NASA Technical Reports Server (NTRS)
Perliski, Lori M.; Solomon, Susan
1993-01-01
The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.
Estimation of air-to-grass mass interception factors for iodine.
Karunakara, N; Ujwal, P; Yashodhara, I; Sudeep Kumara, K; Mohan, M P; Bhaskar Shenoy, K; Geetha, P V; Dileep, B N; James, Joshi P; Ravi, P M
2018-06-01
Air-to-grass mass interception factors for radionuclide are important basic input parameter for the estimation of radiation dose to the public around a nuclear power plant. In this paper, we present the determination of air-to- grass mass interception factors for iodine using a 2 m × 2 m × 2 m (l × b × h) size environmental chamber. The temperature, humidity, and rainfall inside the environmental chamber was controlled to required values to simulate different environmental conditions. Grass (Pennisetum purpureum, Schum), grown in pots, was kept inside the environmental chamber and stable iodine in elemental form was sublimed quickly inside the chamber to simulate an accidental release of iodine to the environment. The concentration of iodine in the air was measured periodically by drawing air through a bubbling setup, containing 1% sodium carbonate solution. The mass interception factor for dry deposition varied in the range of 0.25-7.7 m 2 kg -1 with mean value of 2.2 m 2 kg -1 with respect to fresh weight of grass, and that due to wet deposition varied in the range of 0.6-4.8 m 2 kg -1 with mean value of 2.3 m 2 kg -1 . The mass interception factor was inversely correlated with the total iodine deposited through dry deposition as well as with the rainfall. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Suthawaree, Jeeranut; Kato, Shungo; Pochanart, Pakpong; Kanaya, Yugo; Akimoto, Hajime; Wang, Zifa; Kajii, Yoshizumi
2012-07-01
In order to elucidate an impact of Beijing outflow on air quality in the mountainous area, measurement campaign was carried out in Mt. Mang, located 40 km north of Beijing in September 2007. Volatile Organic Compounds (VOC) observed at the site were mainly influenced by air masses arriving from urban areas. No significant impact of local emission was found. Correlation plots between selected VOC suggests several major emission sources as internal combustion, industrial emission, and coal, oil and biofuel burning. Air masses were classified into “polluted” (influence of Beijing and its satellite cities) and “clean” air mass by using backward trajectory analysis. Two air mass categories revealed significant different characteristics and mixing ratios. Reaction with OH is a major factor controlling mixing ratio of “clean” air mass while impact of dilution is also play important role on “polluted” air mass. Estimation of photochemical age of “polluted” air mass by assuming “clean” air mass for background mixing ratios reveals an averaged of 1.5-1.8 days.
Qualitative Description of Obscuration Factors in Central Europe
1980-09-01
parameters have been made for years, but optical parameters are more difficult to observe and a complete data base is Oil lacking. 7he four users of...visibility also restrict ground-to-air operations to the extent that visual sighting of aircraft or targets cannot be made from the ground. If moderate...has been made to relate air mass characteristics to E-O systems behavior. An air mass is defined as a mass of air with approximately the same 4
Air sparging: Air-water mass transfer coefficients
NASA Astrophysics Data System (ADS)
Braida, Washington J.; Ong, Say Kee
1998-12-01
Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.
Partitioning factor of mercury during coal combustion in low capacity domestic heating units.
Hlawiczka, Stanislaw; Kubica, Krystyna; Zielonka, Urszula
2003-08-01
Data from an experiment concerning Hg emission from coal combustion in a furnace of 5.6 kW capacity are presented. The goal of the experiment was to define how much of the mercury in coal combusted in the stove was emitted to the atmosphere in gaseous form because vapors contribute mainly to human intake of the metal from ambient air. The partitioning factor kappa, defined as the ratio of gaseous mercury mass emitted to the air and mercury mass contained in the unit coal mass before combustion was evaluated. The mean value of the kappa factors determined in the study was 0.52 indicating that on average only 52% of the mercury was emitted to the air in gaseous form during coal combustion in an apparatus similar to a domestic furnace. The kappa value determined seems relatively low indicating that besides mercury emitted to the atmosphere in gaseous form, a large portion of the mercury is present in particulate matter trapped in the chimney duct and emitted to the air.
USDA-ARS?s Scientific Manuscript database
Emission factors are used in the air pollution regulatory process to quantify the mass of pollutants emitted from a source. Accurate emission factors must be used in the air pollution regulatory process to ensure fair and appropriate regulation for all sources. Agricultural sources, including cotton...
Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D
2015-01-01
The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.
Temporal and modal characterization of DoD source air toxic emission factors: final report
This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.
2010-09-01
As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate aerosol pointing to a significant organic contribution to all air mass aerosol properties.
NASA Astrophysics Data System (ADS)
Keene, William C.; Long, Michael S.; Reid, Jeffrey S.; Frossard, Amanda A.; Kieber, David J.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Quinn, Patricia K.; Bates, Timothy S.
2017-11-01
Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.
2009-12-01
As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate and even less in terms of sea salt aerosol pointing to a significant organic contribution to all air mass aerosol properties.
Enhancement of acidic gases in biomass burning impacted air masses over Canada
NASA Technical Reports Server (NTRS)
Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.
1994-01-01
Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.
Exposure chamber measurements of mass transfer and partitioning at the plant/air interface.
Maddalena, Randy L; McKone, Thomas E; Kado, Norman Y
2002-08-15
Dynamic measures of air and vegetation concentrations in an exposure chamber and a two-box mass balance model are used to quantify factors that control the rate and extent of chemical partitioning between vegetation and the atmosphere. A continuous stirred flow-through exposure chamber was used to investigate the gas-phase transfer of pollutants between air and plants. A probabilistic two-compartment mass balance model of plant/air exchange within the exposure chamber was developed and used with measured concentrations from the chamber to simultaneously evaluate partitioning (Kpa), overall mass transfer across the plant/air interface (Upa), and loss rates in the atmosphere (Ra) and aboveground vegetation (Rp). The approach is demonstrated using mature Capsicum annuum (bell pepper) plants exposed to phenanthrene (PH), anthracene (AN), fluoranthene (FL) and pyrene (PY). Measured values of log Kpa (V[air]/V[fresh plant]) were 5.7, 5.7, 6.0, and 6.2 for PH, AN, FL, and PY, respectively. Values of Upa (m d(-1)) under the conditions of this study ranged from 42 for PH to 119 for FL. After correcting for wall effects, the estimated reaction half-lives in air were 3, 9, and 25 h for AN, FL and PY. Reaction half-lives in the plant compartment were 17, 6, 17, and 5 d for PH, AN, FL, and PY, respectively. The combined use of exposure chamber measurements and models provides a robust tool for simultaneously measuring several different transfer factors that are important for modeling the uptake of pollutants into vegetation.
76 FR 19913 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-11
... covered under ASHRAE Standard 37, generally do not have this feature and operate primarily with dry... performance. It is the air mass flow rate that transfers heat between cooler coils or condensers and...
Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A
2013-07-16
Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate.
NASA Astrophysics Data System (ADS)
Inamdar, P.; Ambinakudige, S.
2016-12-01
Californian icefields are natural basins of fresh water. They provide irrigation water to the farms in the central valley. We analyzed the ice mass loss rates, air temperature and land surface temperature (LST) in Sacramento and San Joaquin basins in California. The digital elevation models from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to calculate ice mass loss rate between the years 2002 and 2015. Additionally, Landsat TIR data were used to extract the land surface temperature. Data from local weather stations were analyzed to understand the spatiotemporal trends in air temperature. The results showed an overall mass recession of -0.8 ± 0.7 m w.e.a-1. We also noticed an about 60% loss in areal extent of the glaciers in the study basins between 2000 and 2015. Local climatic factors, along with the global climate patterns might have influenced the negative trends in the ice mass loss. Overall, there was an increase in the air temperature by 0.07± 0.02 °C in the central valley between 2000 and 2015. Furthermore, LST increased by 0.34 ± 0.4 °C and 0.55± 0.1 °C in the Sacramento and San Joaquin basins. Our preliminary results show the decrease in area and mass of ice mass in the basins, and changing agricultural practices in the valley.
High and low Body Mass Index (BMI) is a risk factor for effects (e.g., premature mortality) induced by exposure to common air pollutants such as ozone and particulate matter. Diesel exhaust contributes to particulate matter levels. We examined lung responses using the exhaled bre...
NASA Astrophysics Data System (ADS)
Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine
2017-09-01
More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.
Performance of the University of Denver Low Turbulence, Airborne Aerosol Inlet in ACE-Asia
NASA Astrophysics Data System (ADS)
Lafleur, B.; Wilson, J. C.; Seebaugh, W. R.; Gesler, D.; Hilbert, H.; Mullen, J.; Reeves, J. M.
2002-12-01
The University of Denver Low Turbulence Inlet (DULTI) was flown on the NCAR C-130 in ACE-Asia. This inlet delivered large sample flows at velocities of a few meters per second at the exit of the inlet. This flow was slowed from the true air speed of the aircraft (100 to 150 m/s) to a few meters per second in a short diffuser with porous walls. The flow in the diffusing section was laminar. The automatic control system kept the inlet operating at near isokinetic intake velocities and in laminar flow for nearly all the flight time. The DULTI permits super micron particles to be sampled and delivered with high efficiency to the interior of the aircraft where they can be measured or collected. Because most of the air entering the inlet is removed through the porous medium, the sample flow experiences inertial enhancements. Because these enhancements occur in laminar flow, they are calculable using FLUENT. Enhancement factors are defined as the ratio of the number of particles of a given size per unit mass of air in the sample to the number of particles of that size per unit mass of air in the ambient. Experimenters divide measured mixing ratios of the aerosol by the enhancement factor to get the ambient mixing ratio of the particles. The diffuser used in ACE-Asia differed from that used in PELTI (2000), TexAQS2000 (2000) and ITCT (2002). In this poster, the flow parameters measured in the inlet in flight are compared with those calculated from FLUENT. And enhancement factors are presented for flight conditions. The enhancement factors are found to depend upon the Stokes number of particles in the entrance to the inlet and the ratio of the mass flow rate of air removed by suction to the mass flow rate delivered as sample.
Identifying source regions for the atmospheric input of PCDD/Fs to the Baltic Sea
NASA Astrophysics Data System (ADS)
Sellström, Ulla; Egebäck, Anna-Lena; McLachlan, Michael S.
PCDD/F contamination of the Baltic Sea has resulted in the European Union imposing restrictions on the marketing of several fish species. Atmospheric deposition is the major source of PCDD/Fs to the Baltic Sea, and hence there is a need to identify the source regions of the PCDD/Fs in ambient air over the Baltic Sea. A novel monitoring strategy was employed to address this question. During the winter of 2006-2007 air samples were collected in Aspvreten (southern Sweden) and Pallas (northern Finland). Short sampling times (24 h) were employed and only samples with stable air mass back trajectories were selected for analysis of the 2,3,7,8-substituted PCDD/F congeners. The range in the PCDD/F concentrations from 40 samples collected at Aspvreten was a factor of almost 50 (range 0.6-29 fg TEQ/m 3). When the samples were grouped according to air mass origin into seven compass sectors, the variability was much lower (typically less than a factor of 3). This indicates that air mass origin was the primary source of the variability. The contribution of each sector to the PCDD/F contamination over the Baltic Sea during the winter half year of 2006/2007 was calculated from the average PCDD/F concentration for each sector and the frequency with which the air over the Baltic Sea came from that sector. Air masses originating from the south-southwest, south-southeast and east segments contributed 65% of the PCDDs and 75% of the PCDFs. Strong correlations were obtained between the concentrations of most of the PCDD/F congeners and the concentration of soot. These correlations can be used to predict the PCDD/F concentrations during the winter half year from inexpensive soot measurements.
NASA Astrophysics Data System (ADS)
Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.
2014-09-01
We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.
NASA Astrophysics Data System (ADS)
Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.
2014-05-01
We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.
New technique for calibrating hydrocarbon gas flowmeters
NASA Technical Reports Server (NTRS)
Singh, J. J.; Puster, R. L.
1984-01-01
A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr
1939-01-01
Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.
Source apportionment of VOCs in the Los Angeles area using positive matrix factorization
NASA Astrophysics Data System (ADS)
Brown, Steven G.; Frankel, Anna; Hafner, Hilary R.
Eight 3-h speciated hydrocarbon measurements were collected daily by the South Coast Air Quality Management District (SCAQMD) as part of the Photochemical Assessment Monitoring Stations (PAMS) program during the summers of 2001-03 at two sites in the Los Angeles air basin, Azusa and Hawthorne. Over 30 hydrocarbons from over 500 samples at Azusa and 600 samples at Hawthorne were subsequently analyzed using the multivariate receptor model positive matrix factorization (PMF). At Azusa and Hawthorne, five and six factors were identified, respectively, with a good comparison between predicted and measured mass. At Azusa, evaporative emissions (a median of 31% of the total mass), motor vehicle exhaust (22%), liquid/unburned gasoline (27%), coatings (17%), and biogenic emissions (3%) factors were identified. Factors identified at Hawthorne were evaporative emissions (a median of 34% of the total mass), motor vehicle exhaust (24%), industrial process losses (15%), natural gas (13%), liquid/unburned gasoline (13%), and biogenic emissions (1%). Together, the median contribution from mobile source-related factors (exhaust, evaporative emissions, and liquid/unburned gasoline) was 80% and 71% at Azusa and Hawthorne, respectively, similar to previous source apportionment results using the chemical mass balance (CMB) model. There is a difference in the distribution among mobile source factors compared to the CMB work, with an increase in the contribution from evaporative emissions, though the cause (changes in emissions or differences between models) is unknown.
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
Contribution of indoor and outdoor nitrogen dioxide to indoor air quality of wayside shops.
Shuai, Jianfei; Yang, Wonho; Ahn, Hogi; Kim, Sunshin; Lee, Seokyong; Yoon, Sung-Uk
2013-06-01
Indoor nitrogen dioxide (NO₂) concentration is an important factor for personal exposure despite the wide distribution of its sources. Exposure to NO₂ may produce adverse health effects. The aims of this study were to characterize the indoor air quality of wayside shops using multiple NO₂ measurements, and to estimate the contribution of outdoor NO₂ sources such as vehicle emission to indoor air quality. Daily indoor and outdoor NO₂ concentrations were measured for 21 consecutive days in wayside shops (5 convenience stores, 5 coffee shops, and 5 restaurants). Contributions of outdoor NO₂ sources to indoor air quality were calculated with penetration factors and source strength factors by indoor mass balance model in winter and summer, respectively. Most wayside shops had significant differences in indoor and outdoor NO₂ concentrations both in winter and in summer. Indoor NO₂ concentrations in restaurants were twice more than those in convenience stores and coffee shops in winter. While outdoor NO₂ contributions in indoor convenience stores and coffee shops were dominant, indoor NO₂ contributions were dominant in restaurants. These could be explained that indoor NO₂ sources such as gas range and smoking mainly affect indoor concentrations comparing to outdoor sources such as vehicle emission. The indoor mass balance model by multiple measurements suggests that quantitative contribution of outdoor air on indoor air quality might be estimated without measurements of ventilation, indoor generation and decay rate.
A new technique for measuring gas conversion factors for hydrocarbon mass flowmeters
NASA Technical Reports Server (NTRS)
Singh, J. J.; Sprinkle, D. R.
