Science.gov

Sample records for air mass exchange

  1. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  2. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  3. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  4. Hydrogen Exchange Mass Spectrometry.

    PubMed

    Mayne, Leland

    2016-01-01

    Hydrogen exchange (HX) methods can reveal much about the structure, energetics, and dynamics of proteins. The addition of mass spectrometry (MS) to an earlier fragmentation-separation HX analysis now extends HX studies to larger proteins at high structural resolution and can provide information not available before. This chapter discusses experimental aspects of HX labeling, especially with respect to the use of MS and the analysis of MS data.

  5. Extratropical Stratosphere-Troposphere Mass Exchange

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.

  6. Earth-air heat exchanger

    SciTech Connect

    Kammel, D.W.

    1985-01-01

    Optimizing the thermal environment of a livestock building is beneficial to the growth and production of the animal. Minimizing temperature extremes of inlet ventilation air to the livestock building by passing the air through underground ducts would accomplish this goal. Providing this optimum environment by reducing heating and cooling loads would reduce energy costs and increase profits for the producer. The heat transfer in an earth-air heat exchanger was studied in two phases to develop design criteria for these systems. The experimental phase consisted of an earth-air exchanger installation from which data were collected during hot weather (cooling effect), cold weather (heating effect), and mild weather performances. The analytical phase developed a finite element program for simulating the earth-air heat exchanger and studying the effects of important parameters on the heat transfer rate and the air temperature. Results of the first phase were used to verify the computer model. Design criteria for the earth-air heat exchanger were determined based on the information obtained in the two phases of this study.

  7. FACTORS AFFECTING AIR EXCHANGE IN TWO HOUSES

    EPA Science Inventory

    Air exchange rate is critical to determining the relationship between indoor and outdoor concentrations of hazardous pollutants. Approximately 150 air exchange experiments were completed in two residences: a two-story detached house located in Redwood City, CA and a three-story...

  8. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  9. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  10. Avian eggs: barriers to the exchange of heat and mass.

    PubMed

    Sotherland, P R; Spotila, J R; Paganelli, C V

    1987-01-01

    Measured boundary-layer conductance to heat exchange for bird eggs varies with egg mass to the 0.53 power. Calculations based on the Nusselt-Reynolds relationship for a sphere and the thermal properties of air indicate that the conductance of the boundary layer to heat and to mass at any wind speed other than still air should scale with mass to the 0.53 power. Although the boundary layer contributes little to the total barrier to mass flux between bird eggs and their environment, we show that it is the major barrier to the exchange of heat. From these observations we infer that birds incubating eggs in natural nests can alter only the gradient affecting mass flux between their eggs and the environment while having the capability to change both the gradient and conductance affecting heat flux.

  11. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  12. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  13. Passive bioventing driven by natural air exchange

    SciTech Connect

    Foor, D.C.; Zwick, T.C.; Hinchee, R.E.; Hoeppel, R.E.; Kyburg, C.; Bowling, L.

    1995-12-31

    Bioventing wells installed in the vadose zone of petroleum-contaminated sites at the Marine Corps Air Ground Combat Center (MCAGCC) in Twentynine Palms, California, naturally inhale and exhale air. This natural air exchange appears to be driven primarily by barometric pressure changes. The natural air exchange was utilized to engineer a passive bioventing system in which a valve allows only air injection and prevents soil gas extraction. The system is effective in aerating petroleum-contaminated, oxygen-limited subsurface soils. This aeration resulted in enhanced biological activity and site remediation. The bioventing wells (vent wells) were fitted with a passive valve mechanism that opens when the atmospheric pressure overcomes the internal vent well pressure. When the valve is open it permits atmospheric air to enter the vent well and infiltrate into the soil, thereby stimulating bioremediation. When the vent well pressure overcomes atmospheric pressure, the valve is closed and inhibits soil gas extraction. The vent wells are installed in a coarse sand where the depth to groundwater is approximately 220 ft (67 m). Generally, deeper vent wells produce greater flowrates. Passive airflow rates of up to 7 cfm (12 m{sup 3}/h) have been achieved at the bioventing wells.

  14. Analytical Aspects of Hydrogen Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Engen, John R.; Wales, Thomas E.

    2015-07-01

    This article reviews the analytical aspects of measuring hydrogen exchange by mass spectrometry (HX MS). We describe the nature of analytical selectivity in hydrogen exchange, then review the analytical tools required to accomplish fragmentation, separation, and the mass spectrometry measurements under restrictive exchange quench conditions. In contrast to analytical quantitation that relies on measurements of peak intensity or area, quantitation in HX MS depends on measuring a mass change with respect to an undeuterated or deuterated control, resulting in a value between zero and the maximum amount of deuterium that can be incorporated. Reliable quantitation is a function of experimental fidelity and to achieve high measurement reproducibility, a large number of experimental variables must be controlled during sample preparation and analysis. The method also reports on important qualitative aspects of the sample, including conformational heterogeneity and population dynamics.

  15. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    ERIC Educational Resources Information Center

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  16. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  17. Translating metabolic exchange with imaging mass spectrometry

    PubMed Central

    Yang, Yu-Liang; Xu, Yuquan; Straight, Paul; Dorrestein, Pieter C.

    2009-01-01

    Metabolic exchange between an organism and the environment, including interactions with neighboring organisms, is important for processes of organismal development. Here we develop and use thin-layer agar natural product MALDI-TOF imaging mass spectrometry of intact bacterial colonies grown on top of the MALDI target plate to study an interaction between two species of bacteria and provide direct evidence that a Bacillus subtilis silences the defensive arsenal of Streptomyces coelicolor. PMID:19915536

  18. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it... under the administrative jurisdiction of the Air Force. FOR FURTHER INFORMATION CONTACT: Mr....

  19. Observational Studies of Parameters Influencing Air-sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.

    A physically-based modeling of the air-sea gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange process at the air/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the air/sea interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.

  20. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  1. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  2. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, Richard L.

    1993-01-01

    A heat exchanger includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.

  3. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  4. Self-defrosting recuperative air-to-air heat exchanger

    DOEpatents

    Drake, R.L.

    1993-12-28

    A heat exchanger is described which includes a stationary spirally or concentrically wound heat exchanger core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary exchanger core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.

  5. A fundamentally new approach to air-cooled heat exchangers.

    SciTech Connect

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this boundary layer

  6. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2002-03-05

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  7. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M [Kennewick, WA; Bennett, Wendy D [Kennewick, WA; Matson, Dean W [Kennewick, WA; Stewart, Donald C [Richland, WA; Drost, Monte K [Pasco, WA; Wegeng, Robert S [Richland, WA; Perez, Joseph M [Richland, WA; Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA

    2003-03-18

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  8. Microchannel laminated mass exchanger and method of making

    DOEpatents

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  9. Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange

    NASA Technical Reports Server (NTRS)

    Haynes, Brian D.

    2015-01-01

    Technology Candidates for Air-to-Air and Air-to-Ground Data Exchange is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data exchange needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for air, ground, & air-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information exchange functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the

  10. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  11. Balloons and Bottles: Activities on Air-Sea Heat Exchange.

    ERIC Educational Resources Information Center

    Murphree, Tom

    1998-01-01

    Presents an activity designed to demonstrate how heating and cooling an air mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)

  12. National Air Space (NAS) Data Exchange Environment Through 2060

    NASA Technical Reports Server (NTRS)

    Roy, Aloke

    2015-01-01

    NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National Air Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking air-traffic modernization (ATM) concepts. Data exchanges over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.

  13. Air exchange effectiveness in office buildings: Measurement techniques and results

    SciTech Connect

    Fisk, W.J.; Faulkner, D.

    1992-07-01

    We define two air exchange effectiveness parameters which indicate the extent of short circuiting, mixing, or displacement air flow in an entire building, the air diffusion effectiveness which indicates the air flow pattern locally, and the normalized local age of air. After describing two tracer gas procedures for measuring these parameters, we discuss assumptions inherent in the data analysis that are often violated in large office buildings. To obtain valuable data, careful selection of buildings for measurements and assessments to determine if operating conditions are reasonably consistent with the assumptions are necessary. Multiple factors, in addition to the air flow pattern in the occupied space, can affect measurement results, consequently, the interpretation of measurements is not straightforward. We summarize the results of measurements in several office buildings and in a research laboratory. Almost all measurements indicate that the extent of both short circuiting and displacement flow is small. A moderate amount of short circuiting is evident from a few measurements in rooms with heated supply air. Ages of air and their reciprocals (local ventilation rates) often vary substantially between rooms, probably because of room-to-room variation in the rate of air supply. For future research, we suggest assessments of measurement accuracy, development of measurement approaches that may be practically applied for a broader range of buildings, and a greater focus on pollutant removal efficiencies.

  14. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  15. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Shields, Helen C.

    Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned "on" or "off" at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1-0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h -1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h -1 particle number concentration in the 0.1-0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5-0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h -1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth

  16. Selection and costing of heat exchangers. Air-cooled type

    NASA Astrophysics Data System (ADS)

    1994-12-01

    ESDU 94043 extends the information in ESDU 92013 which, when an air-cooled exchanger is found appropriate and is costed, provides the results for a datum design 40 ft (12.2 m) long with G-fins and 1 in (25 mm) diameter tube operating at a noise level of 85 dBa. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of air-cooled exchangers is given. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  17. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.

    PubMed

    Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun

    2015-05-01

    Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.

  18. Mass exchange during simultaneous grinding and dissolution

    SciTech Connect

    Aksel'rud, G.A.; Semenishin, E.M.; Kopyt, S.Ya.; Trotskii, V.I.

    1988-03-20

    Extraction of ore components of interest has a number of disadvantages, one of which being low efficiency. Combining the grinding and dissolution steps in one apparatus makes the process more efficient. Adoption of this technology, however, requires theoretical and mathematical studies. This paper reports the kinetics of simultaneous grinding and dissolution of copper-containing minerals. Simultaneous grinding and dissolution accelerated several fold the mass transfer of components of interest in the interaction of malachite and azurite with sulfuric acid solutions. The complete dissolution time was determined by adding the experimental rates of dissolution and abrasion.

  19. Gaseous exchange of polycyclic aromatic hydrocarbons across the air-water interface of lower Chesapeake Bay

    SciTech Connect

    Gustafson, K.E.; Dickhut, R.M.

    1995-12-31

    The gaseous exchange fluxes of polycyclic aromatic hydrocarbons (PAHs) across the air-water interface of lower Chesapeake Bay were determined using a modified two-film exchange model. Sampling covered the period January 1994 to June 1995 for five sites on lower Chesapeake Bay ranging from rural to urban and highly industrialized. Simultaneous air and water samples were collected and the atmospheric gas phase and water column dissolved phase analyzed via GC/MS for 17 PAHs. The direction and magnitude of flux for each PAH was calculated using Henry`s law constants, hydrological and meteorological parameters, Temperature was observed to be an important environmental factor in determining both the direction and magnitude of PAH gas exchange. Nonetheless, wind speed significantly impacts mass transfer coefficients, and therefore was found to control the magnitude of flux. Spatial and temporal variation of PAH gaseous exchange fluxes were examined. Fluxes were determined to be both into and out of Chesapeake Bay. The range of gas exchange fluxes ({minus}560 to 600{micro}g/M{sup 2}*Mo) is of the same order to 10X greater than atmospheric wet and dry depositional fluxes to lower Chesapeake Bay. The results of this study support the hypothesis that gas exchange is a major transport process affecting the net loadings of PAHs in lower Chesapeake Bay.

  20. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  1. In calm seas, precipitation drives air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-05-01

    In a series of experiments run in what resembles a heavily instrumented fish tank, Harrison et al. investigated the interwoven roles of wind and rain on air-sea gas exchange rates. Working with a 42-meterlong, 1-meter-wide, and 1.25-meter-tall experimental pool, the authors were able to control the wind speed, rainfall rate, water circulation speed, and other parameters, which they used to assess the effect of 24 different wind speed-rainfall rate combinations on the gas exchange rate of sulfur hexafuoride, a greenhouse gas. In trials that lasted up to 3 hours, the authors collected water samples from the tank at regular intervals, tracking the concentration of the dissolved gas.

  2. ASGAMAGE, the Air-Sea Gas Exchange/MAGE experiment

    NASA Astrophysics Data System (ADS)

    Oost, Wiebe; Jacobs, Cor; Kohsiek, Wim; Goossens, Guus; van der Horn, Jaap; Sprung, Detlev; Rapsomanikis, Spyros; Kenntner, Thomas; Reiner, Thomas; Bowyer, Peter; Larsen, Søren; de Leeuw, Gerrit; Kunz, Gerard; Hall, Alan; Liss, Peter; Malin, Gill; Upstill-Goddard, Rob; Woolf, David; Graham, Angus; Nightingale, Phil; Fairall, Chris; Hare, Jeff; Dissly, Richard; Tans, Pieter; Anderson, Bob; Smith, Stu

    The ASGAMAGE project addressed the problem of the large discrepancy between the chemistry based and micrometeorological methods and aimed to determine any geophysical parameters apart from the wind speed that affect air-sea gas exchange in an effort to reduce the uncertainty in the global carbon balance. Experiments were performed in the spring and fall of 1996 at and near a research platform off the Dutch coast and two surface layer models were developed for the gas exchange process. The results gave a reduction of the difference between the two types of methods from an order of magnitude to a factor of two as well as indications for the causes of the remaining difference.

  3. Radiocarbon detection by ion charge exchange mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hotchkis, Michael; Wei, Tao

    2007-06-01

    A method for detection of radiocarbon at low levels is described and the results of tests are presented. We refer to this method as ion charge exchange mass spectrometry (ICE-MS). The ICE-MS instrument is a two stage mass spectrometer. In the first stage, molecular interferences which would otherwise affect radiocarbon detection at mass 14 are eliminated by producing high charge state ions directly in the ion source (charge state ⩾2). 14N interference is eliminated in the second stage by converting the beam to negative ions in a charge exchange cell. The beam is mass-analysed at each stage. We have built a test apparatus consisting of an electron cyclotron resonance ion source and a pair of analysing magnets with a charge exchange cell in between, followed by an electrostatic analyser to improve the signal to background ratio. With this apparatus we have measured charge exchange probabilities for (Cn+ → C-) from 4.5 to 40.5 keV (n = 1-3). We have studied the sources of background including assessment of limits for nitrogen interference by searching for negative ions from charge exchange of 14N ions. Our system has been used to detect 14C in enriched samples of CO2 gas with 14C/12C isotopic ratio down to the 10-9 level. Combined with a measured sample consumption rate of 4 ng/s, this corresponds to a capability to detect transient signals containing only a few μBq of 14C activity, such as may be obtained from chromatographic separation. The method will require further development to match the sensitivity of AMS with a gas ion source; however, even in its present state its sensitivity is well suited to tracer studies in biomedical research and drug development.

  4. Mass-resolving charge-exchange system on PDX

    SciTech Connect

    Davis, S.L.; Mueller, D.; Keane, C.J.

    1982-10-01

    The PDX charge-exchange system is comprised of four, ten channel, mass-resolved, charge-exchange analyzers. Each analyzer is constructed with parallel electric and magnetic fields and is calibrated over an energy range of 0.5 to 40 keV. The mass rejection between hydrogen and deuterium has been measured as better than 1000 to 1. For ohmic heated discharges the system can provide single shot radial ion temperature profiles (4 point) with 1 msec time resolution. For neutral beam heated discharges complete radial and temporal profiles can be obtained in 2 to 4 shots. The system is also equipped with a vertically aimed diagnostic neutral beam to allow local ion-energy distribution measurements. This report describes the analyzer system and its calibration, and presents results from ohmic and neutral beam heated discharges.

  5. Air-water oxygen exchange in a large whitewater river

    USGS Publications Warehouse

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  6. Isentropic mass exchange between the Tropics and extratropics in the stratosphere

    NASA Technical Reports Server (NTRS)

    Chen, Ping; Holton, James R.; O'Neill, Alan; Swinbank, Richard

    1994-01-01

    The isentropic mass exchange between the Tropics and extratropics in the stratosphere is investigated with a semi-Lagrangian transport model for the periods from 1 June to 31 October 1992 and from 1 December 1992 to 30 April 1993 using winds from the U.K. Meteorological Office data assimilation system. Calculations with an idealized, initially zonally symmetric tracer show that in the middle and upper stratosphere the bulk of tropical air is transported into the midlatitudes of the winter hemisphere although there exist quasi-permeable barriers in the subtropics. The transport takes place in the form of planetary-scale 'tongues' of material that are drawn poleward in association with the episodic amplification of planetary-scale waves in high latitudes of the winter hemisphere. Once air of tropical origin is transported to the midlatitudes it is irreversibly mixed with the midlatitude air in the 'surf zone.' Air of tropical origin can, however, hardly penetrate into the interior of the winter polar vortex until the breakdown of the vortex. Transport of tropical air into the midlatitudes of the summer hemisphere is strongly inhibited. In the lower stratosphere, tropical air is transported into the northern and southern midlatitudes. During the period from 1 June to 31 October 1992, the amount of tropical air transported into the Northern Hemisphere is, however, much smaller than that transported into the Southern Hemisphere, and there exist strong gradients in the tracer field in the equatorial region, indicating that there is a quasi-permeable barrier to cross-equator mass exchange. During the period from 1 December 1992 to 30 April 1993, on the other hand, roughly the same amounts of tropical air are transported into the Southern Hemisphere, and there exist strong gradients in the tracer field in the equatorial region, indicating that there is a quasi-permeable barrier to cross-equator mass exchange. During the period from 1 December 1992 to 30 April 1993, on the

  7. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  8. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  9. Dry air-surface exchange in hilly terrain

    SciTech Connect

    Gao, W.; Wesely, M.L.; Cook, D.R.; Hart, R.L.

    1991-01-01

    Surface fluxes of sensible heat, water vapor, carbon dioxide, ozone, and momentum were measured by using the eddy correlation method near the top of a small hill within the Konza Prairie in Kansas during the four 1987 Intensive Field Campaigns of the First ISLSCP Field Experiment (FIFE). Parameterizations of dry air-surface exchange in nonuniform terrain were examined. Larger drag coefficients, larger surface roughness lengths, and smaller aerodynamic resistances appeared to be associated with the deeper, rolling terrain upwind. Surface resistances were less affected by terrain inhomogeneities but were closely related to levels of photosynthetically active radiation. Normalized standard deviations of temperature, humidity, and vertical velocity are slightly different from values predicted by similarity relationships for uniform surfaces. The influences of these differences on fluxes estimated by use of a variance technique are relatively small as compared to the data scatter; computed variance fluxes are statistically in good agreement with eddy correlation fluxes. 11 refs., 7 figs.

  10. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  11. Air-water gas exchange by waving vegetation stems

    NASA Astrophysics Data System (ADS)

    Foster-Martinez, M. R.; Variano, E. A.

    2016-07-01

    Exchange between wetland surface water and the atmosphere is driven by a variety of motions, ranging from rainfall impact to thermal convection and animal locomotion. Here we examine the effect of wind-driven vegetation movement. Wind causes the stems of emergent vegetation to wave back and forth, stirring the water column and facilitating air-water exchange. To understand the magnitude of this effect, a gas transfer velocity (k600 value) was measured via laboratory experiments. Vegetation waving was studied in isolation by mechanically forcing a model canopy to oscillate at a range of frequencies and amplitudes matching those found in the field. The results show that stirring due to vegetation waving produces k600 values from 0.55 cm/h to 1.60 cm/h. The dependence of k600 on waving amplitude and frequency are evident from the laboratory data. These results indicate that vegetation waving has a nonnegligible effect on gas transport; thus, it can contribute to a mechanistic understanding of the fluxes underpinning biogeochemical processes.

  12. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOEpatents

    Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  13. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  14. Dynamics of compressible air flow in ducts with heat exchange

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M.

    1986-12-01

    An investigation into the effect of heat addition on subsonic flow of an air stream in a constant-area duct preceded by a convergent nozzle is carried out. A nozzle flow apparatus with a heat exchanger encasing the constant-area duct has been built for this purpose. Hot water is provided from an electric boiler where the flow rate and the in-flow hot water temperature could be controlled. It is confirmed experimentally, as predicted analytically, that heat transfer to the gas decreases its local static pressure along the duct axis, and that this decrease is associated with an increase in Mach number toward M = 1 at the exit (thermal choking). In the case of subsonic flow, the additional entropy generated by the heat interaction exceeding the amount that produces thermal choking can only be accommodated by moving to a new Rayleigh line, at a decreased flow rate which lowers the inlet Mach number. The good correlation between the experimental results and the analytical derivations illustrates that the experimental arrangement has potential for further experiments and investigations.

  15. Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model

    NASA Astrophysics Data System (ADS)

    Bash, J. O.; Cooter, E. J.; Dennis, R. L.; Walker, J. T.; Pleim, J. E.

    2013-03-01

    Atmospheric ammonia (NH3) is the primary atmospheric base and an important precursor for inorganic particulate matter and when deposited NH3 contributes to surface water eutrophication, soil acidification and decline in species biodiversity. Flux measurements indicate that the air-surface exchange of NH3 is bidirectional. However, the effects of bidirectional exchange, soil biogeochemistry and human activity are not parameterized in air quality models. The US Environmental Protection Agency's (EPA) Community Multiscale Air-Quality (CMAQ) model with bidirectional NH3 exchange has been coupled with the United States Department of Agriculture's (USDA) Environmental Policy Integrated Climate (EPIC) agroecosystem model. The coupled CMAQ-EPIC model relies on EPIC fertilization timing, rate and composition while CMAQ models the soil ammonium (NH4+) pool by conserving the ammonium mass due to fertilization, evasion, deposition, and nitrification processes. This mechanistically coupled modeling system reduced the biases and error in NHx (NH3 + NH4+) wet deposition and in ambient aerosol concentrations in an annual 2002 Continental US (CONUS) domain simulation when compared to a 2002 annual simulation of CMAQ without bidirectional exchange. Fertilizer emissions estimated in CMAQ 5.0 with bidirectional exchange exhibits markedly different seasonal dynamics than the US EPA's National Emissions Inventory (NEI), with lower emissions in the spring and fall and higher emissions in July.

  16. Study of Ram-air Heat Exchangers for Reducing Turbine Cooling-air Temperature of a Supersonic Aircraft Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Diaguila, Anthony J; Livingood, John N B; Eckert, Ernst R G

    1956-01-01

    The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude The sizes and weights of the cores of heat exchangers were determined analytically for possible application for reducing turbine cooling-air temperatures of an engine designed for a Mach number of 2.5 and an altitude of 70,000 feet. A compressor-bleed-air weight flow of 2.7 pounds per second was assumed for the coolant; ram air was considered as the other fluid. Pressure drops and inlet states of both fluids were prescribed, and ranges of compressor-bleed-air temperature reductions and of the ratio of compressor-bleed to ram-air weight flows were considered.

  17. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.

    PubMed

    Braida, W J; Ong, S K

    2001-10-12

    Air sparging in conjunction with soil vapor extraction is one of many technologies currently being applied for the remediation of groundwater contaminated with volatile organic compounds (VOCs). Mass transfer at the air-water interface during air sparging is affected by various soil and VOC properties. In this study with a single air-channel apparatus, mass transfer of VOCs was shown to occur within a thin layer of saturated porous media next to the air channel. In this zone, the VOCs were found to rapidly deplete during air sparging resulting in a steep concentration gradient while the VOC concentration outside the zone remained fairly constant. The sizes of the mass transfer zone were found to range from 17 to 41 mm or 70d(50) and 215d(50) (d(50)=mean particle size) for low organic carbon content media (<0.01% OC). The size of the mass transfer zone was found to be proportional to the square root of the aqueous diffusivity of the VOC, and was affected by the mean particle size, and the uniformity coefficient. Effects of the volatility of the VOCs as represented by the Henry's law constants and the airflow rates on the mass transfer zone were found to be negligible but VOC mass transfer from air-water interface to bulk air phase seems to play a role. A general correlation for predicting the size of the mass transfer zone was developed. The model was developed using data from nine different VOCs and verified by two other VOCs. The existence of the mass transfer zone provides an explanation for the tailing effect of the air phase concentration under prolonged air sparging and the rebound in the VOC air phase concentration after the sparging system is turned off.

  18. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  19. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    months likely from primary production and spatially there is less suppression of air-sea gas exchange with increasing distance from the shoreline, which is likely due to riverine inputs. REFERENCES Bock, E. J., Hara, T., Frew, N. M., and McGillis, W. R., 1999. Relationship between air-sea gas transfer and short wind waves. Journal of Geophysical Research-Oceans 104, 25821-25831. Brockmann, U. H., Huhnerfuss, H., Kattner, G., Broecker, H. C., and Hentzschel, G., 1982. Artificial surface-films in the sea area near sylt. Limnology and Oceanography 27, 1050-1058. Goldman, J. C., Dennett, M. R., and Frew, N. M., 1988. Surfactant effects on air sea gas-exchange under turbulent conditions. Deep-Sea Research Part a-Oceanographic Research Papers 35, 1953-1970. McKenna, S. P. and McGillis, W. R., 2004. The role of free-surface turbulence and surfactants in air-water gas transfer. International Journal of Heat and Mass Transfer 47, 539-553. Salter, M. E., R. C. Upstill-Goddard, P. D. Nightingale, S. D. Archer, B. Blomquist, D. T. Ho, B. Huebert, P. Schlosser, and M. Yang (2011), Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II, J. Geophys. Res., 116, C11016, doi:10.1029/2011JC00702 Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography 56, 554-577.

  20. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  1. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  2. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  3. Spatiotemporally‐Resolved Air Exchange Rate as a Modifier of Acute Air Pollution‐Related Morbidity in AtlantaMorbidity in Atlanta

    EPA Science Inventory

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site c...

  4. Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay

    USGS Publications Warehouse

    Hartman, Blayne; Hammond, Douglas E.

    1984-01-01

    Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.

  5. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    SciTech Connect

    Shen, Bo; Bhandari, Mahabir S

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  6. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  7. Occurrence and air-seawater exchange of brominated flame retardants and Dechlorane Plus in the North Sea

    NASA Astrophysics Data System (ADS)

    Möller, Axel; Xie, Zhiyong; Caba, Armando; Sturm, Renate; Ebinghaus, Ralf

    2012-01-01

    The occurrence, spatial and seasonal concentration variations in air and seawater and the air-seawater exchange of polybrominated diphenyl ethers (PBDEs), alternate brominated flame retardants (BFRs) and Dechlorane Plus (DP) were studied in the German part of the North Sea in 2010. BDE-209 and DP were found to be the dominating compounds, both in the atmosphere and in seawater. Sum PBDEs (∑ 10PBDEs) ranged from 0.31 to 10.7 pg m -3 in the atmosphere and from not detected (n.d.) to 10.5 pg L -1 in seawater, respectively. DP ranged from 0.13 to 22.3 pg m -3 and from 0.10 to 17.7 pg L -1 in air and seawater, respectively. Besides, four other BFRs including hexabromobenzene (HBB) and pentabromobenzene (PBBz) were detected. Elevated atmospheric concentrations were observed in continentally influenced air masses while highest seawater concentrations were observed at sampling stations close to the coast influenced by riverine discharge. The ratio of the two DP stereoisomers both in air and water was found to be close to the technical mixture at high concentrations but changed at lower concentrations giving first evidence for the alteration within the aquatic environment. Both dry air-seawater gas exchange and dry deposition are input pathways of BFRs and DP in the North Sea besides riverine discharge.

  8. Quantifying air-sea gas exchange using noble gases in a coastal upwelling zone

    NASA Astrophysics Data System (ADS)

    Manning, C. C.; Stanley, R. H. R.; Nicholson, D. P.; Squibb, M. E.

    2016-05-01

    The diffusive and bubble-mediated components of air-sea gas exchange can be quantified separately using time-series measurements of a suite of dissolved inert gases. We have evaluated the performance of four published air-sea gas exchange parameterizations using a five-day time-series of dissolved He, Ne, Ar, Kr, and Xe concentration in Monterey Bay, CA. We constructed a vertical model including surface air-sea gas exchange and vertical diffusion. Diffusivity was measured throughout the cruise from profiles of turbulent microstructure. We corrected the mixed layer gas concentrations for an upwelling event that occurred partway through the cruise. All tested parameterizations gave similar results for Ar, Kr, and Xe; their air-sea fluxes were dominated by diffusive gas exchange during our study. For He and Ne, which are less soluble, and therefore more sensitive to differences in the treatment of bubble-mediated exchange, the parameterizations gave widely different results with respect to the net gas exchange flux and the bubble flux. This study demonstrates the value of using a suite of inert gases, especially the lower solubility ones, to parameterize air-sea gas exchange.

  9. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry.

    PubMed

    Bruggink, Cees; Maurer, Rolf; Herrmann, Heiko; Cavalli, Silvano; Hoefler, Frank

    2005-08-26

    A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples. PMID:16106855

  10. THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY AIR/WATER EXCHANGE

    EPA Science Inventory

    The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase air/water exchange under all relevant environmental conditions. To date, the two-layer exchange model (suitable for low wind speed conditions) has been modif...

  11. Gas circulation and mass exchange between animal and plant units

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Tong, Ling; Hu, Enzhu

    To investigate the gas circulation and mass exchange relations among animal, plant and other biological units in the bioregenarative life support system, a closed cultivating system consisting of animal breeding chamber and plant growing chamber was established. This facility is 1.4 m high with the bottom area measuring 1.4 m X 0.8 m. In the animal chamber, silkworms in the multistage instars from the first instar to the third day in the fifth instar were bred; in the plant chamber, lettuce with sharp leaves were grown in a staggered manner. After transferring the silkworms in different instars hatched in the artificial climate box proportionally, utilizing mulberry leaves supplied from the outside of the closed cultivating system to feed the silkworms from the first instar to the third instar; fed the silkworms after the third instar to the third day in the fifth instar with the lettuce leaves grown in the closed facility, meanwhile, took out silkworms' excretion whose amount was in proportion to that of the mulberry leaves input into the facility. Furthermore, the silkworms on the third day in the fifth instar were took out to provide animal protein with high quality for astronauts at certain intervals and the next batch of the silkworms in the first instar were put into the animal chamber. In this cultivating process, the O2 cycle period and CO2 concentration change were investigated, moreover, the transfer and transforming ways of carbon and other elements were determined.

  12. Hydrogen exchange mass spectrometry of proteins at Langmuir monolayers

    PubMed Central

    Pirrone, Gregory F.; Vernon, Briana C.; Kent, Michael S.; Engen, John R.

