that in the stratosphere. We have approached this problem from two different perspectives. The first is aimed towards understanding the troposphere's role in inducing lower stratospheric tropical/midlatitude exchange. For this project we focus on observational analysis of the lower stratosphere to assess the key regions of transport in/out of the tropics and to what extent this transport is driven by tropospheric processes. The second approach is to determine the extent to which stratospheric processes influence the troposphere. In this project we are performing potential vorticity (PV) inversions to assess the winds induced near the tropopause when the stratospheric polar vortex is displaced equatorward. These are each discussed in more detail in the subsections below. Also, we have organized a session on Tropical/Midlatitude Interaction and Transport at the Fall AGU where we will be showing our latest results.

  17. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  18. The influence of cryogenic mass exchange on the distribution of viable microfauna in cryozems

    NASA Astrophysics Data System (ADS)

    Gubin, S. V.; Lupachev, A. V.; Shatilovich, A. V.; Myl'nikov, A. P.; Ryss, A. Yu.; Veremeeva, A. A.

    2016-12-01

    The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.

  19. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  20. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments.

    PubMed

    Reichman, Rivka; Roghani, Mohammadyousef; Willett, Evan J; Shirazi, Elham; Pennell, Kelly G

    2016-11-12

    Vapor intrusion (VI) is a term used to describe indoor air (IA) contamination that occurs due to the migration of chemical vapors in the soil and groundwater. The overall vapor transport process depends on several factors such as contaminant source characteristics, subsurface conditions, building characteristics, and general site conditions. However, the classic VI conceptual model does not adequately account for the physics of airflow around and inside a building and does not account for chemical emissions from alternative "preferential" pathways (e.g. sewers and other utility connections) into IA spaces. This mini-review provides information about recent research related to building air exchange rates (AERs) and alternative pathways to improve the accuracy of VI exposure risk assessment practices. First, results from a recently published AER study for residential homes across the United States (US) are presented and compared to AERs recommended by the US Environmental Protection Agency (USEPA). The comparison shows considerable differences in AERs when season, location, building age, and other factors are considered. These differences could directly impact VI assessments by influencing IA concentration measurements. Second, a conceptual model for sewer gas entry into buildings is presented and a summary of published field studies is reported. The results of the field studies suggest that alternative pathways for vapors to enter indoor spaces warrant consideration. Ultimately, the information presented in this mini-review can be incorporated into a multiple-lines-of-evidence approach for assessing site-specific VI exposure risks.

  1. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  2. Novel dynamic flux chamber for measuring air-surface exchange of Hg(o) from soils.

    PubMed

    Lin, Che-Jen; Zhu, Wei; Li, Xianchang; Feng, Xinbin; Sommar, Jonas; Shang, Lihai

    2012-08-21

    Quantifying the air-surface exchange of Hg(o) from soils is critical to understanding the cycling of mercury in different environmental compartments. Dynamic flux chambers (DFCs) have been widely employed for Hg(o) flux measurement over soils. However, DFCs of different sizes, shapes, and sampling flow rates yield distinct measured fluxes for a soil substrate under identical environmental conditions. In this study, we performed an integrated modeling, laboratory and field study to design a DFC capable of producing a steady and uniform air flow over a flat surface. The new DFC was fabricated using polycarbonate sheets. The internal velocity field was experimentally verified against model predictions using both theoretical and computational fluid dynamics techniques, suggesting fully developed flow with velocity profiles in excellent agreement with model results. Laboratory flux measurements demonstrated that the new design improves data reproducibility as compared to a conventional DFC, and reproduces the model-predicted flux trend with increasing sampling flow. A mathematical relationship between the sampling flow rate and surface friction velocity, a variable commonly parametrized in atmospheric models, was developed for field application. For the first time, the internal shear property of a DFC can be precisely controlled using the sampling flow rate, and the flux under atmospheric condition can be inferred from the measured flux and surface shear property. The demonstrated methodology potentially bridges the gap in measured fluxes obtained by the DFC method and the micrometeorological methods.

  3. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  4. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  5. Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO2 exchange

    NASA Astrophysics Data System (ADS)

    Lai, Chun-Ta; Schauer, Andrew J.; Owensby, Clenton; Ham, Jay M.; Ehleringer, James R.

    2003-09-01

    Stable isotope ratios of various ecosystem components and net ecosystem exchange (NEE) CO2 fluxes were measured in a C3-C4 mixture tallgrass prairie near Manhattan, Kansas. The July 2002 study period was chosen because of contrasting soil moisture contents, which allowed us to address the effects of drought on photosynthetic CO2 uptake and isotopic discrimination. Significantly higher NEE fluxes were observed for both daytime uptake and nighttime respiration during well-watered conditions when compared to a drought period. Given these differences, we investigated two carbon-flux partitioning questions: (1) What proportions of NEE were contributed by C3 versus C4 species? (2) What proportions of NEE fluxes resulted from canopy assimilation versus ecosystem respiration? To evaluate these questions, air samples were collected every 2 hours during daytime for 3 consecutive days at the same height as the eddy covariance system. These air samples were analyzed for both carbon isotope ratios and CO2 concentrations to establish an empirical relationship for isoflux calculations. An automated air sampling system was used to collect nighttime air samples to estimate the carbon isotope ratios of ecosystem respiration (δR) at weekly intervals for the entire growing season. Models of C3 and C4 photosynthesis were employed to estimate bulk canopy intercellular CO2 concentration in order to calculate photosynthetic discrimination against 13C. Our isotope/NEE results showed that for this grassland, C4 vegetation contributed ˜80% of the NEE fluxes during the drought period and later ˜100% of the NEE fluxes in response to an impulse of intense precipitation. For the entire growing season, the C4 contribution ranged from ˜68% early in the spring to nearly 100% in the late summer. Using an isotopic approach, the calculated partitioned respiratory fluxes were slightly greater than chamber-measured estimates during midday under well-watered conditions. In addition, time series

  6. Measurement and scaling of air-surface mercury exchange from substrates in the vicinity of two Nevada gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S; Eckley, Chris S

    2011-09-01

    The state of Nevada has extensive mineral resources, and is the largest producer of gold in the USA as well as fourth in world gold production. Mercury (Hg) is often present in the hydrothermal systems that produce gold deposits, and can be found in elevated concentrations in gold ore. As a result, mining of gold ore in Nevada has been shown to release Hg to the atmosphere from point and non-point sources. This project focused on measurement of air-soil Hg exchange associated with undisturbed soils and bedrock outcrops in the vicinity of two large gold mines. Field and laboratory data collected were used to identify the important variables controlling Hg flux from these surfaces, and to estimate a net flux from the areas adjacent to the active mines as well as that occurring from the mined area pre-disturbance. Mean daily flux by substrate type ranged from 9 ng m(-2) day(-1) to 140 ng m(-2) day(-1). Periods of net deposition of elemental Hg were observed when air masses originating from a mine site moved over sampling locations. Based on these observations and measured soil Hg concentrations we suggest that emissions from point and non-point sources at the mines are a source of Hg to the surrounding substrates with the amount deposited not being of an environmental concern but of interest mainly with respect to the cycling of atmospheric elemental Hg. Observations indicate that while some component of the deposited Hg is sequestered in the soil, this Hg is gradually released back to the atmosphere over time. Estimated pre-disturbance emissions from the current mine footprints based on field data were 0.1 and 1.7 kg yr(-1), compared to that estimated for the current non-point mining sources of 19 and 109 kg yr(-1), respectively.

  7. Numerical Simulation of Air Mass Modification Over the East China Sea during the Winter Season

    NASA Astrophysics Data System (ADS)

    Hsu, Wu-Ron

    Air mass modification over the East China Sea during cold air outbreaks in the winter season was simulated by utilizing a high-resolution numerical model. The model includes most of the major physical processes, such as, surface exchange of heat and moisture between water and air; condensation and evaporation; and vertical turbulent transfer of heat, moisture, and momentum. The simulated convective boundary layer (CBL) consists of a surface layer, a subcloud layer, and a cloud layer. It is capped by an inversion with strong temperature and moisture gradients. Mesoscale cellular convection (MCC) embedded within the convective layer moves along with the mean wind. The average aspect ratio of the cells is 17.5, which agrees with observed aspect ratios for convective cells over the East China Sea. The upward convective motion correlates very well with the appearance of clouds, higher temperature, and higher moisture content in the CBL. The effects of diabatic heating were found to be very important in driving the thermal convection. Without the release of latent heat, the convective layer would be very shallow, and the convective motion would be greatly suppressed. Even though the formulation and dissipation of a cloud is associated with the movement of the resolvable scale MCC, the vertical transport of heat and moisture is achieved mainly by the unresolvable turbulent eddies. The distribution of specific humidity during the passage of the surface front reveals the moisture being pushed upward along the frontal surface as observed. The cold and dry air behind the cold front is quickly modified by strong convection over the warm water surface, especially over the Kuroshio Current. A cloud-free region exists near the coast where the CBL is too shallow for clouds to develop. A layer of stratocumulus forms downstream from the cloud-free region. The depth of the CBL increases toward the Kuroshio Current due to strong heat and moisture fluxes from the water surface. The CBL

  8. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  9. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  10. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  11. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  12. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  13. Chemical-specific representation of air--soil exchange and soil penetration in regional multimedia models.

    PubMed

    McKone, T E; Bennett, D H

    2003-07-15

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil layers with different properties but a fixed boundary condition at the air-soil surface. The soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, groundwater, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo[a]pyrene, MTBE, TCDD, and tritium.

  14. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  15. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  16. [Observation on the air-borne bacteria and ammonia (NS3) gas in laboratory animal facility with rotary heat exchanger].

    PubMed

    Obara, T; Matsuyama, M; Fujita, S; Yamauchi, C

    1979-01-01

    The number of air-borne bacteria in air ducts and barrierred laboratory animal rooms with the so-called econovent rotary heat exchanger, were checked monthly during a year by the pin-hole sumpler method for air ducts and Koch method for animal rooms. Also, concentration of ammonia was checked with the same samples by gas impinger. No significantly difference in number of air-borne bacteria was seen between before and after passing the econovent. Those passing through HEPA filter was not detected. There were more air-borne bacteria in animal rooms, outside locker room and shower room than in the corridor, utensil storage, inside locker room and pass box. No ammonia were detected in the outdoor, but exhaust air duct after passing the econovent contained very small amount of ammonia. On the other hand, high concentration of ammonia were preserved in the supplying air duct, exhaust air duct and mice and rats rooms, about 86% of ammonia in exhaust air duct returned back into the supplying air duct. No influences on reproduction in mice and rats were recognized.

  17. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  18. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  19. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  20. Mass spectrometric measurement of protein amide hydrogen exchange rates of apo- and holo-myoglobin.

    PubMed Central

    Johnson, R. S.; Walsh, K. A.

    1994-01-01

    Measurement of backbone amide hydrogen exchange rates can provide detailed information concerning protein structure, dynamics, and interactions. Although nuclear magnetic resonance is typically used to provide these data, its use is restricted to lower molecular weight proteins that are soluble at millimolar concentrations. Not subject to these limitations is a mass spectrometric approach for measuring deuterium incorporation into proteins that are subsequently proteolyzed by pepsin; the resulting peptide masses are measured using a flowing-fast atom bombardment ionization source (Zhang Z, Smith DL, 1993, Protein Sci 2:522-531). In the current study, amide deuterium incorporation for intact apo- and holo-myoglobin was measured using liquid chromatography coupled directly to an electrospray ionization (LC/MS) source. Electrospray ionization provided a more complete coverage of the protein sequence and permitted the measurement of deuterium incorporation into intact proteins. Tandem mass spectrometry was used to rapidly identify the peptic peptides. It was found that within 30 s, the amides in apo-myoglobin were 47% deuterated, whereas holo-myoglobin was 12% deuterated. Peptic digestion and LC/MS demonstrated that regions represented by peptic peptides encompassing positions 1-7, 12-29, and 110-134 were not significantly altered by removal of the heme. Likewise, destabilized regions were identified within positions 33-106 and 138-153. PMID:7756994

  1. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  2. Air-sea carbon dioxide exchange in the Southern Ocean and Antarctic Sea ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.

    The Southern Ocean is an important part of the global carbon cycle, responsible for roughly half of the carbon dioxide (CO2) absorbed by the global ocean. The air-sea CO2 flux (Fc) can be expressed as the product of the water-air CO2 partial pressure difference (DeltapCO2) and the gas transfer velocity ( k), an exchange coefficient which represents the efficiency of gas exchange. Generally, Fc is negative (a sink) throughout the Southern Ocean and Antarctic sea ice zone (SIZ), but uncertainty in k has made it difficult to develop an accurate regional carbon budget. Constraining the functional dependence of k on wind speed in open water environments, and quantifying the effect of sea ice on k, will reduce uncertainty in the estimated contribution of the Southern Ocean and Antarctic SIZ to the global carbon cycle. To investigate Fc in the Southern Ocean, a ruggedized, unattended, closed-path eddy covariance (EC) system was deployed on the Antarctic research vessel Nathaniel B. Palmer for nine cruises during 18 months from January 2013 to June 2014 in the Southern Ocean and coastal Antarctica. The methods are described and results are shown for two cruises chosen for their latitudinal range, inclusion of open water and sea ice cover, and large DeltapCO2. The results indicated that ship-based unattended EC measurements in high latitudes are feasible, and recommendations for deployments in such environments were provided. Measurements of Fc and DeltapCO2 were used to compute k. The open water data showed a quadratic relationship between k (cm hr-1) and the neutral 10-m wind speed (U10n, m s -1), k=0.245 U10n 2+1.3, in close agreement with tracer-based results and much lower than previous EC studies. In the SIZ, it was found that k decreased in proportion to sea ice cover. This contrasted findings of enhanced Fc in the SIZ by previous open-path EC campaigns. Using the NBP results a net annual Southern Ocean (ocean south of 30°S) carbon flux of -1.1 PgC yr-1 was

  3. Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange Mass Spectrometry

    PubMed Central

    Landgraf, Rachelle R.; Goswami, Devrishi; Rajamohan, Francis; Harris, Melissa S.; Calabrese, Matthew; Hoth, Lise R.; Magyar, Rachelle; Pascal, Bruce D.; Chalmers, Michael J.; Busby, Scott A.; Kurumbail, Ravi; Griffin, Patrick R.

    2013-01-01

    Summary AMP-Activated protein kinase (AMPK) monitors cellular energy, regulates genes involved in ATP synthesis and consumption, and is allosterically activated by nucleotides and synthetic ligands. Analysis of the intact enzyme by hydrogen/deuterium exchange mass spectrometry reveals conformational perturbations of AMPK in response to binding of nucleotides, cyclodextrin and a synthetic small molecule activator, A769662. Results from this analysis clearly show that binding of AMP leads to conformational changes primarily in the γ subunit of AMPK and subtle changes in the α and β subunits. In contrast, A769662 causes profound conformational changes in the glycogen binding module of the β subunit and in the kinase domain of the α subunit suggesting that the molecular binding site of latter resides between the α and β subunits. The distinct short and long-range perturbations induced upon binding of AMP and A769662 suggest fundamentally different molecular mechanisms for activation of AMPK by these two ligands. PMID:24076403

  4. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  5. Air Mass Modification in the Marginal Ice Zone.

    DTIC Science & Technology

    1985-11-01

    stability. The relationship between the drag coefficients and the exchange coefficients for heat and moisture has been discussed by Walter et al. (1984). An...over the Bering Sea, Walter et al. (1984) measured the ratio CH/CD to be 0.20 - 0.28 over rough sea ice which had a drag coefficient of CD = 3.0 * 0.6 x...34 *, . ...-• •.....- ........ ... .... . . . . -.-.. -. ,. . . 7 et al. (1984) estimate of C 4.0 x 10- is larger than the CD measured by Walter et al. (1984) and suggests that CH/CD

  6. Erroneous mass transit system and its tended relationship with motor vehicular air pollution (An integrated approach for reduction of urban air pollution in Lahore).

    PubMed

    Aziz, Amer; Bajwa, Ihsan Ullah

    2008-02-01

    Air pollution is threat to the lives of people living in big cities of Pakistan. In Lahore 1,250 people die annually because of air pollution. Mass transit system that can be put forth as solution to urban air pollution is contingent with right choice of system and its affiliation with motorized vehicles and nature of urban air pollution. Existing mass transit system in Lahore due to untrue operation causes surfeit discharge of motor vehicular carbon monoxide. Tended relationships of mass transit system with motorized vehicles and urban air pollution are quite noteworthy. The growing motor vehicles (a consequence of flawed public mass transit system) are potential source of urban air pollution. This paper attempts to highlight correlations and regression curves of existing mass transit system. Further it recommends a two facet approach for reduction of motor vehicular air pollution in Lahore.

  7. Air-Sea Exchange and Atmospheric Cycling of Mercury in South China Sea

    NASA Astrophysics Data System (ADS)

    Tseng, C. M.; Liu, C. S.; Lamborg, C. H.