1983-01-01
A technique for measuring calibration conversion factors for hydrocarbon mass flowmeters was developed. It was applied to a widely used type of commercial thermal mass flowmeter for hydrocarbon gases. The values of conversion factors for two common hydrocarbons measured using this technique are in good agreement with the empirical values cited by the manufacturer. Similar agreements can be expected for all other hydrocarbons. The technique is based on Nernst theorem for matching the partial pressure of oxygen in the combustion product gases with that in normal air. It is simple, quick and relatively safe--particularly for toxic/poisonous hydrocarbons.
NASA Astrophysics Data System (ADS)
Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.
2012-04-01
Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase. In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component (43% OA) while semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA and depend on the air mass origin. A significant variability of ozone was observed that depends on the impact of different air mass types and solar radiation.
Numerical study of effect of compressor swirling flow on combustor design in a MTE
NASA Astrophysics Data System (ADS)
Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang
2017-08-01
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
NASA Astrophysics Data System (ADS)
Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.
2018-05-01
Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.0-2.0.
Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China
NASA Astrophysics Data System (ADS)
Zheng, Jing; Hu, Min; Du, Zhuofei; Shang, Dongjie; Gong, Zhaoheng; Qin, Yanhong; Fang, Jingyao; Gu, Fangting; Li, Mengren; Peng, Jianfei; Li, Jie; Zhang, Yuqia; Huang, Xiaofeng; He, Lingyan; Wu, Yusheng; Guo, Song
2017-06-01
Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1) was 5.7 ± 5.4 µg m-3 during the field campaign, ranging from 0.1 up to 33.3 µg m-3. Organic aerosol (OA) was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m/z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.
2008-04-01
concepts of a transient toxic constituent loss and transport model for both solids and chemical incorporating a kinetic approach rather than equilibrium...to air. A transient kinetic mass-transfer model was applied to the data and it was found that the TSS level was the most critical parameter for...measured (Thibodeaux et al. 2004). The transient behavior followed the expected theory of the mass-transfer kinetic, but the conventional LEA model
The State of Ambient Air Quality of Jeddah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Hussain, M. M.; Aburizaiza, O. S.; Khwaja, H. A.; Siddique, A.; Nayebare, S. R.; Zeb, J.; Blake, D. R.
2014-12-01
Ambient air pollution in major cities of Saudi Arabia is a substantial environmental and health concern. A study was undertaken to assess the air quality of Jeddah, Saudi Arabia by the analysis of respirable particulate matter (PM2.5), black carbon (BC), trace metals (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr, Cd, Sb, and Pb), and water-soluble ions (F-, Cl-, NO3-, SO42-, C2O42-, and NH42+). Sulfur and BC mass concentration ranged 0.99 - 7.39 μg/m3 and 0.70 - 3.09 μg/m3, respectively, while the PM2.5 mass concentration ranged 23 - 186 μg/m3. Maximum BC contribution to PM2.5 was 5.6%. Atmospheric PM2.5 concentrations were well above the 24 h WHO guideline of 20 μg/m3. Air Quality Index (AQI) indicates that there were 8% days of moderate air quality, 28% days of unhealthy air quality for sensitive groups, 55% days of unhealthy air quality, and 9% days of very unhealthy air quality during the study period. Sulfate SO42- dominated the identifiable components. The major contributors to PM2.5 were soil and crustal material; vehicle emissions (black carbon factor); and fuel oil combustion in industries (sulfur factor), according to the Positive Matrix Factorization (PMF). This study highlights the importance of focusing control strategies not only on reducing PM concentration, but also on the reduction of toxic components of the PM, to most effectively protect human health and the environment.
40 CFR 49.139 - Rule for non-Title V operating permits.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the air pollution source, the Tribal governing body, and the Tribal, State, and local air pollution... limitation. (C) A description of the production processes and a related flow chart. (D) Identification of...; (ii) Mass balance calculations; (iii) Published, verifiable emission factors that are applicable to...
40 CFR 49.139 - Rule for non-Title V operating permits.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the air pollution source, the Tribal governing body, and the Tribal, State, and local air pollution... limitation. (C) A description of the production processes and a related flow chart. (D) Identification of...; (ii) Mass balance calculations; (iii) Published, verifiable emission factors that are applicable to...
40 CFR 49.139 - Rule for non-Title V operating permits.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the air pollution source, the Tribal governing body, and the Tribal, State, and local air pollution... limitation. (C) A description of the production processes and a related flow chart. (D) Identification of...; (ii) Mass balance calculations; (iii) Published, verifiable emission factors that are applicable to...
40 CFR 49.139 - Rule for non-Title V operating permits.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the air pollution source, the Tribal governing body, and the Tribal, State, and local air pollution... limitation. (C) A description of the production processes and a related flow chart. (D) Identification of...; (ii) Mass balance calculations; (iii) Published, verifiable emission factors that are applicable to...
Steyaert, Nils L L; Hauck, Mara; Van Hulle, Stijn W H; Hendriks, A Jan
2009-10-01
A model was developed for gaseous plant-air exchange of semi-volatile organic compounds. Based on previous soil-plant modelling, uptake and elimination kinetics were scaled as a function of plant mass and octanol-air partition ratios. Exchange of chemicals was assumed to be limited by resistances encountered during diffusion through a laminar boundary layer of air and permeation through the cuticle of the leaf. The uptake rate constant increased and the elimination rate constant decreased with the octanol-air partition ratio both apparently levelling off at high values. Differences in kinetics between species could be explained by their masses. Validation on independent data showed that bio-concentration factors of PCBs, chlorobenzenes and other chemicals were predicted well by the model. For pesticides, polycyclic aromatic hydrocarbons and dioxins deviations occurred.
Extratropical Stratosphere-Troposphere Mass Exchange
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.
2004-01-01
Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.
NASA Astrophysics Data System (ADS)
Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.
2011-12-01
Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component contributing an average of 43% of the particulate organic mass while the semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA dependent on the air mass origin. The variability of ozone is not only affected by different types of air masses but also significantly by the diurnal variation as a consequence of the solar radiation as well as local meteorological parameters.
Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.
Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc
2014-10-01
The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.
NASA Astrophysics Data System (ADS)
Xu, J.; Zhang, Q.; Shi, J.; Ge, X.; Xie, C., Sr.; Wang, J.; Shichang, K.; Zhang, R.; Wang, Y.
2017-12-01
Recent studies have revealed a significant influx of air pollution from south Asia to Himalayas and Tibet Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport mechanism of polluted air mass in this pristine area, we performed a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co Station (90°57'E, 30°46'N 4746m a.s.l) at the central of the TP. The measurements were made at a time when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign period was 2.0 µg m-3, with organics accounting for 64%, followed by sulfate (16%), black carbon (9%), ammonium (8%), and nitrate (3%). This mass loading and composition were comparable with most of AMS results in remote sites worldwide. Air pollution episodes were observed during the pre-monsoon period, while consistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the air pollution episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning time whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA) was more oxidized with an oxygen-to-carbon ratio (O/C) of 0.94 during the pre-monsoon period than during monsoon (average O/C of 0.48). The average O/C of OA was 0.88 over the entire campaign period. Positive matrix factorization of the high resolution mass spectra of OA identified two oxygenated organic aerosol (OOA) factors: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The MO-OOA dominated during the pre-monsoon period, while LO-OOA dominated during the monsoon. The sensitivity of air pollution transport with synoptic process was also evaluated with a 3-D chemical transport model.
Boreddy, S K R; Kawamura, Kimitaka; Bikkina, Srinivas; Sarin, M M
2016-02-15
Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB. Copyright © 2015 Elsevier B.V. All rights reserved.
SINGLE-INTERVAL GAS PERMEABILITY ESTIMATION
Single-interval, steady-steady-state gas permeability testing requires estimation of pressure at a screened interval which in turn requires measurement of friction factors as a function of mass flow rate. Friction factors can be obtained by injecting air through a length of pipe...
Effect of Several Factors on the Cooling of a Radial Engine in Flight
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Pinkel, Benjamin
1936-01-01
Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.
NASA Technical Reports Server (NTRS)
Hennigan, Christopher J.; Sandholm, Scott; Kim, Saewung; Stickel, Robert E.; Huey, L. Gregory; Weber, Rodney J.
2006-01-01
Aircraft measurements of fine inorganic aerosol composition were made with a particle-into-liquid sampler coupled to dual ion chromatographs (PILS-IC) as part of the NASA INTEX-NA study. The sampling campaign, which lasted from 1 July to 14 August 2004, centered over the eastern United States and Canada and showed that sulfate was the dominant inorganic species measured. The highest sulfate concentrations were observed at altitudes below 2 km, and back trajectory analyses showed a distinct difference between air masses that had or had not intercepted the Ohio River valley (ORV) region. Air masses encountered below 2 km with a history over the ORV had sulfate concentrations that were higher by a factor of 3.2 and total sulfur (S) concentrations higher by 2.5. The study's highest sulfate concentrations were found in these air masses. The sulfur of the ORV air masses was also more processed with a mean sulfate to total sulfur molar ratio of 0.5 compared to 0.3 in non-ORV measurements. Results from a second, independent trajectory model agreed well with those from the primary analysis. These ORV-influenced air masses were encountered on multiple days and were widely spread across the eastern United States and western Atlantic region.
Source apportionment of volatile organic compounds measured near a cold heavy oil production area
NASA Astrophysics Data System (ADS)
Aklilu, Yayne-abeba; Cho, Sunny; Zhang, Qianyu; Taylor, Emily
2018-07-01
This study investigated sources of volatile organic compounds (VOCs) observed during periods of elevated hydrocarbon concentrations adjacent to a cold heavy oil extraction area in Alberta, Canada. Elevated total hydrocarbon (THC) concentrations were observed during the early morning hours and were associated with meteorological conditions indicative of gravitational drainage flows. THC concentrations were higher during the colder months, an occurrence likely promoted by a lower mixing height. On the other hand, other VOCs had higher concentrations in the summer; this is likely due to increased evaporation and atmospheric chemistry during the summer months. Of all investigated VOC compounds, alkanes contributed the greatest in all seasons. A source apportionment method, positive matrix factorization (PMF), was used to identify the potential contribution of various sources to the observed VOC concentrations. A total of five factors were apportioned including Benzene/Hexane, Oil Evaporative, Toluene/Xylene, Acetone and Assorted Local/Regional Air Masses. Three of the five factors (i.e., Benzene/Hexane, Oil Evaporative, and Toluene/Xylene), formed 27% of the reconstructed and unassigned concentration and are likely associated with emissions from heavy oil extraction. The three factors associated with emissions were comparable to the available emission inventory for the area. Potential sources include solution gas venting, combustion exhaust and fugitive emissions from extraction process additives. The remaining two factors (i.e., Acetone and Assorted Local/Regional Air Mass), comprised 49% of the reconstructed and unassigned concentration and contain key VOCs associated with atmospheric chemistry or the local/regional air mass such as acetone, carbonyl sulphide, Freon-11 and butane.
NASA Astrophysics Data System (ADS)
Kim, H.; Zhang, Q.
2016-12-01
Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21%) become higher whereas the fraction of locally emitted primary (COA, HOA) and locally formed secondary species (nitrate, SVOOA) become lower. Our results indicate that NR-PM1 concentrations, compositions and sources in Korea are very complex and meteorological conditions and air mass origins have a strong influence on properties of PM.
NASA Astrophysics Data System (ADS)
Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.
2011-12-01
The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric acid was found to be the main particle formation contributor. The AMS analysis showed inorganic sulfate species being substantially higher during the growth stages of urban compared to continentally influenced events that are characterized by lower PM1 mass concentrations mainly composed of oxidized organics. The lowest average PM1 mass and number concentrations (2 μg m-3, 1000 cm-3) were found in marine air mass types characterized by the highest sulfate PM1-fraction (54%, 0.91 μg m-3) and volume size distributions probably dominated by sodium chloride particles from sea spray. Two to five times higher submicron aerosol mass concentrations were observed in continental (2.5 μg m-3) and urban (4.2 μg m-3) air mass types mainly consisting of organic species that were further evaluated using Positive Matrix Factorization (PMF). Zhang, Q. et al. (2004), Environ. Sci. Technol., 38, 4797-4809.
ERIC Educational Resources Information Center
Sadek, Hind
1994-01-01
Proposes that a cooperative effort among scientists, politicians, and the public will be needed to slow or reverse the destruction of cultural resources such as the pyramids of Egypt resulting from environmental factors. Factors cited leading to deterioration include air pollutants, ozone exposure, and mass tourism. (MDH)
NASA Astrophysics Data System (ADS)
Russell, L. M.; Takahama, S.; Liu, S.; Hawkins, L. N.; Covert, D. S.; Quinn, P. K.; Bates, T. S.
2009-04-01
Submicron particles collected on Teflon filters aboard the R/V Ronald Brown during the Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) 2006 in and around the port of Houston, Texas, were measured by Fourier transform infrared (FTIR) and X-ray fluorescence for organic functional groups and elemental composition. Organic mass (OM) concentrations (1-25 μg m-3) for ambient particle samples measured by FTIR showed good agreement with measurements made with an aerosol mass spectrometer. The fractions of organic mass identified as alkane and carboxylic acid groups were 47% and 32%, respectively. Three different types of air masses were identified on the basis of the air mass origin and the radon concentration, with significantly higher carboxylic acid group mass fractions in air masses from the north (35%) than the south (29%) or Gulf of Mexico (26%). Positive matrix factorization analysis attributed carboxylic acid fractions of 30-35% to factors with mild or strong correlations (r > 0.5) to elemental signatures of oil combustion and 9-24% to wood smoke, indicating that part of the carboxylic acid fraction of OM was formed by the same sources that controlled the metal emissions, namely the oil and wood combustion activities. The implication is that a substantial part of the measured carboxylic acid contribution was formed independently of traditionally "secondary" processes, which would be affected by atmospheric (both photochemical and meteorological) conditions and other emission sources. The carboxylic acid group fractions in the Gulf of Mexico and south air masses (GAM and SAM, respectively) were largely oil combustion emissions from ships as well as background marine sources, with only limited recent land influences (based on radon concentrations). Alcohol groups accounted for 14% of OM (mostly associated with oil combustion emissions and background sources), and amine groups accounted for 4% of OM in all air masses. Organosulfate groups were found in GAM and SAM, accounting for 1% and 3% of OM, respectively. Two thirds of the OM and oxygen-to-carbon (O/C) measured could be attributed to oil and wood combustion sources on the basis of mild or strong correlations to coemitted, nonvolatile trace metals, with the remaining one third being associated with atmospherically processed organic aerosol. The cloud condensation nuclei (CCN) fraction (normalized by total condensation nuclei) had weak correlations to the alcohol and amine group fractions and mild correlation with O/C, also varying inversely with alkane group fraction. The chemical components that influenced f(RH) were sulfate, organic, and nitrate fraction, but this contrast is consistent with the size-distribution dependence of CCN counters and nephelometers.
Experimental Research on Optimizing Inlet Airflow of Wet Cooling Towers under Crosswind Conditions
NASA Astrophysics Data System (ADS)
Chen, You Liang; Shi, Yong Feng; Hao, Jian Gang; Chang, Hao; Sun, Feng Zhong
2018-01-01
A new approach of installing air deflectors around tower inlet circumferentially was proposed to optimize the inlet airflow and reduce the adverse effect of crosswinds on the thermal performance of natural draft wet cooling towers (NDWCT). And inlet airflow uniformity coefficient was defined to analyze the uniformity of circumferential inlet airflow quantitatively. Then the effect of air deflectors on the NDWCT performance was investigated experimentally. By contrast between inlet air flow rate and cooling efficiency, it has been found that crosswinds not only decrease the inlet air flow rate, but also reduce the uniformity of inlet airflow, which reduce NDWCT performance jointly. After installing air deflectors, the inlet air flow rate and uniformity coefficient increase, the uniformity of heat and mass transfer increases correspondingly, which improve the cooling performance. In addition, analysis on Lewis factor demonstrates that the inlet airflow optimization has more enhancement of heat transfer than mass transfer, but leads to more water evaporation loss.