    2015-01-01

    Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef) which adopts a different conformation depending on if it can insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than isolated use of either method. PMID:26134943

  13. Recombinant Nepenthesin II for Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Yang, Menglin; Hoeppner, Morgan; Rey, Martial; Kadek, Alan; Man, Petr; Schriemer, David C

    2015-07-01

    The pitcher secretions of the Nepenthes genus of carnivorous plants contain a proteolytic activity that is very useful for hydrogen/deuterium exchange mass spectrometry (HX-MS). Our efforts to reconstitute pitcher fluid activity using recombinant nepenthesin I (one of two known aspartic proteases in the fluid) revealed a partial cleavage profile and reduced enzymatic stability in certain HX-MS applications. We produced and characterized recombinant nepenthesin II to determine if it complemented nepenthesin I in HX-MS applications. Nepenthesin II shares many properties with nepenthesin I, such as fast digestion at reduced temperature and pH, and broad cleavage specificity, but in addition, it cleaves C-terminal to tryptophan. Neither enzyme reproduces the C-terminal proline cleavage we observed in the natural extract. Nepenthesin II is considerably more resistant to chemical denaturants and reducing agents than nepenthesin I, and it possesses a stability profile that is similar to that of pepsin. Higher stability combined with the slightly broader cleavage specificity makes nepenthesin II a useful alternative to pepsin and a more complete replacement for pitcher fluid in HX-MS applications. PMID:25993527

  14. Hydrogen Exchange Mass Spectrometry of Proteins at Langmuir Monolayers.

    PubMed

    Pirrone, Gregory F; Vernon, Briana C; Kent, Michael S; Engen, John R

    2015-07-21

    Hydrogen exchange (HX) mass spectrometry (MS) is valuable for providing conformational information for proteins/peptides that are very difficult to analyze with other methods such as peripheral membrane proteins and peptides that interact with membranes. We developed a new type of HX MS measurement that integrates Langmuir monolayers. A lipid monolayer was generated, a peptide or protein associated with it, and then the monolayer-associated peptide or protein was exposed to deuterium. The deuterated species was recovered from the monolayer, digested, and deuterium incorporation monitored by MS. Test peptides showed that deuterium recovery in an optimized protocol was equivalent to deuterium recovery in conventional solution HX MS. The reproducibility of the measurements was high, despite the requirement of generating a new monolayer for each deuterium labeling time. We validated that known conformational changes in the presence of a monolayer/membrane could be observed with the peptide melittin and the myristoylated protein Arf-1. Results in an accompanying paper show that the method can reveal details of conformational changes in a protein (HIV-1 Nef), which adopts a different conformation, depending on whether or not it is able to insert into the lipid layer. Overall, the HX MS Langmuir monolayer method provided new and meaningful conformational information for proteins that associate with lipid layers. The combination of HX MS results with neutron or X-ray reflection of the same proteins in Langmuir monolayers can be more informative than the isolated use of either method.

  15. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  16. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate.

    PubMed

    Butchart, N; Scaife, A A

    2001-04-12

    Chlorofluorocarbons (CFCs), along with bromine compounds, have been unequivocally identified as being responsible for most of the anthropogenic destruction of stratospheric ozone. With curbs on emissions of these substances, the recovery of the ozone layer will depend on their removal from the atmosphere. As CFCs have no significant tropospheric removal process, but are rapidly photolysed above the lower stratosphere, the timescale for their removal is set mainly by the rate at which air is transported from the troposphere into the stratosphere. Using a global climate model we predict that, in response to the projected changes in greenhouse-gas concentrations during the first half of the twenty-first century, this rate of mass exchange will increase by 3% per decade. This increase is due to more vigorous extra-tropical planetary waves emanating from the troposphere. We estimate that this increase in mass exchange will accelerate the removal of CFCs to an extent that recovery to levels currently predicted for 2050 and 2080 will occur 5 and 10 years earlier, respectively.

  17. Processes of Ammonia Air-Surface Exchange in a Fertilized Zea Mays Canopy

    EPA Science Inventory

    Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...

  18. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  19. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    EPA Science Inventory

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  20. Analysis of mass transfer performance in an air stripping tower

    SciTech Connect

    Chung, T.W.; Lai, C.H.; Wu, H.

    1999-10-01

    The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

  1. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  2. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  3. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/(kg/sec), show the dimensional consistency of overall results.

  4. [Transfer of organisms during exchange of heat and moisture in air conditioning installations (author's transl)].

    PubMed

    Beckert, J; Sinner, G

    1975-07-01

    With the exhaust air from ventilation and air conditioning installations escaping into the open, the heat content is also lost which fresh air from outside obtains at considerable expense of energy and technical equipment. The heat content, on the other hand, consists of about equal proportions of sensible heat and latent heat which is associated with the moisture content of the air. In order to regain the heat content of the escaping air so as to be able to use it again - and this is becoming increasingly important with rising energy costs - heat exchangers are necessary which remove the heat content from the exhaust air and transfer it to the fresh air from outside. With the high proportion of latent heat, this energy exchange is only effective if the latent heat can also be regained. For this purpose it is essential to have exchange surfaces which store and transfer both heat and moisture. To achieve this they must come into contact with the exhaust air stream and the fresh air stream alternately. Technically, this is done in a simple way by resolving rotor-like storage material. But a rigid separation of the air streams is no longer possible. Even if it is known that there are very highly developed sealing elements between the fixed and moving parts, the question whether particles from the exhaust air can get into the newly introduced outside air through the rotating storage material still gains in importance in certain types of usuage. For example, this is of importance for hospitals, especially in the operation areas in which air conditioning is desirable for 24 hours daily on hygienic grounds, but also in schools and offices where the present normal practice, for economic reasons, of recirculating air is to be avoided to stop the transference of infections pathogens and odours. In various places, experiments have been carried out earlier with heat exchangers consisting of asbestos board and with rotating storage material coated with lithium chloride and a

  5. Transport and mixing in the atmosphere: Anomalous diffusion and stratosphere-troposphere mass exchange

    NASA Astrophysics Data System (ADS)

    Seo, Kyong-Hwan

    2001-10-01

    Particle dispersion in the stratosphere and mass exchange between the stratosphere and troposphere are investigated in a Lagrangian framework using the United Kingdom Meteorological Office assimilated winds. In the winter stratosphere, isentropic dispersion can be characterized as chaotic advection. Parcel trajectories intermittently alternate between flying in jets and trapping in coherent quasi-stationary vortices. We show that these trajectories are described by a power-law probability density function (PDF) with a decay exponent of less than 3. For these PDFs mean square displacement per flight step is divergent and the trajectories correspond to Lévy flights (random walk processes with divergent second moment). The variance of the zonal displacement grows faster than linearly with time, corresponding to superdiffusive dispersion. The self- similarity in the trajectories is revealed by the convergence of the scaled PDFs of displacement and the saturation of the normalized third and fourth moments with time. Stratosphere-troposphere exchange (STE), calculated by a Lagrangian method, exhibits a pronounced annual cycle. The northern hemisphere net flux of stratospheric air into the troposphere across the extratropical tropopause has a primary peak in late spring or early summer, which is consistent with observation. The southern hemisphere net flux of stratospheric air into the troposphere shows a maximum in winter. The preferred locations for stratosphere-to-troposphere transport are identified as the regions with the highest frequency of Rossby wave breaking events and with the storm tracks. This suggests that tropopause folding and baroclinic eddy activity are a primary mechanism for STE. The greatest diabatic injection of tropospheric air into the tropical stratosphere takes place following the annual variation of the Hadley circulation. The tropical upward transport occurs in association with the monsoon anticyclones. The interannual change of total column

  6. Use of cooling air heat exchangers as replacements for hot section strategic materials

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1983-01-01

    Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines.

  7. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  8. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  9. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    PubMed

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  10. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  11. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  12. Effects of Climate Change on residential indoor-outdoor Air Exchange

    EPA Science Inventory

    INTRODUCTION: Climate change is expected to increase the mean and peak ambient temperatures, and perhaps wind patterns and intensity, while indoor environments will remain within the range of human thermal comfort. As passive air exchange through infiltration is partly driven by ...

  13. Effects of air current speed on gas exchange in plant leaves and plant canopies

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Yoshida, M.; Kiyota, M.

    To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.

  14. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  15. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  16. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals. PMID:26196214

  17. 20 Years of Air-Water Gas Exchange Observations for Pesticides in the Western Arctic Ocean.

    PubMed

    Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F

    2015-12-01

    The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and air-water exchange of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both air and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in air. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in air. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and air, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in air and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-air fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net exchange direction of other CUPs varied. Understanding the processes and current state of air-surface exchange helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.

  18. Estimating Riverine Air-Water Gas Exchange and Metabolism from Long Oxygen Time Series

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Appling, A.; Yackulic, C. B.; Arroita, M.

    2015-12-01

    To accurately depict the role of streams and rivers in carbon cycling requires estimating air- water gas exchange, productivity, and respiration. It is possible to estimate gas exchange and metabolism (gross primary production and ecosystem respiration) simultaneously from oxygen data themselves, but estimates from any single day often contain a substantial (and unknown) amount of parameter error. Here we developed a statistical method to leverage the extra information in a long time series to better estimate daily rates of gas exchange and metabolism. Such time series are ubiquitous in water quality monitoring programs, and these data are readily available over broad spatial scales. We developed a hierarchical model that estimates gas exchange as a function of discharge for a year-long time series of dissolved oxygen data. Gas exchange, and therefore metabolism, had much lower temporal variability than if we estimated parameters on separate days. Rates of gas exchange were positively related with discharge, but the relationship was river specific and often nonlinear. Our approach provides a robust means to estimate gas exchange and metabolism from the many rivers that have oxygen time series collected as part of water quality monitoring.

  19. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure.

    PubMed

    Park, J H; Spengler, J D; Yoon, D W; Dumyahn, T; Lee, K; Ozkaynak, H

    1998-01-01

    The air exchange rates or air changes per hour (ACH) were measured under 4 conditions in 3 stationary automobiles. The ACH ranged between 1.0 and 3.0 h-1 with windows closed and no mechanical ventilation, between 1.8 and 3.7 h-1 for windows closed with fan set on recirculation, between 13.3 and 26.1 h-1 for window open with no mechanical ventilation, and between 36.2 and 47.5 h-1 for window closed with the fan set on fresh air. ACHs for windows closed with no ventilation were higher for the older automobile than for the newer automobiles. With the windows closed and fan turned off, ACH was not influenced by wind speed (p > 0.05). When the window was open, ACH appeared to be greatly affected by wind speed (R2 = 0.86). These measurements are relevant to understanding exposures inside automobiles to sources such as dry-cleaned clothes, cigarettes and airbags. Therefore, to understand the in-vehicle exposure to these internal sources, perchloroethylene (PCE) emitted from dry-cleaned clothes and environmental tobacco smoke (ETS) inside a vehicle were modeled for simulated driving cycles. Airbag deployment was also modeled for estimating exposure level to alkaline particulate and carbon monoxide (CO). Average exposure to PCE inside a vehicle for 30 minutes period was high (approximately 780 micrograms/m3); however, this is only 6% of the two-week exposure that is influenced by the storage of dry cleaned clothing at home. On the other hand, the exposure levels of respirable suspended particulate (RSP) and formaldehyde due to ETS could reach 2.1 mg/m3 and 0.11 ppm, respectively, when a person smokes inside a driving car even with the window open. In modeling the in-vehicle concentrations following airbag deployment, the average CO level over 20 minutes would not appear to present problem (less than 28 ppm). The peak concentration of respirable particulate would have exceeded 140 mg/m3. Since most of the particle mass is composed of alkaline material, these high levels

  20. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  1. Analysis of isomeric polycyclic aromatic hydrocarbons by charge-exchange chemical ionization mass spectrometry

    SciTech Connect

    Simonsick, W.J. Jr.; Hites, R.A.

    1984-12-01

    Charge-exchange chemical ionization mass spectrometry (using a 15% mixture of methane in argon) yields abundant M/sup +/, M + H/sup +/, M + C/sub 2/H/sub 5//sup +/ ions of polycyclic aromatic hydrocarbons (PAH). On the basis of the relative intensities of the M + H/sup +/ ion to the M/sup +/ ion, this technique can differentiate, in a predictable manner, isomeric structures of PAH. The operating conditions were evaluated and optimized; the most significant contributions to the variations in the (M + H)/sup +//M/sup +/ ratios are the temperature, pressure, and condition of the ion source. The optimum ion source temperature (250/sup 0/C) and pressure (0.8 torr) are easily controlled and regulated. The variable contamination of the ion source is compensated by an internal standard 1,2,3,5-tetrafluorobenzene. The analyses of Standard Reference Materials 1648 and 1649 (air particulate samples) and a carbon black extract are reported. Triphenylene and chrysene, although not chromatographically resolved, can be quantitated by using this technique. The identification of acephenanthrylene based on the measurement of ratios and calculated ionization potentials is also presented.

  2. Use of the mass exchange theory for describing soil erosion by water and wind

    NASA Astrophysics Data System (ADS)

    Gendugov, V. M.; Glazunov, G. P.; Larionov, G. A.; Nazarov, N. F.

    2012-02-01

    It was shown that the soil loss equation for different types of erosion should and can be theoretically derived in a general form. An analogy was drawn between the detachment of soil particles by water or air flows, on the one hand, and the heat and mass exchange in the boundary layer on a plate flowed around by a flow, on the other hand, which allowed finding the thermodynamic parameters of the circumfluent flow analogous to the mechanical parameters of a flow eroding the soil. On this basis, the Clausius-Clapeyron equation for equilibrium sublimation was transformed into an equation describing the removal of soil by both water and wind. The validity of the obtained equation for the description of the soil loss rate as a function of the eroding flow parameters was confirmed using the data on the physical simulation of wind erosion in wind tunnels and water erosion in hydraulic flumes. The confirmed adequacy of the derived equation to the phenomena of soil erosion by water and wind provides the theoretical substantiation of the equations previously derived for soil loss by washing [6] and blowing [3] and forms the basis for the further development of the theory of soil erosion.

  3. Mass balance modeling of PAHs and PCBs in the Chesapeake Bay: Importance of atmospheric deposition and exchange

    SciTech Connect

    Baker, J.; Nelson, E.; Nakanishi, K.

    1995-12-31

    During the past three years, the authors have measured the concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCB) congeners in air, precipitation, surface waters and surficial sediments throughout the mainstem of the Chesapeake Bay. Contaminant concentrations in the water column and surficial sediments show strong decreasing north to south gradients, implying efficient trapping of particle-reactive, volatile contaminants above the estuarine turbidity maximum. Seasonal estimates of water column and surficial sediment contaminant inventories, coupled with estimates of riverine loadings, atmospheric wet and dry aerosol depositional fluxes, and gas exchange rates, allowed them to construct first order mass balances for these semivolatile, particle reactive contaminants. This analysis shows that PAH and PCB water column inventories are extremely small relative to air-water and sediment-water exchange rates, suggesting short residence times and highly variable water column concentrations. The relative importance of the atmosphere as a source of or, in the case of volatile compounds, a sink for contaminants will be addressed with these mass balances.

  4. Distribution of organochlorine pesticides in the northern South China Sea: implications for land outflow and air-sea exchange.

    PubMed

    Zhang, Gan; Li, Jun; Cheng, Hairong; Li, Xiangdong; Xu, Weihai; Jones, Kevin C

    2007-06-01

    The South China Sea (SCS) is surrounded by developing countries in Southeast Asia, where persistent organic pollutants (POPs), such as organochlorine pesticides (OCPs), are still used legally or illegally, and are of concern. Yet little is known about the distribution of OCPs in the water and atmosphere over SCS, as well as their air-sea equilibrium status and time trends. In this study, ship-board air samples and surface seawater collected in the northern SCS between September 6 and 22, 2005 were analyzed for selected OCPs. The measured OCP concentrations in the atmosphere over the northern SCS were influenced by proximity to source regions and air mass origins. The highest atmospheric OCP concentrations were found at sampling sites adjacent to continental South China. OCPs in surface seawater showed significant spatial variations, with the highest concentration observed in a water sample from off Vietnam. The coastal currents were suggested to play a key role in the delivery of waterborne OCPs in the northern SCS. Time trend, land outflow, and air-sea exchange of selected OCPs in the SCS were investigated, by comparison of this dataset with historical data.

  5. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  6. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76. PMID:22462600

  7. Functional forms for approximating the relative optical air mass

    NASA Astrophysics Data System (ADS)

    Rapp-Arrarás, Ígor; Domingo-Santos, Juan M.

    2011-12-01

    This article constitutes a review and systematic comparison of functional forms for approximating the air mass from the zenith to the horizon. Among them, we find the most meaningful forms in atmospheric optics, geophysics, meteorology, and solar energy science, as well as several forms arising from the study of the atmospheric delay of electromagnetic signals, whose relationship with the air mass was recently proved by the authors. In total, we have compared 26 functional forms, and the fits have been done for three atmospheric profiles, an observer at sea level, and the median wavelength of the Sun's spectral irradiance (0.7274 μm). As a result, the best of the uniparametric forms has more than three centuries of history; the best of the biparametric forms was recently introduced by one of the authors; the best of the tri- and tetraparametric forms were originally proposed for modeling the atmospheric delay of radio signals; and the best of the forms with more than four parameters is used here for the first time. On the basis of these, for the 1976 U.S. Standard Atmosphere (USSA-76), we provide one-, two-, three-, four-, and five-parameter formulas whose maximum deviations are 1.70, 2.91 × 10-1, 3.28 × 10-2, 2.49 × 10-3, and 3.24 × 10-4, respectively.

  8. Exchange of organohalogen compounds between air and tree bark in the Yellow River region.

    PubMed

    He, Chang; Jin, Jun; Li, Guangyao; Wang, Ying

    2016-06-01

    Organohalogen compound concentrations in paired air and bark samples from the Yellow River region were determined. Overall, the organohalogen compound concentrations were higher in the samples from the lower than from the upper Yellow River region. The polybrominated diphenyl ether, polychlorinated biphenyl, and organochlorine pesticide concentrations were 310-5200, 0.92-3.8, and 120-6700 pg m(-3), respectively, in the air samples and 29,000-190,0000, 220-1400, and 49,000-220,0000 pg g(-1) lipid weight, respectively, in the bark samples. The concentrations in the air samples were significantly positively correlated with the concentrations in the bark samples. Constant B, related to the partitioning of a contaminant between the gas and particle phases in the air, was calculated for each compound. This was the first time constant B was simultaneously been determined for a range of different organohalogen compounds. An air-tree bark exchange model was calibrated and verified. The exchange coefficients (K(BA)) that were determined were compared with the model results, and the optimum K(OA) values for use in the model were found to be 10(9)-10(16). The compound of interest needed to be detected in more than 50% of the samples for the model results to be valid. PMID:27035385

  9. Spatiotemporally-Resolved Air Exchange Rate as a Modifier of Acute Air Pollution-Related Morbidity

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  10. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios.

    PubMed

    Youssefi, Somayeh; Waring, Michael S

    2014-07-15

    Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have been measured in unventilated chambers or steady-state flow through chambers. However, indoor settings have outdoor air exchange, and indoor SOA formation often occurs when ROGs are transiently emitted, for instance from emissions of cleaning products. Herein, we quantify "transient AMFs" from ozonolysis of pulse-emitted limonene in a ventilated chamber, for 18 experiments at low (0.28 h(-1)), moderate (0.53 h(-1)), and high (0.96 h(-1)) air exchange rates (AER) with varying initial ozone-limonene ratios. Transient AMFs increased with the amount of ROG reacted; AMFs also increased with decreasing AERs and increasing initial ozone-limonene ratios, which together likely promoted more ozone reactions with the remaining exocyclic bond of oxidized limonene products in the SOA phase. Knowing the AER and initial ozone-limonene ratio is crucial to predict indoor transient SOA behavior accurately.

  11. Use of cooling air heat exchangers as replacements for hot section strategic materials

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1983-01-01

    Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling air heat exchanger in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling air heat exchanger enables the feasibility of these engines. Previously announced in STAR as N83-34946

  12. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    PubMed

    Feijó Delgado, Francisco; Cermak, Nathan; Hecht, Vivian C; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M; Olcum, Selim; Higgins, John M; Chen, Jianzhu; Grover, William H; Manalis, Scott R

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  13. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin

    2014-04-01

    The diurnal variation of NOx and O3 exchange between a street canyon and the overlying air in two dimensions is investigated to understand reactive pollutant removal and entrainment across the roof level of the street canyon. The computational fluid dynamics (CFD) model used in this study is a Reynolds-averaged Navier-Stokes equations (RANS) model and includes the urban surface and radiation processes and the comprehensive chemical processes. The CFD model is used for the one-day simulation in which the easterly ambient wind blows perpendicular to the north-south oriented street canyon with a canyon aspect ratio of 1. In the morning when the surface temperature of the downwind building wall is higher than that of the upwind building wall, two counter-rotating vortices appear in the street canyon (flow regime II). In the afternoon when the surface temperature of the upwind building wall is higher than that of the downwind building wall, an intensified primary vortex appears in the street canyon (flow regime I). The NOx and O3 exchange is generally active in the region close to the building wall with the higher temperature regardless of flow regime. The NOx and O3 exchange by turbulent flow is dominant in flow regime II, whereas the NOx and O3 exchange by mean flow becomes comparable to that by turbulent flow in a certain period of flow regime I. The NOx and O3 exchange velocities are similar to each other in the early morning, whereas these are significantly different from each other around noon and in the afternoon. This behavior indicates that the exchange velocity is dependent on flow regime. In addition, the diurnal variability of O3 exchange velocity is found to be dependent on photochemistry rather than dry deposition in the street canyon. This study suggests that photochemistry as well as flow in a street canyon is needed to be taken into account when exchange velocities for reactive pollutants are estimated.

  14. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air-Water Exchange.

    PubMed

    Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer

    2016-05-17

    Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.

  15. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air-Water Exchange.

    PubMed

    Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer

    2016-05-17

    Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations. PMID:26642083

  16. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  17. Non-fouling heat exchanger preheats plant make-up air: saves $13,000 in first year

    SciTech Connect

    Goss, J.

    1980-08-01

    Air exchanges to maintain a comfortable working environment at Gates Rubber Company in Denver, Colorado, involves general exhaust from V-belt vulcanization lines. A ventilation system without heat recovery or make-up air heaters had been in use, but the goal of the company was to install a sytem that could handle normal plant exhaust air without filtration and involve little or no mechanization. A counter-flow, air-to-air heat exchanger having no moving parts has been used successfully to recover heat from many dirty industrial process exhausts. Heat recovery efficiencies range from 50 to 80%. Four heat exchangers, arranged in parallel, were installed in one of the 30,000 scfm exhaust/make-up air systems at the Denver plant and savings amounted to $13,000 the first year.

  18. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.

  19. Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes.

    PubMed

    McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer

    2016-09-01

    Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study. PMID:27458653

  20. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  1. Mapping Protein-Ligand Interactions with Proteolytic Fragmentation, Hydrogen/Deuterium Exchange-Mass Spectrometry.

    PubMed

    Gallagher, Elyssia S; Hudgens, Jeffrey W

    2016-01-01

    Biological processes are the result of noncovalent, protein-ligand interactions, where the ligands range from small organic and inorganic molecules to lipids, nucleic acids, peptides, and proteins. Amide groups within proteins constantly exchange protons with water. When immersed in heavy water (D2O), mass spectrometry (MS) can measure the change of mass associated with the hydrogen to deuterium exchange (HDX). Protein-ligand interactions modify the hydrogen exchange rates of amide protons, and the measurement of the amide exchange rates can provide rich information regarding the dynamical structure of the protein-ligand complex. This chapter describes a protocol for conducting bottom-up, continuous uptake, proteolytic fragmentation HDX-MS experiments that can help identify and map the interacting peptides of a protein-ligand interface. This tutorial outlines the fundamental theory governing hydrogen exchange; provides practical information regarding the preparation of protein samples and solutions; and describes the exchange reaction, reaction quenching, enzymatic digestion, chromatographic separation, and peptide analysis by MS. Tables list representative combinations of fluidic components used by HDX-MS researchers and summarize the available HDX-MS analysis software packages. Additionally, two HDX-MS case studies are used to illustrate protein-ligand interactions involving: (1) a continuous sequence of interacting residues and (2) a set of discontinuously numbered residues, residing spatially near each other.

  2. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields.

  3. The air-water exchange of C{sub 15}-C{sub 31} n-alkanes in a precipitation-dominated seepage lake.

    SciTech Connect

    Doskey, P. V.; Environmental Research

    2000-01-01

    The air-water exchange of semivolatile n-alkanes in Crystal Lake, a small precipitation-dominated seepage lake in northern Wisconsin, was investigated with modeling and mass balance approaches. The results suggest that atmospheric deposition contributes approximately 80% of the allochthonous input of n-alkanes to Crystal Lake. Atmospheric deposition accounts for about 50% of the total annual input of n-alkanes to Crystal Lake, and an additional 30% is contributed by in situ production of planktonic n-alkanes ({Sigma}C{sub 15}, C{sub 17}, C{sub 19}). Contributions to the particle dry flux of terrestrial n-alkanes ({Sigma}C{sub 25}, C{sub 27}, C{sub 29}, C{sub 31}) by pine pollen dispersal and by dry deposition of particles containing leaf waxes are similar in magnitude and constitute about 60% of the atmospheric input, with particle wet deposition being responsible for the remainder. Approximately 30% of the atmospheric input of the n-alkanes occurs during a two-week episode of pine pollen dispersal in spring. Concentration gradients between gaseous n-alkanes in the atmosphere and dissolved n-alkanes in the water column of Crystal Lake favor volatilization of n-alkanes from the lake surface; however, distributions of dissolved n-alkanes are characteristic of bacteria, and therefore are contained in organic matter and not available for air-water exchange. The estimated net atmospheric input of terrestrial n-alkanes is about 20% less than the settling sediment flux. Additional allochthonous sources of the terrestrial n-alkanes might include diffuse surface runoff or episodes of coarse-particle deposition. The discrepancies in the results from the modeling and mass balance approaches indicate that direct measurements of air-water exchange rates and measurements of the seasonal variations of particle size distributions in air and rain would greatly improve our ability to quantify air-water exchange rates of n-alkanes.

  4. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  5. Air-Water Exchange of Legacy and Emerging Organic Pollutants across the Great Lakes

    NASA Astrophysics Data System (ADS)

    Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.

    2014-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as air concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine air-water gaseous exchange of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). Air-water exchange varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the air and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. Air-water exchange gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (

  6. The effect of internal air bleed on CO poisoning in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Wentao

    It is found that carbon monoxide (CO) poisoning could be mitigated by increasing only cathode backpressure for a proton exchange membrane fuel cell (PEMFC) with ultra-thin membranes (≤25 μm). This mitigation can be explained by a heterogeneous oxidation of CO on a Pt-Ru/C anode by the permeated O 2 which is known as "internal air bleed" in his paper. A steady-state model which accounts for this internal air bleed has been developed to model the Pt-Ru/C anode polarization data when 50 ppm CO in H 2 is used as anode feed gas. The modeling results show that the mitigation of CO poisoning by the internal air bleed even exists at ambient conditions for a PEMFC with an ultra-thin membrane. Therefore, the effect of internal air bleed must be considered for modeling fuel cell performance or anode polarization data if an ultra-thin membrane and a low level of CO concentration are used for a Pt-Ru/C anode. An empirical relationship between the amount of internal air bleed used for the mitigation of CO poisoning and the fraction of free Pt sites is provided to facilitate the inclusion of an internal air bleed term in the modeling of anode polarization and the fuel cell performance.

  7. Hydrogen/deuterium exchange on aromatic rings during atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Davies, Noel W; Smith, Jason A; Molesworth, Peter P; Ross, John J

    2010-04-15

    It has been demonstrated that substituted indoles fully labelled with deuterium on the aromatic ring can undergo substantial exchange back to partial and even fully protonated forms during atmospheric pressure chemical ionisation (APCI) liquid chromatography/mass spectrometry (LC/MS). The degree of this exchange was strongly dependent on the absolute quantity of analyte, the APCI desolvation temperature, the nature of the mobile phase, the mobile phase flow rate and the instrument used. Hydrogen/deuterium (H/D) exchange on several other aromatic ring systems during APCI LC/MS was either undetectable (nitrobenzene, aniline) or extremely small (acetanilide) compared to the effect observed for substituted indoles. This observation has major implications for quantitative assays using deuterium-labelled internal standards and for the detection of deuterium-labelled products from isotopically labelled feeding experiments where there is a risk of back exchange to the protonated form during the analysis. PMID:20213724

  8. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  9. [Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China].

    PubMed

    Chu, Xiao-jing; Han, Guang-xuan

    2015-10-01

    Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 exchange over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 exchange of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of air temperature and precipitation effects on net ecosystem CO2 exchange (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing air temperature and enhanced precipitation on the annual scale. On the growing season scale, air temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with air temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively. PMID:26995905

  10. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  11. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  12. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  13. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry.

    PubMed

    Xiao, Yiming; Konermann, Lars

    2015-08-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N(2) bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N(2) bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N(2) sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, "semi-unfolded" ↔ "native" ↔ "globally unfolded" → "aggregated". This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  14. Protein structural dynamics at the gas/water interface examined by hydrogen exchange mass spectrometry

    PubMed Central

    Xiao, Yiming; Konermann, Lars

    2015-01-01

    Gas/water interfaces (such as air bubbles or foam) are detrimental to the stability of proteins, often causing aggregation. This represents a potential problem for industrial processes, for example, the production and handling of protein drugs. Proteins possess surfactant-like properties, resulting in a high affinity for gas/water interfaces. The tendency of previously buried nonpolar residues to maximize contact with the gas phase can cause significant structural distortion. Most earlier studies in this area employed spectroscopic tools that could only provide limited information. Here we use hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for probing the conformational dynamics of the model protein myoglobin (Mb) in the presence of N2 bubbles. HDX/MS relies on the principle that unfolded and/or highly dynamic regions undergo faster deuteration than tightly folded segments. In bubble-free solution Mb displays EX2 behavior, reflecting the occurrence of short-lived excursions to partially unfolded conformers. A dramatically different behavior is seen in the presence of N2 bubbles; EX2 dynamics still take place, but in addition the protein shows EX1 behavior. The latter results from interconversion of the native state with conformers that are globally unfolded and long-lived. These unfolded species likely correspond to Mb that is adsorbed to the surface of gas bubbles. N2 sparging also induces aggregation. To explain the observed behavior we propose a simple model, that is, “semi-unfolded” ↔ “native” ↔ “globally unfolded” → “aggregated”. This model quantitatively reproduces the experimentally observed kinetics. To the best of our knowledge, the current study marks the first exploration of surface denaturation phenomena by HDX/MS. PMID:25761782

  15. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls.

    PubMed

    Gouin, T; Thomas, G O; Cousins, I; Barber, J; Mackay, D; Jones, K C

    2002-04-01

    Air and leaf-litter samples were collected from a rural site in southern Ontario under meteorologically stable conditions in the early spring, prior to bud burst, over a three-day period to measure the simultaneous diurnal variations in polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). PBDEs are used in a wide range of commercial products as flame retardants and are being assessed internationally as potential persistent organic pollutants. Total PBDE concentrations in the air ranged between 88 and 1250 pg m(-3), and were dominated primarily by the lighter congeners PBDEs 17, 28, and 47, and concentrations of total PCBs ranged between 96 and 950 pg m(-3), and were dominated by the lower chlorinated (tri- to tetra-) congeners. Slopes of Clausius-Clapeyron plots indicate that both PCBs and PBDEs are experiencing active air-surface exchange. Fugacities were estimated from concentrations in the air and leaf-litter and suggest near equilibrium conditions. Following the three-day intensive sampling period, 40 air samples were collected at 24-hour intervals in an attempt to evaluate the effect of bud burst on atmospheric concentrations. Total PBDE concentrations in the daily air samples ranged between 10 and 230 pg m(-3), and were dominated by the lighter congeners PBDE 17, 28, and 47, whereas concentrations of total PCBs ranged between 30 and 450 pg m(-3) during this period. It is hypothesized thatthe high PBDE concentrations observed at the beginning of the sampling period are the result of an "early spring pulse" in which PBDEs deposited in the snowpack over the winter are released with snowmelt, resulting in elevated concentrations in the surface and air. Later in the sampling period, following bud burst, PBDE concentrations in air fell to 10 to 20 pg m(-3), possibly due to the high sorption capacity of this freshly emerging foliage compartment.