    2014-12-01

    Limited knowledge exists concerning the role of the low-latitude marginal seas in mercury (Hg) emissions on a global scale, especially tropical-subtropical and monsoon-dominated marginal seas in East Asia. To assess this potential mobilization of Hg through air-sea gas exchange, we have determined the dissolved elemental Hg (DEM) and gaseous elemental Hg (GEM) concentrations in surface seawater and atmosphere, respectively, during seasonal oceanographic cruises to the SouthEast Asian Time-series Study (SEATS) station (18 oN, 116 oE) from 2003 to 2007. The sampling and analysis of GEM and DEM were performed on board ship by using an on-line mercury analyzer (GEMA). Over the SCS, the GEM concentrations are elevated 2-3 times above global background values, with higher enhancements in the winter when the northeast monsoon draws air from China. The impact of long-range transport, as controlled by seasonal monsoons, has on the Hg atmospheric distribution and cycling in the SCS. The DEM concentration varied seasonally, with a high in summer and a low in winter and showed a positive correlation with sea surface temperature (SST). The elevated DEM concentration in summer appears mainly abiologically driven. In winter, the SCS acts as a sink of atmosphere Hg0 as a result of low SST and high wind of the year, enhanced vertical mixing and elevated atmospheric gaseous elemental mercury. Annually, the SCS serves as a source of Hg0 to the atmosphere of 300±50 pmol m-2 d-1 (390±60 kmol Hg y-1, ~2.6% of global emission in ~1% of global ocean area), suggesting high regional Hg pollution impacts from the surrounding Mainland (mostly China).

  8. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  9. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  10. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  11. Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    NASA Astrophysics Data System (ADS)

    Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; Pérez-Murano, F.; Fraxedas, J.; Esteve, J.; Barniol, N.

    2007-07-01

    Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10-11g/cm2Hz equivalent to 0.9ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10-17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.

  12. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  13. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  14. Aeorodynamic characteristics of an air-exchanger system for the 40- by 80-foot wind tunnel at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.

    1986-01-01

    A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various air-exchange configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the air exchanger could be increased (1) by adding a shaped wall to smoothly turn the incoming air downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the air-exchange rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.

  15. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  16. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2013-02-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process-level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short-term (i.e., post-fertilization) and total growing season NH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈ 700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈ 125 ng N m-2 s-1. A key finding of the surface chemistry measurements was the observation of high pH (7.0-8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak

  17. Processes of ammonia air-surface exchange in a fertilized Zea mays canopy

    NASA Astrophysics Data System (ADS)

    Walker, J. T.; Jones, M. R.; Bash, J. O.; Myles, L.; Meyers, T.; Schwede, D.; Herrick, J.; Nemitz, E.; Robarge, W.

    2012-06-01

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short term (i.e., post fertilization) and total growing seasonNH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha-1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈700 ng N m-2 s-1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈125 ng N m-2 s-1 A key finding of the surface chemistry measurements was the observation of high pH (7.0 - 8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak LAI

  18. Air and seawater pollution and air-sea gas exchange of persistent toxic substances in the Aegean Sea: spatial trends of PAHs, PCBs, OCPs and PBDEs.

    PubMed

    Lammel, Gerhard; Audy, Ondřej; Besis, Athanasios; Efstathiou, Christos; Eleftheriadis, Kostas; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P; Samara, Constantini; Sofuoglu, Aysun; Sofuoglu, Sait C; Taşdemir, Yücel; Vassilatou, Vassiliki; Voutsa, Dimitra; Vrana, Branislav

    2015-08-01

    Near-ground air (26 substances) and surface seawater (55 substances) concentrations of persistent toxic substances (PTS) were determined in July 2012 in a coordinated and coherent way around the Aegean Sea based on passive air (10 sites in 5 areas) and water (4 sites in 2 areas) sampling. The direction of air-sea exchange was determined for 18 PTS. Identical samplers were deployed at all sites and were analysed at one laboratory. hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs) as well as dichlorodiphenyltrichloroethane (DDT) and its degradation products are evenly distributed in the air of the whole region. Air concentrations of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE) and o,p'-DDT and seawater concentrations of p,p'-DDE and p,p'-DDD were elevated in Thermaikos Gulf, northwestern Aegean Sea. The polychlorinated biphenyl (PCB) congener pattern in air is identical throughout the region, while polybrominated diphenylether (PBDE)patterns are obviously dissimilar between Greece and Turkey. Various pollutants, polycyclic aromatic hydrocarbons (PAHs), PCBs, DDE, and penta- and hexachlorobenzene are found close to phase equilibrium or net-volatilisational (upward flux), similarly at a remote site (on Crete) and in the more polluted Thermaikos Gulf. The results suggest that effective passive air sampling volumes may not be representative across sites when PAHs significantly partitioning to the particulate phase are included.

  19. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  20. A Synoptic Air Mass Approach to Defining Southwest U.S. Summer Duration and Change

    NASA Astrophysics Data System (ADS)

    Morrill, C.; Wachtel, C. J.; Godek, M. L.

    2015-12-01

    As the past decade was the warmest in the 110-year active record, and future Southwest warming is expected to be most intense in the summer season, it is important to have an updated atmospheric definition of what constitutes a Southwest summer. This is particularly true given the intensity of current drought conditions and that summers may be changing. Using weather-type data from the Spatial Synoptic Classification, this research aims to synoptically define the summer season in the Southwest since 1950. The Southwest is spatially described here by sub-region and 28 air mass stations within are chosen for air mass analysis. Daily air mass frequencies are examined to determine the dominant and less prevalent types annually and seasonally, from May to September. Then, frequencies in the middle of summer are compared to those in the seasonal fringe months to explore the possibility of a synoptic shift in the timing of the region's summer season. Finally, to further scrutinize how regional air mass frequencies have changed with time, the data are subdivided and evaluated for the 'Early record' (years prior to 1975) and 'Modern record' (post 1975). Frequency departures are tested for practical and statistical significance to characterize the strength of summer season variability. Results indicate that Dry Moderate air masses are the most common annually and in summer. Moist and transitional air masses tend to less frequent throughout the Southwest; however, frequencies vary greatly by sub-region. Wet and dry conditions are observed in accordance with the monsoon in some sub-regions, but not throughout the region. Significant changes in sub-regional air mass tendencies are identified that show the Early record experienced cooler air mass conditions (fewer tropical types and more moderate and cool types) than the Modern record. From a long-term synoptic air mass perspective, typical Southwest summers likely last from May to August. However, in the Modern record May

  1. Elucidation of tRNA-cytochrome c interactions through hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Lo, Yi-Ting; Huang, Hung-Wei; Huang, Yi-Chuan; Chan, Jui-Fen; Hsu, Yuan-Hao Howard

    2017-02-27

    Cytochrome c (cyt c) is a mitochondrial protein responsible for transferring electrons between electron transport chain complexes III and IV. The release of cyt c from the mitochondria has been considered as a commitment step in intrinsic apoptosis. Transfer RNA (tRNA) has recently been found to interact with the released cyt c to prevent the formation of the apoptosome complex, thus preventing cell apoptosis. To understand the molecular basis of tRNA-cyt c interactions, we applied hydrogen/deuterium exchange mass spectrometry (HDXMS) to analyze the interactions between tRNA and cyt c. tRNA(Phe) binding to cyt c reduced the deuteration level of cyt c in all analyzed regions, indicating that tRNA binding blocks the solvent-accessible regions and results in the formation of a more compact conformation. Substitution of the tRNA(Phe) with the total tRNA from brewer's yeast in the HDXMS experiment significantly reduced deuteration in the N-terminus and the region 18-32 residue of cyt c, where all tRNAs are bound. To clarify the cause of binding, we used synthesized single-stranded oligonucleotides of 12-mer dA and dT to form complexes with cyt c. The exchange of the nucleotide bases between adenine and thymine did not affect the deuteration level of cyt c. However, the regions 1-10 and 65-82 showed minor decreases after unstructured dA or dT DNA binding. Collectively, these results reveal that cyt c maintains its globular structure to interact with tRNA. The region 18-32 selectively interacts with tRNA, and N-terminal 1-10 interacts with oligonucleotides electrostatically.

  2. Hydrogen/deuterium exchange of hydrophobic peptides in model membranes by electrospray ionization mass spectrometry.

    PubMed

    Hansen, Raino K; Broadhurst, R William; Skelton, Paul C; Arkin, Isaiah T

    2002-12-01

    We demonstrate here that the hydrogen/deuterium solvent exchange (HDX) properties of the transmembrane fragment of the M2 protein of Influenza A (M2-TM) incorporated into lipid vesicles or detergent micelles can be studied with straightforward electrospray (ESI) and nanospray mass spectrometry (MS) configurations provided that key factors, including sample preparation techniques, are optimized. Small unilamellar vesicle preparations were obtained by solubilizing dimyristoyl phosphatidylcholine (DMPC) and the M2-TM peptide in aqueous solution with n-octyl-beta-D-glycopyranoside, followed by dialysis to remove the detergent. Electron microscopy experiments revealed that subsequent concentration by centrifugation introduced large multilamellar aggregates that were not compatible with ESI-MS. By contrast, a lyophilization-based concentration procedure, followed by thawing above the liquid crystal transition temperature of the lipid component, maintained the liposome size profile and yielded excellent ion fluxes in both ESI-MS and nano-ESI-MS. Using these methods the global HDX profile of M2-TM in aqueous DMPC vesicles was compared with that in methanol, demonstrating that several amide sites were protected from exchange by the lipid membrane. We also show that hydrophobic peptides can be detected by ESI-MS in the presence of a large molar excess of the detergent Triton X-100. The rate of HDX of M2-TM in Triton X-100 micelles was faster than that in DMPC vesicles but slower than when the peptide had been denatured in methanol. These results indicate that the accessibility of backbone amide sites to the solvent can be profoundly affected by membrane protein structure and dynamics, as well as the properties of model bilayer systems.

  3. A Comparative Study of Weights and Sizes of Flat-Plate Exhaust-Gas-to-Air Heat Exchangers with and without Fins

    DTIC Science & Technology

    1947-07-01

    tests of both heat exchangers, air or-d exhauj’t-gaa flow rates wtre mnr.sur’sd with venturi motors located downstream from the heat exchanger. Air...cas— flow ratoa aa di.torrin.jd froo the venturi notor. TEST rBOCEDUPE Flii^it toatJn3 of tho host exchangers wr.3 conduced to evaluate their tho...Static pressures upstrean and downctroTa frca tho hoat- oxchangor core wore raacurod with etat5c tubos , and air flow rates ware raacurcd vith n vonturi

  4. Effect of the accumulation of polycyclic aromatic hydrocarbons in the sea surface microlayer on their coastal air-sea exchanges

    NASA Astrophysics Data System (ADS)

    Guitart, C.; García-Flor, N.; Miquel, J. C.; Fowler, S. W.; Albaigés, J.

    2010-01-01

    Several measurements of polycyclic aromatic hydrocarbons (PAHs) in coastal marine compartments (viz. atmosphere, sea surface microlayer, subsurface seawater, sinking particles and sediments), made nearly simultaneously at two stations in the north-eastern Mediterranean, were used to estimate the transport fluxes of individual and total PAHs through the air-seawater-sediment system. Diffusive air-sea exchange fluxes were estimated using both subsurface water (SSW) and sea surface microlayer (SML) concentrations. The air-SML fluxes ranged from 411 to 12,292 ng m - 2 d - 1 (absorption) and from - 506 to -13,746 ng m - 2 d - 1 (volatilisation) for total PAHs (Σ15). Air-seawater column transport of particle-associated PAHs was estimated from the analysis of particulate atmospheric and sediment interceptor trap materials. Air-sea particle deposition fluxes of total PAHs ranged from 13 to 114 ng m - 2 d - 1 and seawater particle settling fluxes (upper 5 m water column) ranged from 184 to 323 ng m - 2 d - 1 . The results of this study indicate that both the magnitude and the direction of the calculated air-sea diffusive fluxes change when PAH concentrations in the SML are considered. As a result, PAHs accumulation in the SML could produce the so-called "flux capping effect". However, the high variability in the coastal air-sea PAHs flux estimations, mainly due to the parameters uncertainty, requires further experimental approaches, including improvement of parameterisations.

  5. Freshwater mass balance and exchange of water masses with the open sea: the Mljet Lakes (Croatia, Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Martincic, Urska; Bezak, Nejc; Zagar, Dusan; Makovec, Tihomir; Lucic, Davor; Onofri, Vladimir; Malacic, Vlado

    2016-04-01

    Two karstic seawater lakes (Veliko - Big and Malo - Small Lake) located in the National Park Mljet on the Mljet Island in Croatia were investigated in this study. The Small and the Big Lake cover 0.25 and 1.45 km2, respectively. The two lakes are connected to each other and to the sea by narrow channels. The connecting channel between the Big Lake and the sea is 12 m wide and 3 m deep. The connection to the Small Lake leads through another artificial channel (2.7 m wide and 0.8 m deep). The average salinity of the Big and the Small lake is 37.75 and 36.9, respectively, and the average salinity of the open sea is 38.5. While previous studies have been conducted due to the lakes' unique ecosystem and the karstic characteristics of the area, the main aim of this study was to determine the freshwater mass balance and exchange of water masses with the nearby sea. Several measurement campaigns were performed between 2008 and 2015 when meteorological parameters as well as salinity, water temperature and water velocities in both lakes and the channels were observed. A perpetual year was determined using available meteorological data. The contribution of the surface runoff to both lakes was modelled using the hydrological rainfall-runoff HEC-HMS model. Curve number parameter was estimated using the CLC Corine Land cover and geomorphological maps. Evaporation from the lake was calculated using the Verburg, Kondo and Coare equations. We found that the annual evaporation approximately equals the annual rainfall to the lake surface (cca. 550-600 mm). From the hydrological model and the difference between precipitation and evaporation from the lake surface we calculated the annual net excess of freshwater between 0.5 106 and 0.7 106 m3. The average salinity in both lakes is lower than the salinity in the sea; therefore, we hypothesize that the excess water should be discharged either through the channel between the Big Lake and the open sea or through underwater karstic sink

  6. Using a passive air sampler to monitor air-soil exchange of organochlorine pesticides in the pasture of the central Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Ren, Jiao; Gong, Ping; Yao, Tandong

    2017-02-15

    Air-soil exchange is a key process controlling the fate of persistent organic pollutants (POPs). However, the "sink effect" of soil for POPs in Tibetan pasture has not been clear. In NamCo, in the central Tibetan Plateau (TP) where the land is covered by grass, a modified passive air sampler (PAS) (thickness: 2cm) was tested. Using the PAS, the atmospheric gaseous phase organochlorine pesticides (OCPs) at 11 heights from close-to-surface (2cm) to 200cm above ground, in summer and in winter, were measured. Concentrations of OCPs in summer were higher than those in winter. Both in summer and winter, atmospheric concentrations of OCPs decreased with decreasing height from 200 to 2cm, indicating that OCPs were being deposited from air to soil. Air deposition of OCPs was possibly driven by wind speed. Furthermore, based on air OCPs at 0-3cm near the surface, the interface exchange of OCPs between air and soil was studied by the fugacity method. The results showed that pastural soil in the TP was a "sink" of OCPs even in summer. The mean deposition fluxes of α-HCH, γ-HCH and o,p'-DDT were 0.72, 0.24 and 0.54pg/h/m(2), respectively, and it was estimated that the level of these pollutants in the soil will double every 24, 66 and 206years, respectively. This study will contribute to the further understanding of global cycling of POPs in different land covers.

  7. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  8. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  9. Dynamic Structural Changes During Complement C3 Activation Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Schuster, Michael C.; Ricklin, Daniel; Papp, Krisztián; Molnar, Kathleen S.; Coales, Stephen J.; Hamuro, Yoshitomo; Sfyroera, Georgia; Chen, Hui; Winters, Michael S.; Lambris, John D.

    2008-01-01

    Proteolytic cleavage of component C3 to C3b is a central step in the activation of complement. Whereas C3 is largely biologically inactive, C3b is directly involved in various complement activities. While the recently described crystal structures of C3 and C3b provide a molecular basis of complement activation, they do not reflect the dynamic changes that occur in solution. In addition, the available C3b structures diverge in some important aspects. Here we have utilized hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to investigate relative changes in the solution-phase structures of C3 and C3b. By combining two forms of mass spectrometry we could maximize the primary sequence coverage of C3b and demonstrate the feasibility of this method for large plasma proteins. While the majority of the 82 peptides that could be followed over time showed only minor alterations in HDX, we observed clear changes in solvent accessibility for 16 peptides, primarily in the α-chain (α’NT, MG6-8, CUB, TED, C345C domains). Most of these peptides could be directly linked to the structural transitions visible in the crystal structures and revealed additional information about the probability of the structural variants of C3b. In addition, a discontinuous cluster of seven peptides in the MG3, MG6, LNK and α’NT domains showed a decreased accessibility after activation to C3b. Although no gross conformational changes are detected in the crystal structure, this area may reflect a structurally flexible region in solution that contributes to C3 activation and function. PMID:18456336

  10. Total-reflection X-ray fluorescence — a tool to obtain information about different air masses and air pollution

    NASA Astrophysics Data System (ADS)

    Schmeling, Martina

    2001-11-01

    Atmospheric aerosols are solid particles dissolved in air and change their chemical composition frequently depending on various parameters. In order to identify regional air circulation atmospheric aerosol filter samples were taken at Loyola University Chicago's Lake Shore Campus during the months of July and August 2000 with sampling times ranging between 1 and 2 h. The samples were digested in a microwave oven and analyzed by total-reflection X-ray fluorescence (TXRF) spectrometry. One diurnal variation comprising five consecutive sampling events was selected and discussed as well as 4 days experiencing different meteorology were compared to exemplify the variation in trace elemental concentration according to air mass movements and highlight the capability of total-reflection X-ray fluorescence analysis. It was found that due to changes in meteorological conditions particularly wind direction and wind speed, trace elemental compositions varied rapidly and could be used to distinguish between 'Lake Michigan air' and 'metropolitan Chicago air' on such short-term time scale like one hour. Back trajectory analysis was applied to support and corroborate the results. The outcome of this study clearly shows that total-reflection X-ray fluorescence is an optimal tool for analysis of atmospheric aerosols.