Influence of surrounding environment on subcritical crack growth in marble
NASA Astrophysics Data System (ADS)
Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii
2017-06-01
Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.
Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel; Daher, Nancy; Shafer, Martin; Schauer, James J.; Sioutas, Constantinos; Delfino, Ralph J.
2013-01-01
Background Mitochondria are the main source of reactive oxygen species (ROS). Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD). We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin. Objective We tested whether air pollutant exposure-associated inflammation was stronger in mitochondrial haplogroup H than U (high versus low ROS production) in this panel (38 subjects and 417 observations). Methods Inflammation biomarkers were measured weekly in each subject (≤12 weeks), including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein, interleukin-6 soluble receptor and tumor necrosis factor-soluble receptor II. We determined haplogroup by restriction fragment length polymorphism analysis. Air pollutants included nitrogen oxides (NOx), carbon monoxide (CO), organic carbon, elemental and black carbon (EC, BC); and particulate matter mass, three size fractions (<0.25 µm, 0.25–2.5 µm, and 2.5–10 µm in aerodynamic diameter). Particulate matter extracts were analyzed for organic compounds, including polycyclic aromatic hydrocarbons (PAH), and in vitro oxidative potential of aqueous extracts. Associations between exposures and biomarkers, stratified by haplogroup, were analyzed by mixed-effects models. Results IL-6 and TNF-α were associated with traffic-related air pollutants (BC, CO, NOx and PAH), and with mass and oxidative potential of quasi-ultrafine particles <0.25 µm. These associations were stronger for haplogroup H than haplogroup U. Conclusions Results suggest that mitochondrial haplogroup U is a novel protective factor for air pollution-related systemic inflammation in this small group of subjects. PMID:23717615
A lifestyle-based scenario for U.S. buildings: Implications for energy use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, Rick
Dynamic measures of air and vegetation concentrations in an exposure chamber and a two-box mass balance model are used to quantify factors that control the rate and extent of chemical partitioning between vegetation and the atmosphere. A continuous stirred flow-through exposure chamber was used to investigate the gas-phase transfer of pollutants between air and plants. A probabilistic two-compartment mass-balance model of plant/air exchange within the exposure chamber was developed and used with measured concentrations from the chamber to simultaneously evaluate partitioning (K{sub pa}), overall mass transfer across the plant/air interface (U{sub pa}) and loss rates in the atmosphere (R{sub a})more » and aboveground vegetation (R{sub p}). The approach is demonstrated using mature Capsicum annuum (bell pepper) plants exposed to phenanthrene (PH), anthracene (AN), fluoranthene (FL) and pyrene (PY). Measured values of log K{sub pa} (V{sub [air]}/V{sub [fresh plant]}) were 5.7, 5.7, 6.0 and 6.2 for PH, AN, FL and PY, respectively. Values of U{sub pa} (m d{sup -1}) under the conditions of this study ranged from 42 for PH to 119 for FL. After correcting for wall effects, the estimated reaction half-lives in air were 3, 9 and 25 hours for AN, FL and PY. Reaction half-lives in the plant compartment were 17, 6, 17 and 5 days for PH, AN, FL and PY. The combined use of exposure chamber measurements and models provides a robust tool for simultaneously measuring several different transfer factors that are important for modeling the uptake of pollutants into vegetation.« less
Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán
2006-07-01
This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels.
NASA Astrophysics Data System (ADS)
Dusek, Ulrike; Hitzenberger, Regina; Kasper-Giebl, Anne; Kistler, Magdalena; Meijer, Harro A. J.; Szidat, Sönke; Wacker, Lukas; Holzinger, Rupert; Röckmann, Thomas
2017-03-01
We measured the radioactive carbon isotope 14C (radiocarbon) in various fractions of the carbonaceous aerosol sampled between February 2011 and March 2012 at the Cesar Observatory in the Netherlands. Based on the radiocarbon content in total carbon (TC), organic carbon (OC), water-insoluble organic carbon (WIOC), and elemental carbon (EC), we estimated the contribution of major sources to the carbonaceous aerosol. The main source categories were fossil fuel combustion, biomass burning, and other contemporary carbon, which is mainly biogenic secondary organic aerosol material (SOA). A clear seasonal variation is seen in EC from biomass burning (ECbb), with lowest values in summer and highest values in winter, but ECbb is a minor fraction of EC in all seasons. WIOC from contemporary sources is highly correlated with ECbb, indicating that biomass burning is a dominant source of contemporary WIOC. This suggests that most biogenic SOA is water soluble and that water-insoluble carbon stems mainly from primary sources. Seasonal variations in other carbon fractions are less clear and hardly distinguishable from variations related to air mass history. Air masses originating from the ocean sector presumably contain little carbonaceous aerosol from outside the Netherlands, and during these conditions measured carbon concentrations reflect regional sources. In these situations absolute TC concentrations are usually rather low, around 1.5 µg m-3, and ECbb is always very low ( ˜ 0.05 µg m-3), even in winter, indicating that biomass burning is not a strong source of carbonaceous aerosol in the Netherlands. In continental air masses, which usually arrive from the east or south and have spent several days over land, TC concentrations are on average by a factor of 3.5 higher. ECbb increases more strongly than TC to 0.2 µg m-3. Fossil EC and fossil WIOC, which are indicative of primary emissions, show a more moderate increase by a factor of 2.5 on average. An interesting case is fossil water-soluble organic carbon (WSOC, calculated as OC-WIOC), which can be regarded as a proxy for SOA from fossil precursors. Fossil WSOC has low concentrations when regional sources are sampled and increases by more than a factor of 5 in continental air masses. A longer residence time of air masses over land seems to result in increased SOA concentrations from fossil origin.
NASA Astrophysics Data System (ADS)
Stavroulas, Iasonas; Pikridas, Michael; Oikonomou, Kostantina; Vasiliadou, Emily; Savvides, Chrysanthos; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Gros, Valerie; Sciare, Jean
2017-04-01
Particulate matter with diameter smaller than 1{μ}m (PM1) induces direct and indirect effects on local and regional pollution, global climate and health. As of the beginning of 2015, the chemical composition of submicron aerosols, is continuously being monitored at the newly established Cyprus Atmospheric Observatory (CAO, http://www.cyi.ac.cy/index.php/cao.html), a national facility of the ACTRIS Research Infrastructure operated by The Cyprus Institute. Cyprus, an island located in the Eastern Mediterranean Middle East region and influenced by diverse air masses throughout the year, is ideal for monitoring photochemically aged aerosols and gaseous pollutants of both natural and anthropogenic origin. Furthermore this is a unique dataset for this area in such proximity to the Middle East, a poorly documented area in terms of atmospheric aerosol observations. An Aerodyne Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) is currently deployed at the CAO premises (35.04N - 33.06E) situated at the rural area of Agia Marina Xyliatou on the foothill of mount Troodos at an elevation of 532m above sea level (asl). The ACSM delivers chemical composition of the major non-refractory aerosol (PM1) chemical constituents (organics, sulfate, nitrate, ammonium, chloride) with an effective (close to 100{%}) collection efficiency for particles in the diameter range of 65-700 nm at a 30 minute temporal resolution. Black Carbon (BC) was also monitored using both Magee Scientific AE-31 and AE-33 aethalometers. Quality control of the PM chemical dataset was conducted by comparison with chemical analysis performed on collocated 24-h filter samples (PM1) and comparison with 1-h PM2.5 derived from a Thermo Scientific TEOM (1400a) Monitor. Positive Matrix Factorization (PMF) was conducted and different organic aerosol factors were distinguished using the Igor based SoFi toolkit utilizing the ME-2 multilinear engine. Air mass origin was investigated for each measurement day using the Lagrangian dispersion model FLEXPART in backward mode. Analysis of the PMF on the organic mass spectra, based on good agreement with external standard mass spectra, led to the selection of a solution with three factors, an HOA (Hydrocarbon-like Organic Aerosol) factor with relatively low overall contribution (9{%}), a typical Low Volatility (LV-OOA) factor contributing 54{%}, and a factor attributed to Semi-Volatile organics (SV-OOA), contributing 37{%}. The FLEXPART model analysis, led to eight main regions of influence, namely Europe, West Turkey, Anatolia, Middle East, North Africa, Marine, Local and Mixed. Organic content exhibits maximum values when air masses originate from the wider northern sector (West Turkey and Anatolia) and the Middle East. Less aged organic content was identified for air masses originating from the immediate neighboring regions (West Turkey, Anatolia, Middle East and North Africa) while fresh organics peaked when air masses originated from the Middle East, coinciding with elevated BC concentrations, suggesting strong anthropogenic sources for this sector. This project received funding from the ChArMEx (Chemistry Aerosol Mediterranean Experiment) program, the ENVI-MED CyAr project, the European Union's Seventh Framework Programme (FP7) project BACCHUS under grant agreement no. 603445, and the European Union's Horizon 2020 research and innovation programme ACTRIS-2 under grant agreement No 654109.
Combustion characteristics of gas turbine alternative fuels
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James
1987-01-01
An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.
Measurement of the mass and composition of particulate matter (PM) as a function of size is important for research studies for chemical mass balance, factor analysis, air quality model evaluation, epidemiology, and risk assessment. Such measurements are also important in underst...
Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell
NASA Astrophysics Data System (ADS)
Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann
2014-02-01
A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.
NASA Astrophysics Data System (ADS)
Schulze, B.; Wallace, H. W., IV; Bui, A.; Flynn, J. H., III; Erickson, M. H.; Griffin, R. J.
2017-12-01
The Texas Gulf Coast region historically has been influenced heavily by regional shipping emissions. However, the effects of the recent establishment of the North American Emissions Control Area (ECA) on aerosol properties in this region are presently unknown. In order to understand better the current sources and processing mechanisms influencing coastal aerosol near Houston, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed for three weeks at a coastal location during May-June 2016. Total mass loadings of organic and inorganic non-refractory aerosol components during onshore flow periods were similar to those published before establishment of the regulations. Using estimated methanesulfonic acid (MSA) mass loadings and published biogenic MSA:non-sea-salt-sulfate (nss-SO4) ratios, we determined that over 70% of nss-SO4 over the Gulf was from anthropogenic sources, predominantly shipping emissions. Mass spectral analysis indicated that for periods with similar backward-trajectory-averaged meteorological conditions, air masses influenced by shipping emissions have an increased mass fraction of ions related to carboxylic acids and a significantly larger oxygen-to-carbon (O:C) ratio than air masses that stay within the ECA boundary, suggesting that shipping emissions impact marine organic aerosol (OA) oxidation state. Amine fragment mass loadings were positively correlated with anthropogenic nss-SO4 during onshore flow, implying anthropogenic-biogenic interaction in marine OA production. Five OA factors were resolved by positive matrix factorization, corresponding to a hydrocarbon-like OA, a semi-volatile OA, and three different oxygenated organic aerosols ranked by their O:C ratio (OOA-1, OOA-2, and OOA-3). OOA-1 constituted the majority of OA mass during a period likely influenced by aqueous-phase processing and may be linked to local glyoxal/methylglyoxal-related sources. OOA-2 was produced within the Houston urban region and was dominant during a multi-day period of air mass recirculation due to land-sea breeze effects. OOA-3, which was linked to shipping emissions, represented the majority of OA mass during onshore flow periods.
14 CFR 23.341 - Gust loads factors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting...=airplane mass ratio; U de=Derived gust velocities referred to in § 23.333(c) (f.p.s.); ρ=Density of air... C NA per radian if the gust loads are applied to the wings and horizontal tail surfaces...
14 CFR 23.341 - Gust loads factors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting...=airplane mass ratio; U de=Derived gust velocities referred to in § 23.333(c) (f.p.s.); ρ=Density of air... C NA per radian if the gust loads are applied to the wings and horizontal tail surfaces...
14 CFR 23.341 - Gust loads factors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting...=airplane mass ratio; U de=Derived gust velocities referred to in § 23.333(c) (f.p.s.); ρ=Density of air... C NA per radian if the gust loads are applied to the wings and horizontal tail surfaces...
14 CFR 23.341 - Gust loads factors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting...=airplane mass ratio; U de=Derived gust velocities referred to in § 23.333(c) (f.p.s.); ρ=Density of air... C NA per radian if the gust loads are applied to the wings and horizontal tail surfaces...
Using the power balance model to simulate cross-country skiing on varying terrain.
Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell
2014-01-01
The current study adapts the power balance model to simulate cross-country skiing on varying terrain. We assumed that the skier's locomotive power at a self-chosen pace is a function of speed, which is impacted by friction, incline, air drag, and mass. An elite male skier's position along the track during ski skating was simulated and compared with his experimental data. As input values in the model, air drag and friction were estimated from the literature based on the skier's mass, snow conditions, and speed. We regard the fit as good, since the difference in racing time between simulations and measurements was 2 seconds of the 815 seconds racing time, with acceptable fit both in uphill and downhill terrain. Using this model, we estimated the influence of changes in various factors such as air drag, friction, and body mass on performance. In conclusion, the power balance model with locomotive power as a function of speed was found to be a valid tool for analyzing performance in cross-country skiing.
Factors that influence the tribocharging of pulverulent materials in compressed-air devices
NASA Astrophysics Data System (ADS)
Das, S.; Medles, K.; Mihalcioiu, A.; Beleca, R.; Dragan, C.; Dascalescu, L.
2008-12-01
Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.
2017-01-01
A number of queries regarding the paper ‘Are some people suffering as a result of increasing mass exposure of the public to ultrasound in air?’ (Leighton 2016 Proc. R. Soc. A 472, 20150624 (doi:10.1098/rspa.2015.0624)) have been sent in from readers, almost all based around some or all of a small set of questions. These can be grouped into issues of engineering, human factors and timeliness. Those issues (represented by the most typical wording used in queries) and my responses are summarized in this comment. PMID:28413349
Ballard, Sarah-Blythe; Osorio, Victor B
2015-01-01
This study provides new public health data about U.S. civil air shows. Risk factors for fatalities in civil air show crashes were analyzed. The value of the FIA score in predicting fatal outcomes was evaluated. With the use of the FAA's General Aviation and Air Taxi Survey and the National Transportation Safety Board's data, the incidence of civil air show crashes from 1993 to 2013 was calculated. Fatality risk factors for crashes were analyzed by means of regression methods. The FIA index was validated to predict fatal outcomes by using the factors of fire, instrument conditions, and away-from-airport location, and was evaluated through receiver operating characteristic (ROC) curves. The civil air show crash rate was 31 crashes per 1,000 civil air events. Of the 174 civil air show crashes that occurred during the study period, 91 (52%) involved at least one fatality; on average, 1.1 people died per fatal crash. Fatalities were associated with four major risk factors: fire [adjusted odds ratio (AOR) = 7.1, 95% confidence interval (CI) = 2.4 to 20.6, P < .001], pilot error (AOR = 5.2, 95% CI = 1.8 to 14.5, P = .002), aerobatic flight (AOR = 3.6, 95% CI = 1.6 to 8.2, P = .002), and off-airport location (AOR = 3.4, 95% CI = 1.5 to 7.5, P = .003). The area under the FIA score's ROC curve was 0.71 (95% CI = 0.64 to 0.78). Civil air show crashes were marked by a high risk of fatal outcomes to pilots in aerobatic performances but rare mass casualties. The FIA score was not a valid measurement of fatal risk in civil air show crashes.
Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu
2013-03-01
The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF), which could be influenced by a variety of factors such as fuel properties, stove type, fire management and even methods used in measurements. The impacts of these factors are complicated and often interact with each other. Controlled burning experiments were conducted to investigate the influences of fuel mass load, air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove. The results showed that the EFs of PM (EF(PM)), organic carbon (EFoc) and elemental carbon (EF(EC)) were independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 microm, contributing 86.4% +/- 3.9% of the total. The size distribution of PM was influenced by the burning rate and air supply conditions. On average, EF(PM), EF(OC) and EF(EC) for corn straw burned in a residential cooking stove were (3.84 +/- 1.02), (0.846 +/- 0.895) and (0.391 +/- 0.350) g/kg, respectively. EF(PM), EF(OC) and EF(EC) were found to be positively correlated with each other (p < 0.05), but they were not significantly correlated with the EF of co-emitted CO, suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.
Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bing; Wang, Rong; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; Tao, Shu
2014-01-01
The uncertainty in emission estimation is strongly associated with the variation in emission factor which could be influenced by a variety of factors, like fuel property, stove type, fire management and even methods used in measurements. The impacts of these factors were usually complicated and often interacted with each other. In the present study, controlled burning experiments were conducted to investigate the influence of fuel mass load, air supply and burning rate on the emission of carbonaceous particulate matter (PM) from indoor corn straw burning. Their impacts on PM size distribution were also studied. The results showed that EFs of PM (EFPM), organic carbon (EFOC) and element carbon (EFEC) was independent of the fuel mass load. The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances. PM from the indoor corn straw burning was dominated by fine PM, and PM with diameter less than 2.1 μm contributed about 86.4±3.9% of the total. The size distribution of PM was also influenced by the burning rate and changed air supply conditions. On average, EFPM, EFOC and EFEC for corn straw burned in a residential cooking stove were 3.84±1.02, 0.846±0.895 and 0.391±0.350 g/kg, respectively. EFPM, EFOC and EFEC were found to be positively correlated with each other, but they were not significantly correlated with EF of co-emitted CO, suggesting a special attention should be paid to the use of CO acting as a surrogate for other incomplete pollutants. PMID:23923424
Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Lu, Si-Jia; Li, Bai; Li, Chao
2017-05-01
Potential utilities of instrumented lightweight unmanned aerial vehicles (UAVs) to quickly characterize tropospheric ozone pollution and meteorological factors including air temperature and relative humidity at three-dimensional scales are highlighted in this study. Both vertical and horizontal variations of ozone within the 1000 m lower troposphere at a local area of 4 × 4 km 2 are investigated during summer and autumn times. Results from field measurements show that the UAV platform has a sufficient reliability and precision in capturing spatiotemporal variations of ozone and meteorological factors. The results also reveal that ozone vertical variation is mainly linked to the vertical distribution patterns of air temperature and the horizontal transport of air masses from other regions. In addition, significant horizontal variations of ozone are also observed at different levels. Without major exhaust sources, ozone horizontal variation has a strong correlation with the vertical convection intensity of air masses within the lower troposphere. Higher air temperatures are usually related to lower ozone horizontal variations at the localized area, whereas underlying surface diversity has a week influence. Three-dimensional ozone maps are obtained using an interpolation method based on UAV collected samples, which are capable of clearly demonstrating the diurnal evolution processes of ozone within the 1000 m lower troposphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particulate matter in the rural settlement during winter time
NASA Astrophysics Data System (ADS)
Olszowski, Tomasz
2017-10-01
The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.
Cozzi, F; Adami, G; Barbieri, P; Reisenhofer, E; Bovenzi, M
2008-09-01
The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.
Masiol, Mauro; Centanni, Elena; Squizzato, Stefania; Hofer, Angelika; Pecorari, Eliana; Rampazzo, Giancarlo; Pavoni, Bruno
2012-09-01
This study presents a procedure to differentiate the local and remote sources of particulate-bound polycyclic aromatic hydrocarbons (PAHs). Data were collected during an extended PM(2.5) sampling campaign (2009-2010) carried out for 1 year in Venice-Mestre, Italy, at three stations with different emissive scenarios: urban, industrial, and semirural background. Diagnostic ratios and factor analysis were initially applied to point out the most probable sources. In a second step, the areal distribution of the identified sources was studied by applying the discriminant analysis on factor scores. Third, samples collected in days with similar atmospheric circulation patterns were grouped using a cluster analysis on wind data. Local contributions to PM(2.5) and PAHs were then assessed by interpreting cluster results with chemical data. Results evidenced that significantly lower levels of PM(2.5) and PAHs were found when faster winds changed air masses, whereas in presence of scarce ventilation, locally emitted pollutants were trapped and concentrations increased. This way, an estimation of pollutant loads due to local sources can be derived from data collected in days with similar wind patterns. Long-range contributions were detected by a cluster analysis on the air mass back-trajectories. Results revealed that PM(2.5) concentrations were relatively high when air masses had passed over the Po Valley. However, external sources do not significantly contribute to the PAHs load. The proposed procedure can be applied to other environments with minor modifications, and the obtained information can be useful to design local and national air pollution control strategies.
NASA Astrophysics Data System (ADS)
Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.
2017-12-01
Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.
Klein, Felix; Pieber, Simone M; Ni, Haiyan; Stefenelli, Giulia; Bertrand, Amelie; Kilic, Dogushan; Pospisilova, Veronika; Temime-Roussel, Brice; Marchand, Nicolas; El Haddad, Imad; Slowik, Jay G; Baltensperger, Urs; Cao, Junji; Huang, Ru-Jin; Prévôt, André S H
2018-03-06
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kg coal for bituminous coals and are below 0.1 g/kg coal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
NASA Astrophysics Data System (ADS)
Elcik, Christopher; Fuhrmann, Christopher M.; Mercer, Andrew E.; Davis, Robert E.
2017-12-01
An estimated 240 million people worldwide suffer from migraines. Because migraines are often debilitating, understanding the mechanisms that trigger them is crucial for effective prevention and treatment. Synoptic air mass types and emergency department (ED) visits for migraine headaches were examined over a 7-year period within a major metropolitan area of North Carolina to identify potential relationships between large-scale meteorological conditions and the incidence of migraine headaches. Barometric pressure changes associated with transitional air masses, or changing weather patterns, were also analyzed for potential relationships. Bootstrapping analysis revealed that tropical air masses (moist and dry) resulted in the greatest number of migraine ED visits over the study period, whereas polar air masses led to fewer. Moist polar air masses in particular were found to correspond with the fewest number of migraine ED visits. On transitional air mass days, the number of migraine ED visits fell between those of tropical air mass days and polar air mass days. Transitional days characterized by pressure increases exhibited a greater number of migraine ED visits than days characterized by pressure decreases. However, no relationship was found between migraine ED visits and the magnitude of barometric pressure changes associated with transitional air masses.
U.S. Civil Air Show Crashes, 1993 to 2013
Ballard, Sarah-Blythe; Osorio, Victor B.
2016-01-01
This study provides new public health data about U.S. civil air shows. Risk factors for fatalities in civil air show crashes were analyzed. The value of the FIA score in predicting fatal outcomes was evaluated. With the use of the FAA’s General Aviation and Air Taxi Survey and the National Transportation Safety Board’s data, the incidence of civil air show crashes from 1993 to 2013 was calculated. Fatality risk factors for crashes were analyzed by means of regression methods. The FIA index was validated to predict fatal outcomes by using the factors of fire, instrument conditions, and away-from-airport location, and was evaluated through receiver operating characteristic (ROC) curves. The civil air show crash rate was 31 crashes per 1,000 civil air events. Of the 174 civil air show crashes that occurred during the study period, 91 (52%) involved at least one fatality; on average, 1.1 people died per fatal crash. Fatalities were associated with four major risk factors: fire [adjusted odds ratio (AOR) = 7.1, 95% confidence interval (CI) = 2.4 to 20.6, P < .001], pilot error (AOR = 5.2, 95% CI = 1.8 to 14.5, P = .002), aerobatic flight (AOR = 3.6, 95% CI = 1.6 to 8.2, P = .002), and off-airport location (AOR = 3.4, 95% CI = 1.5 to 7.5, P = .003). The area under the FIA score’s ROC curve was 0.71 (95% CI = 0.64 to 0.78). Civil air show crashes were marked by a high risk of fatal outcomes to pilots in aerobatic performances but rare mass casualties. The FIA score was not a valid measurement of fatal risk in civil air show crashes. PMID:27773963
Air conditioning impact on the dynamics of radon and its daughters concentration.
Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz
2014-12-01
Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products
NASA Astrophysics Data System (ADS)
Jou, R.-Y.; Lo, C.-T.
2011-01-01
In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.
Influence of ambient air pressure on effervescent atomization
NASA Technical Reports Server (NTRS)
Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.
1993-01-01
The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.
NASA Astrophysics Data System (ADS)
Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung
2017-02-01
Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air quality in Seoul during winter is influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 64 % of the PM1 mass during this study. However, aerosol sources and composition were found to be significantly different between clean and polluted periods. During stagnant periods with low wind speed (WS) and high relative humidity (RH), PM concentration was generally high (average ±1σ = 43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27 %) and SV-OOA (8 %), which suggested a strong influence from local production of secondary aerosol. Low-PM loading periods (12.6 ± 7.1 µg m-3) tended to occur under higher-WS and lower-RH conditions and appeared to be more strongly influenced by regional air masses, as indicated by higher mass fractions of sulfate (12 %) and LV-OOA (20 %) in PM1. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that their concentrations and composition are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.
BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION
Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...
NASA Astrophysics Data System (ADS)
Webb, Bryan T.
The electrodes are the attachment points for an electric arc where electrons and positive ions enter and leave the gas, creating a flow of current. Electrons enter the gas at the cathode and are removed at the anode. Electrons then flow out through the leads on the anode and are replenished from the power supply through the leads on the cathode. Electric arc attachment to the electrode surface causes intensive heating and subsequent melting and vaporization. At that point a multitude of factors can contribute to mass loss, to include vaporization (boiling), material removal via shear forces, chemical reactions, evaporation, and ejection of material in jets due to pressure effects. If these factors were more thoroughly understood and could be modeled, this knowledge would guide the development of an electrode design with minimal erosion. An analytic model was developed by a previous researcher that models mass loss by melting, evaporation and boiling with a moving arc attachment point. This pseudo one-dimensional model includes surface heat flux in periodic cycles of heating and cooling to model motion of a spinning arc in an annular electrode where the arc periodically returns to the same spot. This model, however, does not account for removal of material due to shear or pressure induced effects, or the effects of chemical reactions. As a result of this, the model under-predicts material removal by about 50%. High velocity air flowing over an electrode will result in a shear force which has the potential to remove molten material as the arc melts the surface on its path around the electrode. In order to study the effects of shear on mass loss rate, the model from this previous investigator has been altered to include this mass loss mechanism. The results of this study have shown that shear is a viable mechanism for mass loss in electrodes and can account for the mismatch between theoretical and experimental rates determined by previous investigators. The results of a parametric study of arc attachment factors - including spot size, fall voltage, arc spot rotation rate, ambient bore heat rate, and air mass flow rate - are presented. The parametric study resulted in improving estimates of both the arc spot size and electrode fall voltage, two critical factors affecting electrode heating. Little sensitivity of electrode erosion rate to ambient bore heat rate and rotation rate was found. The erosion rate is found to be sensitive to the mass flow rate of air injected in the arc heater and validation of the model by comparison with more run condition data should be carried out as the data become available.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-01-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine
NASA Astrophysics Data System (ADS)
Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.
1986-06-01
The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.
The influence of polarization on box air mass factors for UV/vis nadir satellite observations
NASA Astrophysics Data System (ADS)
Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.
2015-04-01
Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.
Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea
NASA Astrophysics Data System (ADS)
Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.
2013-05-01
Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.
Prediction of alpha factor values for fine pore aeration systems.
Gillot, S; Héduit, A
2008-01-01
The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.
Dorđević, Dragana S; Tosić, Ivana; Unkasević, Miroslava; Durasković, Pavle
2010-11-01
Precipitation samples collected from 1995 to 2000 at meteorological station in the eastern outskirts of Herceg Novi (Montenegro) were analysed on Na(+), K(+), Mg(2+), Ca(2+), Cl(-), SO(4) (2-), NO(3)(-) and NH(4)(+). Four-day backward trajectory simulations were conducted during the precipitation period to investigate the regional transport of main ions and their deposition in the region of the southeastern Adriatic Sea. The air mass trajectories were classified into six trajectory categories by the origin and direction of their approach to Herceg Novi. A bottle and funnel with a small net between them was used for sampling at a height of 1.5 m above the ground. The concentrations of Cl(-), NO(3)(-), NH(4)(+) and SO(4)(2-) were determined spectrophotometrically, the concentrations of Na(+) and K(+) were determined by the FAES method and the concentrations of Mg(2+) and Ca(2+) by the FAAS method. The factor analysis technique (PCA analysis) based on the calculation of the factors was employed to differentiate the contribution of emission sources to the content of the main ions in the precipitation. The obtained data sets were processed using the SPSS 11.5 statistical program. The Hybrid Single-Particle Lagrangian Integrated Trajectory model was used to study the air origin for the city of Herceg Novi (42°27'N, 18°33'E), Montenegro. The following origins of the air masses were considered: northern Europe (NE), eastern Europe-northeastern Europe (EE-NE); eastern Mediterranean-southeastern Europe (EM-SE); Africa-Central Mediterranean (A-CM); western Mediterranean (WM); western Europe-Central Europe (WE-CE) and undefined. The heights and frequencies of precipitation coming by air masses from northern Europe and eastern-northeastern Europe are the lowest. On the contrary, the heights and frequencies of precipitation coming by air masses from the western Mediterranean (36.6%) and Africa and the Central Mediterranean (30.6%) are the highest. The sea salt components (Na(+), Cl(-), Mg(2+)) are significantly correlated, except for air masses originating from the northern and eastern European regions. Significant correlations between SO(4)(2-) and NO(3)(-) are found in air masses coming from the western Europe and North Africa, over the Mediterranean. The highest volume-weighted mean (VWM) of: SO(4)(2-), NH(4)(+) and Mg(2+) are for precipitation from EE-NE while the highest values of VWM of Cl(-) are from WM and of K(+) are from WE-CE. Long-range transport of Sahara dust is confirmed. For better estimation of origins of water-soluble ions in precipitation expanding list of analysis on anions of organic acids, such as HCOO(-), CH(3)COO(-), and C(2)H(2)COO(-), could be indicative of volatile organic compounds emitted by vegetation but also traffic. The chemical composition of precipitation together with a study of air backward trajectories is the proper tool for tracking the long-range transport of water-soluble ions and estimating transboundary pollution.
Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds
NASA Technical Reports Server (NTRS)
Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.
1986-01-01
To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.