  16. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Technical Reports Server (NTRS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-01-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  17. Thermal control of a lidar laser system using a non-conventional ram air heat exchanger

    NASA Astrophysics Data System (ADS)

    Killough, Brian D.; Alexander, William, Jr.; Swofford, Doyle P.

    1990-10-01

    This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design wes developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile. These analyses predict significantly improved performance over the conventional design and show adequate thermal control margins.

  18. Air-sea Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.

    2015-12-01

    The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the sea surface may turn to a secondary source by reversal of diffusive air-sea mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in air and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in air and fluxes were quantified based on Eddy covariance. Diffusive air-sea exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open seas more pollutants are undergoing reversal of the direction of air-sea exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of air-sea exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.

  19. An Experimental Investigation of an Exhaust-gas-to-air Heat Exchanger for Use on Jet-stack-equipped Engines

    NASA Technical Reports Server (NTRS)

    Stalder, Jackson R; Spies, Ray J , Jr

    1948-01-01

    Tests were made to determine the loss in exhaust-jet thrust and engine power resulting from the insertion of an exhaust-gas-to-air heat exchanger in a jet-type exhaust stack of an aircraft engine. The thermal performance of the heat exchanger was also determined.

  20. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area.

    PubMed

    Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen

    2008-12-01

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.

  1. Occurrence and air-sea exchange of phthalates in the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Lohmann, Rainer; Caba, Armando; Ruck, Wolfgang

    2007-07-01

    Air and seawater samples were taken simultaneously to investigate the distribution and air-sea gas exchange of phthalates in the Arctic onboard the German Research Ship FS Polarstern. Samples were collected on expeditions ARK XX1&2 from the North Sea to the high Arctic (60 degrees N-85 degrees N) in the summer of 2004. The concentration of sigma6 phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-i-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), butylbenzyl phthalate (BBP), and diethylhexyl phthalate (DEHP)) ranged from 30 to 5030 pg L(-1) in the aqueous dissolved phase and from 1110 to 3090 pg m(-3) in the atmospheric gas phase. A decreasing latitudinal trend was present in the seawater and to a lesser degree in the atmosphere from the Norwegian coast to the high Arctic. Overall, deposition dominated the air-sea gas exchange for DEHP, while volatilization from seawater took place in the near-coast environment. The estimated net gas deposition of DEHP was 5, 30, and 190 t year(-1) for the Norwegian Sea, the Greenland Sea, and the Arctic, respectively. This suggests that atmospheric transport and deposition of phthalates is a significant process for their occurrence in the remote Atlantic and Arctic Ocean.

  2. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  3. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  4. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  5. Changing air mass frequencies in Canada: potential links and implications for human health.

    PubMed

    Vanos, J K; Cakmak, S

    2014-03-01

    Many individual variables have been studied to understand climate change, yet an overall weather situation involves the consideration of many meteorological variables simultaneously at various times diurnally, seasonally, and yearly. The current study identifies a full weather situation as an air mass type using synoptic scale classification, in 30 population centres throughout Canada. Investigative analysis of long-term air mass frequency trends was completed, drawing comparisons between seasons and climate zones. We find that the changing air mass trends are highly dependent on the season and climate zone being studied, with an overall increase of moderate ('warm') air masses and decrease of polar ('cold') air masses. In the summertime, general increased moisture content is present throughout Canada, consistent with the warming air masses. The moist tropical air mass, containing the most hot and humid air, is found to increase in a statistically significant fashion in the summertime in 46% of the areas studied, which encompass six of Canada's ten largest population centres. This emphasises the need for heat adaptation and acclimatisation for a large proportion of the Canadian population. In addition, strong and significant decreases of transition/frontal passage days were found throughout Canada. This result is one of the most remarkable transition frequency results published to date due to its consistency in identifying declining trends, coinciding with research completed in the United States (US). We discuss relative results and implications to similar US air mass trend analyses, and draw upon research studies involving large-scale upper-level air flow and vortex connections to air mass changes, to small-scale meteorological and air pollution interactions. Further research is warranted to better understand such connections, and how these air masses relate to the overall and city-specific health of Canadians.

  6. Observations on long-term air-soil exchange of organic contaminants.

    PubMed

    Jones, K C

    1994-09-01

    Evidence for long-term changes in the soil composition of selected organic compounds, brought about by exchanges with the atmosphere, is briefly reviewed. In the case of some compounds - such as benzo(a)pyrene and octachlorodibenzo-p-dioxin, soils may be significant long-term environmental sinks for atmospherically-derived material. In other cases - such as phenanthrene and some of the lighter PCBs, de-gassing or volatilisation from soil back to the air can occur under certain conditions. Hence the soil may act as a "short-term" sink, and a potential source to atmosphere. Indeed, for some 'semi-volatile' compounds used in large quantities in the past - such as PCBs, soil outgassing may actually be an extremely important source to contemporary air. Furthermore, soil outgassing from areas of former high use may provide an important driving mechanism for continued "global cycling" of a range of semi-volatile organochlorine compounds.

  7. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  8. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  9. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  10. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    PubMed

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  11. Free air breathing proton exchange membrane fuel cell: Thermal behavior characterization near freezing temperature

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves

    2014-01-01

    A free air breathing fuel cell thermal model is developed. This proton exchange membrane fuel cell (PEMFC) has been selected as the basis for the study due to its use in automotive applications. The blowers integrated to the stack provide the required air flow for hydrogen oxidation as well as the fluid for the stack thermal regulation. Hence, their controls are a key point for keeping the system to maximum efficiency. Using well-known fuel cell electrochemistry, a dynamic thermal model near freezing temperature, which includes the stack physical parameters, is developed and validated. In addition to these parameters, only the inlet and outlet air temperatures are used to derive the model. Experimental validation with a real 1 kW free air breathing PEMFC has demonstrated that the model can reasonably track the stack internal temperature with a maximum deviation between the observed and the estimated temperatures of 5%. Therefore, the proposed method will allow the development of efficient blower management systems for PEMFC efficiency improvement.

  12. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    NASA Astrophysics Data System (ADS)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  13. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  14. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  15. Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms

    NASA Astrophysics Data System (ADS)

    Hassanizadeh, S.; Qin, C.

    2013-12-01

    In the presence of water and necessary nutrients, biofilms can grow on soil grain surfaces. They occupy void pore spaces blocking water flow. As a result, some hydrodynamic properties of porous media like porosity and permeability will be reduced. This ultimately leads to a condition known as bioclogging. Also, biofilms can degrade certain compounds. So, the features of bioclogging and biodegradation in porous media with biofilms have given rise to a broad range of environmental and engineering applications, such as bioremediation, biobarriers, microbial enhanced oil recovery, and protection of steel corrosion. To date, a number of macroscale and pore-scale models for describing biodegradation in porous media with biofilms are available in the literature. At the macro scale, to simplify numerical implementation, a ';one-equation' model is normally preferred. In this approach, only the solute concentration in aqueous phase is modeled associated with the consumption of solute in biofilms. Because the solute concentration in biofilms is different from that in aqueous phase, an effectiveness factor may be used in Monod kinetics for relating reaction rate within biofilms to the solute concentration in aqueous phase. Notice that this approach has its validity domains like local equilibrium and reaction-rate limited consumption. Another approach to modeling biodegradation is referred to as a ';two-equation' model, in which one needs to simultaneously track the solute concentrations in both aqueous phase and biofilms. In addition, the two concentrations may be related by a first-order kinetic mass exchange model. This first-rate exchange model is normally represented by a constant mas exchange coefficient multiplied by the concentration difference in the two domains. Here, one may question if complex advection-diffusion-reaction processes can be represented just by a constant mass exchange coefficient. In addition, the kinetic model of mass exchange between aqueous phase

  16. Mass exchange in an experimental new-generation LSS model based on biological regeneration of envirnment

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.; Gros, J.; Lasseur, C.

    Experimental model of a biological life support system (LSS) was used to evaluate qualitative and quantitative parameters of inner mass exchange. The photosynthesizing block was the higher plants component (wheat, 3 radish), the heterotroph block consisted of the soil-like substrate (SLS) California worms, mushrooms and microbial microflora. In terms of gas composition the mass exchange process involved emission of oxygen by the photosynthesiz ing component and its uptake by the heterotroph component along with formation and maintaining the SLS structure, growth of mushrooms, California worms, human respiration and several other processes. Human presence in the system had the form of a "part of virtual human" that at regular intervals took part in the respiration gas exchange to get engaged in the respiration gas exchange in the course of calculated period of time. Experimental data demonstrated good agreement of ? 2 /? ? 2 balance which, in these gas components, was close to complete. Basic component in the water mass exchange were transpiration water and aqueous watering solution with mineral elements. Human consumption of the harvest biomass of plants (seeds and roots) was simulated by processing hese production by a genuine physical - chemicalt method of oxidizing to inorganic mineral compounds that were returned into the system and fully assimilated by the plants. Such an oxidation was achieved by "wet incineration" of organic biomass using hydrogen peroxide by a special process where high temperature and pressure are not needed, and hydrogen peroxide is produced from the water inside the system. The turnover was estimated in terms of individual biogenous elements. Specifically, experiments showed that in terms of sulfur, carbon and several other elements the closedness was almost 100%. Applications opportunities of the experimental biological system considered are under discussion.

  17. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    SciTech Connect

    Busigin, A.

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  18. Air-water gas exchange and CO2 flux in a mangrove-dominated estuary

    USGS Publications Warehouse

    Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.

    2014-01-01

    Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in air-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the air-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas exchange than predicted by commonly used wind speed/gas exchange parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.

  19. Boundary mass-exchange conditions in the form of the Newton and Dalton laws

    NASA Astrophysics Data System (ADS)

    Afanas'ev, A. M.; Siplivyi, B. N.

    2007-01-01

    It has been established that the linear boundary mass-exchange conditions in the form of the Newton law are unsuitable for description of the initial period of drying and the constant-rate period. The nonlinear boundary conditions of the third kind based on the Dalton evaporation law have been proposed. A numerical algorithm for investigation of the temperature and moisture-content fields up to the dropping-rate period has been developed.

  20. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  1. Effect of sea sprays on air-sea momentum exchange at severe wind conditions

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.

    2012-04-01

    Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from

  2. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Failures and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within in the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings and potential remediation techniques will also be discussed.

  3. Air Mass Origin as a Diagnostic of Seasonally-Varying Transport into the Arctic

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Waugh, D. W.; Holzer, M. B.; Newman, P. A.; Polvani, L. M.; Oman, L.; Li, F.

    2013-12-01

    While the signatures of the seasonal cycle on basic state variables such as temperature, winds and on chemical composition have been explored in depth, its signature on air mass composition has received relatively little attention. To this end, we present the first analysis of the seasonally varying transport from the northern hemisphere (NH) midlatitudes into the Arctic using rigorously defined air masses. The fractional contribution from each air mass partitions Arctic air according to where it was last in the planetary boundary layer (PBL) at midlatitudes over the Pacific and Atlantic oceans, North America, Europe, and Asia. Air mass fractions are computed using the coupled climate-chemistry model GEOSCCM subject to fixed present-day climate forcings. We find that during DJF 48% of the air in the free troposphere poleward of 60N was last at midlatitudes primarily at the Pacific and Atlantic oceans, at 20% and 10% respectively. During JJA, however, the largest contributions to Arctic air come from Asian and North American source regions, revealing that transport from the industrialized midlatitude regions dominates during boreal summer. Preliminary calculations of future air masses for a model integration subject to A1B greenhouse gases also reveal the model's climate change response in arctic air mass composition. In concert with weakened tropospheric eddy kinetic energy and a weakened Hadley cell, we find that changes in annual mean arctic air mass fractions are of the order 10%, with increased contributions from air that was last in contact with the PBL over North America and over the Atlantic and Pacific oceans. Air-mass fractions, and their changes, thus help to isolate the role of transport to changes in composition, which are not only driven by changes in chemistry and emissions but also crucially by changes in atmospheric flow.

  4. On the vertical exchange of heat, mass and momentum over complex, mountainous terrain

    NASA Astrophysics Data System (ADS)

    Rotach, Mathias; Gohm, Alexander; Lang, Moritz; Leukauf, Daniel; Stiperski, Ivana; Wagner, Johannes

    2015-12-01

    The role of the atmospheric boundary layer (ABL) in the atmosphere-climate system is the exchange of heat, mass and momentum between 'the earth's surface' and the atmosphere. Traditionally, it is understood that turbulent transport is responsible for this exchange and hence the understanding and physical description of the turbulence structure of the boundary layer is key to assess the effectiveness of earth-atmosphere exchange. This understanding is rooted in the (implicit) assumption of a scale separation or spectral gap between turbulence and mean atmospheric motions, which in turn leads to the assumption of a horizontally homogeneous and flat (HHF) surface as a reference, for which both physical understanding and model parameterizations have successfully been developed over the years. Over mountainous terrain, however, the ABL is generically inhomogeneous due to both thermal (radiative) and dynamic forcing. This inhomogeneity leads to meso-scale and even sub-meso-scale flows such as slope and valley winds or wake effects. It is argued here that these (sub)meso-scale motions can significantly contribute to the vertical structure of the boundary layer and hence vertical exchange of heat and mass between the surface and the atmosphere. If model grid resolution is not high enough the latter will have to be parameterized (in a similar fashion as gravity wave drag parameterizations take into account the momentum transport due to gravity waves in large-scale models). In this contribution we summarize the available evidence of the contribution of (sub)meso-scale motions to vertical exchange in mountainous terrain from observational and numerical modeling studies. In particular, a number of recent simulation studies using idealized topography will be summarized and put into perspective – so as to identify possible limitations and areas of necessary future research.

  5. Measuring and modeling air exchange rates inside taxi cabs in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang

    2015-12-01

    Air exchange rates (AERs) have a direct impact on traffic-related air pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor air mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.

  6. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors.

    PubMed

    You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan

    2012-01-01

    A new air exchange rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, air-conditioned classrooms, classrooms with an air circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.

  7. Direct evidence for a two-state protein unfolding transition from hydrogen-deuterium exchange, mass spectrometry, and NMR.

    PubMed Central

    Yi, Q.; Baker, D.

    1996-01-01

    We use mass spectrometry in conjunction with hydrogen-deuterium exchange and NMR to characterize the conformational dynamics of the 62-residue IgG binding domain of protein L under conditions in which the native state is marginally stable. Mass spectra of protein L after short incubations in D2O reveal the presence of two distinct populations containing different numbers of protected protons. NMR experiments indicate that protons in the hydrophobic core are protected in one population, whereas all protons are exchanged for deuterons in the other. As the exchange period is increased, molecules are transferred from the former population to the latter. The absence of molecules with a subset of the core protons protected suggests that exchange occurs in part via a highly concerted transition to an excited state in which all protons exchange rapidly with deuterons. A steady increase in the molecular weight of the population with protected protons, and variation in the exchange rates of the individual protected protons indicates the presence of an additional exchange mechanism. A simple model in which exchange results from rapid (> 10(5)/s) local fluctuations around the native state superimposed upon transitions to an unfolded excited state at approximately 0.06/s is supported by qualitative agreement between the observed mass spectra and the mass spectra simulated according to the model using NMR-derived estimates of the proton exchange rates. PMID:8762137

  8. Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes

    PubMed Central

    Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.

    2014-01-01

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333

  9. Mass-transfer mechanisms for zeolite ion exchange in wastewater treatment

    SciTech Connect

    Robinson, S.M.; Arnold, W.D.; Byers, C.H. )

    1994-12-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent ion exchange, understanding of the basic mass-transfer processes associated with multicomponent zeolite systems is quite limited. This study evaluates Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficient are determined from experimental batch-reactor data for binary and multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models are compared with the experimental data to determine values for intraparticle diffusivities. Effective diffusivities obtained accurately predict experimental data sing a variety of models. Only the model accounting for micropore and macropore diffusion occurring in series accurately predict multicomponent data using diffusivities from the binary system. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities are concentration-dependent for the system of interest.

  10. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  11. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  12. Observing the Invisible through Imaging Mass Spectrometry, a Window into the Metabolic Exchange Patterns of Microbes

    PubMed Central

    Gonzalez, David J.; Xu, Yuquan; Yang, Yu-Liang; Esquenazi, Eduardo; Liu, Wei-Ting; Edlund, Anna; Duong, Tram; Du, Liangcheng; Molnár, István; Gerwick, William H.; Jensen, Paul R.; Fischbach, Michael; Liaw, Chih-Chuang; Straight, Paul; Nizet, Victor; Dorrestein, Pieter C.

    2012-01-01

    Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates. PMID:22641157

  13. Design and experimental analysis of counter-flow heat and mass exchanger incorporating (M-cycle) for evaporative cooling

    NASA Astrophysics Data System (ADS)

    Khalid, Omar; Butt, Zubair; Tanveer, Waqas; Rao, Hasan Iqbal

    2016-09-01

    In this paper, the functioning of dew-point cooler is improved in terms of its thermal effectiveness. For this reason, a heat and mass exchanger has been designed by using a counter-flow pattern incorporating Maisotsenko cycle (M-cycle) having effective absorbing material called Kraft paper on wet channel side and improved width to height ratio. Experimentation has been performed under various inlet air working parameters such as humidity, velocity and temperature in addition with changing feed water temperature. The results from the experiments specify that the dew-point and the wet-bulb effectiveness is achieved between 67-87 % and 104-120 % respectively. Analysis is performed with temperature variation between 25 and 45 °C at different absolute humidity levels ranging from 14.4 to 18 g/kg, while the inlet air velocity is varied between 0.88 and 1.50 m/s. Thus, the working ability of the improved design has been found 5 % more effective in terms of wet bulb effectiveness as compared to previous counter-flow designs.

  14. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  15. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  16. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  17. Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes

    NASA Astrophysics Data System (ADS)

    Glazman, R. E.

    The book is based on the proceedings of the 1983 Whitecap Workshop, held at University College, Galway, Ireland. The 22 full-length papers and 18 abstracts of poster presentations that it contains cover a wide range of topics. The small-scale air-sea exchange processes triggered by the breaking of wind-generated gravity waves serve as the common ground from which specialized excursions are made into the fields of acoustics and optics of bubbly water, statistics and hydrodynamics of water waves, remote sensing, atmospheric electricity, and physicochemical hydrodynamics of bubbles, droplets, and water surfaces coated with organic films. The book opens with “The Life and Science of Alfred H. Woodcock” by Duncan Blanchard (State University of New York, Albany).

  18. Air-Sea Exchange Of CO2: A Multi-Technology Approach

    NASA Astrophysics Data System (ADS)

    Tengberg, A.; Almroth, E.; Anderson, L.; Hall, P.; Hjalmarsson, S.; Lefevre, D.; Omstedt, A.; Rutgersson, A.; Sahlee, E.; Smedman, A.; Wesslander, K.

    2006-12-01

    We report on experiences and results from a multidisciplinary project in which we try to elucidate the complex processes involved in air-sea exchange of CO2. This study was performed in the Baltic Sea (off the Swedish island Gotland) and combined the following technologies: - Meteorological measurements of wind, turbulence, temperature, humidity, humidity flux, CO2 and CO2 flux at several levels from a fixed observation tower - Hourly PCO2 measurements with a moored automatic instrument - Collection of dissolved oxygen, temperature, salinity and turbidity data at different levels in the water column at 1-minute intervals - Daily light (PAR) and primary production measurements obtained with a moored automatic incubator - Daily primary production measurements using manual methods - Use of an acoustic current profiler to collect water column information on currents, turbulence, water level and waves - Repetitive water column profiles, from a ship, of dissolved inorganic carbon, oxygen, nutrients, alkalinity, pH, PAR, Chlorophyll A, salinity and temperature

  19. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  20. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  1. [The functional and hygienic evaluation of a thermal exchange storage apparatus for recovering warmth from outgoing stable air].

    PubMed

    Paar, G; Bocklisch, H; Reinz, R; Hermanns, W

    1990-10-01

    By means of a thermo exchange apparatus it is possible to recover 70 to 80 percent of warmth of the stable air for heating. Thus much energy for climatizing can be saved. Alternating directions of to and from air streams may cause re-influx of germs, dependent on percentage of dust. This risk can be minimized by using an apparatus each for relatively small units separately.

  2. Droplet infiltration and OM composition of intact soil structural surfaces for studying mass exchange

    NASA Astrophysics Data System (ADS)

    Leue, Martin, ,, Dr.; Gerke, PD Horst H., ,, Dr.; Godow, Sophie Ch.; Ellerbrock, PD Ruth H., ,, Dr.

    2014-05-01

    During rapid percolation through macropores with local nonequilibrium conditions water and solute mass exchange with the porous matrix and sorption of reactive components is both taken place at the surface of preferential flow paths. Aggregate surfaces can be coated by illuviated clayey particles and biopores covered by plant residues or earthworm casts. By controlling wettability and sorption properties, the organic matter (OM) of surface coatings may also affect the transport properties of structured soils. Composition of OM in wall coatings was found spatially distributed at the mm-scale; thus, it remained unclear if water absorption by the soil matrix (i.e., mass exchange) was affected by locally-distributed OM. For samples with intact aggregate surfaces and biopore walls taken at clay-illuvial subsoil horizon of Luvisols developed from Loess and glacial till, the mm-scale spatial distribution of OM composition was measured using diffuse reflectance infrared spectroscopy (DRIFT). Spectra were analysed with respect to alkyl and carboxyl functional groups in OM to obtain an estimate for its potential wettability. The infiltration dynamic of water droplets was evaluated using contact angle measurements and droplet penetration time. The potential wettability of OM differed for coatings and burrow walls and was generally lower for the Loess-derived than for the till-derived samples. The droplet infiltration times were significantly lower only for the Loess Luvisol samples. The results suggest that mass exchange between flow path and matrix can be affected by OM composition of structural surfaces among other factors such as texture, moisture, and chemical status (pH).

  3. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  4. DOGEE-SOLAS: The Role of Surfactants in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Upstill-Goddard, R. C.; Nightingale, P.

    2008-12-01

    One of the major aims of DOGEE-SOLAS was to improve our understanding of the role of surfactants in air- sea gas exchange. With this in mind we carried out a number of artificial surfactant releases on a research cruise in the North Atlantic (D320), during June-July of 2007. We used oleyl alcohol, a surrogate for natural surfactants which is relatively cheap and easy to obtain (it is used in the manufacture of cosmetics). The main release overlaid a dual tracer "patch" of SF6 and 3He; our aim was to directly compare values of the gas transfer velocity, kw, estimated within the surfactant covered patch with those estimated quasi- simultaneously in a second, surfactant-free patch about 20km away. A second release in conjunction with colleagues from the University of Hawaii had the aim of measuring DMS fluxes by eddy correlation both inside and outside a surfactant slick, and a third was undertaken in the path of one of two 14m ASIS (Air-Sea Interaction Spar) buoys operated by the University of Miami for direct comparison of surfactant effects on the fluxes of CO2, H2O, heat and momentum (eddy correlation) etc. We present here some preliminary findings from the work.

  5. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Cernei, Natalia; Kominkova, Marketa; Zitka, Ondrej; Beklova, Miroslava; Zehnalek, Josef; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes. PMID:23538727

  6. Structural Analysis of Diheme Cytochrome c by Hydrogen–Deuterium Exchange Mass Spectrometry and Homology Modeling

    PubMed Central

    2015-01-01

    A lack of X-ray or nuclear magnetic resonance structures of proteins inhibits their further study and characterization, motivating the development of new ways of analyzing structural information without crystal structures. The combination of hydrogen–deuterium exchange mass spectrometry (HDX-MS) data in conjunction with homology modeling can provide improved structure and mechanistic predictions. Here a unique diheme cytochrome c (DHCC) protein from Heliobacterium modesticaldum is studied with both HDX and homology modeling to bring some definition of the structure of the protein and its role. Specifically, HDX data were used to guide the homology modeling to yield a more functionally relevant structural model of DHCC. PMID:25138816

  7. Air-water exchange of brominated anisoles in the northern Baltic Sea.

    PubMed

    Bidleman, Terry F; Agosta, Kathleen; Andersson, Agneta; Haglund, Peter; Nygren, Olle; Ripszam, Matyas; Tysklind, Mats

    2014-06-01

    Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA)>2,4-dibromoanisole (2,4-DBA)≫2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA>2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km2) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.

  8. Measurement and scaling of air-surface mercury exchange from substrates in the vicinity of two Nevada gold mines.

    PubMed

    Miller, Matthieu B; Gustin, Mae S; Eckley, Chris S

    2011-09-01

    The state of Nevada has extensive mineral resources, and is the largest producer of gold in the USA as well as fourth in world gold production. Mercury (Hg) is often present in the hydrothermal systems that produce gold deposits, and can be found in elevated concentrations in gold ore. As a result, mining of gold ore in Nevada has been shown to release Hg to the atmosphere from point and non-point sources. This project focused on measurement of air-soil Hg exchange associated with undisturbed soils and bedrock outcrops in the vicinity of two large gold mines. Field and laboratory data collected were used to identify the important variables controlling Hg flux from these surfaces, and to estimate a net flux from the areas adjacent to the active mines as well as that occurring from the mined area pre-disturbance. Mean daily flux by substrate type ranged from 9 ng m(-2) day(-1) to 140 ng m(-2) day(-1). Periods of net deposition of elemental Hg were observed when air masses originating from a mine site moved over sampling locations. Based on these observations and measured soil Hg concentrations we suggest that emissions from point and non-point sources at the mines are a source of Hg to the surrounding substrates with the amount deposited not being of an environmental concern but of interest mainly with respect to the cycling of atmospheric elemental Hg. Observations indicate that while some component of the deposited Hg is sequestered in the soil, this Hg is gradually released back to the atmosphere over time. Estimated pre-disturbance emissions from the current mine footprints based on field data were 0.1 and 1.7 kg yr(-1), compared to that estimated for the current non-point mining sources of 19 and 109 kg yr(-1), respectively.

  9. Towards a theory of tropical/midlatitude mass exchange from the earth's surface through the stratosphere

    NASA Technical Reports Server (NTRS)

    Hartley, Dana

    1995-01-01

    The main focus of this work is to understand the dynamics of mass exchange between the tropics and the midlatitudes and to determine any links between tropospheric exchange and that in the stratosphere. We have approached this problem from two different perspectives. The first is aimed towards understanding the troposphere's role in inducing lower stratospheric tropical/midlatitude exchange. For this project we focus on observational analysis of the lower stratosphere to assess the key regions of transport in/out of the tropics and to what extent this transport is driven by tropospheric processes. The second approach is to determine the extent to which stratospheric processes influence the troposphere. In this project we are performing potential vorticity (PV) inversions to assess the winds induced near the tropopause when the stratospheric polar vortex is displaced equatorward. These are each discussed in more detail in the subsections below. Also, we have organized a session on Tropical/Midlatitude Interaction and Transport at the Fall AGU where we will be showing our latest results.

  10. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  11. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model

    EPA Science Inventory

    between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...

  12. Use of an air-fluid exchange system to promote graft adhesion during Descemet's stripping automated endothelial keratoplasty.

    PubMed

    Meisler, David M; Dupps, William J; Covert, Douglas J; Koenig, Steven B

    2007-05-01

    Dislocation of the graft is a well-recognized complication of Descemet's stripping automated endothelial keratoplasty (DSAEK). We describe a technique to promote adhesion of the graft during DSAEK using an anterior chamber air-fluid infusion and exchange for direct control of the pressure and medium used to tamponade the graft against the host stroma.

  13. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    NASA Astrophysics Data System (ADS)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  14. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  15. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  16. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry.

    PubMed

    Mysling, Simon; Salbo, Rune; Ploug, Michael; Jørgensen, Thomas J D

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically requires a high concentration (>200 mM) of the chemical reducing agent Tris(2-carboxyethyl)phosphine (TCEP) as its reduction rate constant is decreased at low pH and temperature. Serious adverse effects on chromatographic and mass spectrometric performances have been reported when using high concentrations of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions. PMID:24251601

  17. Modeling the Channel/Floodplain Interface: The Influence of Riparian Vegetation on Mass and Momentum Exchange

    NASA Astrophysics Data System (ADS)

    Stone, M. C.

    2013-12-01

    The objective of this research was to improve understanding of the impacts of riparian vegetation on mass and momentum flux between the main channel and the floodplain. Numerical investigations were carried out on five sites within three rivers in New Mexico, USA. Vegetation characteristics were varied to represent different riparian scenarios ranging from no vegetation to dense understory. The sedimentation and river hydraulics in two dimensions (SRH-2D) model was applied to simulate hydrodynamic conditions. The model was modified to include two algorithms for simulating a dynamic hydraulic roughness in the riparian zone. Thus resistive forces were represented as a function of vegetation characteristics and hydrodynamic condition. The results provide insights into the processes of mass and momentum transfer at the channel/floodplain interface. As expected, an increase in vegetation density produced enhanced momentum exchange. However, a threshold was reached beyond which the momentum exchange peaked and then dropped. This threshold was the results of low floodplain velocities producing very little resistive force due to low drag. Future work will focus on unsteady investigations and laboratory and field verification studies.

  18. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  19. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  20. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  1. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Zhang, Jingjing; Kitova, Elena N; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  2. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system.

  3. Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2015-12-01

    The Pacific decadal oscillation (PDO) recently emerged in the literature as a robust signal in the Northern Hemisphere climate variability. Many studies reported that the relationships between PDO and East Asian monsoon (EAM) and climate variability in China are significant. However, the possible mechanisms are still unclear. The present study investigates the interdecadal relationship between Pacific decadal oscillation (PDO) and interhemispheric air mass imbalance or oscillation (IHO) between the Northern and Southern Hemispheres. The possible connection of PDO and IHO with both East Asian monsoon and climate variability in China are also assessed in this study. It is found that the interdecadal components (11-38 years) of PDO, IHO, and EAM contribute large variance to low frequency variations, and they are well-matched with each other on (inter)decadal timescale. In particular, their negative phases mainly appeared in the 1970s and late 1990s, while positive phase in period from 1980s to mid 1990s. Decadal change of global mean air columnar temperature may be the key factor for the notable difference between PDO and IHO from mid 1970s to mid 1990s. The spatial distributions of PDO and IHO associated surface air temperature and surface pressure anomalies exhibit highly similar and large scale characteristics, indicative of their intimate linkage with air mass redistribution over global domain especially over 300S-500N. The PDO associated columnar integral of velocity potential anomalies that maintain the air mass redistribution, show a dipole pattern with air mass flux emanating mainly from the eastern hemisphere to the Pacific regions in positive PDO phase. This contributes to hemispherical and land-sea mass exchange and redistribution, and also leads to the decadal displacement of both upward and downward branch of Walker circulation. In positive phase of PDO, an anomalous anticyclone is found in the Mongolian region in both boreal summer and winter seasons

  4. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  5. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  6. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    EPA Science Inventory

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  7. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  8. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  9. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  10. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  11. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  12. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    NASA Astrophysics Data System (ADS)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  13. Platform Dependencies in Bottom-up Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Burns, Kyle M.; Rey, Martial; Baker, Charles A. H.; Schriemer, David C.