  11. qcML: an exchange format for quality control metrics from mass spectrometry experiments.

    PubMed

    Walzer, Mathias; Pernas, Lucia Espona; Nasso, Sara; Bittremieux, Wout; Nahnsen, Sven; Kelchtermans, Pieter; Pichler, Peter; van den Toorn, Henk W P; Staes, An; Vandenbussche, Jonathan; Mazanek, Michael; Taus, Thomas; Scheltema, Richard A; Kelstrup, Christian D; Gatto, Laurent; van Breukelen, Bas; Aiche, Stephan; Valkenborg, Dirk; Laukens, Kris; Lilley, Kathryn S; Olsen, Jesper V; Heck, Albert J R; Mechtler, Karl; Aebersold, Ruedi; Gevaert, Kris; Vizcaíno, Juan Antonio; Hermjakob, Henning; Kohlbacher, Oliver; Martens, Lennart

    2014-08-01

    Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.

  12. [Analysis of mouse liver membrane proteins using multidimensional ion exchange chromatography and tandem mass spectrometry].

    PubMed

    Wang, Zhuowei; Peng, Fuli; Wang, Yuan; Tong, Wei; Ren, Yan; Xu, Ningzhi; Liu, Siqi

    2010-02-01

    The analysis of membrane proteins is still a technical obstacle in proteomic investigation. A fundamental question is how to allow the hydrophobic proteins fully solubilizing in a proper solvent environment. We propose that the denatured membrane proteins in high denaturant solution are fully ionized and separated through ion exchange chromatography. The membrane proteins prepared from a mouse liver were dissolved in 4 mol/L urea, 20 mmol/L Tris-HCl buffer (pH 9.0), and loaded onto a tandem chromatography coupled with Q-Sepharose FF and Sephacryl S-200HR. With a linear NaCl gradient elution, the bound proteins were eluted and collected followed by sodium-dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) to further separate the eluted proteins. The protein bound on SDS-PAGE were excised and in-gel digested by trypsin, while the digested peptides were delivered to reversed-phase high performance liquid chromatography (HPLC) and ion-trap mass spectrometry for the peptide identifications. Of a total of 392 proteins identified, 306 were membrane proteins or membrane associated proteins reported by literature. Based on the calculation of hydrophobicity, the GRAVY (grand average of hydropathicity) scores of 83 proteins are over or equal to 0.00. Taking all the evidence, we have established an effective approach which is feasible in the investigation towards mouse liver membrane proteomics.

  13. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions

    PubMed Central

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R

    2011-01-01

    Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery. PMID:21329427

  14. qcML: An Exchange Format for Quality Control Metrics from Mass Spectrometry Experiments*

    PubMed Central

    Walzer, Mathias; Pernas, Lucia Espona; Nasso, Sara; Bittremieux, Wout; Nahnsen, Sven; Kelchtermans, Pieter; Pichler, Peter; van den Toorn, Henk W. P.; Staes, An; Vandenbussche, Jonathan; Mazanek, Michael; Taus, Thomas; Scheltema, Richard A.; Kelstrup, Christian D.; Gatto, Laurent; van Breukelen, Bas; Aiche, Stephan; Valkenborg, Dirk; Laukens, Kris; Lilley, Kathryn S.; Olsen, Jesper V.; Heck, Albert J. R.; Mechtler, Karl; Aebersold, Ruedi; Gevaert, Kris; Vizcaíno, Juan Antonio; Hermjakob, Henning; Kohlbacher, Oliver; Martens, Lennart

    2014-01-01

    Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml. PMID:24760958

  15. Electrospray ionization mass spectrometric observation of ligand exchange of zinc pyrithione with amino acids.

    PubMed

    Moriwaki, Hiroshi; Okabayashi, Masanori; Watanabe, Takehiro; Kawasaki, Hideya; Arakawa, Ryuichi

    2009-07-01

    Zinc pyrithione (ZnPT) is widely used as an antidandruff or antifouling reagent. However, this compound is considered toxic, such as the teratogenic effect, to aquatic lives, and it is important to clarify the mechanism of its toxicity. In this study, the interactions between ZnPT and amino acids were observed using electrospray ionization mass spectrometry (ESI-MS) in order to obtain information on the activity of ZnPT within the living body. The ZnPT complex ([ZnPT-ligand+Amino acid]+), in which the ligand of ZnPT was exchanged by the amino acid, was detected in ZnPT solutions mixed with one of 20 amino acids by ESI-MS. Histidine and cysteine, in particular, showed a high reactivity with ZnPT, while serine and glycine showed a low reactivity. The complexes of ZnPT and a peptide were also observed by the ESI-MS measurement of the solution containing ZnPT with the peptide. These results would be useful to understand the mechanism of ZnPT toxicities to living creatures.

  16. Online deuterium hydrogen exchange and protein digestion coupled with ion mobility spectrometry and tandem mass spectrometry.

    PubMed

    Donohoe, Gregory C; Arndt, James R; Valentine, Stephen J

    2015-05-19

    Online deuterium hydrogen exchange (DHX) and pepsin digestion (PD) is demonstrated using drift tube ion mobility spectrometry (DTIMS) coupled with linear ion trap (LTQ) mass spectrometry (MS) with electron transfer dissociation (ETD) capabilities. DHX of deuterated ubiquitin, followed by subsequent quenching and digestion, is performed within ∼60 s, yielding 100% peptide sequence coverage. The high reproducibility of the IMS separation allows spectral feature matching between two-dimensional IMS-MS datasets (undeuterated and deuterated) without the need for dataset alignment. Extracted ion drift time distributions (XIDTDs) of deuterated peptic peptides are mobility-matched to corresponding XIDTDs of undeuterated peptic peptides that were identified using collision-induced dissociation (CID). Matching XIDTDs allows a straightforward identification and deuterium retention evaluation for labeled peptides. Aside from the mobility separation, the ion trapping capabilities of the LTQ, combined with ETD, are demonstrated to provide single-residue resolution. Deuterium retention for the c- series ions across residues M(1)-L(15) and N(25)-R(42) are in good agreement with the known secondary structural elements within ubiquitin.

  17. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  18. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  19. Air-water gas exchange of mercury in the Bay Saint François wetlands: Observation and model parameterization

    NASA Astrophysics Data System (ADS)

    Zhang, Hong H.; Poissant, Laurier; Xu, Xiaohong; Pilote, Martin; Beauvais, Conrad; Amyot, Marc; Garcia, Edenise; Laroulandie, Jerome

    2006-09-01

    Total gaseous mercury (TGM) air-water flux measurements were taken using a dynamic flux chamber (DFC) coupled with a gaseous mercury (Hg) analyzer at the Bay St. François (BSF) wetlands (Quebec, Canada) in summer 2003. The measured TGM fluxes over water exhibited a consistent diurnal pattern, with maximum emissions during daytime and minimum fluxes occurring at night. Pearson correlation analysis showed that solar radiation was the most influential environmental parameter in TGM air-water exchange. Significant correlations were also found between TGM fluxes and 1 hour time-lagged water temperature, indicating the enhancement of fluxes by bacterial activities or chemical reactions. The concentrations of dissolved gaseous mercury (DGM) in water were measured during the 2003 sampling period and indicated that DGM was always supersaturated, which implied that the water body acted primarily as a source of mercury to the atmosphere. Several empirical models of mercury air-water gas exchange were developed and evaluated. Compared to the published models, these proposed models were capable of producing good results, leading to a better agreement between the measured and modeled fluxes (improvements by 48-98%). Among these empirical models, the ones linking TGM fluxes with net radiation were superior because of their strong predictive capability. Two preferred models were selected for air-water TGM flux estimation from Lake St. Pierre's surrounding wetlands. These two models yield a mean emission of 0.19-0.24 kg mercury during May-September each year from 1999 to 2003.

  20. The study of mercury exchange rate between air and soil surface in Hongfeng reservoir region, Guizhou, PR China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Feng, X.; Qiu, G.

    2003-05-01

    In summer of 2002, we measured the exchange flux of mercury between air and soil surface using the method of Dynamic Flux Chamber (DFC) in Hongfeng lake region. At the same time, we recorded meteorological parameters such as air temperature, soil temperature, wind speed and solar radiation using a multi-function mini-weather station (global water III). Soil, moss and fertilizer samples in study area were also collected. The Hg fluxes of air/soil surface rangeed from -11.0ng m^{-2} h^{-1} to 219.0ng m^{-2}h^{-1}, averaged at 29.2 ng m^{-2} h^{-1} (n = 508). The data show that the exchange of mercury is bi-direction between air and soit surface: namely both emission and deposition of mercury occurs, but Hg emission is much more frequent than deposition process (n_{deposition} =3,n_{emission}= 505). The average mercury content in soil, moss, fertilizer sample are 249.9± 24.1ng/g (n=3), 450.4 ± 64.6ng/g (n=2), 53.4ng/g (n= 1) respectively.

  1. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  2. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  3. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model (ISES Presentation)

    EPA Science Inventory

    Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure ...

  4. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  5. CO2 and O2 Gas Exchange in an Experimental Model of the Btlss with Plant Wastes and Human Wastes Included in the Mass Exchange

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Velichko, Vladimir; Tikhomirova, Natalia; Trifonov, Sergey V.

    2016-07-01

    Mass exchange processes in the new experimental model of the biotechnical life support system (BTLSS) constructed at the Institute of Biophysics SB RAS have a higher degree of closure than in the previous BTLSS, and, thus, the technologies employed in the new system are more complex. Therefore, before closing the loops of mass exchange processes for several months, the new model of the BTLSS was run to match the technologies employed to cultivate plants and the methods used to involve inedible plant parts and human wastes into the mass exchange with the CO2 absorption rate and the amount of the resulting O2. The plant compartment included vegetables grown on the soil-like substrate (SLS) (chufa, beet, carrot, radish, and lettuce), plants hydroponically grown on expanded clay aggregate (wheat, soybean, watercress), and plants grown in aquaculture (common glasswort and watercress). Nutrient solutions for hydroponically grown plants were prepared by using products of physicochemical mineralization of human wastes. Growing the plants in aquaculture enabled maintaining NaCl concentration in the irrigation solution for hydroponically grown plants at a level safe for the plants. Inedible plant biomass was added to the SLS. Three cycles of closing the system were run, which lasted 7, 7, and 10 days. The comparison of the amount of CO2 fed into the system over 24 h (simulating human respiration) and the amount of CO2 daily exhaled by a 70-kg middle-aged human showed that between 1% and 4% of the daily emissions of CO2 were assimilated in the system, and about 3% of the average human daily O2 requirement accumulated in the system. Plant productivity was between 4 and 4.7% of the human daily vegetable requirement, or between 3 and 3.5% of the total human daily food requirement. Thus, testing of the BTLSS showed a match between the technologies employed to arrange mass exchange processes. This study was supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  6. Determination of temperature dependent Henry's law constants of polychlorinated naphthalenes: Application to air-sea exchange in Izmir Bay, Turkey

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Adali, Mutlu

    2016-12-01

    The Henry's law constant (H) is a crucial variable to investigate the air-water exchange of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-air partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of air-sea exchange fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN air-sea exchange flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).

  7. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Breen, Michael S.; Burke, Janet M.; Batterman, Stuart A.; Vette, Alan F.; Godwin, Christopher; Croghan, Carry W.; Schultz, Bradley D.; Long, Thomas C.

    2014-01-01

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h−1 with a median of 0.64 h−1. For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010–2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated

  8. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and

  9. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  10. Modelling the effect of air exchange on 222Rn and its progeny concentration in a tunnel atmosphere.

    PubMed

    Perrier, Frédéric; Richon, Patrick; Sabroux, Jean-Christophe

    2005-11-01

    The effect of air exchange on the concentration of 222Rn and its progeny in the atmosphere of the Roselend tunnel, in the French Alps, is estimated using a box modelling scheme. In this scheme, the atmosphere is divided into a small number of well mixed zones, separated by flow restricted interfaces, characterized by their exchange rate. A four-box model, representing the three sections of the tunnel present until 2001 and an adjacent inner room, accounts for the spatial variations of the background 222Rn concentration, and for the time structure of transient bursts observed regularly in this tunnel since 1995. A delay of the order of one day, observed during some transient bursts in the inner room with respect to the end of the tunnel, is accounted for if the bursts are assumed to be mainly generated in the end section of the tunnel, and stored temporarily in the inner room via air exchange. The measured radon concentration is reproduced by this model for an air exchange rate of 1.6x10(-6) s-1 between the room and the tunnel, in a context of a global ventilation rate of 10(-5) s-1 in the tunnel. Gradual onset and decay phases, varying from burst to burst, are also suggested. The equilibrium factor of 222Rn with its progeny, measured in 2002 with values varying from 0.60+/-0.05 to 0.78+/-0.06, is interpreted with a five-box model representing the five sections of the tunnel present after 2001. This model indicates that the equilibrium factor does not provide additional constraints on the air exchange rates, but the value of the deposition rate of the unattached short-lived radon progeny can be inferred, with results varying from 0.2 to 6 h-1 in the various sections. This study illustrates the benefits of a simple modelling tool to evaluate the effect of natural ventilation on 222Rn and its progeny concentration in underground cavities, which is important for radioprotection and for a reliable characterization of signatures of hydrogeological or geodynamical

  11. Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year

    SciTech Connect

    Kuiken, Todd; Zhang, Hong; Gustin, Mae S.; Lindberg, Steven Eric

    2008-03-01

    This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 0.5 ng m-2 h-1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.

  12. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  13. Gas exchange across the air - water interface determined with man-made and natural tracers

    SciTech Connect

    Wanninkhof, R.H.

    1986-01-01

    Gas exchange coefficients were determined on Rockland Lake, NY; Crowley Lake, CA; and Mono Lake, CA which have surface areas of 1 km/sup 2/, 20 km/sup 2/, and 190 km/sup 2/, respectively, by injecting a small amount of man made tracer gas, sulfur hexafluoride (SF/sub 6/) into the lake and measuring the rate of concentration decrease in the water column with time. The dependency of gas exchange on wind speed is similar for the three lakes indicating that wind fetch is not a critical parameter for the gas exchange coefficient for lakes with sizes greater than 1 km/sup 2/. Little gas exchange occurs for wind speeds less than 2.5 m/s and gas exchange increases linearly with wind speed from 2.5 to 6 m/s. The relationship of gas exchange and wind speed for the lakes agrees well with a compilation of earlier single wind speed - exchange coefficient measurements on lakes and oceans but they are lower than most results obtained in wind tunnels.

  14. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  15. Toward a better understanding of the impact of mass transit air pollutants on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  16. California residential indoor air quality study. Volume 2. Carbon monoxide and air exchange rate: A univariate and multivariate analysis. Topical report

    SciTech Connect

    Colome, S.D.; Wilson, A.L.; Tian, Y.

    1994-07-01

    This second volume provides a systematic evaluation of the data set focusing on the relationships of the recorded parameters with the following four outcome measures: indoor 48-hour average CO; net 48-hour average indoor minus outdoor CO; air exchange rates; and maximum 8-hour average indoor CO. Over 350 variables were measured and/or recorded for each house in the pilot study. These parameters included the concentrations of pollutants of interest (CO, benzene, NO2, toluene, radon, formaldehyde, and methane), housing characteristics (e.g., cooking fuel, burner adjustments, proper venting) and occupant practices (e.g., cigarette smoking, heating with the range/oven).