Zhou, Xiaoming; Lin, Haiyan; Zhang, Shigang; Ren, Jianwei; Wang, Zhe; Zhang, Yun; Wang, Mansen; Zhang, Qunye
2016-01-01
The rules and mechanisms of seasonal changes in plasma lipid levels, which may be related to annual rhythmicity of incidence and mortality of cardiovascular diseases, are still controversial. The objectives of this study were to study the effects of climatic factors on plasma lipid levels and to preliminarily reveal mechanisms of annual rhythmicity of plasma lipid levels. A longitudinal study was performed using health examination data of 5 consecutive years (47,270 subjects) in Jinan, China. The climate in Jinan is typical temperate continental monsoon climate with huge temperature difference between winter and summer (>30°C). After considering and adjusting those classical lipid-associated risk factors, such as age, gender, diet, exercise, blood pressure, body weight, change of body weight, body mass index, glycemia, alanine aminotransferase, and creatinine, only air temperature could still significantly affect plasma lipid levels among the main climatic factors (humidity, precipitation, and so forth). For men, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was decreased significantly 0.35, 0.18, and 0.06 mmol/L, respectively, whereas triglyceride was increased significantly 0.12 mmol/L for every 10°C increase in air temperature. For women, total cholesterol and high-density lipoprotein cholesterol were decreased notably 0.73 and 0.32 mmol/L, and low-density lipoprotein cholesterol was increased significantly 0.26 mmol/L for every 10°C increase in air temperature, whereas triglyceride was not significantly affected by air temperature. Air temperature is an independent risk factor for plasma lipid levels besides those classical lipid-associated risk factors. The annual air temperature fluctuations might be an important mechanism of the seasonal changes of lipids. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kraus, Michal; Juhásová Šenitková, Ingrid
2017-10-01
Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.
NASA Astrophysics Data System (ADS)
Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew
2016-09-01
Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.
Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping
2016-02-01
An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.
The Effective Mass of a Ball in the Air
ERIC Educational Resources Information Center
Messer, J.; Pantaleone, J.
2010-01-01
The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…
Measurements of dimethyl sulfide and H2S over the western North Atlantic and the tropical Atlantic
NASA Technical Reports Server (NTRS)
Andreae, T. W.; Andreae, M. O.; Bingemer, H. G.; Leck, C.
1993-01-01
Airborne measurements of DMS and H2S were made off the east coast of the United States and over the tropical Atlantic off Brazil. Samples were collected through a fluorinated ethylene propylene Teflon inlet manifold. Dimethyl sulfide (DMS) was preconcentrated onto gold wool and analyzed by gas chromatography/flame photometric detection. H2S was collected on AgNO3-impregnated filters and determined by fluorescence quenching. Use of a new scrubber material (cotton) to remove negative interference on DMS measurements was investigated. Comparison with a Na2CO3/Anakrom scrubber gave good overall agreement. Only under extreme conditions, e.g., on flight 9 (continental air mass, low humidity, high O3, and low DMS values) did Na2CO3 show noticeable loss of DMS compared to cotton. On most flights, especially in marine air masses with high humidity and relatively low O3, the results from both scrubbers agreed well with each other and with other instruments used during the intercalibration. Off the U.S. East Coast, DMS levels showed strong dependence on air mass origin with high values (up to 83 ppt) in marine tropical air masses and low values (10-20 ppt) in continental and polar air. Over the tropical Atlantic, DMS ranged over 20-100 ppt in the mixed layer. Nighttime values were a factor of 1.6-2.3 higher than daytime levels. DMS decreased with altitude to less than 1 ppt at 4000 m. H2S in the mixed layer off the U.S. East Coast ranged from 10 to 200 ppt. Significant influence from terrestrial and pollution sources was evident. H2S in air masses originating over the eastern seaboard was much higher than in continental polar air or over the remote tropical continents. In contrast, over the tropical Atlantic, concentrations were very low (5-10 ppt), typical of truly marine air. Night/day ratios were about 1.4. No significant geographical variability was seen in H2S levels over the tropical Atlantic. The correlation of atmospheric Rn-222 and H2S was significant, with both being higher off the U.S. East Coast than over the tropical Atlantic.
Air-gun signature modelling considering the influence of mechanical structure factors
NASA Astrophysics Data System (ADS)
Li, Guofa; Liu, Zhao; Wang, Jianhua; Cao, Mingqiang
2014-04-01
In marine seismic prospecting, as the air-gun array is usually composed of different types of air-guns, the signature modelling of different air-guns is particularly important to the array design. Different types of air-guns have different mechanical structures, which directly or indirectly affect the signatures. In order to simulate the influence of the mechanical structure, five parameters—the throttling constant, throttling power law exponent, mass release efficiency, fluid viscosity and heat transfer coefficient—are used in signature modelling. Through minimizing the energy relative error between the simulated and the measured signatures by the simulated annealing method, the five optimal parameters can be estimated. The method is tested in a field experiment, and the consistency between the simulated and the measured signatures is improved with the optimal parameters.
Singer, B C; Delp, W W
2018-04-23
The ability to inexpensively monitor PM 2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM 2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m 3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM 2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
40 CFR 49.139 - Rule for non-Title V operating permits.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the Tribal governing body, and the Tribal, State, and local air pollution authorities having... limitation. (C) A description of the production processes and a related flow chart. (D) Identification of...; (ii) Mass balance calculations; (iii) Published, verifiable emission factors that are applicable to...
Dukes, Susan F; Maupin, Genny M; Thomas, Marilyn E; Mortimer, Darcy L
2018-04-01
The US Air Force transports critically ill patients from all over the world, with transport times commonly ranging from 6 to 11 hours. Few outcome measures have been tracked for these patients. Traditional methods to prevent pressure injuries in civilian hospitals are often not feasible in the military transport environment. The incidence rate and risk factors are described of en route-related pressure injuries for patients overseen by the Critical Care Air Transport Team. This retrospective, case-control, medical records review investigated risk factors for pressure injury in patients who developed a pressure injury after their transport flight compared with those with no documented pressure injuries. The pressure injury rate was 4.9%. Between 2008 and 2012, 141 patients in whom pressure injuries developed and who had received care by the team were matched with 141 patients cared for by the team but did not have pressure injury. According to regression analysis, body mass index and 2 or more Critical Care Air Transport Team transports per patient were associated with pressure injury development. Although the pressure injury rate of 4.9% in this cohort of patients is consistent with that reported by civilian critical care units, the rate must be interpreted with caution, because civilian study data frequently represent the entire intensive care unit length of stay. Targeted interventions for patients with increased body mass index and 2 or more critical care air transports per patient may help decrease the development of pressure injury in these patients. ©2018 American Association of Critical-Care Nurses.
NASA Astrophysics Data System (ADS)
Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro
2014-03-01
Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.
A fuel-based approach to estimating motor vehicle exhaust emissions
NASA Astrophysics Data System (ADS)
Singer, Brett Craig
Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories in California appear to understate total exhaust CO and VOC emissions, while overstating the importance of cold start emissions. The fuel-based approach yields robust, independent, and accurate estimates of on-road vehicle emissions. Fuel-based estimates should be used to validate or adjust official vehicle emission inventories before society embarks on new, more costly air pollution control programs.
Air Emissions from Organic Soil Burning on the Coastal Plain of North Carolina
Emissions of trace gases and particles <10 and 2.5 microns aerodynamic diameter (PM10 and PM2.5, respectively) from fires during 2009-2011 on the North Carolina coastal plain were collected and analyzed. Carbon mass balance techniques were used to quantify emission factors (EFs)....
NASA Astrophysics Data System (ADS)
Wang, Zhe; Pan, Zhijuan
2015-11-01
Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.
Air quality implications of the Deepwater Horizon oil spill.
Middlebrook, Ann M; Murphy, Daniel M; Ahmadov, Ravan; Atlas, Elliot L; Bahreini, Roya; Blake, Donald R; Brioude, Jerome; de Gouw, Joost A; Fehsenfeld, Fred C; Frost, Gregory J; Holloway, John S; Lack, Daniel A; Langridge, Justin M; Lueb, Rich A; McKeen, Stuart A; Meagher, James F; Meinardi, Simone; Neuman, J Andrew; Nowak, John B; Parrish, David D; Peischl, Jeff; Perring, Anne E; Pollack, Ilana B; Roberts, James M; Ryerson, Thomas B; Schwarz, Joshua P; Spackman, J Ryan; Warneke, Carsten; Ravishankara, A R
2012-12-11
During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone.
Air quality implications of the Deepwater Horizon oil spill
Middlebrook, Ann M.; Murphy, Daniel M.; Ahmadov, Ravan; Atlas, Elliot L.; Bahreini, Roya; Blake, Donald R.; Brioude, Jerome; de Gouw, Joost A.; Fehsenfeld, Fred C.; Frost, Gregory J.; Holloway, John S.; Lack, Daniel A.; Langridge, Justin M.; Lueb, Rich A.; McKeen, Stuart A.; Meagher, James F.; Meinardi, Simone; Neuman, J. Andrew; Nowak, John B.; Parrish, David D.; Peischl, Jeff; Perring, Anne E.; Pollack, Ilana B.; Roberts, James M.; Ryerson, Thomas B.; Schwarz, Joshua P.; Spackman, J. Ryan; Warneke, Carsten; Ravishankara, A. R.
2012-01-01
During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NOx emissions from the recovery and cleanup operations produced ozone. PMID:22205764
Mass and heat transfer in crushed oil shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, J.F.; Straub, J.S.; Ott, L.L.
1984-04-01
Heat and mass transfer between gases and oil-shale particles are both important for all proposed retorting processes. Past studies of transfer in packed beds, which have disagreed substantially in their results, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse shapes and widely ranging sizes. To resolve these questions, we have made 349 runs in which we measured mass-transfer rates from naphthalene particles of diverse shapes buried in packed beds through which air was passed at room temperature. This technique permits calculation of the mass-transfer coefficient for each activemore » particle in the bed rather than, as in most past studies, for the bed as a whole. The data were analyzed in two ways: (1) by the traditional correlation of Colburn j/sub D/ vs Reynolds number and (2) by multiple regression of the mass-transfer coefficient on air rate, traditional correlation of Colburn j/sub D/ vs Reynolds number and (3) by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: (1) local Reynolds number should be based on active particle size rather than average size for the bed; (2) no appreciable differences were seen between shallow beds and deep ones; (3) mass transfer was 26% faster for spheres and lozenges buried in shale than for all-sphere beds; (4) orientation of lozenges in shale beds has little effect on mass-transfer rate; (5) a useful summarizing equation for either mass or heat transfer in shale beds is log j.epsilon = -.0747 - .6344 log Re + .0592 log/sup 2/Re where j = either j/sub D/ or j/sub H/, the Chilton-Colburn j-factors for mass and heat transfer, Re = the Reynolds number defined for packed beds, and epsilon = the void fraction in the bed. 12 references, 15 figures.« less
Biocatalytic coatings for air pollution control: a proof of concept study on VOC biodegradation.
Estrada, José M; Bernal, Oscar I; Flickinger, Michael C; Muñoz, Raúl; Deshusses, Marc A
2015-02-01
Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control. © 2014 Wiley Periodicals, Inc.
Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds
NASA Astrophysics Data System (ADS)
Mueller, J. A.; Veron, F.
2009-12-01
At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.
NASA Astrophysics Data System (ADS)
Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.
2017-12-01
An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and atmospheric processes.
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay
Hartman, Blayne; Hammond, Douglas E.
1984-01-01
Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.
A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Folmer, Michael; Dunion, Jason
2014-01-01
The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind field expanded and the cloud pattern evolved into an atypical pattern.
A microelectromechanical accelerometer fabricated using printed circuit processing techniques
NASA Astrophysics Data System (ADS)
Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.
2008-01-01
A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.
NASA Astrophysics Data System (ADS)
Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime
The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.
NASA Technical Reports Server (NTRS)
Folmer, M.; Zavodsky, Bradley; Molthan, Andrew
2012-01-01
The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.
Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero
2006-09-01
The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.
Herrington, Jason S
2013-08-20
The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.
Desgrippes, Romain; Lainé, Fabrice; Morcet, Jeff; Perrin, Michèle; Manet, Ghislain; Jezequel, Caroline; Bardou-Jacquet, Edouard; Ropert, Martine; Deugnier, Yves
2013-05-01
An excess of visceral adipose tissue could be involved as a modulator of the penetrance of HFE hemochromatosis since fat mass is associated with overexpression of hepcidin and low transferrin saturation was found to be associated with being overweight in women. This study was aimed at assessing the relationship between body mass index (BMI), a surrogate marker of insulin resistance, and iron burden in HFE hemochromatosis. In all, 877 patients from a cohort of C282Y homozygotes were included in the study when BMI at diagnosis and amount of iron removed (AIR) by phlebotomy were available. No relationship between AIR and BMI was found in men, whereas 15.1% (52/345) of women with AIR <6 g had BMI ≥28 versus 3.9% (2/51) of women with AIR ≥6 g (P = 0.03). At multivariate analysis, BMI was an independent factor negatively associated with AIR (odds ratio: 0.13; 95% confidence interval [CI]: 0.03-0.71) together with serum ferritin, serum transferrin, transferrin saturation, hemoglobin, and alanine aminotransferase. In a control group of 30 C282Y homozygous women, serum hepcidin was significantly higher in overweight (14.3 mmoL/L ± 7.1) than in lean (7.9 mmoL/L ± 4.3) women (P = 0.0005). In C282Y homozygous women, BMI ≥28 kg/m(2) is independently associated with a lower amount of iron removed by phlebotomy. BMI is likely a modulator factor of the phenotypic expression of C282Y homozygosity, likely through an increase of circulating levels of hepcidin. Copyright © 2013 American Association for the Study of Liver Diseases.
Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum
NASA Astrophysics Data System (ADS)
Gläser, M.; Schwartz, R.; Mecke, M.
1991-01-01
The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.
[Seedling index of Salvia miltiorrhiza and its simulation model].
Huang, Shu-Hua; Xu, Fu-Li; Wang, Wei-Ling; Du, Jun-Bo; Ru, Mei; Wang, Jing; Cao, Xian-Yan
2012-10-01
Through the correlation analysis on the quantitative traits and their ratios of Salvia miltiorrhiza seedlings and seedling quality, a series of representative indices reflecting the seedling quality of the plant species were determined, and the seedling index suitable to the S. miltiorrhiza seedlings was ascertained by correlation degree analysis. Meanwhile, based on the relationships between the seedling index and the air temperature, solar radiation and air humidity, a simulation model for the seedling index of S. miltiorrhiza was established. The experimental data of different test plots and planting dates were used to validate the model. The results showed that the root diameter, stem diameter, crown dry mass, root dry mass, and plant dry mass had significant positive relationships with the other traits, and could be used as the indicators of the seedling's health. The seedling index of S. miltiorrhiza could be calculated by (stem diameter/root diameter + root dry mass/crown dry mass) x plant dry mass. The stem diameter, root dry mass, crown dry mass and plant dry mass had higher correlations with the seedling index, and thus, the seedling index determined by these indicators could better reflect the seedling's quality. The coefficient of determination (R2) between the predicted and measured values based on 1:1 line was 0.95, and the root mean squared error (RMSE) was 0.15, indicating that the model established in this study could precisely reflect the quantitative relationships between the seedling index of S. miltiorrhiza and the environmental factors.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Government Style as a Factor in Information Flow: Television Programming in Argentina, l979-l988.
ERIC Educational Resources Information Center
John, Jeffrey Alan
Noting that Argentina's recent history is particularly useful for analysis of the varying effects that differing government styles can have on a single mass communication system, a study compared Argentine (specifically Buenos Aires) television's 1979 programming schedule, prepared during a military dictatorship, with recent schedules prepared…
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
Microorganisms of the Upper Atmosphere
Fulton, John D.; Mitchell, Roland B.