    2013-01-01

    Hydrogen-deuterium exchange mass spectrometry is an important method for protein structure-function analysis. The bottom-up approach uses protein digestion to localize deuteration to higher resolution, and the essential measurement involves centroid mass determinations on a very large set of peptides. In the course of evaluating systems for various projects, we established two (HDX-MS) platforms that consisted of a FT-MS and a high-resolution QTOF mass spectrometer, each with matched front-end fluidic systems. Digests of proteins spanning a 20–110 kDa range were deuterated to equilibrium, and figures-of-merit for a typical bottom-up (HDX-MS) experiment were compared for each platform. The Orbitrap Velos identified 64% more peptides than the 5600 QTOF, with a 42% overlap between the two systems, independent of protein size. Precision in deuterium measurements using the Orbitrap marginally exceeded that of the QTOF, depending on the Orbitrap resolution setting. However, the unique nature of FT-MS data generates situations where deuteration measurements can be inaccurate, because of destructive interference arising from mismatches in elemental mass defects. This is shown through the analysis of the peptides common to both platforms, where deuteration values can be as low as 35% of the expected values, depending on FT-MS resolution, peptide length and charge state. These findings are supported by simulations of Orbitrap transients, and highlight that caution should be exercised in deriving centroid mass values from FT transients that do not support baseline separation of the full isotopic composition. PMID:23197788

  14. Hexachlorocyclohexanes (HCHs) in the Canadian Archipelago. 2. Air-water gas exchange of alpha- and gamma-HCH.

    PubMed

    Jantunen, Liisa M; Helm, Paul A; Kylin, Henrik; Bidleman, Terry F

    2008-01-15

    Air and water were sampled in the Canadian Archipelago during summer on the Tundra Northwest 1999 (TNW-99) expedition and air was sampled at Resolute Bay (RB), Nunavut, to determine the gas exchange of alpha- and gamma-hexachlorocyclohexanes (HCHs) and the enantiomers of alpha-HCH. Air concentrations of sigmaHCH during TNW-99 and at RB were similar, averaging 55 and 53 pg m(-3), respectively. The net gas exchange direction was volatilization for alpha-HCH and near equilibrium or deposition for gamma-HCH, whereas actual fluxes depended on the fraction of open water. Enantiomer fractions, EF = (+)/[(+) + (-)] of alpha-HCH in air sampled from shipboard were significantly correlated to those in surface water for events with >90% open water, but were closer to racemic and not correlated to EFs in water for events with 0-50% open water. Levels of alpha-HCH in air at RB averaged 37 +/- 9 pg m(-3) from June to early July, and EFs were close to racemic (0.496 +/- 0.004). In mid-July the ice pack broke up around RB. From this point through August, air concentrations increased significantly to 53 +/- 5 pg m(-3), and the mean EF decreased significantly to 0.483 +/- 0.009. Air concentrations of gamma-HCH at RB did not differ significantly before (8.0 +/- 3.7 pg m(-3)) and after (6.6 +/- 0.76 pg m(-3)) ice breakup. Results show that alpha-HCH enantiomers are sensitive tracers for following the impact of ice cover loss on gas exchange in the Arctic.

  15. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  16. Dual diffusion and finite mass exchange model for adsorption kinetics in activated carbon

    SciTech Connect

    Do, D.D.; Wang, K.

    1998-01-01

    A model allowing for the finite mass exchange between the two phases is proposed for the description of adsorption kinetics in activated carbon. This model based on Do`s earlier structural model for activated carbon involves three mass-transfer processes: pore diffusion, adsorbed phase diffusion, and finite mass interchange between the fluid and adsorbed phases. The solid phase is heterogeneous, which is characterized by the micropore size distribution. The interaction between the adsorbate molecule and the micropore is calculated from the Lennard-Jones potential theory. The model developed for nonpolar adsorbates is tested with the experimental data of seven adsorbates (paraffin gases, aromatics, carbon dioxide, and sulfur dioxide) on pellets of different shapes and sizes and at various operating conditions. The finite kinetics play an important role in the overall kinetics. Failure to account for this finite kinetics makes the model unable to describe correctly the desorption behavior, since under such conditions, the ability of the particle to release adsorbed molecules is dictated mostly by the resistance at the pore mouth of the micropore.

  17. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  18. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    SciTech Connect

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  19. Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX.

    PubMed

    Zhu, Mei M; Rempel, Don L; Du, Zhaohui; Gross, Michael L

    2003-05-01

    Protein-ligand binding and the concomitant conformational change in the protein are of crucial importance in biophysics and drug design. We report a novel method to quantify protein-ligand interactions in solution by mass spectrometry, titration, and H/D exchange (PLIMSTEX). The approach can determine the conformational change, binding stoichiometry, and affinity in protein-ligand interactions including those that involve small molecules, metal ions, and peptides. Binding constants obtained by PLIMSTEX for four model protein-ligand systems agree with K values measured by conventional methods. At higher protein concentration, the method can be used to determine quickly the binding stoichiometry and possibly the purity of proteins. Taking advantage of concentrating the protein on-column and desalting, we are able to use different concentrations of proteins, buffer systems, salts, and pH in the exchange protocol. High picomole quantities of proteins are sufficient, offering significantly better sensitivity than that of NMR and X-ray crystallography. Automation could make PLIMSTEX a high throughput method for library screening, drug discovery, and proteomics.

  20. Identifying Zn-bound histidine residues in metalloproteins using hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Dong, Jia; Callahan, Katie L; Borotto, Nicholas B; Vachet, Richard W

    2014-01-01

    In this work, we have developed a method that uses hydrogen-deuterium exchange (HDX) of C2-hydrogens of histidines coupled with mass spectrometry (MS) to identify Zn-bound histidines in metalloproteins. This method relies on differences in HDX reaction rates of Zn-bound and Zn-free His residues. Using several model peptides and proteins, we find that all Zn-bound His residues have substantially lower HDX reaction rates in the presence of the metal. The vast majority of non-Zn-binding His residues undergo no significant changes in HDX reaction rates when their reactivity is compared in the presence and absence of Zn. Using this new approach, we then determined the Zn binding site of β-2-microglobulin, a protein associated with metal-induced amyloidosis. Together, these results suggest that HDX-MS of His C2-hydrogens is a promising new method for identifying Zn-bound histidines in metalloproteins.

  1. Hydrogen deuterium exchange mass spectrometry in biopharmaceutical discovery and development - A review.

    PubMed

    Deng, Bin; Lento, Cristina; Wilson, Derek J

    2016-10-12

    Protein therapeutics have emerged as a major class of biopharmaceuticals over the past several decades, a trend that has motivated the advancement of bioanalytical technologies for protein therapeutic characterization. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful and sensitive technique that can probe the higher order structure of proteins and has been used in the assessment and development of monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs) and biosimilar antibodies. It has also been used to quantify protein-ligand, protein-receptor and other protein-protein interactions involved in signaling pathways. In manufacturing and development, HDX-MS can validate storage formulations and manufacturing processes for various biotherapeutics. Currently, HDX-MS is being refined to provide additional coverage, sensitivity and structural specificity and implemented on the millisecond timescale to reveal residual structure and dynamics in disordered domains and intrinsically disordered proteins. PMID:27662755

  2. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  3. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  4. Comparison of CO2 Dynamics and Air-Sea Exchange in Contrasting Tropical Reef Environments

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Mackenzie, F. T.; Shamberger, K. E.; Musielewicz, S. B.; Maenner-Jones, S.; Sabine, C. L.; Feely, R. A.

    2011-12-01

    Multiyear high temporal resolution CO2 records in three differing coral reef settings were obtained using buoys deployed in coastal waters of Oahu since June 2008. The buoys are located on the barrier reef of Kaneohe Bay and offshore of Honolulu, on the south shore of Oahu. Annualized CO2 air-sea fluxes at the three buoys ranged from +0.05 mol C/m2/yr offshore Honolulu on a fringing reef well mixed with the open ocean to -1.12 mol C/m2/yr on a barrier reef flat in Kaneohe Bay (positive values represent CO2 sinks from the atmosphere and negative values represent sources). These fluxes compare well to those estimated from previous studies in Kaneohe Bay as well as in other tropical reef environments. pCO2 measurements, made every 3 hours, at each location show strong temporal cycles on multiple time scales ranging from diel to seasonal at each buoy and an anticorrelation with pO2. These records, when combined with those of a prior buoy deployment in southern Kaneohe Bay and several synoptic studies, allow us to examine how the principal biological cycles of productivity/respiration and calcification/carbonate dissolution are influenced by changing water column properties, physical processes (e.g. residence time) and atmospheric conditions and how these processes ultimately impact the exchange of CO2 between the ocean and atmosphere on hourly to interannual cycles. The data clearly demonstrate the need for high frequency pCO2 data to characterize completely and accurately short-term local changes in the CO2-carbonic acid system parameters and how these changes overprint the longer scale process of ocean acidification as a result of invasion of CO2 into the ocean due to emissions of anthropogenic CO2 to the atmosphere. Since many coral reef ecosystems are still sources of CO2 to the atmosphere because of positive net ecosystem calcification, and in some instances net heterotrophy, such data are even more critical in terms of assessing future changes in the direction

  5. Probing protein dynamics and function under native and mildly denaturing conditions with hydrogen exchange and mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaltashov, Igor A.

    2005-02-01

    A combination of hydrogen exchange and mass spectrometry emerged in recent years as a powerful experimental tool capable of probing both structural and dynamic features of proteins. Although its concept is very simple, the interpretation of experimental data is not always straightforward, as a combination of chemical reactions (isotope exchange) and dynamic processes within protein molecules give rise to convoluted exchange patterns. This paper provides a historical background of this technique, candid assessment of its current state and limitations and a discussion of promising recent developments that can result in tremendous improvements and a dramatic expansion of the scope of its applications.

  6. Impacts of Atmospheric Modes of Variability on Air-Sea Heat Exchange in the Red Sea

    NASA Astrophysics Data System (ADS)

    Abualnaja, Yasser O.; Papadopoulos, Vassilis P.; Josey, Simon A.; Hoteit, Ibrahim; Kontoyiannis, Harilaos; Raitsos, Dionissios E.

    2014-05-01

    The potential impacts on Red Sea surface heat exchange of various major modes of atmospheric variability are investigated using the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric reanalysis and the Objectively Analyzed Air-Sea Flux dataset (OAFlux) merged satellite+reanalysis dataset. The mode impacts on surface net heat flux are quantified by calculating the heat flux anomaly that corresponds to a unit positive value of each index for each grid point. The seasonal effects of the atmospheric forcing are investigated considering two and four typical seasons of a calendar year. Considering two seasons, the impacts are strongest during the winter-centered part of the year (October to March) mainly over the northern sub-basin. The North Atlantic Oscillation (NAO), the East Atlantic - West Russia Pattern (EAWR), and the Indian Monsoon Index (IMI) have the greatest effects. They generate negative anomalies (by definition additional ocean heat loss) of 7-12 W/m2 in the northern Red Sea basin mean net heat flux for a unit positive value of the mode index. During the summer (April to September), the signal is smaller and the East Atlantic (EA) and Multivariate ENSO Index (MEI) modes have the strongest impact which is now located in the southern Red Sea (sub-basin anomalies of 4 W/m2 for unit positive mode index, negative for EA and positive for MEI). Results obtained by analysis carried out on the traditional four-season basis reveal that indices impact peaks during the typical boreal winter (DJF) with average anomalies of 12-18 W/m2 to be found in the northern part. It is noteworthy that during the winter, the EAWR generates negative anomalies around 30 W/m2 over the most of the central Red Sea. During the spring (MAM), summer (JJA) and autumn (SON) the anomalies are considerably lower, especially during the spring when the mode impacts are negligible. Atmospheric modes have a stronger effect on air-sea heat flux over the northern

  7. Occurrence and air/sea-exchange of novel organic pollutants in the marine environment

    NASA Astrophysics Data System (ADS)

    Ebinghaus, R.; Xie, Z.

    2006-12-01

    A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface sea water and atmosphere of the North Sea. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North Sea is an important input pathway. The net fluxes indicate that the air sea exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.

  8. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    USGS Publications Warehouse

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  9. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  10. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  11. Mass-independent isotopic fractionation of tin in a chemical exchange reaction

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.

    2008-12-01

    Tin isotopes were fractionated by the liquid-liquid extraction technique with a crown ether, dicyclohexano-18- crown-6 (DC18C6). Tin dichloride was dissolved in HCl to create solutions, 0.1 mol dm-3 (M) Sn(II) in various [HCl]. The organic phase was 0.1 M DC18C6 in 1,2-dichloroethane. A 5 cm3 aqueous solution and a 5 cm3 organic solution were mixed in a glass vial with a stirrer bar, and the glass vial was sealed. The two phases were stirred by a magnetic stirrer, and after the equilibrium, the two phases were separated by centrifugation. An aliquot of the upper aqueous solution was taken for analysis. These procedures were carried out at room temperature. The Sn concentration in the equilibrated aqueous phase was analyzed by ICP-AES. In order to avoid any matrix effect, possible trace of organic materials from DC18C6 was separated from the Sn on a micro-column anion-exchange resin in HBr/HNO3. An aliquot of the aqueous phase was once dried by heating and then dissolved into a HBr solution. Sn was strongly adsorbed while organic materials went through. Finally Sn was collected in a HNO3 solution. A solution containing 300 ppb of Sn in 0.05 M HNO3 was prepared for isotopic analysis. Isotopic ratios of Sn in all samples were analyzed with the MC-ICP-MS Nu plasma 500 HR at ENS Lyon coupled with a desolvating nebulizer Nu DSN-100 (with a typical precision of <100 ppm). The instrumental mass bias was controlled by bracketing each of the samples with standards. Because 120Sn is the most abundant isotopes, the isotope ratios have been measured as mSn/120Sn (m : 116, 117, 118, 119, 122, and 124). 114Sn and 115Sn were not analyzed due to their low abundances. Possible interferences with Cd on the masses 116, with Te on the mass 120, 122 and 124 were verified to be under the detection of the ICP-MS. Odd atomic mass isotopes (117Sn and 119Sn) showed deficits of enrichment comparing to the even atomic mass isotopes (116Sn, 118Sn, 122Sn, and 124Sn). This odd-even staggering

  12. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  13. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  14. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  15. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  16. Heat Storage Characteristics of Latent-Heat Microcapsule Slurry Using Hot Air Bubbles by Direct-Contact Heat Exchange

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Kim, Myoung-Jun; Tsukamoto, Hirofumi

    This study deals with the heat storage characteristics of latent-heat microcapsule slurry consisting of a mixture of fine microcapsules packed with latent-heat storage material and water. The heat storage operation for the latent-heat microcapsules was carried out by the direct-contact heat exchange method using hot air bubbles. The latent-heat microcapsule consisted of n-paraffin as a core latent-heat storage material and melamine resin as a coating substance. The relationship between the completion time of latent-heat storage and some parameters was examined experimentally. The nondimensional correlation equations for temperature efficiency, the completion time period of the latent-heat storage process and variation in the enthalpy of air through the microcapsule slurry layer were derived in terms of the ratio of microcapsule slurry layer height to microcapsule diameter, Reynolds number for airflow, Stefan number and modified Stefan number for absolute humidity of flowing air.

  17. Freshwater mass balance and exchange of water masses with the open sea: the Mljet Lakes (Croatia, Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Martincic, Urska; Bezak, Nejc; Zagar, Dusan; Makovec, Tihomir; Lucic, Davor; Onofri, Vladimir; Malacic, Vlado

    2016-04-01

    Two karstic seawater lakes (Veliko - Big and Malo - Small Lake) located in the National Park Mljet on the Mljet Island in Croatia were investigated in this study. The Small and the Big Lake cover 0.25 and 1.45 km2, respectively. The two lakes are connected to each other and to the sea by narrow channels. The connecting channel between the Big Lake and the sea is 12 m wide and 3 m deep. The connection to the Small Lake leads through another artificial channel (2.7 m wide and 0.8 m deep). The average salinity of the Big and the Small lake is 37.75 and 36.9, respectively, and the average salinity of the open sea is 38.5. While previous studies have been conducted due to the lakes' unique ecosystem and the karstic characteristics of the area, the main aim of this study was to determine the freshwater mass balance and exchange of water masses with the nearby sea. Several measurement campaigns were performed between 2008 and 2015 when meteorological parameters as well as salinity, water temperature and water velocities in both lakes and the channels were observed. A perpetual year was determined using available meteorological data. The contribution of the surface runoff to both lakes was modelled using the hydrological rainfall-runoff HEC-HMS model. Curve number parameter was estimated using the CLC Corine Land cover and geomorphological maps. Evaporation from the lake was calculated using the Verburg, Kondo and Coare equations. We found that the annual evaporation approximately equals the annual rainfall to the lake surface (cca. 550-600 mm). From the hydrological model and the difference between precipitation and evaporation from the lake surface we calculated the annual net excess of freshwater between 0.5 106 and 0.7 106 m3. The average salinity in both lakes is lower than the salinity in the sea; therefore, we hypothesize that the excess water should be discharged either through the channel between the Big Lake and the open sea or through underwater karstic sink

  18. Deuterium exchange of alpha-helices and beta-sheets as monitored by electrospray ionization mass spectrometry.

    PubMed Central

    Wagner, D. S.; Melton, L. G.; Yan, Y.; Erickson, B. W.; Anderegg, R. J.

    1994-01-01

    Deuterium exchange was monitored by electrospray ionization mass spectrometry (ESI-MS) to study the slowly exchanging (hydrogen bonded) peptide hydrogens of several alpha-helical peptides and beta-sheet proteins. Polypeptides were synthetically engineered to have mainly disordered, alpha-helical, or beta-sheet structure. For 3 isomeric 31-residue alpha-helical peptides, the number of slowly exchanging hydrogens as measured by ESI-MS in 50% CF3CD2OD (pD 9.5) provided estimates of their alpha-helicities (26%, 40%, 94%) that agreed well with the values (17%, 34%, 98%) measured by circular dichroic spectroscopy in the same nondeuterated solvent. For 3 betabellins containing a pair of beta-sheets and a related disordered peptide, their order of structural stability (12D > 12S > 14D > 14S) shown by their deuterium exchange rates in 10% CD3OD/0.5% CD3CO2D (pD 3.8) as measured by ESI-MS was the same as their order of structural stability to unfolding with increasing temperature or guanidinium chloride concentration as measured by circular dichroic spectroscopy in water. Compared to monitoring deuterium exchange by proton NMR spectrometry, monitoring deuterium exchange by ESI-MS requires much less sample (1-50 micrograms), much shorter analysis time (10-90 min), and no chemical quenching of the exchange reaction. PMID:7987225

  19. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and

  20. Indoor transient SOA formation from ozone + α-pinene reactions: Impacts of air exchange and initial product concentrations, and comparison to limonene ozonolysis

    NASA Astrophysics Data System (ADS)

    Youssefi, Somayeh; Waring, Michael S.

    2015-07-01

    The ozonolysis of reactive organic gases (ROG), e.g. terpenes, generates secondary organic aerosol (SOA) indoors. The SOA formation strength of such reactions is parameterized by the aerosol mass fraction (AMF), a.k.a. SOA yield, which is the mass ratio of generated SOA to oxidized ROG. AMFs vary in magnitude both among and for individual ROGs. Here, we quantified dynamic SOA formation from the ozonolysis of α-pinene with 'transient AMFs,' which describe SOA formation due to pulse emission of a ROG in an indoor space with air exchange, as is common when consumer products are intermittently used in ventilated buildings. We performed 19 experiments at low, moderate, and high (0.30, 0.52, and 0.94 h-1, respectively) air exchange rates (AER) at varying concentrations of initial reactants. Transient AMFs as a function of peak SOA concentrations ranged from 0.071 to 0.25, and they tended to increase as the AER and product of the initial reactant concentrations increased. Compared to our similar research on limonene ozonolysis (Youssefi and Waring, 2014), for which formation strength was driven by secondary ozone reactions, the AER impact for α-pinene was opposite in direction and weaker, while the initial reactant product impact was in the same direction but stronger for α-pinene than for limonene. Linear fits of AMFs for α-pinene ozonolysis as a function of the AER and initial reactant concentrations are provided so that future indoor models can predict SOA formation strength.

  1. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Oren, Ram; Manzoni, Stefano; Higgins, Chad; Parlange, Marc B.

    2012-09-01

    The role of evapotranspiration (ET) in the global, continental, regional, and local water cycles is reviewed. Elevated atmospheric CO2, air temperature, vapor pressure deficit (D), turbulent transport, radiative transfer, and reduced soil moisture all impact biotic and abiotic processes controlling ET that must be extrapolated to large scales. Suggesting a blueprint to achieve this link is the main compass of this review. Leaf-scale transpiration (fe) as governed by the plant biochemical demand for CO2 is first considered. When this biochemical demand is combined with mass transfer formulations, the problem remains mathematically intractable, requiring additional assumptions. A mathematical "closure" that assumes stomatal aperture is autonomously regulated so as to maximize the leaf carbon gain while minimizing water loss is proposed, which leads to analytical expressions for leaf-scale transpiration. This formulation predicts well the effects of elevated atmospheric CO2 and increases in D on fe. The case of soil moisture stress is then considered using extensive gas exchange measurements collected in drought studies. Upscaling the fe to the canopy is then discussed at multiple time scales. The impact of limited soil water availability within the rooting zone on the upscaled ET as well as some plant strategies to cope with prolonged soil moisture stress are briefly presented. Moving further up in direction and scale, the soil-plant system is then embedded within the atmospheric boundary layer, where the influence of soil moisture on rainfall is outlined. The review concludes by discussing outstanding challenges and how to tackle them by means of novel theoretical, numerical, and experimental approaches.

  2. Development and Evaluation of a New Air Exchange Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model (ISES Presentation)

    EPA Science Inventory

    Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure ...

  3. qcML: an exchange format for quality control metrics from mass spectrometry experiments.

    PubMed

    Walzer, Mathias; Pernas, Lucia Espona; Nasso, Sara; Bittremieux, Wout; Nahnsen, Sven; Kelchtermans, Pieter; Pichler, Peter; van den Toorn, Henk W P; Staes, An; Vandenbussche, Jonathan; Mazanek, Michael; Taus, Thomas; Scheltema, Richard A; Kelstrup, Christian D; Gatto, Laurent; van Breukelen, Bas; Aiche, Stephan; Valkenborg, Dirk; Laukens, Kris; Lilley, Kathryn S; Olsen, Jesper V; Heck, Albert J R; Mechtler, Karl; Aebersold, Ruedi; Gevaert, Kris; Vizcaíno, Juan Antonio; Hermjakob, Henning; Kohlbacher, Oliver; Martens, Lennart

    2014-08-01

    Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml. PMID:24760958

  4. qcML: an exchange format for quality control metrics from mass spectrometry experiments.

    PubMed

    Walzer, Mathias; Pernas, Lucia Espona; Nasso, Sara; Bittremieux, Wout; Nahnsen, Sven; Kelchtermans, Pieter; Pichler, Peter; van den Toorn, Henk W P; Staes, An; Vandenbussche, Jonathan; Mazanek, Michael; Taus, Thomas; Scheltema, Richard A; Kelstrup, Christian D; Gatto, Laurent; van Breukelen, Bas; Aiche, Stephan; Valkenborg, Dirk; Laukens, Kris; Lilley, Kathryn S; Olsen, Jesper V; Heck, Albert J R; Mechtler, Karl; Aebersold, Ruedi; Gevaert, Kris; Vizcaíno, Juan Antonio; Hermjakob, Henning; Kohlbacher, Oliver; Martens, Lennart

    2014-08-01

    Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.

  5. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions

    PubMed Central

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R

    2011-01-01

    Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery. PMID:21329427

  6. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  7. Metal-complex formation in continuous-flow ligand-exchange reactors studied by electrospray mass spectrometry.

    PubMed

    Krabbe, J G; de Boer, A R; van der Zwan, G; Lingeman, H; Niessen, W M A; Irth, H

    2007-04-01

    Electrospray ionization mass spectrometry was used to investigate complex formation of different metal complexes in a continuous-flow ligand-exchange reactor. A computer program was developed based on normal equilibrium calculations to predict the formation of various metal-ligand complexes. Corresponding to these calculations, infusion electrospray mass spectrometric experiments were performed to investigate the actual complex formation in solution. The data clearly show good correlation between the theoretically calculated formation of metal-ligand complexes and the experimental mass spectrometric data. Moreover, the approach demonstrates that the influence of the pH can be investigated using a similar approach. Indirectly, these infusion experiments provide information on relative binding constants of different ligands towards a metal-ion. To demonstrate this, a continuous-flow ligand-exchange detection system with mass spectrometric detection was developed. Injection of ligands, with different affinity for the metal-ion, into the reactor shows good correlation between binding constants and the response in the ligand-exchange detection system. Additional information on the introduced ligand, and the complexes formed after introduction of the ligand, can be obtained from interpretation of the mass spectra.

  8. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  9. Performance enhancement of an experimental air conditioning system by using TiO2/methanol nanofluid in heat pipe heat exchangers

    NASA Astrophysics Data System (ADS)

    Monirimanesh, Negin; Nowee, S. Mostafa; Khayyami, Shideh; Abrishamchi, Iman

    2016-05-01

    The effect of using nanofluid in thermosyphon-type heat pipe heat exchangers on energy conservation of an air-conditioning system was sought in this study. Innovatively, two heat exchangers in-series were deployed using TiO2/methanol nanofluids with 0-4 wt% concentrations as working fluids. The impacts of temperature and relative humidity on the effectiveness of 2 and 4-row heat exchangers were analyzed experimentally and more that 40 % energy saving was obtained.

  10. Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year

    SciTech Connect

    Kuiken, Todd; Zhang, Hong; Gustin, Mae S.; Lindberg, Steven Eric

    2008-03-01

    This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 0.5 ng m-2 h-1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.

  11. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  12. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  13. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  14. Distribution and air-sea exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.

    PubMed

    Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf

    2012-01-01

    Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.

  15. Towards constraining the stratosphere-troposphere exchange of radiocarbon: strategies of stratospheric 14CO2 measurements using AirCore

    NASA Astrophysics Data System (ADS)

    Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten

    2016-04-01

    Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using AirCore samples from Sodankylä, Northern Finland. AirCore is an innovative atmospheric sampling system, which passively collects atmospheric air samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such AirCore profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere exchange of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere exchange, and based on the results design a strategy to set up a 14C measurement program using AirCore.

  16. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  17. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  18. Exchange of polycyclic aromatic hydrocarbons across the air-water interface in the Bohai and Yellow Seas

    NASA Astrophysics Data System (ADS)

    Chen, Yingjun; Lin, Tian; Tang, Jianhui; Xie, Zhiyong; Tian, Chongguo; Li, Jun; Zhang, Gan

    2016-09-01

    In this study, air and surface seawater samples collected from the Bohai (BS) and Yellow Seas (YS) in May 2012 were determined exchange of PAHs, especially of low-molecular-weight (LMW) PAHs (three- and four-ring PAHs) at the air-water interface. Net volatilization fluxes of LMW PAHs were 266-1454 ng/m2/d and decreased with distance from the coast, indicating that these PAHs transported from coastal runoff were potential contributors to the atmosphere in the BS and YS. Moreover, LMW PAHs were enriched in the dissolved phase compared with those in the particulate phase in the water column, possibly suggesting that the volatilized LMW PAHs were directly derived from wastewater discharge or petroleum pollution rather than released from contaminated sediments. The air-sea exchange fluxes of the three-ring PAHs were 2- to 20-fold higher than their atmospheric deposition fluxes in the BS and YS. The input to and output from the water reached equilibrium for four-ring PAHs. Differently, five- and six-ring PAHs were introduced into the marine environment primarily through dry and wet deposition, indicating that the water column was still a sink of these PAHs from the surrounding atmosphere.

  19. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  20. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  1. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  2. CO2 and O2 Gas Exchange in an Experimental Model of the Btlss with Plant Wastes and Human Wastes Included in the Mass Exchange

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Velichko, Vladimir; Tikhomirova, Natalia; Trifonov, Sergey V.

    2016-07-01

    Mass exchange processes in the new experimental model of the biotechnical life support system (BTLSS) constructed at the Institute of Biophysics SB RAS have a higher degree of closure than in the previous BTLSS, and, thus, the technologies employed in the new system are more complex. Therefore, before closing the loops of mass exchange processes for several months, the new model of the BTLSS was run to match the technologies employed to cultivate plants and the methods used to involve inedible plant parts and human wastes into the mass exchange with the CO2 absorption rate and the amount of the resulting O2. The plant compartment included vegetables grown on the soil-like substrate (SLS) (chufa, beet, carrot, radish, and lettuce), plants hydroponically grown on expanded clay aggregate (wheat, soybean, watercress), and plants grown in aquaculture (common glasswort and watercress). Nutrient solutions for hydroponically grown plants were prepared by using products of physicochemical mineralization of human wastes. Growing the plants in aquaculture enabled maintaining NaCl concentration in the irrigation solution for hydroponically grown plants at a level safe for the plants. Inedible plant biomass was added to the SLS. Three cycles of closing the system were run, which lasted 7, 7, and 10 days. The comparison of the amount of CO2 fed into the system over 24 h (simulating human respiration) and the amount of CO2 daily exhaled by a 70-kg middle-aged human showed that between 1% and 4% of the daily emissions of CO2 were assimilated in the system, and about 3% of the average human daily O2 requirement accumulated in the system. Plant productivity was between 4 and 4.7% of the human daily vegetable requirement, or between 3 and 3.5% of the total human daily food requirement. Thus, testing of the BTLSS showed a match between the technologies employed to arrange mass exchange processes. This study was supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  3. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  4. Exchanges of Aggregate Air Nitrogen Emissions and Watershed Nitrogen Loads”

    EPA Science Inventory

    An approach has been developed to define transfer coefficients that can be used to convert changes in air emissions to changes in air deposition and subsequently to changes in loads delivered to the Bay. This approach uses a special CMAQ version that quantitatively attributes wa...

  5. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  6. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  7. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  8. Anion exchange SPE and liquid chromatography-tandem mass spectrometry in GHB analysis.

    PubMed

    Elian, Albert A; Hackett, Jeffery

    2011-12-01

    In this study, the extraction of γ-hydroxybutyrate (GHB) from urine using solid-phase extraction (SPE) is described. SPE was performed on anion exchange columns after samples of urine had been diluted with de-ionized water. After application of the diluted samples containing GHB-d(6) as an internal standard, the sorbent was washed with deionized water and methanol and dried. The GHB was eluted from the SPE column with a solvent consisting of methanol containing 6% glacial acetic acid. The eluent was collected, evaporated to dryness, and dissolved in mobile phase (100 μL) for analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative multiple reaction monitoring (MRM) mode. Liquid chromatography was performed in gradient mode employing a biphenyl column and a mobile phase consisting of acetontitrile (containing 0.1% formic acid) and 0.1% aqueous formic acid. The total run time for each analysis was less than 5 min. The limits of detection/quantification for this method were determined to be 50 and 100 ng/mL, respectively. The method was found to be linear from 500 ng/mL to 10,000 ng/mL (r(2)>0.995). The recovery of GHB was found to be greater than 75%. In this report, results of authentic urine samples analyzed for GHB by this method are presented. GHB concentrations in these samples were found to be range from less than 500 ng/mL to 5110 ng/mL.