  17. Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Yao, Fengchao

    The Persian Gulf is a shallow, semi-enclosed marginal sea where the Persian Gulf Water (PGW), one of the most saline water masses in the world, is formed due to the arid climate. The PGW flushes out of the Persian Gulf as a deep outflow and induces a surface inflow of the Indian Ocean Surface Water (IOSW), driving an inverse-estuarine type water exchange through the Strait of Hormuz. In this dissertation, the circulation and water mass transformation processes in the Persian Gulf and the water exchange with the Indian Ocean through the Strait of Hormuz, in response to the atmospheric forcing, are studied using the HYbrid Coordinate Ocean Model (HYCOM). The model is driven by surface wind stress, heat and fresh water fluxes derived from two sources: the COADS (Comprehensive Ocean-Atmosphere Data Set) monthly climatology and high frequency (2-hourly) MM5 (The Fifth-Generation NCAR/Penn State Mesoscale Model) output. This study is motivated by the time series measurements in the Strait during December 1996 to March 1998 by Johns et al. (2003), which also serve as a major benchmark for evaluating the model results. The simulations with climatological forcing show that the IOSW propagates in two branches into the Gulf, one along the Iranian coast toward the northern gulf and the other one onto the southern banks driven by the Ekman drift by the prevailing northwesterly winds. These two branches of inflow form two cyclonic gyres in the northern and in the southern gulf respectively. Cold, saline deep waters are formed both in the northern gulf and in the southern gulf during the wintertime cooling period and their exports contribute seasonally to the outflow in the strait. After formation in winter, the dense water in the shallow southwestern gulf spills off into the strait and causes high-salinity pulses in the outflow in the strait, a phenomenon also present in the observations. The export of dense waters from the northern gulf persists throughout the year, with the

  18. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis.

    PubMed

    Elian, Albert A; Hackett, Jeffery

    2011-12-01

    In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL.

  19. South Atlantic interbasin exchanges of mass, heat, salt and anthropogenic carbon

    NASA Astrophysics Data System (ADS)

    Evans, G. R.; McDonagh, E. L.; King, B. A.; Bryden, H. L.; Bakker, D. C. E.; Brown, P. J.; Schuster, U.; Speer, K. G.; van Heuven, S. M. A. C.

    2017-02-01

    The exchange of mass, heat, salt and anthropogenic carbon (Cant) between the South Atlantic, south of 24°S, and adjacent ocean basins is estimated from hydrographic data obtained during 2008-2009 using an inverse method. Transports of anthropogenic carbon are calculated across the western (Drake Passage), eastern (30°E) and northern (24°S) boundaries. The freshwater overturning transport of 0.09 Sv is southward, consistent with an overturning circulation that exports freshwater from the North Atlantic, and consistent with a bistable Meridional Overturning Circulation (MOC), under conditions of excess freshwater perturbation. At 30°E, net eastward Antarctic Circumpolar Current (ACC) transport, south of the Subtropical Front, is compensated by a 15.9 ± 2.3 Sv westward flow along the Antarctic boundary. The region as a whole is a substantial sink for atmospheric anthropogenic carbon of 0.51 ± 0.37 Pg C yr-1, of which 0.18 ± 0.12 Pg C yr-1 accumulates and is stored within the water column. At 24°S, a 20.2 Sv meridional overturning is associated with a 0.11 Pg C yr-1 Cant overturning. The remainder is transported into the Atlantic Ocean north of 24°S (0.28 ± 0.16 Pg C yr-1) and Indian sector of Southern Ocean (1.12 ± 0.43 Pg C yr-1), having been enhanced by inflow through Drake Passage (1.07 ± 0.44 Pg C yr-1). This underlines the importance of the South Atlantic as a crucial element of the anthropogenic carbon sink in the global oceans.

  20. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  1. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  3. Air-water exchange and dry deposition of polybrominated diphenyl ethers at a coastal site in Izmir Bay, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-02-01

    The air-water exchange of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired air-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net air-water exchange fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.

  4. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  5. Simulation of solid oxide iron-air battery: Effects of heat and mass transfer on charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Iwai, Hiroshi

    2015-07-01

    A time-dependent 2-D numerical simulation was performed on a solid oxide iron-air battery (SOIAB) to reveal the fundamental characteristics of this new system. The SOIAB is a rechargeable battery consisting of a solid oxide electrochemical cell (SOEC) and iron as a redox metal. A simple battery configuration was employed assuming a system with a small capacity. A simulation model for a unit element was developed considering heat and mass transfer in the system, taking both electrochemical and redox reactions into account. The numerical results showed the spatial and temporal changes in the temperature field in the charge and discharge operations, which were due to the combined effects of heat generation/absorption by the electrochemical and redox reactions and heat exchange with the air supplied through convective heat transfer. As the reaction rates are functions of the local temperature, the predicted results show the importance of considering the heat transfer phenomena in this system. It was also found that the active reaction region in the redox metal evolves with time. The nonuniform distribution of iron utilization is affected by the effective gas diffusion coefficients in the porous redox metal, and consequently the change in the current density distribution in the SOEC.

  6. Environmental Assessment: Proposed Construction of Army and Air Force Exchange Service Shopping Center Offutt Air Force Base, Nebraska

    DTIC Science & Technology

    2005-05-01

    comprised of dust, ash, soot , smoke, or liquid droplets emitted into the air. Fires, unpaved roads, construction activities, and natural sources (wind...Employer 1(’-,:9 Printed with soy ink on recycled paper ~ DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, OMAHA DISTRICT 106 SOUTH 15TH STREET REPLY

  7. Army Air Force Exchange Service Service (AAFES) Station Tyndall Air Force Base, Florida Final Tiered Environmental Assessment

    DTIC Science & Technology

    2010-04-20

    Management, No ise, Land Use, Air Quali ty, Earth Resources, Biological Resources, Cultural Resources, Water Resources, Hazardous Materials and Wastes ...Resources, Biological Resources, Cultural Resources, Water Resources, Hazardous Materials and Wastes , Safety, Infrastructure and Util ities, Socioeconomic...No impacts to floodpl ai ns. Storm water permit ----:- ---- would be required. _ ____ _ l lazardous Materia ls and Wastes No negative short- or

  8. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  9. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gubanov, V. G.; Barkhatov, Yu. V.; Gribovskaya, I. V.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California warms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogmic elements, shows an almost 100% closure of the cycle inside

  10. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  11. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  12. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  13. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    NASA Technical Reports Server (NTRS)

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  14. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    EPA Science Inventory

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  15. Toward a universal mass-momentum transfer relationship for predicting nutrient uptake and metabolite exchange in benthic reef communities

    NASA Astrophysics Data System (ADS)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin

    2016-09-01

    Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.

  16. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry.

    PubMed

    Englander, Joan J; Del Mar, Charyl; Li, Will; Englander, S Walter; Kim, Jack S; Stranz, David D; Hamuro, Yoshitomo; Woods, Virgil L

    2003-06-10

    An automated high-throughput, high-resolution deuterium exchange HPLC-MS method (DXMS) was used to extend previous hydrogen exchange studies on the position and energetic role of regulatory structure changes in hemoglobin. The results match earlier highly accurate but much more limited tritium exchange results, extend the analysis to the entire sequence of both hemoglobin subunits, and identify some energetically important changes. Allosterically sensitive amide hydrogens located at near amino acid resolution help to confirm the reality of local unfolding reactions and their use to evaluate resolved structure changes in terms of allosteric free energy.

  17. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  18. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  19. Exchanges of Aggregate Air Nitrogen Emissions and Watershed Nitrogen Loads”

    EPA Science Inventory

    An approach has been developed to define transfer coefficients that can be used to convert changes in air emissions to changes in air deposition and subsequently to changes in loads delivered to the Bay. This approach uses a special CMAQ version that quantitatively attributes wa...

  20. Air supply using an ionic wind generator in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsung; Li, Longnan; Park, Byung Ho; Lee, Seung Jun; Kim, Daejoong

    2015-06-01

    A new air supply is demonstrated for a portable polymer electrolyte membrane fuel cell (PEMFC). The air supply is an ionic wind generator (IWG) with a needle-to-cylinder configuration. The IWG supplies air to the portable PEMFC owing to momentum transfer to the air by charged molecules generated by the corona discharge from a high applied potential. There is no difference in the performance of the PEMFC when compressed air and the IWG are used as the air supply. For the varying interelectrode distance, IWG performance is varied and measured in terms of the flow rate and current. At the interelectrode distance of 9.0 mm, the air flow rate is a suitable for the portable PEMFC with low power consumption. When the IWG is used to supply air to the portable PEMFC, it is found that the flow rate per unit power consumed decreases with the applied voltage, the gross power generation monotonously increases with the applied voltage, and the highest net power (268 mW) is obtained at the applied voltage of 8.5 kV. The parasitic power ratio reaches a minimum value of ∼0.06 with the applied IWG voltage of 5.5 kV.

  1. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  2. Source areas and trajectories of nucleating air masses within and near the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Németh, Z.; Salma, I.

    2014-04-01

    Particle number size distributions were measured by differential mobility particle sizer in the diameter range of 6-1000 nm in the near-city background and city centre of Budapest continuously for two years. The city is situated in the middle part of the Carpathian Basin, which is a topographically discrete unit in the southeast Central Europe. Yearly mean nucleation frequencies and uncertainties for the near-city background and city centre were (28+6/-4) % and (27+9/-4) %, respectively. Total numbers of days with continuous and uninterrupted growth process were 43 and 31, respectively. These events and their properties were utilised to investigate if there are any specific tracks and/or separable source regions for the nucleating air masses within or near the basin. Local wind speed and direction data indicated that there seem to be differences between the nucleation and growth intervals and non-nucleation days. For further analysis, backward trajectories were generated by a simple air parcel trajectory model. Start and end time parameters of the nucleation, and end time parameter of the particle growth were derived by a standardized procedure based on examining the channel contents of the contour plots. These parameters were used to specify a segment on each air mass trajectory that is associated with the track of the nucleating air mass. The results indicated that the nucleation events happened in the continental boundary layer mostly within the Carpathian Basin but the most distant trajectories originated outside of the basin. The tracks of the nucleating air masses were predominantly associated with NW and SE geographical fields, while the source areas that could be separated were frequently situated in the NW and NE quarters. Many of them were within or close to large forested territories. The results also emphasize that the new particle formation and growth phenomenon that occurs in the region influences larger territories than the Carpathian Basin.

  3. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  4. Circulation pattern and ice mass exchange for different water compositions in Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Mayer, C.; Grosfeld, K.; Siegert, M. J.

    2003-04-01

    Lake Vostok, Antarctica's largest known subglacial lake, isolated from direct exchange with the atmosphere or oceans for several million years due to its thick ice cover, provides a unique and so far inaccessible habitat. By implementing the newest available information about the lake geometry into a 3-dimensional fluid-dynamics model the lake circulation was investigated for different water compositions. In the case of fresh water, thermally driven circulation is predicted, as a result of the pressure-dependent melting point at the inclined ice-water interface, in agreement with other investigators. Ice pumping from north to south provides a steady supply of glacial water to the lake, whereby no unsusual geothermal conditions are required for maintaining the circulation and the melting/refreezing balance. The rather weak circulation is driven by very small, temperature determined, density contrasts between the resident lake water and the fresh melt water. The circulation pattern, however, is determined by the strongly structured trough geometry of the lake. For slightly saline water conditions, the circulation pattern is also influenced by the salinity impact on the equation of state and hence on the lake density. This results in a partly increased flow but influences the turnover time scale not significantly. Now, the freshwater flux due to melting of glacial ice stabilizes the stratification of the lake leading to a more pronounced temperature gradient over the water column. Colder water now overrides warmer water portions near bottom, which to a certain degree isolates the resident water mass from the circulation driven by meltig and freezing. In either saline or fresh water conditions approximately 200 m of refrozen ice accumulates beneath Vostok Station, which suggests either possibility is plausible under the current state of knowledge regarding the lake cavity and the hydrochemnistry. Our model results, however, show that the habitat of Lake Vostok will be

  5. Improving Hydrological Models by Applying Air Mass Boundary Identification in a Precipitation Phase Determination Scheme

    NASA Astrophysics Data System (ADS)

    Feiccabrino, James; Lundberg, Angela; Sandström, Nils

    2013-04-01

    Many hydrological models determine precipitation phase using surface weather station data. However, there are a declining number of augmented weather stations reporting manually observed precipitation phases, and a large number of automated observing systems (AOS) which do not report precipitation phase. Automated precipitation phase determination suffers from low accuracy in the precipitation phase transition zone (PPTZ), i.e. temperature range -1° C to 5° C where rain, snow and mixed precipitation is possible. Therefore, it is valuable to revisit surface based precipitation phase determination schemes (PPDS) while manual verification is still widely available. Hydrological and meteorological approaches to PPDS are vastly different. Most hydrological models apply surface meteorological data into one of two main PPDS approaches. The first is a single rain/snow threshold temperature (TRS), the second uses a formula to describe how mixed precipitation phase changes between the threshold temperatures TS (below this temperature all precipitation is considered snow) and TR (above this temperature all precipitation is considered rain). However, both approaches ignore the effect of lower tropospheric conditions on surface precipitation phase. An alternative could be to apply a meteorological approach in a hydrological model. Many meteorological approaches rely on weather balloon data to determine initial precipitation phase, and latent heat transfer for the melting or freezing of precipitation falling through the lower troposphere. These approaches can improve hydrological PPDS, but would require additional input data. Therefore, it would be beneficial to link expected lower tropospheric conditions to AOS data already used by the model. In a single air mass, rising air can be assumed to cool at a steady rate due to a decrease in atmospheric pressure. When two air masses meet, warm air is forced to ascend the more dense cold air. This causes a thin sharp warming (frontal

  6. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Ouyang, Minggao; Yi, Baolian

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control.

  7. Investigation of organochlorine pesticides from the Indus Basin, Pakistan: sources, air-soil exchange fluxes and risk assessment.

    PubMed

    Sultana, Jawairia; Syed, Jabir Hussain; Mahmood, Adeel; Ali, Usman; Rehman, Muhammad Yasir Abdur; Malik, Riffat Naseem; Li, Jun; Zhang, Gan

    2014-11-01

    Present study aimed to evaluate the contamination status of organochlorine pesticides (OCPs) and their associated potential for air-soil exchange and health risks from ecologically important sites of the Indus Basin, Pakistan. Among different OCPs investigated, ΣDDTs and ΣHCHs were more prevalent compounds in the agricultural soils and ambient air samples of the study area. The average concentrations for DDTs were found higher at downstream agricultural sites, particularly at Head Panjnad (Soil: 320 ng/g; Air: 743 pg/m(3)) and acting as an ultimate sink of ΣOCP burden in soils. Spatial distribution patterns inferred ubiquitous distribution of ΣDDTs in soils and air of the study area. Source diagnostic ratios demonstrated that studied OCPs either are illegally being used in agricultural practices or/and they are residues of past use in the environment. Fugacity fraction model revealed wide variations (ff=0.12-0.94) with 20% of OCPs above equilibrium range and net volatilization of α-endosulfan, β-HCH and o,p'-DDD. Assessment of cancer risks for OCPs indicated a higher cancer risk (CR>1×10(-6)) for the residents of the Indus Basin. According to the available soil quality guidelines, DDTs and HCHs were above the permissible limits and pose a threat to natural habitat and biodiversity of the Indus Basin.

  8. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  9. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soil-air exchange and black carbon mediated distribution.

    PubMed

    Bajwa, Anam; Ali, Usman; Mahmood, Adeel; Chaudhry, Muhammad Jamshed Iqbal; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-06-01

    Organochlorine pesticides (OCPs) were investigated in passive air and soil samples from the catchment area of the Indus River, Pakistan. ∑15OCPs ranged between 0.68 and 13.47 ng g(-1) in soil and 375.1-1975 pg m-(3) in air. HCHs and DDTs were more prevalent in soil and air compartments. Composition profile indicated that β-HCH and p,p'-DDE were the dominant of all metabolites among HCHs and DDTs respectively. Moreover, fBC and fTOC were assessed and evaluated their potential role in the distribution status of OCPs. The fTOC and fBC ranged between 0.77 and 2.43 and 0.04-0.30% respectively in soil. Regression analysis showed the strong influence of fBC than fTOC on the distribution of OCPs in the Indus River catchment area soil. Equilibrium status was observed for β-HCH, δ-HCH, p,p'-DDD, o,p'-DDT, TC, HCB and Heptachlor with ff ranged between 0.3 and 0.59 while assessing the soil-air exchange of OCPs.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Mixing of stratospheric and tropospheric air-masses detected with CRISTA-NF during AMMA

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Guenther, G.; Hoffmann, L.; Konopka, P.; Riese, M.

    2009-04-01

    CRISTA-NF (CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - New Frontiers) is an infrared limb sounding instrument installed onbord the high-flying research aircraft M55-Geophysica and took part in the AMMA-SCOUT measurement campaign in Summer 2006. During the test flight on 29th of July 2006, CRISTA-NF detected a sharp boundary between ozone rich air over northernItaly and ozone poor air over southern Italy and the Mediterranean Sea. The structure is also clearly visible in the HNO3 distribution. The air mass boundary extends from about 10km altitude to the thermal tropopause at about 16km altitude with indication for mixing in the lower part of this altitude range. This is supported by enhanced values of PAN and water vapour found. The observed structure is also visible in the CLaMS (Chemical Lagrangian Model of the Stratosphere) ozone distribution but hardly resolved in ECMWF forecast data. Backward trajectories show that the ozone rich air is originated westwards, between 40 and 60oN while the ozone poor air is coming from the south-east, at about 0-20oN and has a younger age of air. In the presentation details of the CRISTA-NF measurements and retrieval procedures as well as the origin of the trace gas structures will be discussed.