1966-01-01
The viable micropopulation found, at altitude over a city, in a land air mass was significantly higher than that found in a marine-influenced air mass. The percentage distribution of bacteria and fungi was approximately equal in both types of air masses. This indicates that, under the conditions of the experiment, the marine air mass was influenced by the land area over which it traveled during passage from its source to the sampling area. Activities taking place within the city significantly increased the micropopulation at altitude. This increase was quantitatively so small that it was not identifiable when the micropopulation moving into the city was high—as in a land air mass—but was recognizable when the micropopulation was low—as in a marine-influenced air mass. The modification of the micropopulation at altitude by temperature inversions was shown. PMID:5959858
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary
2013-01-01
AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.
Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin
2014-08-01
Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.
Validation of Test Methods for Air Leak Rate Verification of Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Oravec, Heather Ann; Daniels, Christopher C.; Mather, Janice L.
2017-01-01
As deep space exploration continues to be the goal of NASAs human spaceflight program, verification of the performance of spaceflight hardware becomes increasingly critical. Suitable test methods for verifying the leak rate of sealing systems are identified in program qualification testing requirements. One acceptable method for verifying the air leak rate of gas pressure seals is the tracer gas leak detector method. In this method, a tracer gas (commonly helium) leaks past the test seal and is transported to the leak detector where the leak rate is quantified. To predict the air leak rate, a conversion factor of helium-to-air is applied depending on the magnitude of the helium flow rate. The conversion factor is based on either the molecular mass ratio or the ratio of the dynamic viscosities. The current work was aimed at validating this approach for permeation-level leak rates using a series of tests with a silicone elastomer O-ring. An established pressure decay method with constant differential pressure was used to evaluate both the air and helium leak rates of the O-ring under similar temperature and pressure conditions. The results from the pressure decay tests showed, for the elastomer O-ring, that neither the molecular flow nor the viscous flow helium-to-air conversion factors were applicable. Leak rate tests were also performed using nitrogen and argon as the test gas. Molecular mass and viscosity based helium-to-test gas conversion factors were applied, but did not correctly predict the measured leak rates of either gas. To further this study, the effect of pressure boundary conditions was investigated. Often, pressure decay leak rate tests are performed at a differential pressure of 101.3 kPa with atmospheric pressure on the downstream side of the test seal. In space applications, the differential pressure is similar, but with vacuum as the downstream pressure. The same O-ring was tested at four unique differential pressures ranging from 34.5 to 137.9 kPa. Up to six combinations of upstream and downstream pressures for each differential pressure were compared. For a given differential pressure, the various combinations of upstream and downstream dry air pressures did not significantly affect the leak rate. As expected, the leak rate of the O-ring increased with increasing differential pressure. The results suggested that the current leak test pressure conditions, used to verify spacecraft sealing systems with elastomer seals, produce accurate values even though the boundary conditions do not model the space application.
NASA Astrophysics Data System (ADS)
Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang
2018-01-01
Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated organic aerosol (OOA) factors: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The MO-OOA dominated during the pre-monsoon period, whereas LO-OOA dominated during monsoon. The sensitivity of air mass transport during pre-monsoon with synoptic process was also evaluated with a 3-D chemical transport model.
Associations between ozone and morbidity using the Spatial Synoptic Classification system
2011-01-01
Background Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina. Methods Daily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. Results Ozone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses. Conclusions Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations. PMID:21609456
Wake Turbulence: An Obstacle to Increased Air Traffic Capacity
NASA Technical Reports Server (NTRS)
2008-01-01
Wingtip vortices were first described by British aerodynamicist F.W. Lanchester in 1907. A product of lift on a finite-span wing, these counterrotating masses of air trail behind an aircraft, gradually diffusing while convecting downward and moving about under mutual induction and the influence of wind and stratification. Should a smaller aircraft happen to be following the first aircraft, it could be buffeted and even flipped if it flew into the vortex, with dangerous consequences. Given the amount of air traffic in 1907, the wake vortex hazard was not initially much of a concern. The demand for air transportation continues to increase, and it is estimated that demand could double or even triple by 2025. One factor in the capacity of the air transportation system is wake turbulence and the consequent separation distances that must be maintained between aircraft to ensure safety.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Huan; Ortega, John; Smith, James N.
Particle Investigations at a Northern Ozarks Tower: NOx, Oxidant, Isoprene Research (PINOT-NOIR) were conducted in a Missouri forest dominated by isoprene emissions, from May to October 2012. This study presents results of new particle formation (NPF) and the growth of new particles to cloud condensation nuclei (CCN)-active sizes (~100 nm) observed from this field campaign. The measured sub-5 nm particles were up to ~20000 cm-3 during a typical NPF event. Nucleation rates J1 were relatively high (11.0±10.6 cm-3s-1), and one order of magnitude higher than formation rates of 5 nm particles (J5). Sub-5 nm particle events were observed on 64%more » of the measurement days, with a high preference in biogenic volatile organic compounds (BVOCs)- and SO2-poor northwesterly (90%) air masses than in BVOCs-rich southerly air masses (13%). About 80% of sub-5 nm particle events led to the further growth. While high temperatures and high aerosol loadings in the southerly air masses were not favorable for nucleation, high BVOCs in the southerly air masses facilitated the growth of new particles to CCN-active sizes. In overall, 0.4-9.4% of the sub-5 nm particles grew to CCN-active sizes within a NPF event. During a regional NPF event period that took place consecutively over several days, concentrations of CCN size particles increased by a factor of 5 in average. This enhanced production of CCN particles from new particles was commonly observed during all 13 regional NPF events observed during the campaign.« less
Interrelationships Between Walkability, Air Pollution, Greenness, and Body Mass Index.
James, Peter; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Banay, Rachel F; Kloog, Itai; Laden, Francine
2017-11-01
Recent studies have linked urban environmental factors and body mass index (BMI); however, such factors are often examined in isolation, ignoring correlations across exposures. Using data on Nurses' Health Study participants living in the Northeastern United States in 2006, we estimated associations between neighborhood walkability (a composite of population density, street connectivity, and business access), greenness (from satellite imagery), and ambient air pollution (from satellite-based spatiotemporally resolved PM2.5 predictions and weighted monthly average concentrations of NO2 from up to five nearest monitors) and self-reported BMI using generalized additive models, allowing for deviations from linearity using penalized splines. Among 23,435 women aged 60-87 years, we observed nonlinear associations between walkability and BMI and between PM2.5 and BMI in single-exposure models adjusted for age, race, and individual- and area-level socioeconomic status. When modeling all exposures simultaneously, only the association between walkability and BMI remained nonlinear and nonmonotonic. Increasing walkability was associated with increasing BMI at lower levels of walkability (walkability index <1.8), while increasing walkability was linked to lower BMI in areas of higher walkability (walkability index >1.8). A 10 percentile increase in walkability, right above 1.8 was associated with a 0.84% decrease in log BMI. The relationship between walkability and BMI existed only among younger participants (<71 years old). Neighborhood walkability was nonlinearly linked to lower BMI independent of air pollution and greenness. Our findings highlight the importance of accounting for nonlinear confounding by interrelated urban environmental factors when investigating associations between the environment and BMI.
Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry
NASA Astrophysics Data System (ADS)
Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro
2011-11-01
Backscatter factors, B, and mass energy-absorption coefficient ratios, (μen/ρ)w, air, for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μen/ρ)w, air were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μen/ρ)w, air for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.
Mass measurement of 1 kg silicon spheres to establish a density standard
NASA Astrophysics Data System (ADS)
Mizushima, S.; Ueki, M.; Fujii, K.
2004-04-01
Air buoyancy causes a significant systematic effect in precision mass determination of 1 kg silicon spheres. In order to correct this effect accurately, mass measurement of the silicon sphere was conducted using buoyancy artefacts; additionally, in order to stabilize atmospheric conditions, we used a vacuum chamber in which a mass comparator had been installed. The silicon sphere was also weighed in vacuum to verify the air buoyancy correction. Mass differences measured in air and in vacuum showed good agreement with each other in spite of the desorption effect from weight surfaces. Furthermore, the result of weighing under vacuum conditions demonstrated better repeatability than that obtained in air.
Resolving the Aerosol Piece of the Global Climate Picture
NASA Astrophysics Data System (ADS)
Kahn, R. A.
2017-12-01
Factors affecting our ability to calculate climate forcing and estimate model predictive skill include direct radiative effects of aerosols and their indirect effects on clouds. Several decades of Earth-observing satellite observations have produced a global aerosol column-amount (AOD) record, but an aerosol microphysical property record required for climate and many air quality applications is lacking. Surface-based photometers offer qualitative aerosol-type classification, and several space-based instruments map aerosol air-mass types under favorable conditions. However, aerosol hygroscopicity, mass extinction efficiency (MEE), and quantitative light absorption, must be obtained from in situ measurements. Completing the aerosol piece of the climate picture requires three elements: (1) continuing global AOD and qualitative type mapping from space-based, multi-angle imagers and aerosol vertical distribution from near-source stereo imaging and downwind lidar, (2) systematic, quantitative in situ observations of particle properties unobtainable from space, and (3) continuing transport modeling to connect observations to sources, and extrapolate limited sampling in space and time. At present, the biggest challenges to producing the needed aerosol data record are: filling gaps in particle property observations, maintaining global observing capabilities, and putting the pieces together. Obtaining the PDFs of key particle properties, adequately sampled, is now the leading observational deficiency. One simplifying factor is that, for a given aerosol source and season, aerosol amounts often vary, but particle properties tend to be repeatable. SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses), a modest aircraft payload deployed frequently could fill this gap, adding value to the entire satellite data record, improving aerosol property assumptions in retrieval algorithms, and providing MEEs to translate between remote-sensing optical constraints and aerosol mass book-kept in climate models [Kahn et al., BAMS 2017]. This will also improve connections between remote-sensing particle types and those defined in models. The third challenge, maintaining global observing capabilities, requires continued community effort and good budgetary fortune.
The fabrication of plastic cages for suspension in mass air flow racks.
Nielsen, F H; Bailey, B
1979-08-01
A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.
NASA Astrophysics Data System (ADS)
AL, R.
2016-12-01
It has been widely recognized that western Himalayan region depends heavily on glacier and snow melt for its water needs. This is true especially for the Chenab sub-basin and more generally for other sub-catchments of the mighty Indus catering to the water demands of millions of stake holders who depend on this water resource. However, there are very few studies available to understand high altitude glaciated catchments, the climatic controls over their flow regimes, and their dependency on glacier mass balances, mainly because of poor access. Hence, the proglacial stream discharges from Chhota Shigri Glacier, a representative glacier of western Himalayan region has been analyzed for understanding the impact of rising air temperatures and highly variable summer precipitation events on discharges that are sourced majorly from snow melt and glacier wastage. This study, for the first time attempts to understand the factors influencing the interannual, subseasonal, and the diurnal variability observed in this representative catchment over four ablation seasons (2010-2013), by monitoring solar radiation, air temperature, summer precipitation, albedo and transient snow cover. The proglacial discharge is governed by air temperatures and albedo-enhancing summer precipitation events, which also enhances transient snow cover. While, the positive mass balance years gave rise to lesser proglacial discharges in comparison to negative mass balance years, lesser winter accumulation was compensated by the lower ablation resulting summer snowfall events in some years. While rising summer air temperatures give rise to glacier wastage, the role of melting transient snow cover on stream discharge is highly significant, especially for positive mass balance years. The pronounced interannual variations and the decreased proglacial discharge in comparison to 1980s suggest that Chhota Shigri Glacier is possibly wasting its way to reach equilibrium to the changed climatic conditions of the 21st century; however these findings need to be corroborated with runoff modeling.
Flight-determined characteristics of an air intake system on an F-111A airplane
NASA Technical Reports Server (NTRS)
Hughes, D. L.; Johnson, H. J.
1972-01-01
Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.
Hicken, Margaret T.; Adar, Sara D.; Hajat, Anjum; Kershaw, Kiarri N.; Do, D. Phuong; Barr, R. Graham; Kaufman, Joel D; Diez Roux, Ana V.
2016-01-01
Background Social factors may enhance health effects of air pollution, yet empirical support is inconsistent. The interaction of social and environmental factors may only be evident with long-term exposures and outcomes that reflect long-term disease development Methods We used cardiac magnetic resonance imaging data from the Multi-Ethnic Study of Atherosclerosis to assess left-ventricular mass index (LVMI) and left-ventricular ejection fraction (LVEF). We assigned residential concentrations of fine particulate matter (PM2.5), oxides of nitrogen (NOx), and nitrogen dioxide (NO2) in the year 2000 to each participant in 2000 using prediction models. We examined modifying roles of four measures of adversity: race/ethnicity, racial/ethnic residential segregation, and socioeconomic status (SES) and psychosocial adversity as composite indices on the association between air pollution and LVMI or LVEF. Results Compared to whites, blacks showed a stronger adjusted association between air pollution and LVMI. For example, for each 5 μg/m3 greater PM2.5 level, whites showed a 1.0 g/m2 greater LVMI (95%CI: -1.3, 3.1) while blacks showed an additional 4.0 g/m2 greater LVMI (95%CI: 0.3, 8.2). Results were similar for NOx and NO2 with regard to black race and LVMI. However, we found no evidence of a modifying role of other social factors or ethnic groups. Furthermore, we found no evidence of a modifying role for any social factors or racial/ethnic groups on the association between air pollution and LVEF. Conclusions Our results suggest that racial group membership may modify the association between air pollution and cardiovascular disease. PMID:26618771
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
NASA Astrophysics Data System (ADS)
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.
2016-04-01
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. Potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol-humidity relationship.
Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime
Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...
2016-04-27
There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less
Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Karssenberg, Derek; Houthuijs, Danny; van den Brink, Carolien; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard
2017-07-01
Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM 10 , PM 2.5 , PM 2.5-10 , PM 2.5 absorbance, OP DTT, OP ESR and NO 2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study
Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue
2011-01-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228
Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.
Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue
2011-06-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.
Performance Characterization of RaPToRS Systems
NASA Astrophysics Data System (ADS)
Shibata, K.; Krieger, M.; Fallica, J.; Henchen, R.; Pogozelski, E.; Padalino, S.; SUNY Geneseo Collaboration; LaboratoryLaser Energetics at University of Rochester Collaboration
2011-10-01
The Rapid Pneumatic Transport of Radioactive Samples (RaPToRS) system can quickly and efficiently move radioactive materials from their activation site to a counting station. Facilities such as the NIF and LLE are considering these systems while NRL is currently using one. The system is essentially a 10 cm diameter pneumatic tube with a cylindrical sample carrier. The performance of the system depends on many factors, including the mass of the carrier, length of the tube, angle and difference in height of the tube's endpoints, the carrier's physical design, and the number, type, and distribution of blowers attached to the tube. These factors have been systematically examined to develop the fastest and most reliable system. The most significant factors are the mass and the vertical travel of the carrier. When the carrier mass is low, moving air supports the carrier in the tube, resulting in low friction. The terminal velocity ranges from 13.5 to 2.5 m/s for masses varying from 1 kg to 3 kg. Using a single 1100 W blower, the initial force exerted on the carrier was 11.3 N. This work was supported in part by the US Department of Energy through the LLE.
NASA Astrophysics Data System (ADS)
Xu, J.; Zhang, Q.; Shi, J.; Ge, X.; Xie, C.; Wang, J.