  9. Characterization of the N370S mutant of glucocerebrosidase by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Tang, Liangjie; Coales, Stephen J; Morrow, Jeffrey A; Edmunds, Tim; Hamuro, Yoshitomo

    2012-10-15

    An asparagine-to-serine substitution at residue 370 (N370S) in glucocerebrosidase (GCase) is the most prevalent mutation leading to Gaucher's disease, the most common lysosomal storage disorder. Two types of hydrogen/deuterium exchange experiment coupled with proteolysis and liquid chromatography-mass spectrometry (HDX-MS) were used to investigate the dynamic properties and unfolding stability of wt, R495H, and N370S GCases in the presence and absence of ligands. R495H GCase is used for enzyme replacement therapy and is considered to be a wt surrogate, whereas N370S is the most prevalent mutation leading to Gaucher's disease. Time-course HDX experiments of the GCases were performed under near-physiological conditions to detect the protein's local unfolding motions at a submolecular level. In guanidine-titration experiments, HDX reactions were performed with various concentrations of a chemical denaturant to provide the global stability of the proteins. The two types of experiment showed that all three purified GCases, wt, R495H, and N370S, have virtually identical local unfolding motions and global stabilities in solution. Combined with previous X-ray crystallographic studies, which showed indistinguishable backbone conformations for N370S and R495H GCase mutants and very similar melting temperatures for the wt, R495H, and N370S mutants, all three GCases are likely to have virtually identical structural and dynamic properties in solution. The guanidine-titration experiments revealed that the pharmacological chaperone, isofagomine (IFG), interacts more weakly with the N370S mutant than with the R495H GCase; this is consistent with the higher IC(50) value of IFG against N370S than against R495H. The time-course experiments showed that IFG restricts the local unfolding motions of N370S in the same way as those of R495H when the ligand saturates the proteins.

  10. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  11. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    EPA Science Inventory

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  12. Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger

    SciTech Connect

    Bohn, M.S.

    1988-11-01

    This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

  13. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gubanov, V. G.; Barkhatov, Yu. V.; Gribovskaya, I. V.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California warms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogmic elements, shows an almost 100% closure of the cycle inside

  14. Air-vegetation exchange of SOCs as a control of atmospheric concentrations and residence times

    SciTech Connect

    Hornbuckle, K.C.; Eisenreich, S.J.

    1994-12-31

    Semi-volatile organic compounds (SOCs) such as the polychlorinated biphenyls exhibit seasonal maxima in atmospheric concentrations with highest values in the warm summer. This generally believed to result from the effect of temperature on SOC vapor pressure with direct and important implications to global transport. The authors have conducted a series of field experiments whereby air samples were collected above an ombrotrophic, forested bog in northern MN at a frequency of 6 day{sup {minus}1} during the fall, winter, spring and summer. Samples of Sphagnum moss and other vegetation were also collected on each occasion. All samples were analyzed for PCBs, low MW PAHs, gaseous hydrocarbons and selected pesticides. Meteorological and soils data were collected during all experiments (air and soil temperature, wind direction and velocity, RH). Diurnal concentration data, air-plant and air-soil partition coefficients and probable mechanisms and kinetics of SOC-plant interactions will be presented.

  15. Investigation of mass transfer in the ion-exchange-membrane-partitioned free-flow IEF system for protein separation.

    PubMed

    Cheng, Jiu-Hua; Chung, Tai Shung; Neo, Sok Hong

    2009-08-01

    In this study, novel polysulfone-based cation-exchange membranes with strong mechanical strength have been developed and applied in ion-exchange-membrane-partitioned free-flow IEF (IEM-FFIEF) to replace the conventional immobiline membranes. A fundamental understanding of protein mass transfer in the IEM-FFIEF process has been revealed experimentally with the aid of membrane-based boundary effect model contributed by Ennis et al. we have proven experimentally the existence of a pH gradient across the membrane cross-section when an IEM-FFIEF system is in operation. The boundary effects on particle velocities are calculated based on the IEF assumption and various characterizations, and are compared with the experimental results. In the IEM-FFIEF experiments, a protein mixture (BSA and myoglobin (Mb)) and sulfonated polysulfone membranes with different ion-exchange capacities are applied. Experimental results show that the real velocity and real mobility (of Mb in this study) are comparable with the mathematic model developed by Ennis et al. This suggests that the equation proposed by Ennis et al., is sufficient to capture the mass transfer through membrane in the IEM-FFIEF system after considering the effects of pore size distribution and effects of disturbed electric field. The charge properties of the membrane surface play a dominant role on the separation performance of the membranes. The newly developed porous solid-phase ion-exchange membranes may potentially and effectively replace immobilines to perform the selective function for protein separation.

  16. Towards a Theory of Tropical/Midlatitude Mass Exchange from the Earth's Surface through the Stratosphere

    NASA Technical Reports Server (NTRS)

    Hartley, Dana

    1998-01-01

    The main findings of this research project have been the following: (1) there is a significant feedback from the stratosphere on tropospheric dynamics, and (2) a detailed analysis of the interaction between tropical and polar wave breaking in controlling stratospheric mixing. Two papers are were written and are included. The first paper is titled, "A New Perspective on the Dynamical Link Between the Stratosphere and Troposphere." Atmospheric processes of tropospheric origin can perturb the stratosphere, but direct feedback in the opposite direction is usually assumed to be negligible, despite the troposphere's sensitivity to changes in the release of wave activity into the stratosphere. Here, however, we present evidence that such a feedback exists and can be significant. We find that if the wintertime Arctic polar stratospheric vortex is distorted, either by waves propagating upward from the troposphere or by eastward-travelling stratospheric waves, then there is a concomitant redistribution of stratospheric potential vorticity that induces perturbations in key meteorological fields in the upper troposphere. The feedback is large despite the much greater mass of the troposphere: it can account for up to half of the geopotential height anomaly at the tropopause. Although the relative strength of the feedback is partly due to a cancellation between contributions to these anomalies from lower altitudes, our results imply that stratospheric dynamics and its feedback on the troposphere are more significant for climate modelling and data assimilation than was previously assumed. The second article is titled "Diagnosing the Polar Excitation of Subtropical Waves in the Stratosphere". The poleward migration of planetary scale tongues of subtropical air has often been associated with intense polar vortex disturbances in the stratosphere. This question of vortex influence is reexamined from a potential vorticity (PV) perspective. Anomalous geopotential height and wind fields

  17. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  18. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  19. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Newman, P. A.; Waugh, D. W.; Holzer, M. B.; Oman, L.; Polvani, L. M.; Li, F.

    2014-12-01

    Long-range transport from Northern Hemisphere (NH) midlatitudes plays a key role in setting the distributions of trace species and aerosols in the Arctic. While comprehensive models project a strengthening and poleward shift in the midlatitude tropospheric jets in response to future warming, relatively little attention has been paid to assessing the large-scale transport response in the Arctic. A natural way to quantify transport and its future changes is in terms of rigorously defined air masses that partition air according to where it last contacted the planetary boundary layer (PBL). Here we present climatologies of Arctic air mass origin for NH winter and summer, computed from two integrations of the Goddard Earth Observing System chemistry-climate model (GEOSCCM) subject to present-day and future climate forcings. The modeled transport response to A1B greenhouse-gas induced warming reveals that in the future ~10% more air in the Arctic will originate over NH midlatitudes, with a slighter weaker albeit significant increase in winter compared to summer. Our results indicate that transport changes alone may lead to "cleaner" Arctic winters, as air will be 5-10% more likely to have last contacted the PBL over the East Pacific and the Atlantic Oceans and less likely to have originated over Europe and North America. Conversely, in future summers the air mass fractions originating over Asia and North America increase by ~10%, indicating that Arctic pollutant levels may be enhanced owing solely to changes in transport. In particular, our results suggest that more stringent emissions caps may be needed to combat enhanced transport into the Arctic from Asia, where increases in black carbon emissions have already posed concerns. Future changes in air mass fractions are interpreted in terms of large-scale circulation responses that are consistent with CMIP5 multi-model mean projections - namely, upward and poleward shifted meridional transient eddies in future winters and

  20. Measurement of mass attenuation coefficients in air by application of detector linearity tests

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Chantler, C. T.; Paterson, D.; McMahon, P. J.; Irving, T. H.; Lin, J. J.; Nugent, K. A.; Brunton, A. N.; McNulty, I.

    2002-10-01

    Accurate knowledge of x-ray mass attenuation coefficients is essential for studies as diverse as atomic physics, materials science, and radiation safety. However, a significant discrepancy exists between theoretical tabulated results for air at soft x-ray energies. We outline a precision measurement of the mass attenuation coefficients for air at various energies using two types of detectors and a simple test of detector response. We discuss whether sufficient accuracy can be obtained using this data to distinguish between competing theoretical estimates. In the process, we investigate the intensity response of two common synchrotron x-ray detectors: an x ray to optical charge-coupled device camera using a crystal scintillator and an x-ray sensitive photodiode.

  1. Toward a universal mass-momentum transfer relationship for predicting nutrient uptake and metabolite exchange in benthic reef communities

    NASA Astrophysics Data System (ADS)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin

    2016-09-01

    Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.

  2. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  3. The organic sea surface microlayer in the upwelling region off Peru and implications for air-sea exchange processes

    NASA Astrophysics Data System (ADS)

    Engel, A.; Galgani, L.

    2015-07-01

    The sea surface microlayer (SML) is at the very surface of the ocean, linking the hydrosphere with the atmosphere, and central to a range of global biogeochemical and climate-related processes. The presence and enrichment of organic compounds in the SML have been suggested to influence air-sea gas exchange processes as well as the emission of primary organic aerosols. Among these organic compounds, primarily of plankton origin, are dissolved exopolymers, specifically polysaccharides and proteins, and gel particles, such as Transparent Exopolymer Particles (TEP) and Coomassie Stainable Particles (CSP). These organic substances often accumulate in the surface ocean when plankton productivity is high. Here, we report results obtained in December 2012 during the SOPRAN Meteor 91 cruise to the highly productive, coastal upwelling regime off Peru. Samples were collected from the SML and from ~ 20 cm below, and were analyzed for polysaccharidic and proteinaceous compounds, gel particles, total and dissolved organic carbon, bacterial and phytoplankton abundance. Our study provides insight to the physical and biological control of organic matter enrichment in the SML, and discusses the potential role of organic matter in the SML for air-sea exchange processes.

  4. Exchange of Groundwater and Surface-Water Mediated by Permafrost Response to Seasonal and Long Term Air Temperature Variation

    USGS Publications Warehouse

    Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.

  5. Exchange of groundwater and surface-water mediated by permafrost response to seasonal and long term air temperature variation

    USGS Publications Warehouse

    Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.

    2011-01-01

    Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.

  6. Energy and mass exchange between ocean and atmosphere in the area of winter polynya to the north of Svalbard

    NASA Astrophysics Data System (ADS)

    Ivanov, Boris; Wesman, Anna; Sviashchennikov, Pavel; Pavlov, Alexey

    2015-04-01

    The warm inflow of the West Spitsbergen Current keeps waters ice-free in winter to the north of Svalbard, an area also called the Whalers Bay. Here we present results of the winter expedition in the Arctic Ocean to the north of Svalbard on board a research vessel «Helmer Hanssen» in January 2012. The characteristics of the turbulent energy and mass exchange are calculated using an algorithm, which is based on semi-empirical theory of "Monin-Obukhov", adapted to the conditions of marine meteorological observations. The results are compared with the data obtained in this area in February 1986 on board Russian research icebreaker "Otto Schmidt". The features of energy-mass exchange are explained by synoptic and ice conditions in the study area. Intense heat and mass exchange in the area leads to enhanced convective mixing and, thus, upwelling of nutrients to surface waters that can contribute to higher biological activity in the area throughout the food web.

  7. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  8. Impacts of Typhoon and Air-Mass Pathways on Rainwater Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Cheng, M.; You, C.

    2006-12-01

    To assess the importance of chemical fluxes on trace elements by wet precipitation, we have collected time- series rain waters between 06/20/04 and 09/20/05 for ICPMS and IC measurements. The sampling site is located at Tainan city in southwest Taiwan and there were four typhoons, namely Mindulle, Rananim, Aere, and Haima, hit the island during this period. Combining trace element compositions with HYSPLIT model for air-mass transportation designed by NOAA, we were able to understand possible source, flux and migration pathway of pollutants in rainwater. Our results show that seasalt contribution and trace element fluxes were higher during typhoon events. The Na and Pb flux varied largely, between 0.03~1388 and 0.0002~2000 mg/m2/day respectively, depended on the pathways of air mass trajectory and wind strength. It is clear that typhoons carry not only sea spray but also major anthropogenic pollutants from south Asia. Among the four typhoons, the Mindulle carried the largest fluxes of seasalt and trace elements while Rananim was weak in strength and brought the lowest Na and Pb due to less degree of mixing with air mass on land. The calculated enriched factors normalized to seawater (EFsea) were near unity for Na and Mg, but were much larger for K and Ca possibly due to crust source contamination and biomass burning. The EFcrust or EFsea values of various trace metals (e.g., V, Cr, Mn, Co, Ni, Cu, Zn, As, Ba and Pb were all significantly larger than 10 indicating the importance of anthropogenic sources. Interestingly, the PCA results confirm that rain waters with similar chemical characteristics have shared common air mass backward trajectory history.

  9. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  10. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  11. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  12. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  13. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  14. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  15. Use of Cation Exchange Chromatography for Human C-peptide Isotope Dilution – Mass Spectrometric Assay

    PubMed Central

    Stoyanov, Alexander V.; Rohlfing, Curt L.; Connolly, Shawn; Roberts, Matthew L.; Nauser, Christopher L.; Little, Randie R.

    2016-01-01

    An application of ion exchange chromatography for C-peptide analysis is described here. At the stage of C-peptide isolation, a strong cation exchanger (SP HP or MonoS) was used to purify the analyte from ballast proteins and peptides. The conditions of ion-exchange chromatographic separations were optimized using theoretical modeling of the net surface electric charge of the peptide as a function of pH. The purified and concentrated sample was further subjected to LC-MS/MS. In order to improve the reliability of analysis, two fragment ions were monitored simultaneously both for native C-peptide and internal standard, isotopically labeled C-peptides analogues (fragments with m/z of 927.7 and 147.2). Using ion-exchange chromatography, it became possible to process larger sample volumes, important for testing patients with very low C peptide levels, compared to currently used solid phase extraction methods. PMID:22098929

  16. Mutagenicity, sister chromatid exchange inducibility and in vitro cell transforming ability of particulates from Athens air

    SciTech Connect

    Athanasiou, K.; Arzimanoglou, I.; Piccoli, C.; Yamasaki, H.

    1987-09-01

    Airborne particulates were collected over a period of twelve months by the use of Hi-Vol samplers in the basin of Athens, Greece. N-Hexane extracts were tested in a battery of in vitro tests for their ability to induce mutation in bacteria as well as mutations, sister chromatid exchange and morphological transformation in cultured mammalian cells. Positive results were found for mutagenicity with Salmonella strain TA98 in the Ames assay, for sister chromatid exchange induction in CHO cells and for transformation in BALB/c 3T3 cells in culture. They also showed weak non-dose-related induction of ouabain resistance in BALB/c 3T3 cells. The contribution of oxidizing and nitrating agents found in the Athens atmosphere, together with sunlight UV irradiation in the formation of direct acting mutagens and potential carcinogens from ambient polycyclic aromatic hydrocarbons, is suggested.

  17. Regenerable device for scrubbing breathable air of CO2 and moisture without special heat exchanger equipment

    NASA Technical Reports Server (NTRS)

    Tepper, E. H. (Inventor)

    1977-01-01

    The device concerns the circulation of cabin air through canisters which absorb and adsorb carbon dioxide, together with excess moisture, and return the scrubbed air to the cabin for recirculation. A coating on an inert substrate in granular form absorbs and adsorbs the impurities at standard temperatures and pressures, but desorbs such impurities at low pressures (vacuum) and standard temperatures. This fact is exploited by making the device in a stack of cells consisting of layers or cells which are isolated from one another flow-wise and are connected to separate manifolds and valving systems into two separate subsets. A first subset may be connected for the flow breathable air therethrough until the polyethyleneimine of its cells is saturated with CO2 and H2O. During the same period the second subset of cells is manifolded to a vacuum source.

  18. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants.

    PubMed

    Barber, Jonathan L; Kurt, Perihan B; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C

    2002-10-15

    The transfer of persistent organic pollutants (POPs) from air to vegetation is an important air-surface exchange process that affects global cycling and can result in human and wildlife exposure via the terrestrial food chain. To improve understanding of this process, the role of stomata in uptake of gas-phase polychlorinated biphenyls (PCBs) was investigated using Hemerocallis x hybrida "Black Eyed Stella", a plant with a high stomatal density. Uptake of PCBs was monitored over a 72-h period in the presence and absence of light. Uptake rates were significantly greater in illuminated (stomata open) plants than unilluminated (stomata closed) plants for 18 of the 28 measured PCB congeners (p < 0.05). Depuration of PCBs was monitored in a subsequent experiment over a period of 3 weeks. Levels after 3 weeks of depuration time were still much higher than the concentration prior to contamination. Tri- and tetrachlorinated PCBs showed the greatest depuration, with less than 20% and 50% of accumulated PCBs respectively remaining, while approximately 70% of higher chlorinated PCB congeners remained in the plants at the end of the experiment. Treatments with/without light (to control stomatal opening during uptake) and with/without abscisic acid (ABA) application (to control stomatal opening during depuration) were compared. After contamination indoors for 3 days, there was a significantly higher concentration of PCBs (p < 0.05) in the light contaminated plants than the dark-contaminated plants for 13 of the 28 measured PCB congeners. The ABA treatment affected depuration of PCB-18 only. "Light/ABA-treated" plants had a significantly slower depuration rate for PCB-18 than "light/untreated", "dark/ABA-treated", and "dark/untreated" plants (p < 0.05). The results of the study indicate that there is a stomatal effect on the rate of exchange of PCBs between Hemerocallis leaves and air. PMID:12387399

  19. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  20. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  1. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  2. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  3. Indoor air quality, air exchange rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.

    PubMed

    Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A

    2013-08-01

    This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings.

  4. Indoor air quality, air exchange rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.

    PubMed

    Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A

    2013-08-01

    This study measured air exchange rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean air exchange rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings. PMID:23336325

  5. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  6. Effect of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins.

    PubMed

    Shen, Hong; Frey, Douglas D

    2005-06-24

    A thermodynamic formalism is developed for incorporating the effects of charge regulation on the ion-exchange adsorption of proteins under mass-overloaded conditions as described by the steric mass-action (SMA) isotherm. To accomplish this, the pH titration behavior of a protein and the associated adsorption equilibrium of the various charged forms of a protein are incorporated into a model which also accounts for the steric hindrance of salt counterions caused by protein adsorption. For the case where the protein is dilute, the new model reduces to the protein adsorption model described recently by the authors which accounts for charge regulation. Similarly, the new model reduces to the steric mass-action isotherm developed by Brooks and Cramer which applies to mass-overloaded conditions for the case where charge regulation is ignored so that the protein has a fixed charge. Calculations using the new model were found to agree with experimental data for the adsorption of bovine serum albumin (BSA) on an anion-exchange column packing when using reasonable physical properties. The new model was also used to develop an improved theoretical criterion for determining the conditions required for an adsorbed species to displace a protein in displacement chromatography when the pH is near the protein pI.

  7. Factors influencing indoor air quality in an urban high rise apartment building (retitled as "Air Pollution and air exchange in an urban high rise apartment building")

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  8. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  9. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  10. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  11. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  12. Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air-sea interface of Kaohsiung Harbor, Taiwan.

    PubMed

    Fang, Meng-Der; Ko, Fung-Chi; Baker, Joel E; Lee, Chon-Lin

    2008-12-15

    Gaseous and dissolved concentrations of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) were measured in the ambient air and water of Kaohsiung Harbor lagoon, Taiwan, from December 2003 to January 2005. During the rainy season (April to September), gaseous PCB and HCB concentrations were low due to both scavenging by precipitation and dilution by prevailing southwesterly winds blown from the atmosphere of the South China Sea. In contrast, trace precipitation and prevailing northeasterly winds during the dry season (October to March) resulted in higher gaseous PCB and HCB concentrations. Instantaneous air-water exchange fluxes of PCB homologues and HCB were calculated from 22 pairs of air and water samples from Kaohsiung Harbor lagoon. All net fluxes of PCB homologues and HCB in this study are from water to air (net volatilization). The highest net volatile flux observed was +172 ng m(-)(2) day(-1) (dichlorobiphenyls) in December, 2003 due to the high wind speed and high dissolved concentration. The PCB homologues and HCB fluxes were significantly governed by dissolved concentrations in Kaohsiung Harbor lagoon. For low molecular weight PCBs (LMW PCBs), their fluxes were also significantly correlated with wind speed. The net PCB and HCB fluxes suggest that the annual sums of 69 PCBs and HCB measured in this study were mainly volatile (57.4 x 10(3) and 28.3 x 10(3) ng m(-2) yr(-1), respectively) and estimated yearly, 1.5 kg and 0.76 kg of PCBs and HCB were emitted from the harbor lagoon surface waters to the ambient atmosphere. The average tPCB flux in this study was about one-tenth of tPCB fluxes seen in New York Harbor and in the Delaware River, which are reported to be greatly impacted by PCBs.

  13. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  14. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  15. Polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in the equatorial Indian Ocean: temporal trend, continental outflow and air-water exchange.

    PubMed

    Huang, Yumei; Li, Jun; Xu, Yue; Xu, Weihai; Cheng, Zhineng; Liu, Junwen; Wang, Yan; Tian, Chongguo; Luo, Chunling; Zhang, Gan

    2014-03-15

    Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively.

  16. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    ERIC Educational Resources Information Center

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  17. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  18. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  19. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year (IPY) expeditions in the Canadian Arctic.

    PubMed

    Wong, Fiona; Jantunen, Liisa M; Pućko, Monika; Papakyriakou, Tim; Staebler, Ralf M; Stern, Gary A; Bidleman, Terry F

    2011-02-01

    Shipboard measurements of organohalogen compounds in air and surface seawater were conducted in the Canadian Arctic in 2007-2008. Study areas included the Labrador Sea, Hudson Bay, and the southern Beaufort Sea. High volume air samples were collected at deck level (6 m), while low volume samples were taken at 1 and 15 m above the water or ice surface. Water samples were taken within 7 m. Water concentration ranges (pg L(-1)) were as follows: α-hexachlorocyclohexane (α-HCH) 465-1013, γ-HCH 150-254, hexachlorobenzene (HCB) 4.0-6.4, 2,4-dibromoanisole (DBA) 8.5-38, and 2,4,6-tribromoanisole (TBA) 4.7-163. Air concentration ranges (pg m(-3)) were as follows: α-HCH 7.5-48, γ-HCH 2.1-7.7, HCB 48-71, DBA 4.8-25, and TBA 6.4 - 39. Fugacity gradients predicted net deposition of HCB in all areas, while exchange directions varied for the other chemicals by season and locations. Net evasion of α-HCH from Hudson Bay and the Beaufort Sea during open water conditions was shown by air concentrations that averaged 14% higher at 1 m than 15 m. No significant difference between the two heights was found over ice cover. The α-HCH in air over the Beaufort Sea was racemic in winter (mean enantiomer fraction, EF = 0.504 ± 0.008) and nonracemic in late spring-early summer (mean EF = 0.476 ± 0.010). This decrease in EF was accompanied by a rise in air concentrations due to volatilization of nonracemic α-HCH from surface water (EF = 0.457 ± 0.019). Fluxes of chemicals during the southern Beaufort Sea open water season (i.e., Leg 9) were estimated using the Whitman two-film model, where volatilization fluxes are positive and deposition fluxes are negative. The means ± SD (and ranges) of net fluxes (ng m(-2) d(-1)) were as follows: α-HCH 6.8 ± 3.2 (2.7-13), γ-HCH 0.76 ± 0.40 (0.26-1.4), HCB -9.6 ± 2.7 (-6.1 to -15), DBA 1.2 ± 0.69 (0.04-2.0), and TBA 0.46 ± 1.1 ng m(-2) d(-1) (-1.6 to 2.0).

  20. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  1. Quality site seasonal report: Army Air Force Exchange Service Headquarters Building, SFBP 1343, August 1984 through May 1985

    SciTech Connect

    Pollock, E.O. Jr.

    1987-10-15

    The active solar Domestic Hot Water (DHW) system at the HQ Army-Air Force Exchange Service (AAFES) Building was designed and constructed as part of the Solar in Federal Buildings Programs (SFBP). This retrofitted system is one of eight of the systems in the SFBP selected for quality monitoring. The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in large federal building applications. The six-story HQ AAFES Building houses a cafeteria, officer's mess and club and office space for 2400 employees. The siphon-return drainback system uses 1147 ft/sup 2/ of Aircraftsman flat-plate collectors to collect solar energy which is used to preheat domestic hot water. Solar energy is stored in a 1329-gallon tank and transferred to the hot water load through a heat exchanger located in the 356-gallon DHW preheat tank. Auxiliary energy is supplied by two gas fired boilers which boost the temperature to 130/sup 0/F before it is distributed to the load. Highlights of the performance of the HQ AAFES Building solar system during the monitoring period from August 1984 through May 1985 are presented in this report.

  2. Characterization of IgG1 Conformation and Conformational Dynamics by Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect

    Houde, Damian; Arndt, Joseph; Domeier, Wayne; Berkowitz, Steven; Engen, John R.

    2009-04-22

    Protein function is dictated by protein conformation. For the protein biopharmaceutical industry, therefore, it is important to have analytical tools that can detect changes in protein conformation rapidly, accurately, and with high sensitivity. In this paper we show that hydrogen/deuterium exchange mass spectrometry (H/DX-MS) can play an important role in fulfilling this need within the industry. H/DX-MS was used to assess both global and local conformational behavior of a recombinant monoclonal IgG1 antibody, a major class of biopharmaceuticals. Analysis of exchange into the intact, glycosylated IgG1 (and the Fab and Fc regions thereof) showed that the molecule was folded, highly stable, and highly amenable to analysis by this method using less than a nanomole of material. With improved chromatographic methods, peptide identification algorithms and data-processing steps, the analysis of deuterium levels in peptic peptides produced after labeling was accomplished in 1--2 days. On the basis of peptic peptide data, exchange was localized to specific regions of the antibody. Changes to IgG1 conformation as a result of deglycosylation were determined by comparing exchange into the glycosylated and deglycosylated forms of the antibody. Two regions of the IgG1 (residues 236-253 and 292-308) were found to have altered exchange properties upon deglycosylation. These results are consistent with previous findings concerning the role of glycosylation in the interaction of IgG1 with Fc receptors. Moreover, the data clearly illustrate how H/DX-MS can provide important characterization information on the higher order structure of antibodies and conformational changes that these molecules may experience upon modification.

  3. Indicator dilution measurements of lung volumes and alveolar air exchange during breathing.

    PubMed

    Hechtman, H B; Reid, M H; Dorn, B C; Weisel, R D

    1973-05-01

    A new triple tracer indicator dilution technique has been used to measure alveolar ventilation as well as air and tissue volumes in the lungs of experimental animals and man. The tracers indocyanine green, [(121)I]antipyrine and xenon-133 were rapidly injected into the right atrium, while sampling was carried out from a peripheral artery. Blood flow and tissue volumes were obtained by classical analysis of the indocyanine green and antipyrine concentration-time curves. A double exit-port, constant air flow model was used to analyze the xenon curves, because ventilatory loss led to incomplete recovery of the gas tracer in effluent blood. Uniform ventilation and perfusion were assumed. This analysis permitted calculation of alveolar ventilation (VA(Xe)) and functional residual capacity (FRC(Xe)) during normal breathing. In control studies, VA(Xe) was similar to VA(co2), obtained with the steady-state CO(2) method (r = 0.87), while in critically ill patients the xenon measurement was significantly lower, averaging 54% of VA(co2). In theory, underestimates in VA(Xe) and decrease in the ratio VA(Xe)/VA(co2) relate to nonuniformity in regional ventilation and perfusion. The effect is greatest for the slightly soluble gas, xenon. The significant inverse correlation between VA(Xe)/VA(co2) and the physiologic shunt is consistent with this postulate.FRC(Xe) was similar to the predicted FRC in animals but was 76% of the helium measured FRC in patients. FRC(Xe) was significantly lower than the xenon measured air volumes during breath-holding when nonuniformity of ventilation was not operative. Lung tissue volumes in animals were 83% of gravimetric lung weights, while in patients the volumes were much lower than predicted. Nonhomogeneous lung function, including failure to perfuse the entire capillary bed, with resultant incomplete penetration of tracers into all segments of lung air and tissue, may explain these findings. The resultant errors can be significant in sick

  4. Intense air-sea exchange and heavy rainfall: impact of the northern Adriatic SST

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Davolio, S.

    2016-02-01

    Over the northern Adriatic basin, intense air-sea interactions are often associated with heavy precipitation over the mountainous areas surrounding the basin. In this study, a high-resolution mesoscale model is employed to simulate three severe weather events and to evaluate the effect of the sea surface temperature on the intensity and location of heavy rainfall. The sensitivity tests show that the impact of SST varies among the events and it mainly involves the modification of the PBL characteristics and thus the flow dynamics and its interaction with the orography.

  5. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  6. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.

    PubMed

    Xin, Mei; Gustin, Mae S; Ladwig, Kenneth; Pflughoeft-Hassett, Debra F

    2006-08-01

    Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.

  7. Methods in the Study of PTEN Structure: X-Ray Crystallography and Hydrogen Deuterium Exchange Mass Spectrometry.

    PubMed

    Masson, Glenn R; Burke, John E; Williams, Roger L

    2016-01-01

    Despite its small size and deceptively simple domain organization, PTEN remains a challenging structural target due to its N- and C-terminal intrinsically disordered segments, and the conformational heterogeneity caused by phosphorylation of its C terminus. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS), it is possible to probe the conformational dynamics of the disordered termini, and also to determine how PTEN binds to lipid membranes. Here, we describe how to purify recombinant, homogenously dephosphorylated PTEN from a eukaryotic system for subsequent investigation with HDX-MS or crystallography. PMID:27033079

  8. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2016-08-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  9. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  10. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  11. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    PubMed

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47. PMID:26436513

  12. On-line cation exchange for suppression of adduct formation in negative-ion electrospray mass spectrometry of nucleic acids.