  12. The influence of air-sea exchange on the isotropic composition of oceanic carbon: Observations and modeling

    SciTech Connect

    Lynch-Stieglitz, J.; Broecker, W.S.; Fairbanks, R.G.

    1995-12-01

    Although the carbon isotropic composition of ocean waters after they leave the surface ocean is determined by biological cycling, air-sea exchange affects the carbon isotopic composition of surface waters in two ways. The equilibrium fractionation between oceanic and atmospheric carbon increases with decreasing temperature. In Southern Ocean Surface Waters this isotopic equilibrium enriches {delta}{sup 13}C relative to the {delta}{sup 13}C expected from uptake and release of carbon by biological processes alone. Similarly, surface waters in the subtropical gyres are depleted in {delta}{sup 13}C due to extensive air-sea exchange at warm temperatures. Countering the tendency toward isotopic equilibration with the atmosphere (a relatively slow process), are the effects of the equilibration of CO{sub 2} itself (a much faster process). In regions where there is a net transfer of isotopically light CO{sub 2} from the ocean to the atmosphere (e.g., the equator) surface waters become enriched in {sup 13}C, whereas in regions where isotopically light CO{sub 2} is entering the ocean (e.g., the North Atlantic) surface waters become depleted in {sup 13}C. A compilation of high quality oceanic {delta}{sup 13}C measurements along with experiments performed using a zonally averaged three-basin dynamic ocean model are used to explore these processes. 40 refs., 14 figs., 1 tab.

  13. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  14. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  15. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  16. Estimating Pan Arctic Net Ecosystem Exchange using Functional Relationships with Air temperature, Leaf Area Index and Photosynthetic Active Radiation

    NASA Astrophysics Data System (ADS)

    Mbufong, H.; Kusbach, A.; Lund, M.; Persson, A.; Christensen, T. R.; Tamstorf, M. P.; Connolly, J.

    2015-12-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) is often attributed to the high spatial heterogeneity of Arctic tundra. Current models of carbon exchange thus handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple NEE model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide data from 12 Arctic tundra sites. The model input parameters (fcsat, Rd and α) were estimated as a function of air temperature and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship. They describe the saturation flux, dark respiration and initial light use efficiency, respectively. While remotely sensed LAI is readily available as a MODIS Terra product (MCD15A3), air temperature was estimated from a direct relationship with MODIS land surface temperature (MOD11A2, LST). Therefore, no specific knowledge of the vegetation type is required. Preliminary results show the model captures the spatial heterogeneity of the Arctic tundra but so far, overestimates NEE on all 17 test sites which include heaths, bogs, fens, and tussock tundra vegetation. The final updated results and error assessment will be presented at the conference in December.

  17. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  18. Determination of mu-oxo exchange rates in di-mu-oxo dimanganese complexes by electrospray ionization mass spectrometry.

    PubMed

    Tagore, Ranitendranath; Chen, Hongyu; Crabtree, Robert H; Brudvig, Gary W

    2006-07-26

    A time-resolved mass spectrometric technique has been used for the determination of rates of exchange of mu-O atoms with water for the complexes [(mes-terpy)2Mn2(III/IV)(mu-O)2(H2O)2](NO3)3 (1, mes-terpy = 4'-mesityl-2,2':6',2' '-terpyridine), [(bpy)4Mn2(III/IV)(mu-O)2](ClO4)3 (2, bpy = 2,2'-bipyridine), [(phen)4Mn2(III/IV)(mu-O)2](ClO4)3 (3, phen = 1,10-phenanthroline), [(bpea)2Mn2(III/IV)(mu-O)2(mu-OAc)](ClO4)2 (4, bpea = bis(2-pyridyl)ethylamine), [(bpea)2Mn2(IV/IV)(mu-O)2(mu-OAc)](ClO4)3 (4ox), [(terpy)4Mn4(IV/IV/IV/IV)(mu-O)5(H2O)2](ClO4)6 (5, terpy = 2,2':6',2''-terpyridine), and [(tacn)4Mn4(IV/IV/IV/IV)(mu-O)6]Br(3.5)(OH)0.5.6H2O (6, tacn = 1,4,7-triazacyclononane). The rate of exchange of mu-OAc bridges with free acetate in solution has been measured for complexes 4 and 4ox. These are the first measurements of rates of ligand exchange on biologically relevant high-valent Mn complexes. The data analysis method developed here is of general utility in the quantitation of isotope exchange processes by mass spectrometry. We find that the presence of labile coordination sites on Mn increases mu-O exchange rates, and that all-Mn(IV) states are more inert toward exchange than mixed Mn(III)-Mn(IV) states. The rates of mu-O exchange obtained in this work for a di-mu-oxo Mn2(III/IV) dimer with labile coordination sites are compared with the oxygen isotope incorporation rates from substrate water to evolved dioxygen measured in different S states of the oxygen evolving complex (OEC) of photosystem II (PSII). On the basis of this comparison, we propose that both substrate waters are not bound as mu-O bridges between Mn atoms in the S2 and S3 states of the OEC.

  19. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  20. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  1. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments.

  2. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  3. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  4. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  5. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  6. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  7. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  8. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  9. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants.

    PubMed

    Barber, Jonathan L; Kurt, Perihan B; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C

    2002-10-15

    The transfer of persistent organic pollutants (POPs) from air to vegetation is an important air-surface exchange process that affects global cycling and can result in human and wildlife exposure via the terrestrial food chain. To improve understanding of this process, the role of stomata in uptake of gas-phase polychlorinated biphenyls (PCBs) was investigated using Hemerocallis x hybrida "Black Eyed Stella", a plant with a high stomatal density. Uptake of PCBs was monitored over a 72-h period in the presence and absence of light. Uptake rates were significantly greater in illuminated (stomata open) plants than unilluminated (stomata closed) plants for 18 of the 28 measured PCB congeners (p < 0.05). Depuration of PCBs was monitored in a subsequent experiment over a period of 3 weeks. Levels after 3 weeks of depuration time were still much higher than the concentration prior to contamination. Tri- and tetrachlorinated PCBs showed the greatest depuration, with less than 20% and 50% of accumulated PCBs respectively remaining, while approximately 70% of higher chlorinated PCB congeners remained in the plants at the end of the experiment. Treatments with/without light (to control stomatal opening during uptake) and with/without abscisic acid (ABA) application (to control stomatal opening during depuration) were compared. After contamination indoors for 3 days, there was a significantly higher concentration of PCBs (p < 0.05) in the light contaminated plants than the dark-contaminated plants for 13 of the 28 measured PCB congeners. The ABA treatment affected depuration of PCB-18 only. "Light/ABA-treated" plants had a significantly slower depuration rate for PCB-18 than "light/untreated", "dark/ABA-treated", and "dark/untreated" plants (p < 0.05). The results of the study indicate that there is a stomatal effect on the rate of exchange of PCBs between Hemerocallis leaves and air.

  10. Particle-phase dry deposition and air-soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey.

    PubMed

    Cetin, Banu; Odabasi, Mustafa

    2007-07-15

    The particle-phase dry deposition and soil-air gas-exchange of polybrominated diphenyl ethers (PBDEs) were measured in Izmir, Turkey. Relative contributions of different deposition mechanisms (dry particle, dry gas, and wet deposition) were also determined. BDE-209 was the dominating congener in all types of samples (air, deposition, and soil). Average dry deposition fluxes of total PBDEs (sigma7PBDE) for suburban and urban sites were 67.6 and 128.8 ng m(-2) day(-1), respectively. Particulate dry deposition velocities ranged from 11.5 (BDE-28) to 3.9 cm s(-1) (BDE-209) for suburban sites and 7.8 (BDE-28) to 2.8 cm s(-1) (BDE-154) for urban sites with an overall average of 5.8 +/- 3.7 cm s(-1). The highest sigma7PBDE concentration (2.84 x 10(6) ng kg(-1) dry wt) was found around an electronic factory among the 13 soil samples collected from different sites. The concentration in a bag filter dust from a steel plant was also high (2.05 x 10(5) ng kg(-1)), indicating that these industries are significant PBDE sources. Calculated net soil-air gas exchange flux of sigma7PBDE ranged from 11.8 (urban) to 23.4 (industrial) ng m(-2) day(-1) in summer, while in winter it ranged from 3.2 (urban) to 11.6 (suburban) ng m(-2) day(-1). All congeners were deposited at all three sites in winter and summer. It was estimated that the wet deposition also contributes significantly to the total PBDE deposition to soil. Dry particle, wet, and gas deposition contribute 60, 32, and 8%, respectively, to annual PBDE flux to the suburban soil.

  11. Regulation of phenylalanine hydroxylase: conformational changes upon phenylalanine binding detected by hydrogen/deuterium exchange and mass spectrometry.

    PubMed

    Li, Jun; Dangott, Lawrence J; Fitzpatrick, Paul F

    2010-04-20

    Phenylalanine acts as an allosteric activator of the tetrahydropterin-dependent enzyme phenylalanine hydroxylase. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into local conformational changes accompanying activation of rat phenylalanine hydroxylase by phenylalanine. Peptides in the regulatory and catalytic domains that lie in the interface between these two domains show large increases in the extent of deuterium incorporation from solvent in the presence of phenylalanine. In contrast, the effects of phenylalanine on the exchange kinetics of a mutant enzyme lacking the regulatory domain are limited to peptides surrounding the binding site for the amino acid substrate. These results support a model in which the N-terminus of the protein acts as an inhibitory peptide, with phenylalanine binding causing a conformational change in the regulatory domain that alters the interaction between the catalytic and regulatory domains.

  12. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  13. Laboratory Investigation of Air-Sea Interfacial Properties in Relation to Gas Exchange and Remote Sensing

    DTIC Science & Technology

    2016-06-13

    Atmospheric Science ,4600 Rickenbacker Causeway,Miami,FL,33149 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...Exchange and Remote Sensing Eric S. Saltzman Rosenstiel School of Marine and Atmospheric Science 4600 Rickenbacker Cswy. Miami, FL 33149 phone (703) 306...1522 fax (703) 306-0377 email esaltzman@rsmas.miami.edu Mark Donelan Rosenstiel School of Marine and Atmospheric Science 4600 Rickenbacker Cswy

  14. Regenerable device for scrubbing breathable air of CO2 and moisture without special heat exchanger equipment

    NASA Technical Reports Server (NTRS)

    Tepper, E. H. (Inventor)

    1977-01-01

    The device concerns the circulation of cabin air through canisters which absorb and adsorb carbon dioxide, together with excess moisture, and return the scrubbed air to the cabin for recirculation. A coating on an inert substrate in granular form absorbs and adsorbs the impurities at standard temperatures and pressures, but desorbs such impurities at low pressures (vacuum) and standard temperatures. This fact is exploited by making the device in a stack of cells consisting of layers or cells which are isolated from one another flow-wise and are connected to separate manifolds and valving systems into two separate subsets. A first subset may be connected for the flow breathable air therethrough until the polyethyleneimine of its cells is saturated with CO2 and H2O. During the same period the second subset of cells is manifolded to a vacuum source.

  15. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    ERIC Educational Resources Information Center

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  16. PEM (Proton exchange membrane) fuel cell stack heat and mass measurement

    SciTech Connect

    Vanderborgh, N.E.; Kimble, M.C.; Huff, J.R.; Hedstrom, J.C.

    1992-01-01

    PEM stacks are under evaluation as candidates for future space power technology. Results of long-term operation on a set of contemporary stacks fitted with different proton exchange membrane materials are given. Data on water balances show effects of membrane materials on stack performance. 15 refs.

  17. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  18. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  19. Indoor air quality, air exchange rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.

    PubMed

    Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A

    2013-08-01

    This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings.

  20. Characterization of IgG1 Conformation and Conformational Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Houde, Damian; Arndt, Joseph; Domeier, Wayne; Berkowitz, Steven; Engen, John R.

    2009-04-22

    Protein function is dictated by protein conformation. For the protein biopharmaceutical industry, therefore, it is important to have analytical tools that can detect changes in protein conformation rapidly, accurately, and with high sensitivity. In this paper we show that hydrogen/deuterium exchange mass spectrometry (H/DX-MS) can play an important role in fulfilling this need within the industry. H/DX-MS was used to assess both global and local conformational behavior of a recombinant monoclonal IgG1 antibody, a major class of biopharmaceuticals. Analysis of exchange into the intact, glycosylated IgG1 (and the Fab and Fc regions thereof) showed that the molecule was folded, highly stable, and highly amenable to analysis by this method using less than a nanomole of material. With improved chromatographic methods, peptide identification algorithms and data-processing steps, the analysis of deuterium levels in peptic peptides produced after labeling was accomplished in 1--2 days. On the basis of peptic peptide data, exchange was localized to specific regions of the antibody. Changes to IgG1 conformation as a result of deglycosylation were determined by comparing exchange into the glycosylated and deglycosylated forms of the antibody. Two regions of the IgG1 (residues 236-253 and 292-308) were found to have altered exchange properties upon deglycosylation. These results are consistent with previous findings concerning the role of glycosylation in the interaction of IgG1 with Fc receptors. Moreover, the data clearly illustrate how H/DX-MS can provide important characterization information on the higher order structure of antibodies and conformational changes that these molecules may experience upon modification.

  1. PAHs in soils and estimated air-soil exchange in the Pearl River Delta, South China.

    PubMed

    Liu, Guoqing; Yu, Lili; Li, Jun; Liu, Xiang; Zhang, Gan

    2011-02-01

    In this study, 74 soil samples collected from the Pearl River Delta were analyzed for polycyclic aromatic hydrocarbons (PAHs). The PAH mixture in the soils is mainly of low molecular weight compounds, with naphthalene (21.4%) and phenanthrene (21.8%) being dominant. Soil PAH levels from the Pearl River Delta are relatively low (28-711 ng/g, averaged 192 ng/g) compared to those from urban soils in temperate regions. The mean concentration of ΣPAHs generally decrease with increasing distance from the city center, with ΣPAHs of paddy soils>crop soil>natural soil. PAHs in the air were measured during a year-round sampling campaign using semipermeable membrane devices, and the transfer of chemicals between the soil and air compartments were estimated. Soil-air fugacity quotient calculations showed a highly uncertain equilibrium position of PAHs, with net volatilization of naphthalene and fluorene, whereas net deposition of phenanthrene, fluoranthene, and pyrene, indicating a capacity for the air to supply the soil with more substances.

  2. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  3. Regulation of phenylalanine hydroxylase: conformational changes upon phosphorylation detected by H/D exchange and mass spectrometry.

    PubMed

    Li, Jun; Fitzpatrick, Paul F

    2013-07-15

    The enzyme phenylalanine hydroxylase catalyzes the hydroxylation of excess phenylalanine in the liver to tyrosine. The enzyme is regulated allosterically by phenylalanine and by phosphorylation of Ser16. Hydrogen/deuterium exchange monitored by mass spectrometry has been used to gain insight into any structural change upon phosphorylation. Peptides in both the catalytic and regulatory domains show increased deuterium incorporation into the phosphorylated protein. Deuterium is incorporated into fewer peptides than when the enzyme is activated by phenylalanine, and the incorporation is slower. This establishes that the conformational change upon phosphorylation of phenylalanine hydroxylase is different from and less extensive than that upon phenylalanine activation.

  4. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2016-08-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  5. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  6. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  7. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry.

    PubMed

    Muneeruddin, Khaja; Nazzaro, Mark; Kaltashov, Igor A

    2015-10-06

    Characterization of biopharmaceutical products is a challenging task, which needs to be carried out at several different levels (including both primary structure and conformation). An additional difficulty frequently arises due to the structural heterogeneity inherent to many protein-based therapeutics (e.g., extensive glycosylation or "designer" modifications such as chemical conjugation) or introduced postproduction as a result of stress (e.g., oxidation and deamidation). A combination of ion-exchange chromatography (IXC) with online detection by native electrospray ionization mass spectrometry (ESI MS) allows characterization of complex and heterogeneous therapeutic proteins and protein conjugates to be accomplished at a variety of levels without compromising their conformational integrity. The IXC/ESI MS measurements allow protein conjugates to be profiled by analyzing conjugation stoichiometry and the presence of multiple positional isomers, as well as to establish the effect of chemical modifications on the conformational integrity of each species. While mass profiling alone is not sufficient for identification of nonenzymatic post-translational modifications (PTMs) that result in a very small mass change of the eluting species (e.g., deamidation), this task can be completed using online top-down structural analysis, as demonstrated using stressed interferon-β as an example. The wealth of information that can be provided by IXC/native ESI MS and tandem mass spectrometry (MS/MS) on protein-based therapeutics will undoubtedly make it a very valuable addition to the experimental toolbox of biopharmaceutical analysis.

  8. Factors influencing indoor air quality in an urban high rise apartment building (retitled as "Air Pollution and air exchange in an urban high rise apartment building")

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  9. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  10. Measurements and Modeling of the Air-Sea Exchange of Mercury

    NASA Astrophysics Data System (ADS)

    Mason, R. P.; Andersson, M.; Sorenson, A.; Sunderland, E. M.