2016-12-01
Tibetan Plateau, the biggest and highest plateau on the Earth, is an ideal location for studying long range transport of air pollution due to the minimum of local emission. Recent studies in this region have revealed a significant influx of air pollution from south Asia during pre-monsoon period because of the favorable atmospheric circulation and less precipitation. In order to characterize the chemical composition of aerosol particles in this pristine area and elucidate the sources and optical properties of transported aerosol pollutants, we conducted an intensive field study during June 2015 at a high elevation station (4730 m a.s.l) on the central Tibetan Plateau by deploying a suite of advanced instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a nephelometer, and a multi-angle absorption photometer (MAAP). The average mass concentration of submicron particular matter (PM1) for the whole campaign period was 1.85 µg m-3, with organics accounting for 64% of the mass, followed by sulfate (16%), black carbon (9%), ammonium (8%), and nitrate (3%). The mass concentrations and chemical properties of PM1 were significantly different between pre-monsoon and monsoon periods. Elevated aerosol pollution episodes were observed during pre-monsoon period, while aerosol concentrations were persistently low during monsoon period. Aerosol composition was generally similar during the whole campaign period. However, organic aerosol was more oxidized during premonsoon period with an average atomic oxygen-to-carbon (O/C) ratio of = 0.7 compared to O/C = 0.52 during monsoon period. HYSPLIT trajectory calculations revealed that most of the arriving air masses traveled long distances (>1,000 km) and went through the northwest of India during premonsoon period. Positive matrix factorization of the HR-ToF-AMS spectra of organic aerosol identified two oxygenated organic aerosol (OOA) factors - a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). Further, the temporal variation of aerosol optical properties including aerosol extinction, scattering, absorption coefficients and single scattering, and chemical impacts on these optical properties are statistically evaluated.
Kruger, Rozanne; De Bray, Jacqui G.; Beck, Kathryn L.; Conlon, Cathryn A.; Stonehouse, Welma
2016-01-01
Obesity is a leading cause of morbidity and mortality, yet is preventable. This study aimed to investigate associations between body mass index, body fat percentage and obesity-related eating behaviors. Women (n = 116; 18–44 years) were measured for height, weight and body fat using air displacement plethysmography (BodPod). Women completed the validated Three Factor Eating Questionnaire to assess their eating behaviors using Restraint, Disinhibition and Hunger eating factor categories and sub-categories. The eating behavior data were analyzed for associations with body mass index and body fat percentage, and comparisons across body mass index and body fat percentage categories (< vs. ≥25 kg/m2; < vs. ≥30%, respectively). Women had a mean (standard deviation) body mass index of 23.4 (3.5) kg/m2, and body fat percentage of 30.5 (7.6)%. Disinhibition was positively associated with both body mass index (p < 0.001) and body fat percentage (p < 0.001). Emotional Disinhibition was positively associated with body fat percentage (p < 0.028). Women with low Restraint and high Disinhibition had significantly higher body mass index and body fat percentage than women with high Restraint and low Disinhibition. Disinhibition seems likely to be an important contributor to obesity. Tailored intervention strategies focused on counteracting Disinhibition should be a key target area for managing weight/fat gain. PMID:27347997
NASA Astrophysics Data System (ADS)
Ennis, G.; Sievering, H.
1990-06-01
During the 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) joint effort, research was conducted to determine elemental concentrations in atmospheric aerosol particles near Bermuda, to construct a three-level (15, 150, and 2600 m ASL) vertical profile of these concentrations, and to ascertain the source of the particles. Samples were collected by the NOAA King Air aircraft and NOAA ship Mt. Mitchell on July 24-28, 1988. Concentration determinations were made for 16 elements through the use of an X ray fluorescence instrument designed for analysis of small-mass samples. A layering effect was found; concentrations of several elements at 150 m were more than twice their respective concentrations at 15 m and 2600 m. Enrichment factors, V/Mn ratio, and correlations between concentrations suggest a Saharan mineral source, despite air mass back trajectories that show no direct continental input for up to 10 days prior to sample collection. Estimated total mineral aerosol concentrations at 15 m, 150 m, and 2600 m are 1.5, 4.1, and 2.1 μg m-3.
Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J
2017-06-01
This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM 2.5 ) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM 2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM 2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM 2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM 2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM 2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laurent, Olivier; Hu, Jianlin; Li, Lianfa; Cockburn, Myles; Escobedo, Loraine; Kleeman, Michael J; Wu, Jun
2014-10-01
Low birth weight (LBW, <2500 g) has been associated with exposure to air pollution, but it is still unclear which sources or components of air pollution might be in play. The association between ultrafine particles and LBW has never been studied. To study the relationships between LBW in term born infants and exposure to particles by size fraction, source and chemical composition, and complementary components of air pollution in Los Angeles County (California, USA) over the period 2001-2008. Birth certificates (n=960,945) were geocoded to maternal residence. Primary particulate matter (PM) concentrations by source and composition were modeled. Measured fine PM, nitrogen dioxide and ozone concentrations were interpolated using empirical Bayesian kriging. Traffic indices were estimated. Associations between LBW and air pollution metrics were examined using generalized additive models, adjusting for maternal age, parity, race/ethnicity, education, neighborhood income, gestational age and infant sex. Increased LBW risks were associated with the mass of primary fine and ultrafine PM, with several major sources (especially gasoline, wood burning and commercial meat cooking) of primary PM, and chemical species in primary PM (elemental and organic carbon, potassium, iron, chromium, nickel, and titanium but not lead or arsenic). Increased LBW risks were also associated with total fine PM mass, nitrogen dioxide and local traffic indices (especially within 50 m from home), but not with ozone. Stronger associations were observed in infants born to women with low socioeconomic status, chronic hypertension, diabetes and a high body mass index. This study supports previously reported associations between traffic-related pollutants and LBW and suggests other pollution sources and components, including ultrafine particles, as possible risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Factors Controlling the Distribution of Atmospheric Mercury in the East Asian Free Troposphere
NASA Astrophysics Data System (ADS)
Sheu, G.; Lee, C.; Lin, N.; Wang, J.; Ouyang, C.
2008-12-01
Taiwan is located to the downwind side of both East and Southeast Asia, which are the major anthropogenic mercury (Hg) source region worldwide. Also, it has been suggested that mountain-top monitoring sites, which are frequently in the free troposphere, are essential to the understanding of the global Hg transport. Accordingly, continuous measurements of atmospheric Hg have been conducting at Lulin Atmospheric Background Station (LABS, 2862 m a.s.l.) in Taiwan since April 13, 2006 to study the trans-boundary transport and transformation of Hg in the free troposphere. Three types of atmospheric Hg, including gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg), are measured using the Tekran 2537A/1130/1135 speciation system. Diurnal variations in the concentrations of GEM, RGM, ozone, and water vapor (WV) mixing ratio indicated the influence of boundary layer air in daytime and the subsidence of free tropospheric air masses from higher altitudes at night. Seasonal variation in GEM concentrations was evident with elevated concentrations usually observed between fall and spring when air masses were more or less under the influence of Asian continent. Low summer GEM values were associated with marine air masses. Spikes of RGM were frequently detected between midnight and early morning with concurrent decreases in GEM and WV mixing ratio and increases in ozone concentrations, suggesting the oxidation of GEM and formation of RGM in free troposphere. Concentrations of PHg were usually low; however, elevated concentrations were detected in spring when the Southeast Asian biomass burning plumes affected the LABS. Analysis of the collected data indicate that at LABS the distribution of atmospheric Hg is dynamically controlled by background atmosphere, exchange and mixing of free troposphere/boundary layer air, chemical transformation, and long-range transport from East and Southeast Asia.
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-07-01
This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brownian relaxation of an inelastic sphere in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, G. A., E-mail: gab@gab.com.au
2016-06-15
The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at sea level. While the gas-surface interaction model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the air to an initially stationary sphere as it acquires Brownian motion.more » Individual particle trajectories vary wildly, but a clear relaxation process emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and air, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average air molecule mass and the Knudsen number, which is the ratio of the mean free path in the air to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.« less
Coulibaly, Souleymane; Minami, Hiroki; Abe, Maho; Hasei, Tomohiro; Sera, Nobuyuki; Yamamoto, Shigekazu; Funasaka, Kunihiro; Asakawa, Daichi; Watanabe, Masanari; Honda, Naoko; Wakabayashi, Keiji; Watanabe, Tetsushi
2015-01-01
To clarify the seasonal fluctuations in air pollution and the effect of long-range transport, we collected airborne particles (n=118) at Dazaifu in Fukuoka, Japan, from June 2012 to May 2013 and measured Pb and SO4(2-), which are indicators of the long-range transport of anthropogenic air pollutants, as well as their mutagenicity, and other factors. The levels of airborne particles, Pb, and SO4(2-) were very high on March 4, 8, 9, and 19, and May 13, 21, and 22, 2013. The backward trajectories indicated that air masses had arrived from the Gobi Desert and northern China on those days. The mutagenicity of airborne particles was examined using the Ames test on Salmonella typhimurium YG1024. Highly mutagenic airborne particles were mostly collected in winter, and most of them showed high activity both with and without S9 mix. High levels of polycyclic aromatic hydrocarbons (PAHs) were found in many samples that showed high mutagenicity. For the samples collected on January 30, February 21, and March 4, the levels of Pb, SO4(2-), PAHs, and mutagenicity were high, and the backward trajectories indicated that air masses present on those days had passed through northern or central China. The Japan Meteorological Agency registered Asian dust events at Fukuoka on March 8, 9, and 19, 2013. The results of the present study suggest that high levels of anthropogenic air pollutants were transported with Asian dust. Similarly, long-range transport of air pollutants including mutagens occurred on days when Asian dust events were not registered.
Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S
2010-08-01
A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.
The effect of fuel-to-air ratio on burner-rig hot corrosion
NASA Technical Reports Server (NTRS)
Deadmore, D. L.; Lowell, C. E.; Kohl, F. J.
1978-01-01
Samples of a cobalt-base alloy, Mar M-509, were subjected to hot corrosion in a Mach-0.3 burner rig. The corrodent was NaCl added as an aqueous solution to the combustion products of a sulfur-containing Jet-A fuel. The metal temperature was fixed at 900 C. The extent of hot corrosion increased by a factor of three as the fuel-to-air mass ratio was increased from 0.033 to 0.050. Because the depositing salt was always Na2SO4, the increased attack appeared to be related to the gas composition.
NASA Astrophysics Data System (ADS)
Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.
2001-12-01
As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html
The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils.
McLachlan, Michael S; Czub, Gertje; Wania, Frank
2002-11-15
Gaseous exchange between surface soil and the atmosphere is an important process in the environmental fate of many chemicals. It was hypothesized that this process is influenced by vertical transport of chemicals sorbed to soil particles. Vertical sorbed phase transport in surface soils occurs by many processes such as bioturbation, cryoturbation, and erosion into cracks formed by soil drying. The solution of the advection/diffusion equation proposed by Jury et al. to describe organic chemical fate in a uniformly contaminated surface soil was modified to include vertical sorbed phase transport This process was modeled using a sorbed phase diffusion coefficient, the value of which was derived from soil carbon mass balances in the literature. The effective diffusivity of the chemical in a typical soil was greater in the modified model than in the model without sorbed phase transport for compounds with log K(OW) > 2 and log K(OA) > 6. Within this chemical partitioning space, the rate of volatilization from the surface soil was larger in the modified model than in the original model by up to a factor of 65. The volatilization rate was insensitive to the value of the sorbed phase diffusion coefficient throughout much of this chemical partitioning space, indicating that the surface soil layer was essentially well-mixed and that the mass transfer coefficient was determined by diffusion through the atmospheric boundary layer only. When this process was included in a non-steady-state regional multimedia chemical fate model running with a generic emissions scenario to air, the predicted soil concentrations increased by upto a factor of 25,whilethe air concentrations decreased by as much as a factor of approximately 3. Vertical sorbed phase transport in the soil thus has a major impact on predicted air and soil concentrations, the state of equilibrium, and the direction and magnitude of the chemical flux between air and soil. It is a key process influencing the environmental fate of persistent organic pollutants (POPs).
NASA Technical Reports Server (NTRS)
Smeyak, Gerald P.
1996-01-01
Because of profound changes in government and the space program, this may be an ideal time to evaluate MSFC's Public Affairs television efforts. The changes are continued downsizing of government programs; reduction in research and development; changes in the space program from periodic manned launches to a full-time presence in space with Space Station; and greater emphasis on science and communicating science information. At the same time that NASA is undergoing change, the media and society are also undergoing substantial upheaval. Twenty-five years ago, the three main over-the-air television networks (ABC, CBS and NBC) had a 93 share of the television audience. We now have four popular over-the-air networks (ABC, CBS, NBC and Fox) who maintain a 52 percent share of the television audience. Technological development, competition, and changing consumer tastes have created specialized media and audiences. This media fragmentation is part of a normal maturation cycle of use or adoption. While phases in the cycle vary in length due to many factors, the cycle has been consistent and reflects patterns of adoption. The cycle is: (1) Elite Media usage, (2) Popular or Mass Media usage, and (3) Specialized Media usage. Another factor that affects the media development and adoption cycle is the creation of new and competing mass and personal mediums. While television remains the dominant and most popular mass medium, it is declining and we see (via cable television) specialized networks catering to small audience segments. Because of changing technology and consumer behavior, we may not see a dominant mass media like television again.
NASA Astrophysics Data System (ADS)
Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong
2018-01-01
The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the following summer by using the data available online in winter.
Volatile and semivolatile organic compounds in laboratory ...
Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire
NASA Astrophysics Data System (ADS)
Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.
2016-04-01
The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood becomes more decomposed. Our results provide quantitative experimental evidence for how several key abiotic and biotic factors, especially moisture content and the key underlying trait wood density, as well as their interactions, together drive coarse wood carbon turnover through fire. Our experimental data on coarse wood behavior and gas efflux during fire will help to improve the predictive power of global vegetation climate models on dead wood turnover and its feedback to climate.
On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina
2017-10-01
This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.
NASA Astrophysics Data System (ADS)
Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne
2015-04-01
During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground level were transported until Europe at rather high altitudes. This is consistent with 137Cs activity levels and 133Xe observations performed at the tropopause level thanks to aircraft samples over Germany and Switzerland (Estier and Steinmann). This also validates dispersion model computation according to which the Fukushima-labeled air masses were transported to Europe above 5500 m a.s.l. Conclusions : High altitude locations are on 'sentry duty' for radioactive monitoring and cross-border spreading of a contaminated plume. In this sense they can provide useful information on the vertical spreading of radionuclides, reveal arrival times over a given region and make it possible to explain ground deposition levels as a result of interactions of cloud droplets or rain drops with aerosols at high altitude. Beside non-homogeneities encountered on the European scale at lowland locations, this study shows that 137Cs peak activity levels regularly decreased between about 3500 m and less than 1000 m a.s.l. In addition field measurements confirm that air masses travelled at high altitude and that the 137Cs peaks were due to air masses coming from high tropospheric levels. This study also highlights the need to reinforce high-altitude aerosol sampling during emergency situations. This will make it possible to specify the dispersion conditions for modeling purposes and help explaining simulation and observation discrepancies.
NASA Astrophysics Data System (ADS)
Shon, Z.-H.; Madronich, S.; Song, S.-K.; Flocke, F. M.; Knapp, D. J.; Anderson, R. S.; Shetter, R. E.; Cantrell, C. A.; Hall, S. R.; Tie, X.
2008-12-01
The NO-NO2 system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). The air masses were categorized into 5 groups based on combinations of macroscopic observations, geographical location, meteorological parameters, models, and observations of trace gases: boundary layer (labeled as "BL"), biomass burning ("BB"), free troposphere (continental, "FTCO" and marine, "FTMA"), and Tula industrial complex ("TIC"). In general, NO2/NO ratios in different air masses are near photostationary state. Analysis of this ratio can be useful for testing current understanding of tropospheric chemistry. The ozone production efficiency (OPE) for the 5 air mass categories ranged from 4.5 (TIC) to 8.5 (FTMA), consistent with photochemical aging of air masses exiting the Mexico City Metropolitan Area.