    PubMed

    Huber, C G; Buchmeiser, M R

    1998-12-15

    One major difficulty in the analysis of nucleic acids by electrospray mass spectrometry is represented by the affinity of the polyanionic sugar-phosphate backbone for nonvolatile cations, especially ubiquitous sodium and potassium ions. A simple on-line sample preparation system comprising a microflow pumping system and 45 x 0.8-mm-i.d. microcolumns packed with weak or strong cation-exchange resins is described for the efficient removal of cations from nucleic acid samples. Samples were analyzed by flow injection analysis at a 3-5 microL/min flow of 10 mM triethylamine in 50% water-50% acetonitrile. After on-line desalting, mass spectra of oligonucleotides revealed no significant sodium adduct peaks. Moreover, signal-to-noise ratios were greatly enhanced compared to direct injection of the samples. Electrospray mass spectrometry with on-line sample preparation allowed accurate molecular mass determinations of picomole amounts of crude oligonucleotide preparations ranging in size from 8 to 80 nucleotides within a few minutes. The good linearity of the calibration plot (R2 = 0.9988) over at least 2 orders of magnitude and a relative standard deviation in peak areas of less than 9% permitted the sensitive quantitative measurement of oligonucleotides in a concentration range of 0.2-20 microM with selected-ion monitoring. Finally, the on-line sample preparation system was evaluated for the mass spectrometric analysis of complex oligonucleotide mixtures. PMID:9868919

  13. Effects of water mass exchange on bacterial communities in an aquaculture area during summer

    NASA Astrophysics Data System (ADS)

    Sakami, T.; Abo, K.; Takayanagi, K.; Toda, S.

    2003-01-01

    Bacterial abundance (BA) and bacterial production (BP) and their relations with chlorophyll a, dissolved organic carbon (DOC) and dissolved organic (DON) and dissolved inorganic nitrogen (DIN) concentrations, were measured in the eutrophic fish farming ground of the Hasama-ura inlet of Gokasho Bay in the summer of 1996. The BP in the aquaculture area was 172±154 μgC/l/day (mean±standard deviation; n=24) and was higher in the aquaculture area than in the mouth of the bay, especially at the lower chlorophyll a concentrations of the mid and bottom waters. It correlated well with the concentrations of DON, but not with chlorophyll a or DOC. The BP per unit chlorophyll a was higher in the aquaculture area than in the bay mouth, especially at the lower chlorophyll a concentrations of the middle and bottom waters. Our findings suggested that the allochthonous organic matter added by farmed fish supported the bacterial activity in the aquaculture area. An occasional water exchange by intrusion of oceanic water into the Hasama-ura inlet did not cause a significant reduction of BA or BP. However, the correlation coefficient between BP and the DON concentration increased significantly after the water exchange, indicating that the water exchange caused a change in the organic substrate supporting the bacterial community.

  14. Tropical Intraseasonal Air-Sea Exchanges during the 1997 Pacific Warming

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou

    1999-01-01

    The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The

  15. Characterization of intact protein conjugates and biopharmaceuticals using ion-exchange chromatography with online detection by native electrospray ionization mass spectrometry and top-down tandem mass spectrometry.

    PubMed

    Muneeruddin, Khaja; Nazzaro, Mark; Kaltashov, Igor A

    2015-10-01

    Characterization of biopharmaceutical products is a challenging task, which needs to be carried out at several different levels (including both primary structure and conformation). An additional difficulty frequently arises due to the structural heterogeneity inherent to many protein-based therapeutics (e.g., extensive glycosylation or "designer" modifications such as chemical conjugation) or introduced postproduction as a result of stress (e.g., oxidation and deamidation). A combination of ion-exchange chromatography (IXC) with online detection by native electrospray ionization mass spectrometry (ESI MS) allows characterization of complex and heterogeneous therapeutic proteins and protein conjugates to be accomplished at a variety of levels without compromising their conformational integrity. The IXC/ESI MS measurements allow protein conjugates to be profiled by analyzing conjugation stoichiometry and the presence of multiple positional isomers, as well as to establish the effect of chemical modifications on the conformational integrity of each species. While mass profiling alone is not sufficient for identification of nonenzymatic post-translational modifications (PTMs) that result in a very small mass change of the eluting species (e.g., deamidation), this task can be completed using online top-down structural analysis, as demonstrated using stressed interferon-β as an example. The wealth of information that can be provided by IXC/native ESI MS and tandem mass spectrometry (MS/MS) on protein-based therapeutics will undoubtedly make it a very valuable addition to the experimental toolbox of biopharmaceutical analysis.

  16. Rechargeable Metal–Air Proton‐Exchange Membrane Batteries for Renewable Energy Storage

    PubMed Central

    Nagao, Masahiro; Kobayashi, Kazuyo; Yamamoto, Yuta; Yamaguchi, Togo; Oogushi, Akihide

    2015-01-01

    Abstract Rechargeable proton‐exchange membrane batteries that employ organic chemical hydrides as hydrogen‐storage media have the potential to serve as next‐generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen‐storage capacity. Here, we address this challenge through the use of metal‐ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn0.9In0.1P2O7‐based electrolyte membrane allowed no crossover of vanadium ions through the membrane. The V4+/V3+, V3+/V2+, and Sn4+/Sn2+ redox reactions took place at a more positive potential than that for hydrogen reduction, so that undesired hydrogen production could be avoided. The resulting electrical capacity reached 306 and 258 mAh g−1 for VOSO4 and SnSO4, respectively, and remained at 76 and 91 % of their respective initial values after 50 cycles. PMID:27525212

  17. High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Lindberg, Steven E.

    1994-03-01

    We constructed an atmospheric sampling system for Hg vapor that utilizes a single vacuum pump connected via a manifold to six separate mass flow controllers (MFC). The manifold system reduces the size and power requirements for collection of replicate samples, is ideally suited for use on meteorological towers, and achieves the precise control of air-sampling volumes required for computing air/surface exchange rates from concentration gradients of Hg vapor. In testing our air sampling systems, we found consistent calibration errors between the manufacturer's calibrations and a standard bubble flow meter. Errors as high as 30% decreased systematically with increasing flow rate to values of 3-5% at near-maximum flow. The relative error patterns established between adjacent MFC units in each system were found to be relatively stable over time. Using gold-coated sand amalgamation traps for Hg vapor and the flow correction factors computed from our calibrations, we routinely achieve precision for replicate measurements of Hg vapor in background air of 0.5-2% (expressed as relative standard errors of mean concentrations of 1.5-3.5 ng/m3). Application of the flow correction factors measurably decreases the level of bias between mean concentrations of Hg vapor measured with adjacent sampling systems and is necessary to reduce uncertainty associated with quantifying gradients in atmospheric concentrations.

  18. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  19. Hydrogen Exchange Mass Spectrometry of Related Proteins with Divergent Sequences: A Comparative Study of HIV-1 Nef Allelic Variants

    NASA Astrophysics Data System (ADS)

    Wales, Thomas E.; Poe, Jerrod A.; Emert-Sedlak, Lori; Morgan, Christopher R.; Smithgall, Thomas E.; Engen, John R.

    2016-06-01

    Hydrogen exchange mass spectrometry can be used to compare the conformation and dynamics of proteins that are similar in tertiary structure. If relative deuterium levels are measured, differences in sequence, deuterium forward- and back-exchange, peptide retention time, and protease digestion patterns all complicate the data analysis. We illustrate what can be learned from such data sets by analyzing five variants (Consensus G2E, SF2, NL4-3, ELI, and LTNP4) of the HIV-1 Nef protein, both alone and when bound to the human Hck SH3 domain. Regions with similar sequence could be compared between variants. Although much of the hydrogen exchange features were preserved across the five proteins, the kinetics of Nef binding to Hck SH3 were not the same. These observations may be related to biological function, particularly for ELI Nef where we also observed an impaired ability to downregulate CD4 surface presentation. The data illustrate some of the caveats that must be considered for comparison experiments and provide a framework for investigations of other protein relatives, families, and superfamilies with HX MS.

  20. Solitary fibrous tumor of the pleura manifesting as an air-containing cystic mass: radiologic and histopathologic correlation.

    PubMed

    Baek, Ji Eun; Ahn, Myeong Im; Lee, Kyo Young

    2013-01-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that typically presents as a well-defined lobular soft tissue mass commonly arising from the pleura. We report an extremely rare case of an SFT containing air arising from the right major fissure in a 58-year-old woman. Chest CT showed an ovoid air-containing cystic mass with an internal, homogeneously enhancing solid nodule. To our knowledge, this is the first case in the literature. The histopathologic findings were correlated with the radiologic findings, and the mechanism of air retention within the tumor is discussed.

  1. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  2. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Van Grieken, René

    2008-06-25

    The levels of particulate polycyclic aromatic hydrocarbons (PAHs) were determined with a fast analytical approach to study their seasonal variations at Menen (Belgium) during 2003; they were found to be 5-7 times higher in January, February and December, in comparison to May, June and August. The annual average concentration of the sum of 16 US Environmental Protection Agency (EPA) criteria PAHs was 6.7 ng/m3 and around 63% of it was found to be probably carcinogenic to humans. The application of diagnostic ratio and principal component analysis showed vehicular emission as a major source. An increased ratio of 'combustion PAHs' to 'total EPA-PAHs' during the winter season indicated towards combustion activities. Further, the differences in PAHs concentration were assessed with relation to backward air mass trajectories, which show that the levels of PAHs increase when there is an air mass movement from Central and Western Europe and a fall when the trajectories spend most of their 4-day time over the Atlantic Ocean or in the Arctic region.

  3. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  4. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  5. Air-Sea Exchange and Budget of Sulfur and Oxygen-Containing Volatile Organic Compounds in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Omori, Y.; Inomata, S.; Iwata, T.; Kameyama, S.

    2015-12-01

    By combining proton transfer reaction-mass spectrometry (PTR-MS) and gradient flux (GF) technique, in situ measurement of air-sea fluxes of multiple volatile organic compounds (VOCs) was developed and deployed. Starting in 2008, we made in situ observations of air-sea fluxes at 15 locations as well as underway observations of marine air/surface seawater bulk concentrations in the Pacific Ocean, during eight research cruises by R/V Hakuho-Maru. The fluxes of biogenic trace gases, DMS and isoprene, were always positive, with the magnitudes being in accordance with previously reported. In contrast, the fluxes of oxygenated VOCs including acetone and acetaldehyde varied from negative to positive, suggesting that the tropical and subtropical Pacific are a source, while the North Pacific is a sink. A basin-scale budget of VOCs were determined for 4 biogeochemical provinces in the Pacific Ocean, and the role of oceans for VOCs were discussed with respect to physical and biogeochemical processes.

  6. Inclusion of human mineralized exometabolites and fish wastes as a source of higher plant mineral nutrition in BTLSS mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Ushakova, Sofya; Anischenko, Olesya; Trifonov, Sergey V.

    Human exometabolites inclusion into an intrasystem mass exchange will allow increasing of a closure level of a biological-technical life support system (BTLSS). Previously at the IBP SB RAS it was shown that human mineralized exometabolites could be incorporated in the BTLSS mass exchange as a mineral nutrition source for higher plants. However, it is not known how that combined use of human mineralized exometabolites and fish wastes in the capacity of nutrient medium, being a part of the BTLSS consumer wastes, will affect the plant productivity. Several wheat vegetations were grown in an uneven-aged conveyor on a neutral substrate. A mixture of human mineralized exometabolites and fish wastes was used as a nutrient solution in the experiment treatment and human mineralized exometabolites were used in the control. Consequently, a high wheat yield in the experiment treatment practically equal to the control yield was obtained. Thus, mineralized fish wastes can be an additional source of macro-and micronutrients for plants, and use of such wastes for the plant mineral nutrition allows increasing of BTLSS closure level.

  7. Optimization and Application of APCI Hydrogen-Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Acter, Thamina; Cho, Yunju; Kim, Sungji; Ahmed, Arif; Kim, Byungjoo; Kim, Sunghwan

    2015-09-01

    A systematic study was performed to investigate the utility of atmospheric pressure chemical ionization hydrogen-deuterium exchange mass spectrometry (APCI HDX MS) to identify the structures of nitrogen-containing aromatic compounds. First, experiments were performed to determine the optimized experimental conditions, with dichloromethane and CH3OD found to be good cosolvents for APCI HDX. In addition, a positive correlation between the heated capillary temperature and the observed HDX signal was observed, and it was suggested that the HDX reaction occurred when molecules were contained in the solvent cluster. Second, 20 standard nitrogen-containing compounds were analyzed to investigate whether speciation could be determined based on the different types of ions produced from nitrogen-containing compounds with various functional groups. The number of exchanges occurring within the compounds correlated well with the number of active hydrogen atoms attached to nitrogen, and it was confirmed that APCI HDX MS could be used to determine speciation. The results obtained by APCI HDX MS were combined with the subsequent investigation of the double bond equivalence distribution and indicated that resins of shale oil extract contained mostly pyridine type nitrogen compounds. This study confirmed that APCI HDX MS can be added to previously reported chemical ionization, electrospray ionization, and atmospheric pressure photo ionization-based HDX methods, which can be used for structural elucidation by mass spectrometry.

  8. Optimization and Application of APCI Hydrogen-Deuterium Exchange Mass Spectrometry (HDX MS) for the Speciation of Nitrogen Compounds.

    PubMed

    Acter, Thamina; Cho, Yunju; Kim, Sungji; Ahmed, Arif; Kim, Byungjoo; Kim, Sunghwan

    2015-09-01

    A systematic study was performed to investigate the utility of atmospheric pressure chemical ionization hydrogen-deuterium exchange mass spectrometry (APCI HDX MS) to identify the structures of nitrogen-containing aromatic compounds. First, experiments were performed to determine the optimized experimental conditions, with dichloromethane and CH(3)OD found to be good cosolvents for APCI HDX. In addition, a positive correlation between the heated capillary temperature and the observed HDX signal was observed, and it was suggested that the HDX reaction occurred when molecules were contained in the solvent cluster. Second, 20 standard nitrogen-containing compounds were analyzed to investigate whether speciation could be determined based on the different types of ions produced from nitrogen-containing compounds with various functional groups. The number of exchanges occurring within the compounds correlated well with the number of active hydrogen atoms attached to nitrogen, and it was confirmed that APCI HDX MS could be used to determine speciation. The results obtained by APCI HDX MS were combined with the subsequent investigation of the double bond equivalence distribution and indicated that resins of shale oil extract contained mostly pyridine type nitrogen compounds. This study confirmed that APCI HDX MS can be added to previously reported chemical ionization, electrospray ionization, and atmospheric pressure photo ionization-based HDX methods, which can be used for structural elucidation by mass spectrometry.

  9. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  10. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  11. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  12. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    EPA Science Inventory

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  13. Monitoring the Dynamics of Monomer Exchange Using Electrospray Mass Spectrometry: The Case of the Dimeric Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Chevreux, Guillaume; Atmanene, Cédric; Lopez, Philippe; Ouazzani, Jamal; Van Dorsselaer, Alain; Badet, Bernard; Badet-Denisot, Marie-Ange; Sanglier-Cianférani, Sarah

    2011-03-01

    Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using 14N versus 15N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.

  14. Modeling of water masses exchange between Brepolen and the main fjord in the Western Svalbard fjord - Hornsund

    NASA Astrophysics Data System (ADS)

    Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz

    2016-04-01

    Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018

  15. Investigating the Interaction between the Neonatal Fc Receptor and Monoclonal Antibody Variants by Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Jensen, Pernille Foged; Larraillet, Vincent; Schlothauer, Tilman; Kettenberger, Hubert; Hilger, Maximiliane; Rand, Kasper D.

    2015-01-01

    The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution. PMID:25378534

  16. Air-Seawater Exchange of Organochlorine Pesticides in the Southern Ocean between Australia and Antarctica.

    PubMed

    Bigot, Marie; Muir, Derek C G; Hawker, Darryl W; Cropp, Roger; Dachs, Jordi; Teixeira, Camilla F; Bengtson Nash, Susan

    2016-08-01

    This study contributes new data on the spatial variability of persistent organic pollutants in the Indian-Pacific sector of the Southern Ocean and represents the first empirical data obtained from this region in 25 years. Paired high-volume atmospheric and seawater samples were collected along a transect between Australia and Antarctica to investigate the latitudinal dependence of the occurrence and distribution of legacy organochlorine pesticides (OCPs) and the current use pesticide chlorpyrifos in the Southern Ocean. Dissolved ΣHCH and dieldrin concentrations decreased linearly with increasing latitude from 7.7 to 3.0 and from 1.0 to 0.6 pg·L(-1), respectively. There was no consistent trend observed in the latitudinal profile of atmospheric samples; however, some compounds (such as dieldrin) showed reduced concentrations from 7.5-3.4 to 2.7-0.65 pg·m(-3) at the highest latitudes south of the Polar Front. Chlorpyrifos was found in samples from this area for the first time. Estimated air-seawater fugacity ratios and fluxes indicate a current net deposition between -3600 and -900, -6400 and -400, and -1400 and -200 (pg·m(-2)·d(-1)) for γ-HCH, dieldrin, and chlorpyrifos, respectively. These findings suggest that, under current climatic conditions, the Southern Ocean reservoir in the Indian-Pacific sector serves as an environmental sink rather than a source of OCPs to the atmosphere. PMID:27348023

  17. On eddy accumulation with limited conditional sampling to measure air-surface exchange

    SciTech Connect

    Wesely, M.L.; Hart, R.L.

    1994-01-01

    An analysis of turbulence data collected at a height of 12.3 m above grasslands was carried out to illustrate some of the limitations and possible improvements in methods to compute vertical fluxes of trace substances by the eddy accumulation technique with conditional sampling. The empirical coefficient used in the technique has a slight dependence on atmospheric stability, which can be minimized by using a threshold vertical velocity equal to approximately 0.75{sigma}{sub w}, below which chemical sampling is suspended. This protocol results in a smaller chemical sample but increases the differences in concentrations by approximately 70%. For effective conditional sampling when mass is being accumulated in a trap or reservoir, the time of sampling during updrafts versus downdrafts should be measured and used to adjust estimates of the mean concentrations.

  18. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  19. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  20. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  1. Fragmentation of mycosporine-like amino acids by hydrogen/deuterium exchange and electrospray ionisation tandem mass spectrometry.

    PubMed

    Cardozo, Karina H M; Carvalho, Valdemir M; Pinto, Ernani; Colepicolo, Pio

    2006-01-01

    The determination and identification of mycosporine-like amino acids (MAAs) from algae remain a major challenge due to the low concentration. Mass spectrometry (MS) can make an invaluable contribution in the search and identification of MAAs because of its high sensitivity, possibility of coupling with liquid chromatography, and the availability of powerful tandem mass spectrometric techniques. However, the unequivocal determination of the presence and location of important functional groups present on the basic skeleton of the MAAs is often elusive due to their inherent instability under MS conditions. In this study, the use of hydrogen/deuterium (H/D) exchange and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) for characterisation of four MAAs (palythine, asterina, palythinol and shinorine) isolated from the macroalgae Gracilaria tenuistipitata Chang et Xia was investigated. The accurate-mass confirmation of the protonated molecules was performed on a Q-TOF instrument. We demonstrate that employing deuterium labelling in ESI-MS/MS analysis provides a convenient tool for the determination of new MAAs. Although the fragmentation patterns of MAAs were discussed earlier, to our knowledge, this is the first time that mechanisms are proposed.

  2. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  3. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  4. Finite element analysis of an inflatable torus considering air mass structural element

    NASA Astrophysics Data System (ADS)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  5. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  6. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  7. Validation of a Size-resolved Parameterization of Primary Organic Carbon in Fresh Marine Aerosols for Use in Air-Sea Exchange Simulations

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Kieber, D. J.; Frossard, A. A.; Russell, L. M.

    2011-12-01

    Marine aerosol production by bursting bubbles at the ocean surface is the largest source of aerosol mass in the atmosphere. The size-resolved organic and inorganic composition of marine aerosols has significant impacts on atmospheric chemistry, aerosol and cloud microphysics and radiative transfer. Recent estimates suggest that the global production flux of particulate organic matter (POM) associated with nascent marine aerosol may exceed the total production flux of particulate POM from secondary pathways involving gas-phase precursors. Observed size-resolved fluxes of marine-derived POM taken in the N. Atlantic Ocean, while limited, suggest that Langmuir-type sorption processes may be the limiting factor controlling the association of marine organic material with bubble plume surface area, and consequently, the size-resolved POM mass and number fluxes. A similar set of observations - including seawater temperature, salinity, and chlorophyll a (chl-a) concentrations - were made during a spring 2010 cruise of the R/V Atlantis in the eastern North Pacific Ocean. Chlorophyll a concentrations - as a proxy for marine OM - ranged from ~3 to 30 μg L-1 which exceeds that of the N. Atlantic studies by up to an order of magnitude. Significant relationships between chl-a, particle number production and particulate OM enrichments were observed. These data provide an excellent opportunity to validate and refine a previously formulated size-resolved inorganic/organic marine aerosol source function using in situ seawater composition and state constraints. This formulation will serve as the basis for atmospheric chemistry and climate simulations, and further our understanding of aerosol production and air-sea exchange processes.

  8. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-04-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the firn. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these required strong assumptions to characterise snow reactive properties, which are not well defined. Physical processes such as adsorption, solid state diffusion and co-condensation also affect snow chemical composition. We developed a model including a physically based parameterisation of these air-snow exchange processes for nitrate. This modelling study divides into two distinct parts: firstly, surface concentration of nitrate adsorbed onto snow is calculated using existing isotherm parametrisation. Secondly, bulk concentration of nitrate in solid solution into the ice matrix is modelled. In this second approach, solid state diffusion drives the evolution of nitrate concentration inside a layered spherical snow grain. A physically-based parameterisation defining the concentration at the air-snow interface was developed to account for the the co-condensation process. The model uses as input a one-year long time series of atmospheric nitrate concentration measured at Dome C, Antarctica. The modelled nitrate concentration in surface snow is compared to field measurements. We show that on the one hand, the adsorption of nitric acid on the surface of the snow grains fails to fit the observed variations. During winter and spring, the modelled adsorbed concentration of nitrate is 2.5 and 8.3-fold higher than the measured one, respectively. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  9. GEMS (Gravity Electro-Magnetism Strong) SU(5) Theory and The Prediction of Exchange Boson Masses

    NASA Astrophysics Data System (ADS)

    Brandenburg, John

    2012-10-01

    The GEMS SU(5) [1] theory includes short range Nuclear Forces in the GEM unification theory [2], where the importance of the square root of the proton-electron mass ratio: σ = 42.8503 was found. The creation of mass by a Higgs field coupling must, by the Equivalence Principle, be viewed in the context of General Relativity. This is done here using Kaluza-Klein theory in a Feynman-Hawkings path integral formalism. GEM theory, quantum concepts of virtual particles, and ZPF (Zero Point Fluctuation) allow understanding of the Strong Force and Weak forces as the extension of electrodynamics in the quantum limit. The Strong and Weak forces are found to be associated with EM models of the electron and proton as finite sized structures respectively. Higher order Mie resonances off the EM ``mass at a distance'' structures associated with the electron, proton and fifth dimension generate the quanta with masses of the pion mπ = 2 me /α 140.0 MeV and Z boson: mZ = 2σ mp = 80.4 GeV. The ηc meson mη = 2980 GeV is identified with the 5^th dimension compactification force mediated by the Radion field. Another particle associated with this mass inducing field is the ``Radion'' or Higgs scattering quanta off the fifth dimension with a mass σmη 128.6 GeV which is the Higgs Boson. A GEMS SU(5) Georgi-Glashow model, is proposed, where the unification energy is now the Planck energy.[0pt] [1] Brandenburg, J.E. (2012)., STAIF II Conference Albuquerque NM[0pt] [2] Brandenburg, J.E. (2007). IEEE Transactions On Plasma Science, Vol. 35, No. 4., p845.

  10. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  11. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  12. Air-snow exchange of nitrate: a modelling approach to investigate physicochemical processes in surface snow at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Bock, Josué; Savarino, Joël; Picard, Ghislain

    2016-10-01

    Snowpack is a multiphase (photo)chemical reactor that strongly influences the air composition in polar and snow-covered regions. Snowpack plays a special role in the nitrogen cycle, as it has been shown that nitrate undergoes numerous recycling stages (including photolysis) in the snow before being permanently buried in the ice. However, the current understanding of these physicochemical processes remains very poor. Several modelling studies have attempted to reproduce (photo)chemical reactions inside snow grains, but these have relied on strong assumptions to characterise snow reactive properties, which are not well defined. Air-snow exchange processes such as adsorption, solid-state diffusion, or co-condensation also affect snow chemical composition. Here, we present a physically based model of these processes for nitrate. Using as input a 1-year-long time series of atmospheric nitrate concentration measured at Dome C, Antarctica, our model reproduces with good agreement the nitrate measurements in the surface snow. By investigating the relative importance of the main exchange processes, this study shows that, on the one hand, the combination of bulk diffusion and co-condensation allows a good reproduction of the measurements (correlation coefficient r = 0.95), with a correct amplitude and timing of summer peak concentration of nitrate in snow. During winter, nitrate concentration in surface snow is mainly driven by thermodynamic equilibrium, whilst the peak observed in summer is explained by the kinetic process of co-condensation. On the other hand, the adsorption of nitric acid on the surface of the snow grains, constrained by an already existing parameterisation for the isotherm, fails to fit the observed variations. During winter and spring, the modelled concentration of adsorbed nitrate is respectively 2.5 and 8.3-fold higher than the measured one. A strong diurnal variation driven by the temperature cycle and a peak occurring in early spring are two other

  13. Liquid droplet heat exchanger studies

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Hedges, D. E.; Yungster, S.

    1987-01-01

    Recent analytical and experimental investigations of the liquid droplet heat exchanger (LDHX) concept for space power applications are described. The performance of the LDHX is compared to that of a conventional heat exchanger for heat rejection applications in a Brayton cycle, using the mass-specific heat exchanger effectiveness as a figure of merit. It is shown that the LDHX has an order of magnitude advantage over the conventional heat exchanger. Furthermore, significant improvement in cycle efficiency and power to mass ratio is possible. Two-phase flow experiments in a laboratory scale LDHX, using air and water as the two media, show very good agreement with the quasi-one-dimensional model used in the parametric studies.

  14. Plio-Pleistocene evolution of water mass exchange and erosional input at the Atlantic-Arctic gateway

    NASA Astrophysics Data System (ADS)

    Teschner, Claudia; Frank, Martin; Haley, Brian A.; Knies, Jochen

    2016-05-01

    Water mass exchange between the Arctic Ocean and the Norwegian-Greenland Seas has played an important role for the Atlantic thermohaline circulation and Northern Hemisphere climate. We reconstruct past water mass mixing and erosional inputs from the radiogenic isotope compositions of neodymium (Nd), lead (Pb), and strontium (Sr) at Ocean Drilling Program site 911 (leg 151) from 906 m water depth on Yermak Plateau in the Fram Strait over the past 5.2 Myr. The isotopic compositions of past bottom waters were extracted from authigenic oxyhydroxide coatings of the bulk sediments. Neodymium isotope signatures obtained from surface sediments agree well with present-day deepwater ɛNd signature of -11.0 ± 0.2. Prior to 2.7 Ma the Nd and Pb isotope compositions of the bottom waters only show small variations indicative of a consistent influence of Atlantic waters. Since the major intensification of the Northern Hemisphere Glaciation at 2.7 Ma the seawater Nd isotope composition has varied more pronouncedly due to changes in weathering inputs related to the waxing and waning of the ice sheets on Svalbard, the Barents Sea, and the Eurasian shelf, due to changes in water mass exchange and due to the increasing supply of ice-rafted debris (IRD) originating from the Arctic Ocean. The seawater Pb isotope record also exhibits a higher short-term variability after 2.7 Ma, but there is also a trend toward more radiogenic values, which reflects a combination of changes in input sources and enhanced incongruent weathering inputs of Pb released from freshly eroded old continental rocks.

  15. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  16. Air-water gas exchange of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.

    PubMed

    Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M

    2005-01-01

    Concentrations of selected persistent organic pollutants (POPs) in air and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical exchange across the air-water interface of these lakes. Bow Lake (1,975 m above sea level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas exchange for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in air declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in air and water, nor the direction and rate of air-water gas exchange correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount exchanged across the air-water interface in these lakes. PMID:15683168

  17. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  18. Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides

    SciTech Connect

    Lee, R.G.M.; Burnett, V.; Harner, T.; Jones, K.C.

    2000-02-01

    Atmospheric concentrations of five organochlorine (OC) pesticides, some of which have been banned for a number of years, and polychlorinated naphthalenes (PCNs) were measured at a U.K. site over periods of 6 h for 7 days resulting in 28 samples. Mean concentrations of the pesticides were {alpha}-HCH 90 pg m{sup {minus}3}, {gamma}-HCH 500, {rho},{rho}{prime}-DDE 8, dieldrin 63, endrin 22, and HCB 39. PCN mean homologue concentrations were {sub 3}CNs 67 pg m{sup {minus}3}, {sub 4}CNs 78, {sub 5}CNs 5, {sub 6}CNs 0.6, {sub 7}CNs 0.6, and {Sigma}PCNs 152. TEQ concentrations for those PCNs ascribed TEF values ranged between 0.36 and 3.6 fg m{sup {minus}3} which corresponds to {approximately}3.0--30% of the TEQ concentrations of PCDD/Fs at the same site. All the compounds measured, except HCB, exhibited a strong temperature-dependent diurnal cycling. Results from Clausius-Clapeyron plots show that pesticide concentrations were controlled by temperature-driven air-surface recycling throughout the first 5 days when stable atmospheric conditions were dominant, while during the last 2 days advection became more influential as more unstable and cooler weather started to influence the site. PCN concentrations were controlled primarily by a mixture of recycling and advection throughout the first 5 days and then by advection in the final 2 days, suggesting that there are ongoing emissions from diffuse point sources of PCNs into the U.K. atmosphere. This study provides further evidence of the rapid air-surface exchange of semivolatile organic compounds (SOCs) and shows how different factors alone or in combination can produce rapid changes in the atmospheric concentrations of past and present SOCs.

  19. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.

    PubMed

    Lee, Yun-Yeong; Kim, Tae Gwan; Cho, Kyung-Suk

    2015-10-10

    This study investigated the effects of proton exchange membranes (PEMs) on performance and microbial community of air-cathode microbial fuel cells (MFCs). Air-cathode MFCs with reactor volume of 1L were constructed in duplicate with or without PEM (designated as ACM-MFC and AC-MFC, respectively) and fed with a mixture of glucose and acetate (1:1, w:w). The maximum power density and coulombic efficiency did not differ between MFCs in the absence or presence of a PEM. However, PEM use adversely affected maximum voltage production and the rate of organic compound removal (p<0.05). Quantitative droplet digital PCR indicated that AC-MFCs had a greater bacterial population than ACM-MFCs (p<0.05). Likewise, ribosomal tag pyrosequencing revealed that the diversity index of bacterial communities was greater for AC-MFCs (p<0.05). Network analysis revealed that the most abundant genus was Enterococcus, which comprised ≥62% of the community and was positively associated with PEM and negatively associated with the rate of chemical oxygen demand (COD) removal (Pearson correlation>0.9 and p<0.05). Geobacter, which is known as an exoelectrogen, was positively associated with maximum power density and negatively associated with PEM. Thus, these results suggest that the absence of PEM favored the growth of Geobacter, a key player for electricity generation in MFC systems. Taken together, these findings demonstrate that MFC systems without PEM are more efficient with respect to power production and COD removal as well as exoelectrogen growth.