    2009-12-01

    Evasion of elemental mercury (Hg(0)) from the ocean to the atmosphere is considered to be one of the major sources of atmospheric mercury. Most of the ocean's surface waters are saturated with Hg(0) which is produced in situ by photochemical processes (both oxidation and reduction can be photochemically mediated), and biological reduction may also be important in some instances. Until recently, measurements have been limited but analytical developments now allow the continuous collection of atmospheric and surface water Hg(0) concentrations, allowing for a more accurate assessment of the exchange flux. Recent data from various cruises in the North Atlantic Ocean will be presented and compared with data from other oceans. Global mercury models have incorporated Hg(0) evasion and the new modeling approaches better account for the various processes involved that have not been included in previous work. Our recent advances in the modeling of the exchange of Hg(0) will be presented as well as a comparison of the results of various model approaches. The policy implications of the model output will be discussed.

  11. Environmental Assessment: Proposed Construction of Army and Air Force Exchange Service New Day Street Shoppette

    DTIC Science & Technology

    2003-10-01

    Table 3-5 Dominant Tree Species at MAFB Common Name Scientific Name Slash pine Pinus elliotti Live oak Quercus virginiana Pecan Carya illinoensis ...of Federal Regulations CO carbon monoxide CRMP Cultural Resource Management Plan CWA Clean Water Act dB decibel dBA A-weighted decibel DoD...consequences: air quality, noise, land use, geological resources, water resources, biological resources, transportation and circulation, cultural

  12. Air-Sea and Lateral Exchange Processes in East Indian Coastal Current off Sri Lanka

    DTIC Science & Technology

    2015-09-30

    of which have a bearing on local air-sea fluxes. The project seeks to collect hydrographic data sets in the international waters (R/V Roger Revelle...and in Sri Lankan coastal waters (R/V Samuddrika). The measurements include thermohaline stratification, currents and the kinetic energy...conducted CTD and ADCP measurements in the southern BoB onboard R/V Roger Revelle and in Sri Lanka coastal waters using R/V Samuddrika. The data analysis

  13. Polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in the equatorial Indian Ocean: temporal trend, continental outflow and air-water exchange.

    PubMed

    Huang, Yumei; Li, Jun; Xu, Yue; Xu, Weihai; Cheng, Zhineng; Liu, Junwen; Wang, Yan; Tian, Chongguo; Luo, Chunling; Zhang, Gan

    2014-03-15

    Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively.

  14. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  15. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    NASA Astrophysics Data System (ADS)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  16. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  17. Effects of the Sea Ice Floe Size Distribution on Polar Ocean Properties and Air-Sea Exchange

    NASA Astrophysics Data System (ADS)

    Horvat, C.; Tziperman, E.

    2014-12-01

    Recent scientific studies have demonstrated that sub-mesoscale ocean eddies, motions characterized by Rossby and Richardson numbers around 1, are important in determining the vertical density structure of the ocean, particularly in the mixed layer. Instabilities excited at the sub-mesoscale have timescales of days and length scales of less than 10 kilometers, and enhance ocean restratification by slumping lateral density gradients. In the polar oceans, a unique mechanism exists that may generate motions on these scales. Individual floes of sea ice may create lateral gradients in the ocean surface heat flux and wind stress curl, acting as an insulator and physical barrier between the ocean and the atmospheric processes that destabilize it. The "floe size distribution" describes the fraction of the ocean surface area covered by sea ice floes, as a function of the sea ice floe size, and determines the length scales over which gradients in atmospheric forcing are transmitted to the ocean. It may therefore play a significant role in exciting or inhibiting sub-mesoscale eddies, and consequently in restratification and air-sea exchange. Current GCMs simulate ice cover using grid-scale ice fraction alone, and lack information about the floe size distribution and of ice length scales that may be important in setting the larger-scale statistics of these motions. An important factor in determining the properties of the upper polar oceans might therefore be missing from modern GCMs. We consider this possibility by examining sub-mesoscale resolving ocean GCM experiments coupled to an energy-balanced atmosphere and idealized model of floes of sea ice. Varying the floe size distribution with a fixed sea ice fraction, we find that the length scales of individual floes and the floe size distribution itself play an important role in setting the steady-state ocean stratification, temperature, and air-sea exchange.

  18. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  19. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.

    PubMed

    Wong, Fiona; Jantunen, Liisa M; Pućko, Monika; Papakyriakou, Tim; Staebler, Ralf M; Stern, Gary A; Bidleman, Terry F

    2011-02-01

    Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).

  20. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-05

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER.

  1. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  2. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  3. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  4. A critical review of period analyses and implications for mass exchange in W UMa eclipsing binaries: Part 2

    NASA Astrophysics Data System (ADS)

    Nelson, R. H.; Terrell, D.; Milone, E. F.

    2015-12-01

    This is the second of a series of four papers, the goal of which is to identify the overcontact eclipsing binary star systems for which a solid case can be made for mass exchange. To reach this goal, it is necessary first to identify those systems for which there is a strong case for period change. We have identified 60 candidate systems; in the first paper (Nelson et al., 2014) we discussed 20 individual cases; this paper continues with the next 20. For each system, we present a detailed discussion and evaluation concerning the observational and interpretive material presented in the literature. An eclipse timing (ET) diagram (or diagrams), commonly referred to as an "O-C diagram", that includes the latest available data accompanies each discussion. In paper 4, we will discuss the mechanisms that can effect period change and which of the 60 systems can be reliably concluded to exhibit mass exchange; we will also provide a list of marginal and rejected cases suitable for future work.

  5. A critical review of period analyses and implications for mass exchange in W UMa eclipsing binaries: Paper 3

    NASA Astrophysics Data System (ADS)

    Nelson, R. H.; Terrell, D.; Milone, E. F.

    2016-02-01

    This is the third of a series of four papers, the goal of which is to identify the overcontact eclipsing binary star systems for which a solid case can be made for mass exchange. To reach this goal, it is necessary first to identify those systems for which there is a strong case for period change. We have identified 60 candidate systems; in the first two papers (Nelson et al. 2014, 2016) we discussed 40 individual cases; this paper continues with the last 20. For each system, we present a detailed discussion and evaluation concerning the observational and interpretive material presented in the literature. At least one eclipse timing (ET) diagram, commonly referred to as an "O-C diagram", that includes the latest available data, accompanies each discussion. In paper 4, we will discuss the mechanisms that can cause period change and which of the 60 systems can be reliably concluded to exhibit mass exchange; we will also provide a list of marginal and rejected cases - suitable for future work.

  6. Protein Structure-Function Correlation in Living Human Red Blood Cells Probed by Isotope Exchange-based Mass Spectrometry.

    PubMed

    Narayanan, Sreekala; Mitra, Gopa; Muralidharan, Monita; Mathew, Boby; Mandal, Amit K

    2015-12-01

    To gain insight into the underlying mechanisms of various biological events, it is important to study the structure-function correlation of proteins within cells. Structural probes used in spectroscopic tools to investigate protein conformation are similar across all proteins. Therefore, structural studies are restricted to purified proteins in vitro and these findings are extrapolated in cells to correlate their functions in vivo. However, due to cellular complexity, in vivo and in vitro environments are radically different. Here, we show a novel way to monitor the structural transition of human hemoglobin upon oxygen binding in living red blood cells (RBCs), using hydrogen/deuterium exchange-based mass spectrometry (H/DX-MS). Exploiting permeability of D2O across cell membrane, the isotope exchange of polypeptide backbone amide hydrogens of hemoglobin was carried out inside RBCs and monitored using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). To explore the conformational transition associated with oxygenation of hemoglobin in vivo, the isotope exchange kinetics was simplified using the method of initial rates. RBC might be considered as an in vivo system of pure hemoglobin. Thus, as a proof-of-concept, the observed results were correlated with structural transition of hemoglobin associated with its function established in vitro. This is the first report on structural changes of a protein upon ligand binding in its endogenous environment. The proposed method might be applicable to proteins in their native state, irrespective of location, concentration, and size. The present in-cell approach opens a new avenue to unravel a plethora of biological processes like ligand binding, folding, and post-translational modification of proteins in living cells.

  7. Modeling of water masses exchange between Brepolen and the main fjord in the Western Svalbard fjord - Hornsund

    NASA Astrophysics Data System (ADS)

    Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz

    2016-04-01

    Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018

  8. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  9. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  10. Air-water exchange of PAHs and OPAHs at a superfund mega-site.

    PubMed

    Tidwell, Lane G; Blair Paulik, L; Anderson, Kim A

    2017-03-31

    Chemical fate is a concern at environmentally contaminated sites, but characterizing that fate can be difficult. Identifying and quantifying the movement of chemicals at the air-water interface are important steps in characterizing chemical fate. Superfund sites are often suspected sources of air pollution due to legacy sediment and water contamination. A quantitative assessment of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAH (OPAHs) diffusive flux in a river system that contains a Superfund Mega-site, and passes through residential, urban and agricultural land, has not been reported before. Here, passive sampling devices (PSDs) were used to measure 60 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAH (OPAHs) in air and water. From these concentrations the magnitude and direction of contaminant flux between these two compartments was calculated. The magnitude of PAH flux was greater at sites near or within the Superfund Mega-site than outside of the Superfund Mega-site. The largest net individual PAH deposition at a single site was naphthalene at a rate of -14,200 (±5780) (ng/m(2))/day. The estimated one-year total flux of phenanthrene was -7.9×10(5) (ng/m(2))/year. Human health risk associated with inhalation of vapor phase PAHs and dermal exposure to PAHs in water were assessed by calculating benzo[a]pyrene equivalent concentrations. Excess lifetime cancer risk estimates show potential increased risk associated with exposure to PAHs at sites within and in close proximity to the Superfund Mega-site. Specifically, estimated excess lifetime cancer risk associated with dermal exposure and inhalation of PAHs was above 1 in 1 million within the Superfund Mega-site. The predominant depositional flux profile observed in this study suggests that the river water in this Superfund site is largely a sink for airborne PAHs, rather than a source.

  11. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry.

    PubMed

    Cardozo, Karina H M; Carvalho, Valdemir M; Pinto, Ernani; Colepicolo, Pio

    2006-01-01

    The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.

  12. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  13. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    PubMed

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  14. Mercury emission from terrestrial background surfaces in the eastern USA. II: Air/surface exchange of mercury within forests from South Carolina to New England

    SciTech Connect

    Kuiken, Todd; Zhang, Hong; Gustin, Mae S.; Lindberg, Steven Eric

    2008-03-01

    Mercury air/surface exchange was measured over litter-covered soils with low Hg concentrations within various types of forests along the eastern seaboard of the USA. The fieldwork was conducted at six forested sites in state parks in South Carolina, North Carolina, New Jersey, Pennsylvania, New York and Maine from mid-May to early June 2005. The study showed that the Hg air/surface exchange was consistently very low and similar (overall daytime mean flux = 0.2 0.9 ng m 2 h 1, n = 310, for all six sites monitored) with the various forest types. These flux values are comparable with those found in a year-long study in Tennessee (yearly daytime mean = 0.4 0.5 ng m 2 h 1), but lower than many previous flux results reported for background soils. The Hg fluxes at all sites oscillated around zero, with many episodes of deposition (negative fluxes) occurring in both daytime and nighttime. While there were particular days showing significant correlations among the Hg air/surface exchange and certain environmental parameters, perhaps because of the low fluxes encountered, few significant correlations were found for any particular day of sampling between the Hg flux and environmental parameters such as solar radiation, soil temperature, air temperature (little variability seen), relative humidity, and ambient air Hg concentrations. Factors driving the Hg exchange as previously found for enriched soils may not hold for these background litter-covered forest soils. The results suggest that spatial variations of the Hg air/surface exchange were small among these different forest types for this particular time of year.

  15. Air-substrate mercury exchange associated with landfill disposal of coal combustion products

    SciTech Connect

    Mei Xin; Mae S. Gustin; Kenneth Ladwig; Debra F. Pflughoeft-Hassett

    2006-08-15

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash land-fill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (- 0.1 to 1.2 ng/m{sup 2}hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates ({approximately} 10 ng/m{sup 2}hr) but were still comparable with natural background soils (- 0.3 to 13 ng/m{sup 2}hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods. 19 refs., 4 figs., 6 tabs.

  16. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.

    PubMed

    Xin, Mei; Gustin, Mae S; Ladwig, Kenneth; Pflughoeft-Hassett, Debra F

    2006-08-01

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.

  17. A dynamic model to study the exchange of gas-phase persistent organic pollutants between air and a seasonal snowpack.

    PubMed

    Hansen, Kaj M; Halsall, Crispin J; Christensen, Jesper H

    2006-04-15

    An arctic snow model was developed to predict the exchange of vapor-phase persistent organic pollutants between the atmosphere and the snowpack over a winter season. Using modeled meteorological data simulating conditions in the Canadian High Arctic, a single-layer snowpack was created on the basis of the precipitation rate, with the snow depth, snow specific surface area, density, and total surface area (TSA) evolving throughout the annual time series. TSA, an important parameter affecting the vapor-sorbed quantity of chemicals in snow, was within a factor of 5 of measured values. Net fluxes for fluorene, phenanthrene, PCB-28 and -52, and alpha- and gamma-HCH (hexachlorocyclohexane) were predicted on the basis of their wet deposition (snowfall) and vapor exchange between the snow and atmosphere. Chemical fluxes were found to be highly dynamic, whereby deposition was rapidly offset by evaporative loss due to snow settling (i.e., changes in TSA). Differences in chemical behavior over the course of the season (i.e., fluxes, snow concentrations) were largely dependent on the snow/air partition coefficients (K(sa)). Chemicals with relatively higher K(sa) values such as alpha- and gamma-HCH were efficiently retained within the snowpack until later in the season compared to fluorene, phenathrene, and PCB-28 and -52. Average snow and air concentrations predicted by the model were within a factor of 5-10 of values measured from arctic field studies, but tended to be overpredicted for those chemicals with higher K(sa) values (i.e., HCHs). Sensitivity analysis revealed that snow concentrations were more strongly influenced by K(sa) than either inclusion of wind ventilation of the snowpack or other changes in physical parameters. Importantly, the model highlighted the relevance of the arctic snowpack in influencing atmospheric concentrations. For the HCHs, evaporative fluxes from snow were more pronounced in April and May, toward the end of the winter, providing evidence that

  18. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  19. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  20. GEMS (Gravity Electro-Magnetism Strong) SU(5) Theory and The Prediction of Exchange Boson Masses

    NASA Astrophysics Data System (ADS)

    Brandenburg, John

    2012-10-01

    The GEMS SU(5) [1] theory includes short range Nuclear Forces in the GEM unification theory [2], where the importance of the square root of the proton-electron mass ratio: σ = 42.8503 was found. The creation of mass by a Higgs field coupling must, by the Equivalence Principle, be viewed in the context of General Relativity. This is done here using Kaluza-Klein theory in a Feynman-Hawkings path integral formalism. GEM theory, quantum concepts of virtual particles, and ZPF (Zero Point Fluctuation) allow understanding of the Strong Force and Weak forces as the extension of electrodynamics in the quantum limit. The Strong and Weak forces are found to be associated with EM models of the electron and proton as finite sized structures respectively. Higher order Mie resonances off the EM ``mass at a distance'' structures associated with the electron, proton and fifth dimension generate the quanta with masses of the pion mπ = 2 me /α 140.0 MeV and Z boson: mZ = 2σ mp = 80.4 GeV. The ηc meson mη = 2980 GeV is identified with the 5^th dimension compactification force mediated by the Radion field. Another particle associated with this mass inducing field is the ``Radion'' or Higgs scattering quanta off the fifth dimension with a mass σmη 128.6 GeV which is the Higgs Boson. A GEMS SU(5) Georgi-Glashow model, is proposed, where the unification energy is now the Planck energy.[0pt] [1] Brandenburg, J.E. (2012)., STAIF II Conference Albuquerque NM[0pt] [2] Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.

  1. Plio-Pleistocene evolution of water mass exchange and erosional input at the Atlantic-Arctic gateway

    NASA Astrophysics Data System (ADS)

    Teschner, Claudia; Frank, Martin; Haley, Brian A.; Knies, Jochen

    2016-05-01

    Water mass exchange between the Arctic Ocean and the Norwegian-Greenland Seas has played an important role for the Atlantic thermohaline circulation and Northern Hemisphere climate. We reconstruct past water mass mixing and erosional inputs from the radiogenic isotope compositions of neodymium (Nd), lead (Pb), and strontium (Sr) at Ocean Drilling Program site 911 (leg 151) from 906 m water depth on Yermak Plateau in the Fram Strait over the past 5.2 Myr. The isotopic compositions of past bottom waters were extracted from authigenic oxyhydroxide coatings of the bulk sediments. Neodymium isotope signatures obtained from surface sediments agree well with present-day deepwater ɛNd signature of -11.0 ± 0.2. Prior to 2.7 Ma the Nd and Pb isotope compositions of the bottom waters only show small variations indicative of a consistent influence of Atlantic waters. Since the major intensification of the Northern Hemisphere Glaciation at 2.7 Ma the seawater Nd isotope composition has varied more pronouncedly due to changes in weathering inputs related to the waxing and waning of the ice sheets on Svalbard, the Barents Sea, and the Eurasian shelf, due to changes in water mass exchange and due to the increasing supply of ice-rafted debris (IRD) originating from the Arctic Ocean. The seawater Pb isotope record also exhibits a higher short-term variability after 2.7 Ma, but there is also a trend toward more radiogenic values, which reflects a combination of changes in input sources and enhanced incongruent weathering inputs of Pb released from freshly eroded old continental rocks.