  20. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis. PMID:25783787

  1. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  2. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  3. Ammonium Ion Exchanged Zeolite for Laser Desorption/Ionization Mass Spectrometry of Phosphorylated Peptides

    PubMed Central

    Yang, Mengrui; Fujino, Tatsuya

    2015-01-01

    α-Cyano-4-hydroxycinnamic acid (CHCA), an organic matrix molecule for matrix-assisted laser desorption/ionization mass spectrometry, was adsorbed to NH4+-type zeolite surface, and this new matrix was used for the detection of low-molecular-weight compounds. It was found that this matrix could simplify the mass spectrum in the low-molecular-weight region and prevent interference from fragments and alkali metal ion adducted species. CHCA adsorbed to NH4+-type ZSM5 zeolite (CHCA/NH4ZSM5) was used to measure atropine and aconitine, two toxic alkaloids in plants. In addition, CHCA/NH4ZSM5 enabled us to detect phosphorylated peptides; peaks of the protonated peptides had higher intensities than the peaks observed using CHCA only. PMID:26448749

  4. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  5. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  6. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  7. Simultaneous measurement of mass and rotation of trapped absorbing particles in air.

    PubMed

    Bera, Sudipta K; Kumar, Avinash; Sil, Souvik; Saha, Tushar Kanti; Saha, Tanumoy; Banerjee, Ayan

    2016-09-15

    We trap absorbing micro-particles in air by photophoretic forces generated using a single loosely focused Gaussian trapping beam. We measure a component of the radial Brownian motion of a trapped particle cluster and determine the power spectral density, mean squared displacement, and normalized position and velocity autocorrelation functions to characterize the photophoretic body force in a quantitative fashion for the first time. The trapped particles also undergo spontaneous rotation due to the action of this force. This is evident from the spectral density that displays clear peaks at the rotation and the particles' inertial resonance frequencies. We fit the spectral density to the well-known analytical function derived from the Langevin equation, measure the resonance and rotation frequencies, and determine the values for particle mass that we verify at different trapping laser powers with reasonable accuracy. PMID:27628396

  8. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China

    NASA Astrophysics Data System (ADS)

    Feng, Xinbin; Wang, Shaofeng; Qiu, Guangle; He, Tianrong; Li, Guanghui; Li, Zhonggen; Shang, Lihai

    2008-08-01

    Total gaseous mercury (TGM) exchange fluxes between air and water surface were measured using a dynamic flux chamber (DFC) coupled with a gaseous mercury analyzer at two sampling sites of Hongfeng reservoir in cloudy and rainy weather conditions. The concentrations of dissolved gaseous mercury (DGM) in water were also measured and indicated that DGM was supersaturated at most time during the sampling periods, which implied that the water body acted primarily as a source of mercury to the atmosphere. In general, TGM fluxes displayed a consistent diurnal pattern with peak fluxes at noon and minimum levels at early morning or night. However, this diurnal pattern was not clear when the weather was heavily cloudy and rainy with the maximum solar radiation of less than 140 W m-2. At this specific weather condition, a significantly positive correlation between TGM flux and relative humidity was observed. The behaviors of TGM flux over Hongfeng reservoir observed at cloudy weather conditions were some what different from those observed during mostly sunny weather conditions in Northern America and Europe. The empirical model developed based on the correlation between TGM flux and solar radiation during sunny days in Northern America was not applicable for estimation of TGM flux at cloudy and rainy weather conditions.

  9. Soil concentrations, occurrence, sources and estimation of air-soil exchange of polychlorinated biphenyls in Indian cities.

    PubMed

    Chakraborty, Paromita; Zhang, Gan; Li, Jun; Selvaraj, Sakthivel; Breivik, Knut; Jones, Kevin C

    2016-08-15

    Past studies have shown potentially increasing levels of polychlorinated biphenyls (PCBs) in the Indian environment. This is the first attempt to investigate the occurrence of PCBs in surface soil and estimate diffusive air-soil exchange, both on a regional scale as well as at local level within the metropolitan environment of India. From the north, New Delhi and Agra, east, Kolkata, west, Mumbai and Goa and Chennai and Bangalore in the southern India were selected for this study. 33 PCB congeners were quantified in surface soil and possible sources were derived using positive matrix factorization model. Net flux directions of PCBs were estimated in seven major metropolitan cities of India along urban-suburban-rural transects. Mean Σ33PCBs concentration in soil (12ng/g dry weight) was nearly twice the concentration found in global background soil, but in line with findings from Pakistan and urban sites of China. Higher abundance of the heavier congeners (6CB-8CB) was prevalent mostly in the urban centers. Cities like Chennai, Mumbai and Kolkata with evidence of ongoing PCB sources did not show significant correlation with soil organic carbon (SOC). This study provides evidence that soil is acting as sink for heavy weight PCB congeners and source for lighter congeners. Atmospheric transport is presumably a controlling factor for occurrence of PCBs in less polluted sites of India.

  10. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  11. Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere

    NASA Astrophysics Data System (ADS)

    Fijałkowska-Lichwa, L.; Przylibski, T. A.

    2011-04-01

    The authors investigated short-time changes in 222Rn activity concentration occurring yearly in two underground tourist facilities with limited air exchange with the atmosphere. One of them is Niedźwiedzia (Bear) Cave in Kletno, Poland - a natural space equipped with locks ensuring isolation from the atmosphere. The other site is Fluorite Adit in Kletno, a section of a disused uranium mine. This adit is equipped with a mechanical ventilation system, operated periodically outside the opening times (at night). Both sites are situated within the same metamorphic rock complex, at similar altitudes, about 2 km apart. The measurements conducted revealed spring and autumn occurrence of convective air movements. In Bear Cave, this process causes a reduction in 222Rn activity concentration in the daytime, i.e. when tourists, guides and other staff are present in the cave. From the point of view of radiation protection, this is the best situation. For the rest of the year, daily concentrations of 222Rn activity in the cave are very stable. In Fluorite Adit, on the other hand, significant variations in daily 222Rn activity concentrations are recorded almost all year round. These changes are determined by the periods of activity and inactivity of mechanical ventilation. Unfortunately this is inactive in the daytime, which results in the highest values of 222Rn activity concentration at the times when tourists and staff are present in the adit. Slightly lower concentrations of radon in Fluorite Adit are recorded in the winter season, when convective air movements carry a substantial amount of radon out into the atmosphere. The incorrect usage of mechanical ventilation in Fluorite Adit results in the most unfavourable conditions in terms of radiation protection. The staff working in that facility are exposed practically throughout the year to the highest 222Rn activity concentrations, both at work (in the adit) and at home (outside their working hours). Therefore, not very well

  12. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  13. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  14. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  15. Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia.

    PubMed

    Saavedra, S; Rodríguez, A; Taboada, J J; Souto, J A; Casares, J J

    2012-12-15

    High levels of ozone are frequently measured at the Galicia (NW Iberian Peninsula) air quality monitoring stations from March to October. However, there have been very few studies on surface ozone in the northwestern Iberian Peninsula, most likely because the climate of this region is not favourable to photochemical ozone generation. The occurrence of these episodes may be related to either local-scale photochemical pollution or regional-scale transport from other polluted regions. In addition, high ozone episodes usually are developed under specific synoptic conditions. The main purposes of this study are to characterise the atmospheric conditions that lead to the ozone episodes in this region and to identify possible advection paths of ozone and precursors. A surface hourly ozone dataset (2002-2007) measured at rural sites in Galicia was analysed to identify high ozone episodes together with their associated synoptic patterns using a subjective classification with 23 different synoptic types. The synoptic weather patterns revealed that most of the episodes occur with high surface pressures centred over the British Isles and/or Central Europe while a high-altitude anticyclonic ridge crosses the Peninsula from North Africa, causing easterly or southeasterly winds. This analysis was completed with 3-day backward air mass trajectories obtained with HYSPLIT to assess the contribution of long-range transport, resulting in the following main routes: Mediterranean-Peninsular, South Atlantic-Portuguese, local and French-Cantabric.

  16. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  17. Enantiomeric Signatures of Organochlorine Pesticides in Asian, Trans-Pacific and Western U.S. Air Masses

    PubMed Central

    Genualdi, Susan A.; Massey Simonich, Staci L.; Primbs, Toby K.; Bidleman, Terry F.; Jantunen, Liisa M.; Ryoo, Keon-Sang; Zhu, Tong

    2009-01-01

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 meters above sea level (m.a.s.l); Mary’s Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon’s Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon’s Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed as the enantiomeric fraction (1), defined as (+) enantiomer/(sum of the (+) and (−) enantiomers), where a racemic composition has EF = 0.5. Racemic α-hexachlorocyclohexane (α-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Non-racemic α-HCH (EF = 0.528 ± 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the α-HCH EFs were significantly more racemic (EF = 0.513 ± 0.0003, p < 0.001). Racemic α-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The α-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the α-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  18. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed.

  19. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Stoychev, Stoyan H; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L; Dirr, Heini W

    2009-09-01

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.

  20. Hydrophobic Peptides Affect Binding of Calmodulin and Ca2+ as Explored by H/D Amide Exchange and Mass Spectrometry

    PubMed Central

    Sperry, Justin B.; Huang, Richard Y-C.; Zhu, Mei M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    Calmodulin (CaM), a ubiquitous intracellular sensor protein, binds Ca2+ and interacts with various targets as part of signal transduction. Using hydrogen/deuterium exchange (H/DX) and a high resolution PLIMSTEX (Protein-Ligand Interactions by Mass Spectrometry, Titration, and H/D Exchange) protocol, we examined five different states of calmodulin: calcium-free, calcium-loaded, and three states of calcium-loaded in the presence of either melittin, mastoparan, or skeletal myosin light-chain kinase (MLCK). When CaM binds Ca2+, the extent of HDX decreased, consistent with the protein becoming stabilized upon binding. Furthermore, Ca2+-saturated calmodulin exhibits increased protection when bound to the peptides, forming high affinity complexes. The protocol reveals significant changes in EF hands 1, 3, and 4 with saturating levels of Ca2+. Titration of the protein using PLIMSTEX provides the binding affinity of Ca2+ to calmodulin within previously reported values. The affinities of calmodulin to Ca2+ increase by factors of 300 and 1000 in the presence of melittin and mastoparan, respectively. A modified PLIMSTEX protocol whereby the protein is digested to component peptides gives a region-specific titration. The titration data taken in this way show a decrease in the root mean square fit of the residuals, indicating a better fit of the data. The global H/D exchange results and those obtained in a region-specific way provide new insight into the Ca2+-binding properties of this well-studied protein. PMID:21765646

  1. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. PMID:27020885

  2. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method.

  3. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  4. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  5. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS

    NASA Astrophysics Data System (ADS)

    Toyota, K.; Dastoor, A. P.; Staebler, R. M.; McConnell, J. C.

    2012-04-01

    A dynamic exchange of halogens between the ocean, sea ice, snowpack, and the atmosphere is a main driver for the occurrence of ozone depletion episodes (ODEs) and atmospheric mercury depletion episodes (AMDEs) in the polar boundary layer particularly during the spring. Oxidized mercury is deposited to the snow/ice surface efficiently concurrent with the AMDEs and can be transformed to methyl-mercury, which subsequently bio-magnifies and imposes various health threats to northern communities and wild life. However, some field measurements of mercury in the snowpack and overlying ambient air, including but not limited to those in the polar region, indicate the photochemical reduction of oxidized mercury back to gaseous elemental mercury (GEM) on timescales of days to weeks whereas other studies show no evidence of rapid reduction. Such differences could be attributed not only to meteorological factors like temperature but also to chemical/biological factors that control the abundance of halogens and organic compounds, with a link to the redox chemistry of mercury. In order to understand the role of each driving process in the overall behaviors of mercury in the polar region, we have developed a one-dimensional model, PHANTAS (a model of PHotochemistry ANd Transport in Air and Snowpack), which describes multiphase chemistry in the gas phase, aerosols and the brine layer assumed to exist on the grain surface of saline snowpack. Henry's law for Hg(II) gases and aqueous-phase stability constants for Hg(II)-halide complexes are re-evaluated including their temperature dependence. Photochemical reduction of Hg(II) to Hg(0) in the aqueous phase is handled simply by a prescribed first-order rate constant with diurnal variations. The model also handles the transport of gases and aerosols across the snowpack and the turbulent atmospheric boundary layer. The atmospheric profile of turbulent diffusivity down to the interfacial sublayer is diagnosed from an arbitrary chosen set

  6. Characterization of phosphoantigens by high-performance anion-exchange chromatography-electrospray ionization ion trap mass spectrometry and nanoelectrospray ionization ion trap mass spectrometry.

    PubMed

    Pont, F; Luciani, B; Belmant, C; Fournié, J J

    2001-08-01

    New phosphorylated microbial metabolites referred to as phosphoantigens activate immune responses in humans. Although these molecules have leading applications in medical research, no direct method allows their rapid and unambiguous structural identification. Here, we interfaced online HPAEC (high performance anion-exchange chromatography) with ESI-ITMS (electrospray ionization ion trap mass spectrometry) to identify such pyrophosphorylated molecules. A self-regenerating anion suppressor located upstream of electrospray ionization enabled the simultaneous detection of pyrophosphoester by conductimetry, UV and MS. By HPAEC-ITMS and HPAEC-ITMS2, a single run permitted characterization of reference phosphoantigens and of related structures. Although all compounds were resolved by HPAEC, MS enabled their detection and identification by [M-H]- and fragment ions. Isobaric phosphoantigen analogues were also separated by HPAEC and distinguished by MS2. The relevance of this device was demonstrated for phosphoantigens analysis in human urine and plasma. Furthermore, identification of natural phosphoantigens by automatically generated 2D mass spectra from nano-ESI-ITMS is presented. This last technique permits the simultaneous performance of molecular screening of natural phosphoantigen extracts and their identification.

  7. Body mass penalties in the physical fitness tests of the Army, Air Force, and Navy.

    PubMed

    Vanderburgh, Paul M; Crowder, Todd A

    2006-08-01

    Recent research has empirically documented a consistent penalty against heavier service members for events identical or similar to those in the physical fitness tests of the Army, Air Force, and Navy. These penalties, which are not related to body fatness, are based on biological scaling models and have a physiological basis. Using hypothetical cases, we quantified the penalties for men, with body mass of 60 vs. 90 kg, and women, 45 vs. 75 kg, to be 15% to 20% for the fitness tests of these three services. Such penalties alone can adversely affect awards and promotions for heavier service members. To deal equitably with these penalties in a practical manner, we offer two recommendations, i.e., (1) implementation of revised fitness tests with balanced events, in which the penalties of one event for heavier service members are balanced by an equal and opposite bias against lighter service members, or (2) development of correction factors that can be multiplied by raw scores to yield adjusted scores free of body mass bias.

  8. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  9. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  10. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-05-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by the relaxed eddy accumulation (REA) method, the aerodynamic gradient method (AGM), the modified Bowen ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs, are assessed using a robust data set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (ΔC) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM systems. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069 + 0.022C. During the campaigns, 57 and 62 % of the individual vertical gradient measurements are found to be significantly different from 0, while for the REA technique, the percentage of significant observations is lower. For the chambers, non-significant fluxes are confined to a few night-time periods with varying ambient Hg0 concentrations. Relative bias for DFC-derived fluxes is estimated to be ~ ±10, and ~ 85% of the flux bias is within ±2 ng m-2 h-1 in absolute terms. The DFC flux bias follows a diurnal cycle, which is largely affected by the forced temperature and irradiation bias in the chambers. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of 2 between the campaigns, while that in ΔC measurement is fairly consistent. The estimated flux uncertainties for the triad of MM techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA methods, respectively. This study indicates that flux-gradient-based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux

  11. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-02-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by relaxed eddy accumulation (REA) method, aerodynamic gradient method (AGM), modified Bowen-ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs is assessed using a robust data-set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (Δ C) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM system. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069+0.022C. 57 and 62% of the individual vertical gradient measurements were found to be significantly different from zero during the campaigns, while for the REA-technique the percentage of significant observations was lower. For the chambers, non-significant fluxes are confined to a few nighttime periods with varying ambient Hg0 concentration. Relative bias for DFC-derived fluxes is estimated to be ~ ±10%, and ~ 85% of the flux bias are within ±2 ng m-2 h-1 in absolute term. The DFC flux bias follows a diurnal cycle, which is largely dictated by temperature controls on the enclosed volume. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of two between the campaigns, while that in Δ C measurements is fairly stable. The estimated flux uncertainties for the triad of MM-techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA method, respectively. This study indicates that flux-gradient based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux measurement systems investigated

  12. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    SciTech Connect

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  13. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    PubMed

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed.

  14. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  15. Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: Air-sea fluxes and inter-basin exchange

    NASA Astrophysics Data System (ADS)

    de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.

    2015-11-01

    The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas air-sea exchange in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating

  16. Emission characteristics and air-surface exchange of gaseous mercury at the largest active landfill in Asia

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Li, Zhonggen; Chai, Xiaoli; Hao, Yongxia; Lin, Che-Jen; Sommar, Jonas; Feng, Xinbin

    2013-11-01

    The emission characteristics and air-surface exchange of gaseous elemental mercury (GEM) at Laogang landfill in Shanghai, China, the largest active landfill in Asia, has been investigated during two intensive field campaigns in 2011 and 2012. The mercury (Hg) content in municipal solid waste (MSW) varied widely from 0.19 to 1.68 mg kg-1. Over the closed cell in the landfill, the mean ambient air GEM concentration was virtually indistinguishable from the hemispherical background level (1.5-2.0 ng m-3) while the concentration downwind of ongoing landfill operation (e.g. dumping, burying and compacting of MSW) was clearly elevated. GEM emission through landfill gas (LFG) was identified as a significant source. GEM concentrations in LFGs collected from venting pipes installed in different landfill cells varied widely from 3.0 to 1127.8 ng m-3. The GEM concentrations were found negatively correlated to the age of LFG cells, suggesting GEM released through LFG declined readily with time. The GEM emission from this source alone was estimated to be 1.23-1.73 mg h-1. GEM emission from cover soil surfaces was considerably lower and at a scale comparable to that of background soil surfaces. This is in contrast to earlier reports showing enhanced GEM emissions from landfill surfaces in Southern China, probably due to the difference in soil Hg content and gas permeability characteristics of soils at different sites. Vertical concentration profiles of GEM in the interstitial gas of buried MSW were sampled, perhaps for the first time, which exhibited a wide spatial variability (4.9-713.1 ng m-3) in the 3-year-old landfill cell investigated. GEM emission from landfill operation was estimated to be 290-525 mg h-1 using a box model. This suggests that GEM degassing from Laogang landfill is quantitatively largely dominated by emissions from daily landfilling operations with a much smaller contribution from LFG venting and insignificant (bi-directional fluxes near zero) contribution

  17. On the theory of heat and mass exchange between contacting spherical particles

    NASA Astrophysics Data System (ADS)

    D'Yakonov, S. N.; Ryumshin, B. V.; Kotlyarova, L. V.

    2011-10-01

    The steady-state mass transfer of a chemically active impurity to the surface of a stationary dumbbell-shaped particle consisting of two solid contacting reacting spheres of different sizes is analyzed theoretically. The surrounding medium is at rest, and the numerical concentration of the reagent at a large distance from the aggregate of the spheres is maintained constant. The first-order chemical heterogeneous reaction occurs at a high finite rate and is assumed to be isothermal. The solution to the boundary-value diffusion problem is described by a Laplace axisymmetric equation in the system of tangential-spherical coordinates of revolution. A system of two second-order linear perturbed ordinary differential equations with variable coefficients are obtained using the zero-order integral Hankel transformation and its properties from the boundary conditions for transformed functions. Partial integrals and the mean auxiliary Sherwood numbers are obtained approximately. The solution to the formulated problem is used in various technological applications associated with combustion or chemical reactions at the interface between the continuous and discrete phases in the dispersed system, in meteorology, in analysis of problems associated with environmental pollution, etc.

  18. Boundary Layer Vertical Exchange Processes and the Mass Budget of Ozone: Observations and Model Results

    SciTech Connect

    Berkowitz, Carl M.; Fast, Jerome D.; Easter, Richard C.

    2000-06-16

    An Eulerian chemical model is used to assess the relative importance of a variety of processes associated with producing high surface ozone episodes during selected periods of the NARSTO 1995 field campaign over the northeastern United States. A comparison of the observed and predicted hourly surface ozone mixing ratios showed that the model qualitatively reproduced the observed ozone trends over the northeastern U.S. The model, however, over-predicted the surface concentrations by 10 to 15 ppb. The simulated mass budget tendency terms are compared for days with low ozone values immediately followed by days with high values. The later days showed observed and simulated ozone mixing ratios aloft to be of order twice that found on preceding days, although the associated chemical mix appeared to have relatively little potential for the subsequent generation of "new" ozone. Under conditions of shallow mixing over urban regions, simulated surface ozone production rates were negative (a net loss) throughout much of the day with convective mixing bringing newly produced ozone from aloft to the surface. It is noted that surface ozone levels appeared to be relatively insensitive to mixing layer growth rates.

  19. Exchange of atmospheric formic and acetic acids with trees and crop plants under controlled chamber and purified air conditions

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.; Bode, K.; Gerlach, C.; Jork, E.-M.

    We investigated the exchange of formic and acetic acids between the atmosphere and various tree species such as beech ( Fagus sylvatica L.), ash ( Fraxinus excelsior L.), spruce ( Picea abies L.) Karst, holm oak ( Quercus ilex L.), and birch ( Betula pendula L.). and some crop-plant species such as corn ( Zea mays, var. Banjo), pea ( Pisum sativum, var. Solara), barley ( Hordeum vulgare, var. Igri) and oat (Avena sativa, var. Wiesel). All experiments were done with dynamic enclosures flushed with purified oxidant-free air, containing only low or controlled amounts of the two acids. Significant and light-triggered emission of both acids from all tree species was observed. For one tree species (ash) a seasonal large increase in fall due to early leaf decomposition was found. The standard emission factors (30°C and PAR=1000 μmol m 2 s -1) given as (nmol m -2 min -1) for acetic and formic acids, respectively, were 8.1 and 29.7 (ash, autumn), 1.0 and 3.3 (ash, summer), 0.9 and 1.4 (beech), 0.7 and 1.45 (spruce), 1.9 and 2.4 (Holm oak) and 1.7 and 6.7 (birch). Rough estimation of global annual emissions range between 20 and 130 Gmol formic acid and 10 and 33 Gmol acetic acid. These numbers reflect a 15-30% contribution by forest emissions to the continental organic acid budget. As compared to the global total NMHC emissions low molecular weight organic acids are of minor importance. In contrast to the trees, none of the crop-plant species investigated showed an emission, but always a clear deposition of both acids. Both emission from trees as well as uptake by the agricultural plants could be related to transpiration rates and leaf conductances.

  20. Study of air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in the north-central part of India--a semi arid region.

    PubMed

    Masih, Amit; Masih, Jamson; Taneja, Ajay

    2012-01-01

    Soil is the major environmental reservoir of organic compounds and soil-air exchange is a key process in governing the environmental fate of these compounds on a regional and global scale. Samples of air and soil were collected to study the levels of PAHs in the air and soil of the Agra region. Concentrations of PAH measured at four locations in the city of Agra, covers industrial, residential, roadside and agricultural areas. Samples were extracted with hexane by ultrasonic agitation. Extracts were then fractioned on a silica-gel column and the aromatic fraction was analysed by GC-MS. The mean concentration of the total PAH (T-PAH) in the air of Agra was 24.95, 17.95 and 14.25 ng m(-3), during winter, monsoon and summer respectively. The average concentration of T-PAH in the soil of Agra was 12.50, 8.25 and 6.44 μg g(-1) in winter, monsoon and summer seasons respectively. The aim of this study was to investigate the rate of approach to equilibrium partitioning of PAHs between air and soil compartments and to determine the direction of net flux of the studied PAH between air and soil. Calculated soil-air fugacity quotients indicate that the soil may now be a source of some lighter weight PAHs to the atmosphere, whereas it appears to be still acting as a long-term sink for the heavier weight PAHs to some extent in this region.

  1. On the association between daily mortality and air mass types in Athens, Greece during winter and summer

    NASA Astrophysics Data System (ADS)

    Kassomenos, Pavlos A.; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  2. Quantification of melamine in human urine using cation-exchange based high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Panuwet, Parinya; Nguyen, Johnny V; Wade, Erin L; D'Souza, Priya E; Ryan, P Barry; Barr, Dana Boyd

    2012-03-01

    Melamine and cyanuric acid have been implicated as adulterants in baby formula in China and pet foods in North America. In China, the effect of melamine or melamine-cyanuric acid adulteration lead to kidney stone development and acute renal failure in thousands of Chinese infants. A selective and sensitive analytical method was developed to measure melamine in human urine in order to evaluate the extent of potential health implications resulting from the consumption of these types of adulterated products in the general US population. This method involves extracting melamine from human urine using cation-exchange solid-phase extraction, chromatographically separating it from its urinary matrix co-extractants on a silica-based, strong-cation exchange analytical column using high performance liquid chromatography, and analysis using positive mode electrospray ionization tandem mass spectrometry. Quantification was performed using modified, matrix-based isotope dilution calibration covering the concentration range of 0.50-100 ng/mL. The limit of detection, calculated using replicates of blank and low level spiked samples, was 0.66 ng/mL and the relative standard deviations were between 6.89 and 14.9%. The relative recovery of melamine was 101-106%. This method was tested for viability by analyzing samples collected from the general US population. Melamine was detected in 76% of the samples tested, with a geometric mean of 2.37 ng/mL, indicating that this method is suitable for reliably detecting background exposures to melamine or other chemicals from which it can be derived. PMID:22309774

  3. Discovery of novel cyclophilin A ligands using an H/D exchange- and mass spectrometry-based strategy.

    PubMed

    Dearmond, Patrick D; West, Graham M; Anbalagan, Victor; Campa, Michael J; Patz, Edward F; Fitzgerald, Michael C

    2010-10-01

    Cyclophilin A (CypA) is an overexpressed protein in lung cancer tumors and as a result is a potential therapeutic and diagnostic target. Described here is use of an H/D exchange- and a matrix assisted laser desorption/ionization (MALDI) mass spectrometry-based assay, termed single-point SUPREX (Stability of Unpurified Proteins from Rates of H/D Exchange), to screen 2 chemical libraries, including the 1280-compound LOPAC library and the 9600-compound DIVERSet library, for binding to CypA. This work represents the first application of single-point SUPREX using a pooled ligand approach, which is demonstrated here to yield screening rates as fast as 6 s/ligand. The false-positive and false-negative rates determined in the current work using a set of control samples were 0% and 9%, respectively. A false-positive rate of 20% was found in screening the actual libraries. Eight novel ligands to CypA were discovered, including 2-(α-naphthoyl)ethyltrimethyl-ammonium iodide, (E)-3-(4-t-Butylphenylsulfonyl)-2-propenenitrile, 3-(N-benzyl-N-isopropyl)amino-1-(naphthalen-2-yl)propan-1-one, cis-diammineplatinum (II) chloride, 1-(3,5-dichlorophenyl)-1H-pyrrole-2,5-dione, N-(3-chloro-1, 4-dioxo-1,4-dihydro-2-naphthalenyl)-N-cyclohexylacetamide, 1-[2-(3,4-dimethoxyphenyl)ethyl]-1H-pyrrole-2,5-dione, and 4-(2-methoxy-4-nitrophenyl)-1-methyl-10-oxa-4-azatricyclo[5.2.1.0~2,6~]dec-8-ene-3,5-dione. These compounds, which had moderate binding affinities to CypA (i.e., K(d) values in the low micromolar range), provide new molecular scaffolds that might be useful in the development of CypA-targeted diagnostic imaging or therapeutic agents for lung cancer.

  4. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    NASA Astrophysics Data System (ADS)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-11-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  5. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    NASA Astrophysics Data System (ADS)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-01-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  6. Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.

    PubMed

    Michels, Nathalie; Huybrechts, Inge; Bammann, Karin; Lissner, Lauren; Moreno, Luis; Peeters, Maarten; Sioen, Isabelle; Vanaelst, Barbara; Vyncke, Krishna; De Henauw, Stefaan

    2013-04-28

    The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5-11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  7. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  8. Selection of greenery plants' group tolerant to mineralized human wastes for their inclusion into intrasystem mass exchange of BTLSS

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Tikhomirov, Alexander A.; Kalacheva, Galina; Ushakova, Sofya; Trifonov, Sergey V.; Pavlova, Anastasiya

    2016-07-01

    A possible way solving the inclusion problem of the human liquid wastes containing sodium chloride into intrasystem mass exchange of bio-technical life support system (BTLSS) is selection of such species of greenery plants that can utilize sodium chloride, be edible for a human and have rather a high productivity. Our previous works showed that salt-accumulating halophyte Salicornia europaea L. was a promising candidate for sodium chloride inclusion into BTLSS mass exchange. However, with the aim of creation of more various human diet possibilities a set of greenery plants cultivated by the water culture method was estimated. Based on preliminary experiments the plants Brassica juncea L., Nasturtium officinale R. Br., Lepidium sativum angustifolia L. and Salicornia europaea L. were chosen as the investigation objects. The nutrient solution for greenery plant's cultivation was obtained after harvesting the wheat plants grown on the solution with mineralized human wastes' addition. The results of the first stage of the investigations carried out showed that plants of Brassica juncea and Lepidium sativum angustifolia are unpromising for their inclusion into BTLSS because of a set of physiological characteristics. On the next stage of investigations, an experimental model of closed ecosystem was created. For that purpose the plants of Salicornia europaea and Nasturtium officinale were introduced in the phototroph unit structure. It was determined that there was deficiency of main macronutrients for Salicornia europaea and Nasturtium officinale including sodium for Salicornia europaea. The deficiency had an effect on plants productivity and on carry-over of sodium from solution by Salicornia europaea. Thus in the future experiment it is necessary to carry out desalinization of solution by Salicornia europaea plants. Nasturtium officinale, that is rich in essential fatty acids and contributes into variety of human vegetable diet is planned to be cultivated by the

  9. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  10. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  11. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  12. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    PubMed

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  13. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  14. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part I: Data comparability and method characteristics

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-01-01

    Reliable quantification of air-biosphere exchange flux of elemental mercury vapor (Hg0) is crucial for understanding the global biogeochemical cycle of mercury. However, there has not been a standard analytical protocol for flux quantification, and little attention has been devoted to characterize the temporal variability and comparability of fluxes measured by different methods. In this study, we deployed a collocated set of micrometeorological (MM) and dynamic flux chamber (DFC) measurement systems to quantify Hg0 flux over bare soil and low standing crop in an agricultural field. The techniques include relaxed eddy accumulation (REA), modified Bowen ratio (MBR), aerodynamic gradient (AGM) as well as dynamic flux chambers of traditional (TDFC) and novel (NDFC) designs. The five systems and their measured fluxes were cross-examined with respect to magnitude, temporal trend and correlation with environmental variables. Fluxes measured by the MM and DFC methods showed distinct temporal trends. The former exhibited a highly dynamic temporal variability while the latter had much more gradual temporal features. The diurnal characteristics reflected the difference in the fundamental processes driving the measurements. The correlations between NDFC and TDFC fluxes and between MBR and AGM fluxes were significant (R>0.8, p<0.05), but the correlation between DFC and MM fluxes were from weak to moderate (R=0.1-0.5). Statistical analysis indicated that the median of turbulent fluxes estimated by the three independent MM techniques were not significantly different. Cumulative flux measured by TDFC is considerably lower (42% of AGM and 31% of MBR fluxes) while those measured by NDFC, AGM and MBR were similar (<10% difference). This suggests that incorporating an atmospheric turbulence property such as friction velocity for correcting the DFC-measured flux effectively bridged the gap between the Hg0 fluxes measured by enclosure and MM techniques. Cumulated flux measured by REA

  15. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange in time and scale

    NASA Astrophysics Data System (ADS)

    yang, Z.; Chen, J.; Becker, R.; Chu, H.; Xie, J.; Shao, C.

    2013-12-01

    Net ecosystem exchange of CO2 (NEE) in temperate forests is modulated by microclimatic factors. The effects of those factors differ at different time scales and during different time periods. Some of them are correlated across a number of time scales, so their effects on NEE are confounded by each other. PAR and air temperature (Ta) are among the two most important drivers of NEE in temperate forests, and among the two most correlated microclimatic factors. PAR and Ta have similar daily, seasonal, and annual cycles. Their influence on NEE is confounded by each other and entangled together especially at those scales. In this study, we tried to disentangle the confounding effects of them on NEE at different time scales and during different time periods. To accomplish this objective, we applied the innovative spectral analysis techniques including Continuous Wavelet Transformation (CWT), Cross Wavelet Transformation (XWT), Wavelet Coherent (WTC), and Partial Wavelet Coherence (PWC) on seven years time series (2004-2010) of PAR, Ta and NEE from the Ohio Oak Openings site (N 41.5545°, W 83.8438°), USA for spectral analysis. We found that PAR is the major driver at short time scales (e.g. semidiurnal and daily) and Ta is the major driver at long time scales (e.g. seasonal and annual). At daily scale during growing seasons, PAR is anti-phase with NEE with no time delay while Ta lagged PAR about 2-3 hours, which could be explained by the strong dependence of photosynthesis on PAR and a 2-3 hours lags of the daily course of Ta to PAR. At daily scale during non-growing season, NEE has little variation and thus neither Ta nor PAR has high common wavelet power and significant coherence with NEE. At annual scale, Ta is anti-phase with NEE and PAR leads NEE about 34 days, which could be explained by the strong dependence of LAI dynamics on Ta and the lag between the LAI/biomass development and the progress of sunlight. We also found that NEE distributes most of its variation

  16. Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens.

    PubMed

    Makanya, Andrew N; El-Darawish, Yosif; Kavoi, Boniface M; Djonov, Valentin

    2011-02-01

    The documented data regarding the three-dimensional structure of the air capillaries (ACs), the ultimate sites of gas exchange in the avian lung is contradictory. Further, the mode of gas exchange, described as cross-current has not been clearly elucidated. We studied the temporal and spatial arrangement of the terminal air conduits of the chicken lung and their relationship with the blood capillaries (BCs) in embryos as well as the definitive architecture in adults. Several visualization techniques that included corrosion casting, light microscopy as well as scanning and transmission electron microscopy were used. Two to six infundibulae extend from each atrium and give rise to numerous ACs that spread centrifugally. Majority of the ACs are tubular structures that give off branches, which anastomose with their neighboring cognates. Some ACs have globular shapes and a few are blind-ending tapering tubes. During inauguration, the luminal aspects of the ACs are characterized by numerous microvillus-like microplicae, which are formed during the complex processes of cell attenuation and canalization of the ACs. The parabronchial exchange BCs, initially inaugurated as disorganized meshworks, are reoriented via pillar formation to lie predominantly orthogonal to the long axes of the ACs. The remodeling of the retiform meshworks by intussusceptive angiogenesis essentially accomplishes a cross-current system at the gas exchange interface in the adults, where BCs form ring-like patterns around the ACs, thus establishing a cross-current system. Our findings clarify the mode of gas exchange in the parabronchial mantle and illuminate the basis for the functional efficiency of the avian lung. PMID:21275004

  17. Effects of Glucose Feeding on Respiration and Photosynthesis in Photoautotrophic Dianthus caryophyllus Cells: Mass Spectrometric Determination of Gas Exchange.

    PubMed

    Avelange, M H; Sarrey, F; Rébillé, F

    1990-11-01

    When glucose (20 millimolar) was added to photoautotrophic cell suspension cultures of Dianthus caryophyllus, there was during the first 10 hours an accumulation of carbohydrates and phosphorylated compounds. These biochemical changes were accompanied by a progressive decrease of net photosynthesis and a twofold increase of the dark respiratory rate. The rise of respiration was associated with a rise of fumarase and cytochrome c oxidase activities, two mitochondrial markers. Gas exchange of illuminated cells were performed with a mass spectrometry technique and clearly established that during the first hours of glucose feeding, the decrease of net photosynthesis was essentially due to an increase of respiration in light, whereas the photosynthetic processes (gross O(2) evolution and gross CO(2) fixation) were almost not affected. However, after 24 hours of experiment, O(2) evolution and CO(2) fixation started to decline in turn. While ribulose-1,5-bisphosphate carboxylase activity was little affected during the first 48 hours of the experiment, the maximal light-induced phosphoribulokinase activity dramatically decreased with time and represented after 48 hours only 30% of its initial activity. It is postulated that the decrease in phosphoribulokinase activity was at least partially responsible for the decrease of CO(2) fixation and the metabolic events involved in this regulation are discussed.

  18. Tidal mass exchange between a submersed aquatic vegetation bed and the main channel of the Potomac River

    USGS Publications Warehouse

    Jenter, Harry L.; Rybicki, Nancy B.; Baltzer, Robert A.; Carter, Virginia; ,

    1991-01-01

    Tidal mass exchange between a submersed aquatic vegetation (SAV) bed and the main channel of the Potomac River was investigated. Water levels were recorded at 5 minute intervals from August (when plants were present) through December (when plants were absent). Velocities were measured during individual tidal cycles both in the presence and absence of plants. Flow patterns were found to be altered significantly when plants were present. SAV impeded flow onto the shoal causing a water level phase lag between the bed and the channel, a reduction in flow speed and a change in flow direction. The phase lag was enhanced when the low frequency (subtidal) water level in the channel was below normal. The phase lag was further enhanced during spring tides. Ebb flow in the presence of plants was perpendicular to the edge of the SAV bed in the direction of the pressure gradient established by the lagging water level. Flood flow did not follow such a predictable pattern despite the strongest pressure gradients occurring during flood tides. In the absence of plants the flow speed increased by nearly an order of magnitude and the water-level phase lag disappeared.

  19. Improvement of sugar analysis sensitivity using anion-exchange chromatography-electrospray ionization mass spectrometry with sheath liquid interface.

    PubMed

    Xu, Xian-Bing; Liu, Ding-Bo; Guo, Xiao Ming; Yu, Shu-Juan; Yu, Pei

    2014-10-31

    A novel interface that enables high-performance anion-exchange chromatography (HPAEC) to be coupled with electrospray ionization (ESI) mass spectrometry (MS) is reported. A sheath liquid consisting of 50mM NH4Ac in isopropanol with 0.05% acetic acid, infused at a flow rate of 3μL/min at the tip of the electrospray probe, requires less ESI source cleaning and promotes efficient ionization of mono- and di-carbohydrates. The results suggest that use of a sheath liquid interface rather than a T-joint allows volatile ammonium salts to replace non-volatile metal salts as modifiers for improving sugar ESI signals. The efficient ionization of mono- and di-carbohydrates in the ESI source is affected by the sheath liquid properties such as buffer concentration and type of organic solvent. HPAEC-ESI-MS was used for the analysis of monocarbohydrates in pectins, particularly co-eluted sugars, and the performance was evaluated. Addition of a make-up solution through the sheath liquid interface proved to be an efficient tool for enhancing the intensities of sugars analyzed using HPAEC-ESI-MS.

  20. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  1. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  2. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Houde, Damian; Nazari, Zeinab E.; Bou-Assaf, George M.; Weiskopf, Andrew S.; Rand, Kasper D.

    2016-04-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause for these phenomena can be due to short range electrostatic and/or hydrophobic protein-protein interactions. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for investigating protein conformation, dynamics, and interactions. However, "traditional" continuous dilution labeling HDX-MS experiments have limited utility for the direct analysis of solutions with high concentrations of protein. Here, we present a dialysis-based HDX-MS (di-HDX-MS) method as an alternative HDX-MS labeling format, which takes advantage of passive dialysis rather than the classic dilution workflow. We applied this approach to a highly concentrated antibody solution without dilution or significant sample manipulation, prior to analysis. Such a method could pave the way for a deeper understanding of the unusual behavior of proteins at high concentrations, which is highly relevant for development of biopharmaceuticals in industry.

  3. Characterization of Stress-Exposed Granulocyte Colony Stimulating Factor Using ELISA and Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tsuchida, Daisuke; Yamazaki, Katsuyoshi; Akashi, Satoko

    2014-10-01

    Information on the higher-order structure is important in the development of biopharmaceutical drugs. Recently, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) has been widely used as a tool to evaluate protein conformation, and unique automated systems for HDX-MS are now commercially available. To investigate the potential of this technique for the prediction of the activity of biopharmaceuticals, granulocyte colony stimulating factor (G-CSF), which had been subjected to three different stress types, was analyzed using HDX-MS and through comparison with receptor-binding activity. It was found that HDX-MS, in combination with ion mobility separation, was able to identify conformational changes in G-CSF induced by stress, and a good correlation with the receptor-binding activity was demonstrated, which cannot be completely determined by conventional peptide mapping alone. The direct evaluation of biological activity using bioassay is absolutely imperative in biopharmaceutical development, but HDX-MS can provide the alternative information in a short time on the extent and location of the structural damage caused by stresses. Furthermore, the present study suggests the possibility of this system being a versatile evaluation method for the preservation stability of biopharmaceuticals.

  4. Using hydrogen/deuterium exchange mass spectrometry to study conformational changes in granulocyte colony stimulating factor upon PEGylation.

    PubMed

    Wei, Hui; Ahn, Joomi; Yu, Ying Qing; Tymiak, Adrienne; Engen, John R; Chen, Guodong

    2012-03-01

    PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.

  5. Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation.

    PubMed

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  6. Ion-exchange-membrane-based enzyme micro-reactor coupled online with liquid chromatography-mass spectrometry for protein analysis.

    PubMed

    Zhou, Zhigui; Yang, Youyou; Zhang, Jialing; Zhang, Zhengxiang; Bai, Yu; Liao, Yiping; Liu, Huwei

    2012-04-01

    In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene-divinylbenzene cation-exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a "new" reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography-quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.

  7. Quantification of genetically modified soya using strong anion exchange chromatography and time-of-flight mass spectrometry.

    PubMed

    Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng

    2014-09-01

    Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.

  8. Chiral Signatures of Anthropogenic Semi-Volatile Organic Compounds in Asian, trans- Pacific, and Pacific Northwestern Air Masses

    NASA Astrophysics Data System (ADS)

    Genualdi, S.; Primbs, T.; Bidleman, T.; Jantunen, L.; Simonich, S.

    2006-12-01

    The goal of this research is to use the chiral signatures of Semi-Volatile Organic Compounds (SOCs) to distinguish between new and old sources in Asian, trans-Pacific, and regional air masses. During 2004, a six week air sampling campaign was conducted at a remote site in Okinawa, Japan to determine the chemical composition of Eurasian air masses. During 2003 and 2004, high volume air samples were collected at three different locations in the Pacific Northwest of the United States. These sampling locations were; Mary's Peak Observatory (MPO) located at 1250m in the Oregon Coast Range, Mt. Bachelor located at 2800m in Oregon's Cascade Range, and Cheeka Peak Observatory (CPO) located at 500m in the state of Washington. The air samples consisted of both polyurethane foam and XAD-2 resin to collect the gas phase SOCs, and glass fiber filters to collect the particulate phase SOCs. The samples were extracted using accelerated solvent extraction and enantiomer fractions were determined using GCMS-ECNI with the use of a BGB Analytik chiral column. The chiral SOCs, á-Hexachlorocyclohexane, cis and trans chlordane, heptachlor epoxide, and o'p' DDT, were measured, the enantiomer ratios were determined, and potential new and historical sources of these compounds were identified.

  9. Seasonal variation of polycyclic aromatic hydrocarbons in soil and air of Dalian areas, China: an assessment of soil-air exchange.

    PubMed

    Wang, Degao; Yang, Meng; Jia, Hongliang; Zhou, Lei; Li, Yifan

    2008-09-01

    The seasonal variations of concentrations of PAHs in the soil and the air were measured in urban and rural region of Dalian, China in 2007. In soil, mean concentrations of all PAHs in summer were larger than those in winter, whereas the concentrations of heavier weight PAHs in winter were larger than those in summer. Winter/summer concentration ratios for individual PAHs (R(W/S)) increased with the increase of molecular weight of PAHs in soil, indicating that PAHs with high molecular weight were more easily deposited to soil in winter than summer. In air, mean concentrations of all PAHs in winter were larger than those in summer. In comparison with the R(W/S) in soil, all the values of R(W/S) in air were larger than one indicating that the entire individual PAH concentrations in winter were larger than those in summer. The average concentration composition for each PAH compound in soil and air samples was determined and the seasonal change of PAH profile was very small. It was suggested that PAHs in soils and air had the same or similar sources both in winter and summer. The approach to the soil-air equilibrium was assessed by calculating fugacity quotients between soil and air using the soil and air concentrations. The calculated soil-air fugacity quotients indicated that soil acted as a secondary source to the atmosphere for all lighter weight PAHs (two-three rings) and it will continue to be a sink for heavier weight PAHs (five-six rings) in the Dalian environment, both in winter and summer. Medium weight PAHs (four-five rings) were close to the soil-air equilibrium and the tendency shifted between soil and air when season or function region changed. The fugacity quotients of PAHs in summer (mean temperature 298 K) were larger than those in winter (mean temperature 273 K), indicating a higher tendency in summer than winter for PAHs to move from soil to air. The variation of ambient conditions such as temperature, rainfall, etc. can influence the movement of PAHs

  10. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    {sup {minus}7}, 10{sup {minus}5}, and 10{sup {minus}5} respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10{sup {minus}5}, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  11. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  12. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  13. Study of a cave's air exchange pattern based on radon concentration and the time dependence of radon concentration in Pál-völgy Cave (Budapest, Hungary)

    NASA Astrophysics Data System (ADS)

    Nagy, H. E.; Horvath, A.; Jordan, Gy.; Szabo, Cs.; Kiss, A.

    2012-04-01

    A long-term (one year and a half), high resolution, with an integration time of one hour, radon concentration monitoring was carried out in Pál-völgy Cave (Budapest, Hungary). Our major goal was to determine the time dependence of radon concentration in the cave and to understand the exchange pattern of the cave air with the outdoor air based on radon concentrations, and to determine the factors that affect the radon concentration in the cave air. Pál-völgy Cave is situated in the Buda Hills, which is the NE part of the Transdanubian Central Range. The wall rock of the cave is dominantly Eocene Szépvölgy Limestone Formation. Above the limestone Eocene Buda Marl and Oligocene Tard Clay are deposited. A huge multiphase hydrothermal cave system developed in the Szépvölgy Limestone and partially in the Buda Marl resulted in a long-term complex paleokarstic evolution from the Late Eocene to the Quaternary. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were also collected simultaneously. The arithmetic mean of the annual radon concentration was 1.9 kBq/m3 and the radon concentration varied between 104-7,776 Bq/m3. In addition, the results indicate a clear seasonal variability of radon concentration in the cave air: in winter the radon concentration fluctuates around a low mean value of 253 Bq/m3, in summer it oscillates around a high mean value of 5,504 Bq/m3, whereas in spring and autumn the radon level varies between the winter and summer values. The summer to winter radon concentration ratio (radon concentration in summer/radon concentration in winter) was high, 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, Pierson's linear correlation coefficient is 0.76. If the outdoor air temperature is lower than the cave air temperature (12 °C), especially in autumn and winter the air flows from outside into the

  14. Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry.

    PubMed

    Tumbiolo, Simonetta; Gal, Jean-François; Maria, Pierre-Charles; Zerbinati, Orfeo

    2004-11-01

    The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 microg/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 microg/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.

  15. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  16. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  17. AN ASSESSMENT OF THE STATE OF THE ART, AND POTENTIAL DESIGN IMPROVEMENTS, FOR FLAT-TUBE HEAT EXCHANGERS IN AIR CONDITIONING AND REFRIGERATION APPLICATIONS - PHASE I

    SciTech Connect

    Jacobi, A.M.; Park, Y.; Tafti, D.; Zhang, X.

    2001-09-30

    Project objective is to evaluate the air-side heat transfer and pressure-drop performance of serpentine-fin, flat-tube heat exchangers. This assessment is conducted for smooth, corrugated, and interrupted fins, over a wide range of geometric and operating parameters, spanning HVAC and R applications. The performance of serpentine-fin, flat-tube exchangers is compared to that of conventional round-tube designs, which are considered the technology baseline. The research includes a literature review, a preliminary comparison of flat-tube to round-tube performance, a computational fluid dynamic study of flow through the heat exchangers, and complementary modeling to predict the performance of flat-tube designs over a wide range of conditions. Recommendations are provided for a new experimental study to provide performance data for dry, wet, and frosted-surface conditions. Specific flow visualization and naphthalene sublimation experiments are recommended to understand the flow and heat transfer interactions in the flat-tube geometry. These data could be used to evaluate condensate retention and frost-formation effects on flat-tube heat exchanger performance, and to compare this behavior to that of the conventional round-tube geometry. These findings will be highly valuable to design and development engineers as they work toward the next generation of highly compact, energy efficient HVAC and R systems.

  18. Separation and characterisation of beta2-microglobulin folding conformers by ion-exchange liquid chromatography and ion-exchange liquid chromatography-mass spectrometry.

    PubMed

    Bertoletti, Laura; Regazzoni, Luca; Aldini, Giancarlo; Colombo, Raffaella; Abballe, Franco; Caccialanza, Gabriele; De Lorenzi, Ersilia

    2013-04-10

    In this work we present for the first time the use of ion-exchange liquid chromatography to separate the native form and a partially structured intermediate of the folding of the amyloidogenic protein beta2-microglobulin. Using a strong anion-exchange column that accounts for the differences in charge exposure of the two conformers, a LC-UV method is initially optimised in terms of mobile phase pH, composition and temperature. The preferred mobile phase conditions that afford useful information were found to be 35 mM ammonium formate, pH 7.4 at 25°C. The dynamic equilibrium of the two species is demonstrated upon increasing the concentration of acetonitrile in the protein sample. Then, the chromatographic method is transferred to MS detection and the respective charge state distributions of the separated conformers are identified. The LC-MS results demonstrate that one of the conformers is partially unfolded, compared with the native and more compact species. The correspondence with previous results obtained in free solution by capillary electrophoresis suggest that strong ion exchange LC-MS does not alter beta2-microglobulin conformation and maintains the dynamic equilibrium already observed between the native protein and its folding intermediate. PMID:23522119

  19. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2015-09-01

    We present the characterization and application of a new gas chromatography-time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δ m of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 Th/Th and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found around 5 ppm after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits were as low as a few femtograms as mass traces could be made highly specific for selected molecule fragments with the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. The TOFMS was found to be linear within a concentration range from about 1 pg to 1 ng of analyte per Liter of air. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straight-forward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well-suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, low resolution quadrupole MS and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  20. Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S.

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Fuentes, J. D.; Collins, D. R.; Cleveland, M. J.; Keene, W. C.

    During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s -1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm -3), corresponding surface area (142 μm 2 cm -3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s -1), mean number concentrations were higher (>6000 cm -3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.

  1. Using Riverboat-Mounted Eddy Covariance for Direct Measurements of Air-water Gas Exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Freitas, H.; Read, E.; Goulden, M. L.; Rocha, H.

    2007-12-01

    Gas evasion from Amazonian rivers and lakes to the atmosphere has been estimated to play an important role in the regional budget of carbon dioxide (Richey et al., 2002) and the global budget of methane (Melack et al., 2004). These flux estimates were calculated by combining remote sensing estimates of inundation area with water-side concentration gradients and gas transfer rates (piston velocities) estimated primarily from floating chamber measurements (footprint ~1 m2). The uncertainty in these fluxes was large, attributed primarily to uncertainty in the gas exchange parameterization. Direct measurements of the gas exchange coefficient are needed to improve the parameterizations in these environments, and therefore reduce the uncertainty in fluxes. The micrometeorological technique of eddy covariance is attractive since it is a direct measurement of gas exchange that samples over a much larger area than floating chambers, and is amenable to use from a moving platform. We present eddy covariance carbon dioxide exchange measurements made using a small riverboat in rivers and lakes in the central Amazon near Santarem, Para, Brazil. Water-side carbon dioxide concentration was measured in situ, and the gas exchange coefficient was calculated. We found the piston velocity at a site on the Amazon River to be similar to existing ocean-based parameterizations, whereas the piston velocity at a site on the Tapajos River was roughly a factor 5 higher. We hypothesize that the enhanced gas exchange at the Tapajos site was due to a shallow upwind fetch. Our results demonstrate the feasibility of boat-based eddy covariance on these rivers, and also the utility of a mobile platform to investigate spatial variability of gas exchange.

  2. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. PMID:24209303

  3. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  4. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  5. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  6. Water mass exchanges between the Norwegian and Iceland seas over the Jan Mayen Ridge using in-situ current measurements

    NASA Astrophysics Data System (ADS)

    Mork, Kjell Arne; Drinkwater, Kenneth F.; Jónsson, Steingrímur; Valdimarsson, Héðinn; Ostrowski, Marek

    2014-11-01

    The Jan Mayen Ridge, with bottom depths of 1000 m and less, runs southwards from Jan Mayen and separates the warmer and saltier Atlantic Water in the Norwegian Sea from the colder and fresher Arctic water in the Iceland Sea. During the International Polar Year (IPY, 2007-2008), three current meter moorings were deployed with the purpose to investigate water mass exchanges between the Norwegian and Iceland seas over the Ridge and their forcing mechanisms. These are the first in-situ current measurements for this region. The results showed relatively weak currents on the Ridge that frequently shifted direction except near-bottom and at the western slope of the Ridge. All current measurements showed low eddy activity and tidal velocities (less than 0.05 ms- 1). Wind-forced near-inertial motion generated from transient atmospheric low pressure systems were observed in the mixed layer being strongest during autumn and winter when ocean velocities reached 0.7 ms- 1. Near surface currents on the Ridge are influenced by local winds on a time scale of 6 days and longer, but during the two-year deployment no pronounced seasonal variation was observed, mainly due to a lack of seasonality in the local winds. In a 2000 m deep channel that cuts the Ridge, there was pronounced seasonal variation in the currents at all depths below 40 m with stronger flow toward the Iceland Sea during winter compared to summer. The variability of the deep current was found to be influenced by the large-scale wind stress curl. There was a weak net flow with averaged velocities of ~ 0.01 ms- 1 over the Ridge that was directed westward in the upper layer, signifying a small net transport of modified Atlantic Water into the Iceland Sea.

  7. Determination of propofol glucuronide from hair sample by using mixed mode anion exchange cartridge and liquid chromatography tandem mass spectrometry.

    PubMed

    Kwak, Jae-Hwan; Kim, Hye Kyung; Choe, Sanggil; In, Sangwhan; Pyo, Jae Sung

    2016-03-15

    The main objective of this study was to develop and validate a simpler and less time consuming analytical method for determination of propofol glucuronide from hair sample, by using mixed mode anion exchange cartridge and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The study uses propofol glucuronide, a major metabolite of propofol, as a marker for propofol abuse. The hair sample was digested in sodium hydroxide solution and loaded in mixed-mode anion cartridge for solid phase extraction. Water and ethyl acetate were used as washing solvents to remove interfering substances from the hair sample. Consequently, 2% formic acid in ethyl acetate was employed to elute propofol glucuronide from the sorbent of mixed-mode anion cartridge, and analyzed by LC-MS/MS. The method validation parameters such as selectivity, specificity, LOD, LLOQ, accuracy, precision, recovery, and matrix effect were also tested. The linearity of calibration curves showed good correlation, with correlation coefficient 0.998. The LOD and LLOQ of the propofol glucuronide were 0.2 pg/mg and 0.5 pg/mg, respectively. The intra and inter-day precision and accuracy were acceptable within 15%. The mean values of recovery and matrix effect were in the range of 91.7-98.7% and 87.5-90.3%, respectively, signifying that the sample preparation, washing and extraction procedure were efficient, and there was low significant hair matrix effect for the extraction of propofol glucuronide from hair sample on the mixed mode anion cartridge. To evaluate the suitability of method, the hair of propofol administered rat was successfully analyzed with this method.

  8. Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry.

    PubMed

    Slebos, Robbert J C; Brock, Jonathan W C; Winters, Nancy F; Stuart, Sarah R; Martinez, Misti A; Li, Ming; Chambers, Mathew C; Zimmerman, Lisa J; Ham, Amy J; Tabb, David L; Liebler, Daniel C

    2008-12-01

    Shotgun proteome analysis platforms based on multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a powerful means to discover biomarker candidates in tissue specimens. Analysis platforms must balance sensitivity for peptide detection, reproducibility of detected peptide inventories and analytical throughput for protein amounts commonly present in tissue biospecimens (< 100 microg), such that platform stability is sufficient to detect modest changes in complex proteomes. We compared shotgun proteomics platforms by analyzing tryptic digests of whole cell and tissue proteomes using strong cation exchange (SCX) and isoelectric focusing (IEF) separations of peptides prior to LC-MS/MS analysis on a LTQ-Orbitrap hybrid instrument. IEF separations provided superior reproducibility and resolution for peptide fractionation from samples corresponding to both large (100 microg) and small (10 microg) protein inputs. SCX generated more peptide and protein identifications than did IEF with small (10 microg) samples, whereas the two platforms yielded similar numbers of identifications with large (100 microg) samples. In nine replicate analyses of tryptic peptides from 50 microg colon adenocarcinoma protein, overlap in protein detection by the two platforms was 77% of all proteins detected by both methods combined. IEF more quickly approached maximal detection, with 90% of IEF-detectable medium abundance proteins (those detected with a total of 3-4 peptides) detected within three replicate analyses. In contrast, the SCX platform required six replicates to detect 90% of SCX-detectable medium abundance proteins. High reproducibility and efficient resolution of IEF peptide separations make the IEF platform superior to the SCX platform for biomarker discovery via shotgun proteomic analyses of tissue specimens.

  9. Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Zhang, Aming; Fang, Jing; Chou, Robert Y-T; Bondarenko, Pavel V; Zhang, Zhongqi

    2015-03-17

    Both recombinant and natural human IgG2 antibodies have several different disulfide bond isoforms, which possess different global structures, thermal stabilities, and biological activities. A detailed mapping of the structural difference among IgG2 disulfide isoforms, however, has not been established. In this work, we employed hydrogen/deuterium exchange mass spectrometry to study the conformation of three major IgG2 disulfide isoforms known as IgG2-B, IgG2-A1, and IgG2-A2 in two recombinant human IgG2 monoclonal antibodies. By comparing the protection factors between amino acid residues in isoforms B and A1 (the classical form), we successfully identified several local regions in which the IgG2-B isoform showed more solvent protection than the IgG2-A1 isoform. On the basis of three-dimensional structural models of IgG2, these identified regions were located on the Fab domains, close to the hinge, centered on the side where the two Fab arms faced each other in spatial proximity. We speculated that in the more solvent-protected B isoform, the two Fab arms were brought into contact by the nonclassical disulfide bonds, resulting in a more compact global structure. Loss of Fab domain flexibility in IgG2-B could limit its ability to access cell-surface epitopes, leading to reduced antigen binding potency. The A2 isoform was previously found to have disulfide linkages similar to those of the classical A1 isoform, but with different biophysical behaviors. Our data indicated that, compared to IgG2-A1, IgG2-A2 had less solvent protection in some heavy-chain Fab regions close the hinge, suggesting that the A2 isoform had more flexible Fab domains. PMID:25730439

  10. Membrane-Associated Conformation of HIV-1 Nef Investigated with Hydrogen Exchange Mass Spectrometry at a Langmuir Monolayer.

    PubMed

    Pirrone, Gregory F; Emert-Sedlak, Lori A; Wales, Thomas E; Smithgall, Thomas E; Kent, Michael S; Engen, John R

    2015-07-21

    In the companion paper to this work, we described development of a new type of hydrogen exchange (HX) mass spectrometry (MS) measurement that integrates Langmuir monolayers. With Langmuir monolayers, the lipid packing density can be reproducibly controlled and changed as desired. Analysis of HX in proteins that may undergo conformational changes as a function of lipid packing (for example, conformational rearrangements after insertion into a lipid layer) are then possible. We previously used neutron reflection to characterize just such a conformational change in the myristoylated HIV-1 Nef protein (myrNef): at high lipid packing density, myrNef could not insert into the lipids and maintained a compact conformation adjacent to the monolayer, whereas at lower lipid packing density, myrNef was able to insert N-terminal arm residues, causing displacement of the core domain away from the monolayer. In order to locate where conformation may have been altered by lipid association, we applied the HX MS Langmuir monolayer method to myrNef associated with monolayers of packing densities identical to those used for the prior neutron reflection measurements. The results show that the N-terminal region and the C-terminal unstructured loop undergo conformational changes when associated with a low density lipid monolayer. The results are not consistent with the hypothesis of myrNef dimerization upon membrane association in the absence of other myrNef binding partners. The HX MS Langmuir monolayer method provides new and meaningful information for myrNef that helps explain necessary conformational changes required for function at the membrane.

  11. Observational signatures of past mass-exchange episodes in massive binaries: The case of HD 149 404

    NASA Astrophysics Data System (ADS)

    Raucq, F.; Rauw, G.; Gosset, E.; Nazé, Y.; Mahy, L.; Hervé, A.; Martins, F.

    2016-04-01

    Context. Mass and momentum exchanges in close massive binaries play an important role in their evolution, and produce several observational signatures such as asynchronous rotation and altered chemical compositions, that remain after the stars detach again. Aims: We investigated these effects for the detached massive O-star binary HD 149 404 (O7.5 If + ON9.7 I, P = 9.81 days), which is thought to have experienced a past episode of case A Roche-lobe overflow (RLOF). Methods: Using phase-resolved spectroscopy, we performed the disentangling of the optical spectra of the two stars. The reconstructed primary and secondary spectra were then analysed with the CMFGEN model atmosphere code to determine stellar parameters, such as the effective temperatures and surface gravities, and to constrain the chemical composition of the components. We complemented the optical study with the study of IUE spectra, which we compare to the synthetic binary spectra. The properties of the stars were compared to evolutionary models. Results: We confirmed a strong overabundance in nitrogen ([N/C] ~ 150[N/C]⊙) for the secondary and a slight nitrogen overabundance ([N/C] ~ 5[N/C]⊙) for the primary star. Comparing the two stars, we found evidence for asynchronous rotation, with a rotational period ratio of 0.50 ± 0.11. Conclusions: The hypothesis of a past case A RLOF interaction in HD 149 404 is most plausible to explain its chemical abundances and rota