  2. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  3. Air mass characterization during the DAURE field campaign by PTR-TOF

    NASA Astrophysics Data System (ADS)

    Metzger, Axel; Schallhart, Simon; Müller, Markus; Hansel, Armin

    2010-05-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a wide variety of biogenic and anthropogenic sources. Although some of the sources are well characterized, many uncertainties remain about the fate of these compounds in the atmosphere and their role in organic aerosol formation. Here we present measurements using Proton Transfer Reaction Time-of-Flight (PTR-TOF) Mass Spectrometry during the DAURE field campaign ("Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean") obtained during February and March 2009. Measurements were performed at a rural mountain site located in the Montseny Natural Park 40 km to the NNE of the city of Barcelona, and 25 km from the Mediterranean coast. Volatile organic compounds where identified and quantified using PTR-TOF with 1 minute time resolution. The instruments mass resolving power of 4000 - 5000 and a mass accuracy of 5 ppm allows for the unambiguous sum-formula identification of e.g. hydrocarbons (HCs) or oxygenated VOCs (OVOCs). The high time resolution allows separating out on site pollution events. Air masses impacted by biomass-burning, urban, marine and vegetation emissions are characterized using tracers like acetonitrile, aromatics, dimethyl sulfide or biogenic compounds (terpenoids) and the degree of photochemical processing is inferred from the data.

  4. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2007-06-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  5. Air sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric; McNeil, Craig

    2008-11-01

    Measurements of the air-sea fluxes of N 2 and O 2 were made in winds of 15-57 m s - 1 beneath Hurricane Frances using two types of air-deployed neutrally buoyant and profiling underwater floats. Two "Lagrangian floats" measured O 2 and total gas tension (GT) in pre-storm and post-storm profiles and in the actively turbulent mixed layer during the storm. A single "EM-APEX float" profiled continuously from 30 to 200 m before, during and after the storm. All floats measured temperature and salinity. N 2 concentrations were computed from GT and O 2 after correcting for instrumental effects. Gas fluxes were computed by three methods. First, a one-dimensional mixed layer budget diagnosed the changes in mixed layer concentrations given the pre-storm profile and a time varying mixed layer depth. This model was calibrated using temperature and salinity data. The difference between the predicted mixed layer concentrations of O 2 and N 2 and those measured was attributed to air-sea gas fluxes FBO and FBN. Second, the covariance flux FCO( z) = < wO 2'>( z) was computed, where w is the vertical motion of the water-following Lagrangian floats, O 2' is a high-pass filtered O 2 concentration and <>( z) is an average over covariance pairs as a function of depth. The profile FCO( z) was extrapolated to the surface to yield the surface O 2 flux FCO(0). Third, a deficit of O 2 was found in the upper few meters of the ocean at the height of the storm. A flux FSO, moving O 2 out of the ocean, was calculated by dividing this deficit by the residence time of the water in this layer, inferred from the Lagrangian floats. The three methods gave generally consistent results. At the highest winds, gas transfer is dominated by bubbles created by surface wave breaking, injected into the ocean by large-scale turbulent eddies and dissolving near 10-m depth. This conclusion is supported by observations of fluxes into the ocean despite its supersaturation; by the molar flux ratio FBO/ FBN, which is

  6. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

    PubMed

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide; Hibino, Takashi

    2016-02-01

    Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7-based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V(4+)/V(3+), V(3+)/V(2+), and Sn(4+)/Sn(2+) redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g(-1) for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles.

  7. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  8. [The study of the relationship between rates of carnitine exchange and fat mass in young swimmers].

    PubMed

    Ryloval, N v; Biktimiroval, A a; Sereda, A p; SamOylOv, A s

    2016-01-01

    The study of the state of carnitine metabolism is an actual problem for the specialists who are interested in the investigating of children's health, involved in sport. Indicators of carnitine metabolism reflect mitochondrial capacity and the state of energy of the cell, which in it's turn effect on the level of physical performance of athletes and their health status. The aim of our study was to identify the characteristics of carnitine metabolism in young athletes, as well as the establishment of correlation between carnitine metabolism and body fat mass. The study included 46 young athletes 12-17 years old involved in swimming. The average age of the athletes was 15.9 ± 0.2 years. Carnitine metabolism has been studied by gas chromatography-tandem mass spectrometry, the content of body fat mass has been established by bioimpedance. The free carnitine didn't significantly differ in males (36.3 ± 1.1 mmol/l) and females (36.3 ± 1.3 mmol/l). Content of related carnitine was higher in boys--17.4 ± 0.8 mmol/l (vs 14.0 ± 0.9 mmol/l in girls, p < 0.05). Value of related carnitine/free carnitine (AC/C0) was significantly 22.5% higher in boys (0.49 ± 0.03), because of higher content of related carnitine. The content of body fat mass in boys was 9.6 ± 0.87%, and in girls--22.24 ± 1.0%. There was found a significant correlation between indicators of carnitine metabolism and fat body mass. The findings may suggest a higher mitochondrial potential of girls engaged in swimming.

  9. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  10. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  11. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  12. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  13. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  14. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  15. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  16. Hydrophobic Peptides Affect Binding of Calmodulin and Ca2+ as Explored by H/D Amide Exchange and Mass Spectrometry

    PubMed Central

    Sperry, Justin B.; Huang, Richard Y-C.; Zhu, Mei M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    Calmodulin (CaM), a ubiquitous intracellular sensor protein, binds Ca2+ and interacts with various targets as part of signal transduction. Using hydrogen/deuterium exchange (H/DX) and a high resolution PLIMSTEX (Protein-Ligand Interactions by Mass Spectrometry, Titration, and H/D Exchange) protocol, we examined five different states of calmodulin: calcium-free, calcium-loaded, and three states of calcium-loaded in the presence of either melittin, mastoparan, or skeletal myosin light-chain kinase (MLCK). When CaM binds Ca2+, the extent of HDX decreased, consistent with the protein becoming stabilized upon binding. Furthermore, Ca2+-saturated calmodulin exhibits increased protection when bound to the peptides, forming high affinity complexes. The protocol reveals significant changes in EF hands 1, 3, and 4 with saturating levels of Ca2+. Titration of the protein using PLIMSTEX provides the binding affinity of Ca2+ to calmodulin within previously reported values. The affinities of calmodulin to Ca2+ increase by factors of 300 and 1000 in the presence of melittin and mastoparan, respectively. A modified PLIMSTEX protocol whereby the protein is digested to component peptides gives a region-specific titration. The titration data taken in this way show a decrease in the root mean square fit of the residuals, indicating a better fit of the data. The global H/D exchange results and those obtained in a region-specific way provide new insight into the Ca2+-binding properties of this well-studied protein. PMID:21765646

  17. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Stoychev, Stoyan H; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L; Dirr, Heini W

    2009-09-08

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.

  18. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  19. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  20. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  1. Experimental study of heat and mass transfer in a buoyant countercurrent exchange flow

    NASA Astrophysics Data System (ADS)

    Conover, Timothy Allan

    Buoyant Countercurrent Exchange Flow occurs in a vertical vent through which two miscible fluids communicate, the higher-density fluid, residing above the lower-density fluid, separated by the vented partition. The buoyancy- driven zero net volumetric flow through the vent transports any passive scalars, such as heat and toxic fumes, between the two compartments as the fluids seek thermodynamic and gravitational equilibrium. The plume rising from the vent into the top compartment resembles a pool fire plume. In some circumstances both countercurrent flows and pool fires can ``puff'' periodically, with distinct frequencies. One experimental test section containing fresh water in the top compartment and brine (NaCl solution) in the bottom compartment provided a convenient, idealized flow for study. This brine flow decayed in time as the concentrations approached equilibrium. A second test section contained fresh water that was cooled by heat exchangers above and heated by electrical elements below and operated steadily, allowing more time for data acquisition. Brine transport was reduced to a buoyancy- scaled flow coefficient, Q*, and heat transfer was reduced to an analogous coefficient, H*. Results for vent diameter D = 5.08 cm were consistent between test sections and with the literature. Some results for D = 2.54 cm were inconsistent, suggesting viscosity and/or molecular diffusion of heat become important at smaller scales. Laser Doppler Velocimetry was used to measure velocity fields in both test sections, and in thermal flow a small thermocouple measured temperature simultaneously with velocity. Measurement fields were restricted to the plume base region, above the vent proper. In baseline periodic flow, instantaneous velocity and temperature were ensemble averaged, producing a movie of the average variation of each measure during a puffing flow cycle. The temperature movie revealed the previously unknown cold core of the puff during its early development. The

  2. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  3. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  4. Determination of mercurial species in fish by inductively coupled plasma mass spectrometry with anion exchange chromatographic separation.

    PubMed

    Chen, Xiaopan; Han, Chao; Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Yin, Xuefeng

    2013-09-24

    This work demonstrated the feasibility of mercury speciation analysis by anion exchange chromatographic separation with inductively coupled plasma mass spectrometry detection. For the first time, by complexing with the mobile phase containing 3-mercapto-1-propanesulfonate into negatively charged complexes, fast separation of inorganic mercury (Hg(2+)), monomethylmercury (MeHg), ethylmercury (EtHg) and phenylmercury (PhHg) was achieved within 5 min on a 12.5-mm strong anion exchange column. The detection limits for Hg(2+), MeHg, EtHg and PhHg were 0.008, 0.024, 0.029 and 0.034 μg L(-1), respectively. The relative standard deviations of peak height and peak area (5.0 μg L(-1) for each Hg species) were all below 3%. The determined contents of Hg(2+), MeHg and total Hg in a certified reference material of fish tissue by the proposed method were in good accordance with the certified values with satisfactory recoveries. The relative errors for determining MeHg and total mercury were -2.4% and -1.2%, respectively, with an acceptable range for spike recoveries of 94-101%. Mercury speciation in 11 fish samples were then analyzed after the pretreated procedure. The mercury contents in all fish samples analyzed were found compliant with the criteria of the National Standards of China.

  5. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  6. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method.

  7. Speciation of trace elements in human serum by micro anion exchange chromatography coupled with inductively coupled plasma mass spectrometry.

    PubMed

    Malavolta, Marco; Piacenza, Francesco; Basso, Andrea; Giacconi, Robertina; Costarelli, Laura; Pierpaoli, Sara; Mocchegiani, Eugenio

    2012-02-01

    Speciation analysis of essential trace elements in human serum provides important information on nutritional status and homeostatic mechanisms regulating transport processes, acute phase reactions, and protection against oxidative damage. Anion exchange high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectrometry (ICP-MS) has proved to be a useful tool in speciation. Here we describe a fast method that can be applied to carry out the speciation of Fe, Cu, Zn, and Se in as little as 1 microl [corrected] of serum. The method employs monolithic anion exchange micro columns installed on a tandem HPLC system coupled on-line with an ICP-MS detector. The chromatographic separation is similar to those reported previously but with considerable gain in terms of time and sample requirement. Reproducibility is acceptable for most species. Using our method, we were able to find species-specific differences between different commercially available trace element reference materials. Because the method chosen to collect blood might interfere with speciation, the proposed methodology was used to compare heparinized plasma, ethylenediaminetetraacetic acid (EDTA) plasma, and serum from adult healthy volunteers. As expected, EDTA strongly affects speciation analysis (especially for Fe and Zn), whereas changes due to the use of lithium-heparin (Li-He) as anticoagulant appear to be minimized.

  8. Influence of domain interactions on conformational mobility of the progesterone receptor detected by hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Goswami, Devrishi; Callaway, Celetta; Pascal, Bruce D.; Kumar, Raj; Edwards, Dean P.; Griffin, Patrick R.

    2015-01-01

    Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass spectrometry based investigation of TATA box binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist bound PR interaction with TBP via AF1 impacts the mobility of the C-terminal AF2. Results from HDX and other biophysical studies involving agonist and antagonist bound full length PR and isolated PR domains reveals the molecular mechanism underlying synergistic transcriptional activation mediated by AF1 and AF2, dominance of PR-B isoform over PR-A, and the necessity of AF2 for full AF1-mediated transcriptional activity. These results provide a comprehensive picture elaborating the underlying mechanism of PR-TBP interactions as a model for studying NR-transcription factor functional interactions. PMID:24909783

  9. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  10. Mercury isotopes in a forested ecosystem: Implications for air-surface exchange dynamics and the global mercury cycle

    NASA Astrophysics Data System (ADS)

    Demers, Jason D.; Blum, Joel D.; Zak, Donald R.

    2013-01-01

    ABSTRACT Forests mediate the biogeochemical cycling of mercury (Hg) between the atmosphere and terrestrial ecosystems; however, there remain many gaps in our understanding of these processes. Our objectives in this study were to characterize Hg isotopic composition within forests, and use natural abundance stable Hg isotopes to track sources and reveal mechanisms underlying the cycling of Hg. We quantified the stable Hg isotopic composition of foliage, forest floor, mineral soil, precipitation, and total gaseous mercury (THg(g)) in the atmosphere and in evasion from soil, in 10-year-old aspen forests at the Rhinelander FACE experiment in northeastern Wisconsin, USA. The effect of increased atmospheric CO2 and O3 concentrations on Hg isotopic composition was small relative to differences among forest ecosystem components. Precipitation samples had δ202Hg values of -0.74 to 0.06‰ and ∆199Hg values of 0.16 to 0.82‰. Atmospheric THg(g) had δ202Hg values of 0.48 to 0.93‰ and ∆199Hg values of -0.21 to -0.15‰. Uptake of THg(g) by foliage resulted in a large (-2.89‰) shift in δ202Hg values; foliage displayed δ202Hg values of -2.53 to -1.89‰ and ∆199Hg values of -0.37 to -0.23‰. Forest floor samples had δ202Hg values of -1.88 to -1.22‰ and ∆199Hg values of -0.22 to -0.14‰. Mercury isotopes distinguished geogenic sources of Hg and atmospheric derived sources of Hg in soil, and showed that precipitation Hg only accounted for ~16% of atmospheric Hg inputs. The isotopic composition of Hg evasion from the forest floor was similar to atmospheric THg(g); however, there were systematic differences in δ202Hg values and MIF of even isotopes (∆200Hg and ∆204Hg). Mercury evasion from the forest floor may have arisen from air-surface exchange of atmospheric THg(g), but was not the emission of legacy Hg from soils, nor re-emission of wet-deposition. This implies that there was net atmospheric THg(g) deposition to the forest soils. Furthermore, MDF of

  11. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  12. Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu).

    PubMed

    Qin, Ning; He, Wei; Kong, Xiang-Zhen; Liu, Wen-Xiu; He, Qi-Shuang; Yang, Bin; Ouyang, Hui-Ling; Wang, Qing-Mei; Xu, Fu-Liu

    2013-11-01

    The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC-MS). The composition and seasonal variation were investigated. The diffusive air-water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85±46.17 ng m(-3) in the gaseous phase and 14.32±23.82 ng m(-3) in the particulate phase. The dissolved PAH16 level was 173.46±132.89 ng L(-1). (2) The seasonal variation of average PAH16 contents ranged from 43.09±33.20 ng m(-3) (summer) to 137.47±41.69 ng m(-3) (winter) in gaseous phase, from 6.62±2.72 ng m(-3) (summer) to 56.13±22.99 ng m(-3) (winter) in particulate phase, and 142.68±74.68 ng L(-1) (winter) to 360.00±176.60 ng L(-1) (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air-water exchange flux of total PAH16 ranged from -1.77×10(4) ng m(-2) d(-1) to 1.11×10(5) ng m(-2) d(-1), with an average value of 3.45×10(4) ng m(-2) d(-1). (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from -3.4×10(3) ng m(-2) d(-1) to 1.6×10(4) ng m(-2) d(-1) throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations.

  13. Fast Reversed-Phase Liquid Chromatography to Reduce Back Exchange and Increase Throughput in H/D Exchange Monitored by FT-ICR Mass Spectrometry

    PubMed Central

    Zhang, Hui-Min; Bou-Assaf, George M.; Emmett, Mark R.; Marshall, Alan G.

    2009-01-01

    In solution-phase hydrogen/deuterium exchange (HDX), it is essential to minimize the back exchange level of H for D after the exchange has been quenched, to accurately assign protein conformation and protein-protein or protein-ligand interactions. Reversed-phase HPLC is conducted at low pH and low temperature to desalt and separate proteolytic fragments. However, back exchange averages ∼30% due to long exposure to H2O in the mobile phase. In this paper, we first show that there is no significant backbone amide hydrogen back exchange during quenching and digestion; backbone exchange occurs primarily during subsequent LC separation. We then show that a rapid reversed-phase separation reduces back exchange for HDX by at least 25%, due to dramatically reduced retention time of the peptide fragments on the column. The influence of retention time on back exchange was also evaluated. The rapid separation coupled with high resolution FT-ICR MS at 14.5T provides high amino acid sequence coverage, high sample throughput, and high reproducibility and reliability. PMID:19095461

  14. Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR.

    PubMed Central

    Zhang, Z.; Li, W.; Logan, T. M.; Li, M.; Marshall, A. G.

    1997-01-01

    Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins. PMID:9336843

  15. Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Mattis, Ina; Tesche, Matthias; Ansmann, Albert; BöSenberg, Jens; Chaikovski, Anatoly; Freudenthaler, Volker; Komguem, Leonce; Linné, Holger; Matthias, Volker; Pelon, Jacques; Sauvage, Laurent; Sobolewski, Piotr; Vaughan, Geraint; Wiegner, Matthias

    2004-12-01

    For the first time, the vertically resolved aerosol optical properties of western and central/eastern European haze are investigated as a function of air mass transport. Special emphasis is put on clean maritime air masses that cross the European continent from the west and become increasingly polluted on their way into the continent. The study is based on observations at seven lidar stations (Aberystwyth, Paris, Hamburg, Munich, Leipzig, Belsk, and Minsk) of the European Aerosol Research Lidar Network (EARLINET) and on backward trajectory analysis. For the first time, a lidar network monitored continent-scale haze air masses for several years (since 2000). Height profiles of the particle backscatter coefficient and the particle optical depth of the planetary boundary layer (PBL) at 355-nm wavelength are analyzed for the period from May 2000 to November 2002. From the observations at Aberystwyth, Wales, the aerosol reference profile for air entering Europe from pristine environments was determined. A mean 355-nm optical depth of 0.05 and a mean PBL height of 1.5 km was found for clean maritime summer conditions. The particle optical depth and PBL height increased with increasing distance from the North Atlantic. Mean summer PBL heights were 1.9-2.8 km at the continental sites of Leipzig, Belsk, and Minsk. Winter mean PBL heights were mostly between 0.7 and 1.3 km over the seven EARLINET sites. Summer mean 355-nm optical depths increased from 0.17 (Hamburg, northwesterly airflow from the North Sea) and 0.21 (Paris, westerly flow from the Atlantic) over 0.33 (Hamburg, westerly flow) and 0.35 (Leipzig, westerly flow) to 0.59 (Belsk, westerly flow), and decreased again to 0.37 (westerly flow) at Minsk. Winter mean optical depths were, on average, 10-30% lower than the respective summer values. PBL-mean extinction coefficients were of the order of 200 Mm-1 at 355 nm at Hamburg and Leipzig, Germany, and close to 600 Mm-1 at Belsk, Poland, in winter for westerly flows

  16. Mass transfer limitations in protein separations using ion-exchange membranes.

    PubMed

    Sarfert, F T; Etzel, M R

    1997-03-07

    Sorption of bovine serum albumin to commercial 150-micron pore size membranes was measured in batch and flow experiments. For residence times of 2-40 min, early and broad breakthrough curves and broad asymmetric elution peaks were observed that depended strongly on flow-rate. System dispersion could not explain the flow-rate dependence. Breakthrough and elution curves were analyzed using new models that included Langmuir sorption, convection and diffusion. From the analysis, film mass transfer resistance was found to be the rate-limiting factor. The maximum allowable pore size that eliminates this limitation was calculated for different molecular weight solutes.

  17. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  18. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  19. Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides

    SciTech Connect

    Lee, R.G.M.; Burnett, V.; Harner, T.; Jones, K.C.

    2000-02-01

    Atmospheric concentrations of five organochlorine (OC) pesticides, some of which have been banned for a number of years, and polychlorinated naphthalenes (PCNs) were measured at a U.K. site over periods of 6 h for 7 days resulting in 28 samples. Mean concentrations of the pesticides were {alpha}-HCH 90 pg m{sup {minus}3}, {gamma}-HCH 500, {rho},{rho}{prime}-DDE 8, dieldrin 63, endrin 22, and HCB 39. PCN mean homologue concentrations were {sub 3}CNs 67 pg m{sup {minus}3}, {sub 4}CNs 78, {sub 5}CNs 5, {sub 6}CNs 0.6, {sub 7}CNs 0.6, and {Sigma}PCNs 152. TEQ concentrations for those PCNs ascribed TEF values ranged between 0.36 and 3.6 fg m{sup {minus}3} which corresponds to {approximately}3.0--30% of the TEQ concentrations of PCDD/Fs at the same site. All the compounds measured, except HCB, exhibited a strong temperature-dependent diurnal cycling. Results from Clausius-Clapeyron plots show that pesticide concentrations were controlled by temperature-driven air-surface recycling throughout the first 5 days when stable atmospheric conditions were dominant, while during the last 2 days advection became more influential as more unstable and cooler weather started to influence the site. PCN concentrations were controlled primarily by a mixture of recycling and advection throughout the first 5 days and then by advection in the final 2 days, suggesting that there are ongoing emissions from diffuse point sources of PCNs into the U.K. atmosphere. This study provides further evidence of the rapid air-surface exchange of semivolatile organic compounds (SOCs) and shows how different factors alone or in combination can produce rapid changes in the atmospheric concentrations of past and present SOCs.

  20. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth.

  1. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air.

  2. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    NASA Astrophysics Data System (ADS)

    Rowe, M. D.; Perlinger, J. A.

    2012-01-01

    Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT) substances are frequently estimated using the Whitman two-film (W2F) method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR) method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE) model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km) in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported micrometeorological air-water exchange flux measurements of PCBs.

  3. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  4. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Xinbin; Wang, Shaofeng; Qiu, Guangle; He, Tianrong; Li, Guanghui; Li, Zhonggen; Shang, Lihai

    2008-08-01

    Total gaseous mercury (TGM) exchange fluxes between air and water surface were measured using a dynamic flux chamber (DFC) coupled with a gaseous mercury analyzer at two sampling sites of Hongfeng reservoir in cloudy and rainy weather conditions. The concentrations of dissolved gaseous mercury (DGM) in water were also measured and indicated that DGM was supersaturated at most time during the sampling periods, which implied that the water body acted primarily as a source of mercury to the atmosphere. In general, TGM fluxes displayed a consistent diurnal pattern with peak fluxes at noon and minimum levels at early morning or night. However, this diurnal pattern was not clear when the weather was heavily cloudy and rainy with the maximum solar radiation of less than 140 W m-2. At this specific weather condition, a significantly positive correlation between TGM flux and relative humidity was observed. The behaviors of TGM flux over Hongfeng reservoir observed at cloudy weather conditions were some what different from those observed during mostly sunny weather conditions in Northern America and Europe. The empirical model developed based on the correlation between TGM flux and solar radiation during sunny days in Northern America was not applicable for estimation of TGM flux at cloudy and rainy weather conditions.

  5. Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere

    NASA Astrophysics Data System (ADS)

    Fijałkowska-Lichwa, L.; Przylibski, T. A.

    2011-04-01

    The authors investigated short-time changes in 222Rn activity concentration occurring yearly in two underground tourist facilities with limited air exchange with the atmosphere. One of them is Niedźwiedzia (Bear) Cave in Kletno, Poland - a natural space equipped with locks ensuring isolation from the atmosphere. The other site is Fluorite Adit in Kletno, a section of a disused uranium mine. This adit is equipped with a mechanical ventilation system, operated periodically outside the opening times (at night). Both sites are situated within the same metamorphic rock complex, at similar altitudes, about 2 km apart. The measurements conducted revealed spring and autumn occurrence of convective air movements. In Bear Cave, this process causes a reduction in 222Rn activity concentration in the daytime, i.e. when tourists, guides and other staff are present in the cave. From the point of view of radiation protection, this is the best situation. For the rest of the year, daily concentrations of 222Rn activity in the cave are very stable. In Fluorite Adit, on the other hand, significant variations in daily 222Rn activity concentrations are recorded almost all year round. These changes are determined by the periods of activity and inactivity of mechanical ventilation. Unfortunately this is inactive in the daytime, which results in the highest values of 222Rn activity concentration at the times when tourists and staff are present in the adit. Slightly lower concentrations of radon in Fluorite Adit are recorded in the winter season, when convective air movements carry a substantial amount of radon out into the atmosphere. The incorrect usage of mechanical ventilation in Fluorite Adit results in the most unfavourable conditions in terms of radiation protection. The staff working in that facility are exposed practically throughout the year to the highest 222Rn activity concentrations, both at work (in the adit) and at home (outside their working hours). Therefore, not very well

  6. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    NASA Astrophysics Data System (ADS)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-11-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  7. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  8. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  9. The ESA SMOS+SOS Project: Oceanography using SMOS for innovative air-sea exchange studies

    NASA Astrophysics Data System (ADS)

    Banks, Chris; Gommenginger, Christine; Boutin, Jacqueline; Reul, Nicolas; Martin, Matthew; Ash, Ellis; Reverdin, Gilles; Donlon, Craig

    2013-04-01

    We report on the work plan of the SMOS+Surface Ocean Salinity and Synergy (SMOS+SOS) project. SMOS+SOS is funded through the Support to Science Element (STSE) component of the European Space Agency's (ESA) Earth Observation Envelope Programme. The SMOS+SOS consortium consists of four organisations namely the National Oceanography Centre (UK), the LOCEAN/IFREMER/CATDS research team (France), the Met Office (UK) and Satellite Oceanographic Consultants Ltd (UK). The end of the SMOS+SOS project will be marked by a final open workshop most likely hosted by the UK Met Office in September/October 2014. The project is concerned with demonstrating the performance and scientific value of SMOS Sea Surface Salinity (SSS) products through a number of well-defined case studies. The case studies include: Amazon/Orinoco plumes (freshwater outflow); Agulhas and Gulf Stream (strong water mass boundary); Tropical Pacific/Atlantic (strong precipitation regime); sub-tropical North Atlantic (ie SPURS; strong evaporative regime); and Equatorial Pacific (equatorial upwelling). With SMOS measuring the SSS in the top cm of the ocean, validating SMOS against in situ salinity data taken typically at a few meters depth introduces assumptions about the vertical structure of salinity in the upper ocean. To address these issues, the project will examine and quantify discrepancies between SMOS and in situ surface salinity data at various depths in different regions characterised by strong precipitation or evaporation regimes. Equally, data editing and spatio-temporal averaging play a central role in determining the quality, errors and correlations in SMOS SSS data. The project will explore various processing and spatio-temporal averaging choices to define the SMOS SSS products that best address the needs of the oceanographic and data assimilation user community. One key aspect of this project is to determine how one can achieve useful accuracy/uncertainty in SSS without jeopardising SMOS's ability

  10. Automated Hydrogen/Deuterium Exchange Electron Transfer Dissociation High Resolution Mass Spectrometry Measured at Single-Amide Resolution

    NASA Astrophysics Data System (ADS)

    Landgraf, Rachelle R.; Chalmers, Michael J.; Griffin, Patrick R.

    2012-02-01

    Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.

  11. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  12. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  13. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Campanelli, Manuela; Krolik, Julian H.; Mewes, Vassilios; Noble, Scott C.

    2017-03-01

    We present the first exploration of gas dynamics in a relativistic binary black hole (BH) system in which an accretion disk (a “mini-disk”) orbits each BH. We focus on 2D hydrodynamical studies of comparable-mass, non-spinning systems. Relativistic effects alter the dynamics of gas in this environment in several ways. Because the gravitational potential between the two BHs becomes shallower than in the Newtonian regime, the mini-disks stretch toward the L1 point and the amount of gas passing back and forth between the mini disks increases sharply with decreasing binary separation. This “sloshing” is quasi-periodically modulated at 2 and 2.75 times the binary orbital frequency, corresponding to timescales of hours to days for supermassive binary black holes (SMBBHs). In addition, relativistic effects add an m = 1 component to the tidally driven spiral waves in the disks that are purely m = 2 in Newtonian gravity; this component becomes dominant when the separation is ≲100 gravitational radii. Both the sloshing and the spiral waves have the potential to create distinctive radiation features that may uniquely mark SMBBHs in the relativistic regime.

  14. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  15. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  16. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  17. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  18. Hydrogen–Deuterium Exchange and Mass Spectrometry Reveal the pH-Dependent Conformational Changes of Diphtheria Toxin T Domain

    PubMed Central

    2015-01-01

    The translocation (T) domain of diphtheria toxin plays a critical role in moving the catalytic domain across the endosomal membrane. Translocation/insertion is triggered by a decrease in pH in the endosome where conformational changes of T domain occur through several kinetic intermediates to yield a final trans-membrane form. High-resolution structural studies are only applicable to the static T-domain structure at physiological pH, and studies of the T-domain translocation pathway are hindered by the simultaneous presence of multiple conformations. Here, we report the application of hydrogen–deuterium exchange mass spectrometry (HDX-MS) for the study of the pH-dependent conformational changes of the T domain in solution. Effects of pH on intrinsic HDX rates were deconvolved by converting the on-exchange times at low pH into times under our “standard condition” (pH 7.5). pH-Dependent HDX kinetic analysis of T domain clearly reveals the conformational transition from the native state (W-state) to a membrane-competent state (W+-state). The initial transition occurs at pH 6 and includes the destabilization of N-terminal helices accompanied by the separation between N- and C-terminal segments. The structural rearrangements accompanying the formation of the membrane-competent state expose a hydrophobic hairpin (TH8–9) to solvent, prepare it to insert into the membrane. At pH 5.5, the transition is complete, and the protein further unfolds, resulting in the exposure of its C-terminal hydrophobic TH8–9, leading to subsequent aggregation in the absence of membranes. This solution-based study complements high resolution crystal structures and provides a detailed understanding of the pH-dependent structural rearrangement and acid-induced oligomerization of T domain. PMID:25290210

  19. Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography-tandem mass spectrometry.

    PubMed

    Cao, Zhao-Yun; Sun, Li-Hua; Mou, Ren-Xiang; Lin, Xiao-Yan; Zhou, Rong; Ma, You-Ning; Chen, Ming-Xue

    2016-12-09

    Ustiloxins are cyclopeptide mycotoxins produced by the pathogenic fungus Ustilaginoidea virens of rice false smut. Quantification of ustiloxins is essential to assess the food safety of rice infected by rice false smut disease. This paper describes a sensitive method for the simultaneous quantification of ustiloxins A, B, C, D and F in rice grains using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Since notable matrix enhancement effects (21%-78%) occurred for all of the target analytes (except for ustiloxin A), several solid phase extraction materials were tested for their ability to retain ustiloxins from aqueous solutions prior to the LC-MS/MS analysis, including C18 sorbents, polymer anion exchange sorbents resin (PAX), and polymer cation exchange resin (PCX). The PCX resin was adopted due to its higher extraction capability and selectivity for all targets compared to others, and in this case, almost no matrix effects (-5% to 8%) were observed for all of the ustiloxins monitored. The developed method reached limits of quantification of 0.2-2ngg(-1), and linearity was statistically verified over two orders of magnitude with regression coefficients (R(2))>0.991. The mean recoveries were from 85% to 109%, and the inter-day precisions (n=11) were less than 16%, with intra-day precisions (n=6) within 12%. Analysis of samples showed that ustiloxin A was the dominant species, with the content ranging from 5.5 to 273.8ngg(-1), followed by ustiloxin B (≤88.7ngg(-1)), while concentrations of ustiloxins C, D and F were slightly lower (≤43.2ngg(-1)). To our knowledge, this is the first report on the determination and analysis of five ustiloxins simultaneously in a single analysis.

  20. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-05-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by the relaxed eddy accumulation (REA) method, the aerodynamic gradient method (AGM), the modified Bowen ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs, are assessed using a robust data set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (ΔC) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM systems. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069 + 0.022C. During the campaigns, 57 and 62 % of the individual vertical gradient measurements are found to be significantly different from 0, while for the REA technique, the percentage of significant observations is lower. For the chambers, non-significant fluxes are confined to a few night-time periods with varying ambient Hg0 concentrations. Relative bias for DFC-derived fluxes is estimated to be ~ ±10, and ~ 85% of the flux bias is within ±2 ng m-2 h-1 in absolute terms. The DFC flux bias follows a diurnal cycle, which is largely affected by the forced temperature and irradiation bias in the chambers. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of 2 between the campaigns, while that in ΔC measurement is fairly consistent. The estimated flux uncertainties for the triad of MM techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA methods, respectively. This study indicates that flux-gradient-based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux

  1. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-02-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by relaxed eddy accumulation (REA) method, aerodynamic gradient method (AGM), modified Bowen-ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs is assessed using a robust data-set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (Δ C) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM system. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069+0.022C. 57 and 62% of the individual vertical gradient measurements were found to be significantly different from zero during the campaigns, while for the REA-technique the percentage of significant observations was lower. For the chambers, non-significant fluxes are confined to a few nighttime periods with varying ambient Hg0 concentration. Relative bias for DFC-derived fluxes is estimated to be ~ ±10%, and ~ 85% of the flux bias are within ±2 ng m-2 h-1 in absolute term. The DFC flux bias follows a diurnal cycle, which is largely dictated by temperature controls on the enclosed vol