NASA Astrophysics Data System (ADS)
Zhang, Yangmei; Wang, Yaqiang; Zhang, Xiaoye; Shen, Xiaojing; Sun, Junying; Wu, Lingyan; Zhang, Zhouxiang; Che, Haochi
2018-02-01
Air pollution is a current global concern. The heavy air pollution episodes (HPEs) in Beijing in December 2016 severely influenced visibility and public health. This study aims to survey the chemical compositions, sources, and formation processes of the HPEs. An aerodyne quadruple aerosol mass spectrometer (Q-AMS) was utilized to measure the non-refractory PM1 (NR-PM1) mass concentration and size distributions of the main chemical components including organics, sulfate, nitrate, ammonium, and chloride in situ during 15-23 December 2016. The NR-PM1 mass concentration was found to increase from 6 to 188 μg m-3 within 5 days. During the most serious polluted episode, the PM1 mass concentration was about 2.6 times that during the first pollution stage and even 40 times that of the clean days. The formation rates of PM2.5 in the five pollution stages were 26, 22, 22, 32, and 67 μg m-3 h-1, respectively. Organics and nitrate occupied the largest proportion in the polluted episodes, whereas organics and sulfate dominated the submicron aerosol during the clean days. The size distribution of organics is always broader than those of other species, especially in the clean episodes. The peak sizes of the interested species grew gradually during different HPEs. Aqueous reaction might be important in forming sulfate and chloride, and nitrate was formed via oxidization and condensation processes. PMF (positive matrix factorization) analysis on AMS mass spectra was employed to separate the organics into different subtypes. Two types of secondary organic aerosol with different degrees of oxidation consisted of 43% of total organics. By contrast, primary organics from cooking, coal combustion, and traffic emissions comprised 57% of the organic aerosols during the HPEs.
Aerosol optical properties over the midcontinental United States
NASA Technical Reports Server (NTRS)
Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.
1992-01-01
Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.
NASA Astrophysics Data System (ADS)
Daellenbach, Kaspar R.; El-Haddad, Imad; Karvonen, Lassi; Vlachou, Athanasia; Corbin, Joel C.; Slowik, Jay G.; Heringa, Maarten F.; Bruns, Emily A.; Luedin, Samuel M.; Jaffrezo, Jean-Luc; Szidat, Sönke; Piazzalunga, Andrea; Gonzalez, Raquel; Fermo, Paola; Pflueger, Valentin; Vogel, Guido; Baltensperger, Urs; Prévôt, André S. H.
2018-02-01
We assess the benefits of offline laser-desorption/ionization mass spectrometry in understanding ambient particulate matter (PM) sources. The technique was optimized for measuring PM collected on quartz-fiber filters using silver nitrate as an internal standard for m/z calibration. This is the first application of this technique to samples collected at nine sites in central Europe throughout the entire year of 2013 (819 samples). Different PM sources were identified by positive matrix factorization (PMF) including also concomitant measurements (such as NOx, levoglucosan, and temperature). By comparison to reference mass spectral signatures from laboratory wood burning experiments as well as samples from a traffic tunnel, three biomass burning factors and two traffic factors were identified. The wood burning factors could be linked to the burning conditions; the factors related to inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. The traffic factors were identified as primary tailpipe exhaust and most possibly aged/secondary traffic emissions. The latter attribution was supported by radiocarbon analyses of both the organic and elemental carbon. Besides these sources, factors related to secondary organic aerosol were also separated. The contribution of the wood burning emissions based on LDI-PMF (laser-desorption/ionization PMF) correlates well with that based on AMS-PMF (aerosol mass spectrometer PMF) analyses, while the comparison between the two techniques for other components is more complex.
Air Pressure Controlled Mass Measurement System
NASA Astrophysics Data System (ADS)
Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei
Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.
Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair
ERIC Educational Resources Information Center
Chudinov, Peter Sergey
2010-01-01
The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…
Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors
NASA Astrophysics Data System (ADS)
De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas
2012-11-01
Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.
NASA Astrophysics Data System (ADS)
Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.
2015-07-01
Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.
van Dijk, Eduard; Kolkman-Deurloo, Inger-Karine K; Damen, Patricia M G
2004-10-01
Different methods exist to determine the air kerma calibration factor of an ionization chamber for the spectrum of a 192Ir high-dose-rate (HDR) or pulsed-dose-rate (PDR) source. An analysis of two methods to obtain such a calibration factor was performed: (i) the method recommended by [Goetsch et al., Med. Phys. 18, 462-467 (1991)] and (ii) the method employed by the Dutch national standards institute NMi [Petersen et al., Report S-EI-94.01 (NMi, Delft, The Netherlands, 1994)]. This analysis showed a systematic difference on the order of 1% in the determination of the strength of 192Ir HDR and PDR sources depending on the method used for determining the air kerma calibration factor. The definitive significance of the difference between these methods can only be addressed after performing an accurate analysis of the associated uncertainties. For an NE 2561 (or equivalent) ionization chamber and an in-air jig, a typical uncertainty budget of 0.94% was found with the NMi method. The largest contribution in the type-B uncertainty is the uncertainty in the air kerma calibration factor for isotope i, N(i)k, as determined by the primary or secondary standards laboratories. This uncertainty is dominated by the uncertainties in the physical constants for the average mass-energy absorption coefficient ratio and the stopping power ratios. This means that it is not foreseeable that the standards laboratories can decrease the uncertainty in the air kerma calibration factors for ionization chambers in the short term. When the results of the determination of the 192Ir reference air kerma rates in, e.g., different institutes are compared, the uncertainties in the physical constants are the same. To compare the applied techniques, the ratio of the results can be judged by leaving out the uncertainties due to these physical constants. In that case an uncertainty budget of 0.40% (coverage factor=2) should be taken into account. Due to the differences in approach between the method used by NMi and the method recommended by Goetsch et al., an extra type-B uncertainty of 0.9% (k= 1) has to be taken into account when the method of Goetsch et al. is applied. Compared to the uncertainty of 1% (k= 2) found for the air calibration of 192Ir, the difference of 0.9% found is significant.
Wang, Fang; Meng, Dan; Li, Xiuwei; Tan, Junjie
2016-08-01
Indoor and outdoor air PM2.5 concentrations in four residential dwellings characterized with different building envelope air tightness levels and HVAC-filter configurations in Yangtze River Delta (YRD) were measured during winter periods in 2014-2015. Steady-state models for indoor PM2.5 were developed for each of the tested dwellings, based on mass balance equation. The indoor air PM2.5 concentrations in the four tested apartments were significantly different. The lowest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D3 with high air tightness and without HVAC-filter system (26.0 μg/m(3), 0.197, and 0.167, respectively), while the highest geometric mean values of indoor air PM2.5 concentrations, I/O ratios, and infiltration factor were observed in D1 (64.9 μg/m(3), 0.876, and 0.867, respectively). For apartment D1 with normal air tightness and without any HVAC-filter system, indoor air PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations, especially in severe ambient pollution days, when closed windows can only play a very weak role on the decline of indoor PM2.5 concentrations. With the enhancement of building air tightness, the indoor air PM2.5 concentrations can be decreased effectively and don't vary as much in response to fluctuations in ambient concentrations. For buildings with normal air tightness, the use of HVAC-filter combinations will decrease the indoor PM2.5 significantly. However, for buildings with enhanced air tightness, the only use of fresh makeup air supply system with filter may increase the indoor PM2.5 concentrations. The improvement of filter efficiency for both fresh makeup air and indoor recirculated air are very important. However, purifiers for indoor recirculated air were highly recommended for all buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.
2013-10-01
Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-09-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK
NASA Astrophysics Data System (ADS)
McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.
2011-05-01
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9-0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Tilp, Alison; Fast, Jerome
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
Water vapor mass balance method for determining air infiltration rates in houses
David R. DeWalle; Gordon M. Heisler
1980-01-01
A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...
NASA Technical Reports Server (NTRS)
Berndt, Emily; Folmer, Michael; Dunion, Jason
2014-01-01
RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.
On the association between synoptic circulation and wildfires in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Papadopoulos, A.; Paschalidou, A. K.; Kassomenos, P. A.; McGregor, G.
2014-02-01
In the present paper cluster analysis of 2-month air mass back-trajectories for three contrasting fire and non-fire events is conducted (high, low, and zero burnt area). The large fire event displays an air mass history dissimilar to other events whereby a 39-day period of warm and dry chiefly northerly anticyclonic conditions is evident, before a week of warmer predominantly southwesterly cyclonic activity, immediately prior to ignition. The pressure level of these anticyclonic air masses is above 800 hPa for more than 75 % of the trajectory length; this region is above the principal moisture transport regime of 800 hPa altitude. Analysis of variance on the mean rate of change of potential temperature identified weak statistically significant differences between two air mass pairs regarding the large fire: anticyclonic and cyclonic air masses in both cases ( p = 0.038 and p = 0.020). Such regularity of type and occurrence, approach pressure levels and statistically significant differences are not evident for the small and non-fire event air masses. Such understanding is expected to permit appropriate steps to be undertaken including superior prediction and improved suppression strategy.
Identifying Patients at Higher Risk of Prolonged Air Leak After Lung Resection.
Gilbert, Sebastien; Maghera, Sonam; Seely, Andrew J; Maziak, Donna E; Shamji, Farid M; Sundaresan, Sudhir R; Villeneuve, Patrick J
2016-11-01
Predictive models of prolonged air leak have relied on information not always available preoperatively (eg, extent of resection, pleural adhesions). Our objective was to construct a model to identify patients at increased risk of prolonged air leak using preoperative factors exclusively. From 2012 to 2014, data on consecutive patients undergoing pulmonary resection were collected prospectively. Prolonged air leak was defined as lasting longer than 7 days and requiring hospitalization. Factors associated with the primary outcome (p < 0.2) were included in a multivariate model. Regression coefficients were used to develop a weighted risk score for prolonged air leak. Of 225 patients, 8% (18/225) experienced a prolonged air leak. Male gender (p = 0.08), smoking history (p = 0.03), body mass index (BMI) 25 or below (p < 0.01), Medical Research Council (MRC) dyspnea score above 1 (p = 0.06), and diffusion capacity for carbon monoxide below 80% (Dlco) (p = 0.01) were selected for inclusion in the final model. Weighted scores were male gender (1 point), BMI 25 or below (0.5 point), smoker (2 points), Dlco% below 80% (2 points), and MRC dyspnea score above 1 (1 point). The area under the receiver operating characteristic curve was 0.8 (95% confidence interval [CI] = 0.7 to 0.9]. An air leak score above 4 points offered the best combination of sensitivity (83% [95% CI = 58 to 96]) and specificity (65% [95% CI = 58 to 71]). A subgroup of lung resection patients at higher risk for a prolonged air leak can be effectively identified with the use of widely available, preoperative factors. The proposed scoring system is simple, is clinically relevant to the informed consent, and allows preoperative patient selection for interventions to reduce the risk of prolonged air leak. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Tao, Jun; Zhang, Leiming; Cao, Junji; Zhong, Liuju; Chen, Dongsheng; Yang, Yihong; Chen, Duohong; Chen, Laiguo; Zhang, Zhisheng; Wu, Yunfei; Xia, Yunjie; Ye, Siqi; Zhang, Renjian
2017-01-01
Daily PM 2.5 samples were collected at an urban site in Guangzhou in 2014 and at a suburban site in Zhuhai in 2014-2015. Samples were subject to chemical analysis for various chemical components including organic carbon (OC), element carbon (EC), major water-soluble inorganic ions, and trace elements. The annual average PM 2.5 mass concentration was 48±22μgm -3 and 45±25μgm -3 in Guangzhou and Zhuhai, respectively, with the highest seasonal average concentration in winter and the lowest in summer at both sites. Regional transport of pollutants accompanied with different air mass origins arriving at the two sites and pollution sources in between the two cities caused larger seasonal variations in Zhuhai (>a factor of 3.5) than in Guangzhou (17% of PM 2.5 mass concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Cold oceans enhance terrestrial new-particle formation in near-coastal forests
NASA Astrophysics Data System (ADS)
Suni, T.; Sogacheva, L.; Lauros, J.; Hakola, H.; Bäck, J.; Kurtén, T.; Cleugh, H.; van Gorsel, E.; Briggs, P.; Sevanto, S.; Kulmala, M.
2009-11-01
The world's forests produce atmospheric aerosol by emitting volatile organic compounds (VOC) which, after being oxidized in the atmosphere, readily condense on the omnipresent nanometer-sized nuclei and grow them to climatically relevant sizes. The cooling effect of aerosols is the greatest uncertainty in current climate models and estimates of radiative forcing. Therefore, identifying the environmental factors influencing the biogenic formation of aerosols is crucial. In this paper, we connected biogenic aerosol formation events observed in a Eucalypt forest in South-East Australia during July 2005-December 2006 to air mass history using 96-h back trajectories. Formation of new particles was most frequent in the dry westerly and south-westerly air masses. According to NDVI (Normalized Difference Vegetation Index) measurements, photosynthesis was not significantly higher in this direction compared to the north-east direction. It is unlikely, therefore, that differences in photosynthesis-derived organic precursor emissions would have been significant enough to lead to the clear difference in NPF frequency between these two directions. Instead, the high evaporation rates above the Pacific Ocean resulted in humid winds from the north-east that effectively suppressed new-particle formation in the forest hundreds of kilometers inland. No other factor varied as significantly in tune with new-particle formation as humidity and we concluded that, in addition to local meteorological factors in the forest, the magnitude of evaporation from oceans hundreds of kilometers upwind can effectively suppress or enhance new-particle formation. Our findings indicate that, unlike warm waters, the cold polar oceans provide excellent clean and dry background air that enhances aerosol formation above near-coastal forests in Fennoscandia and South-East Australia.
O'Donovan, Gary; Chudasama, Yogini; Grocock, Samuel; Leigh, Roland; Dalton, Alice M; Gray, Laura J; Yates, Thomas; Edwardson, Charlotte; Hill, Sian; Henson, Joe; Webb, David; Khunti, Kamlesh; Davies, Melanie J; Jones, Andrew P; Bodicoat, Danielle H; Wells, Alan
2017-07-01
Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1×1km area at the participant's home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association. Copyright © 2017 Elsevier Ltd. All rights reserved.
Air Mass Origin in the Arctic and its Response to Future Warming
NASA Technical Reports Server (NTRS)
Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng
2014-01-01
We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.
Evaluation of NOy Species Composition and PM2.5 Mass Balance Closure during SOAS at Centreville, AL
NASA Astrophysics Data System (ADS)
Baumann, K.; Edgerton, E.; Jansen, J. J.; Shaw, S. L.; Knipping, E. M.
2013-12-01
The SEARCH network site near Centreville, AL served as the comprehensive scientific ground measurement site during the June 1 to July 15, 2013 Southern Oxidant and Aerosol Study (SOAS). Besides basic meteorological parameters, the suite of aerosol parameters routinely measured in SEARCH includes individual reactive nitrogen species (NO, NO2, HNO3, alkyl-nitrates, per-nitrates, particulate nitrate) and PM2.5 species sulfate, nitrate and ammonium ions, organic and elemental carbon (OC and EC). Ambient measurements of these species made during the 6-week SOAS campaign are being evaluated and compared with their respective total NOy and PM2.5 mass, measured via reduction on 350°C Mo to NO with subsequent CLD and TEOM, respectively. Thanks to this separate and independent determination of total NOy and PM2.5 mass, the level of closure with the sum of individual species concentrations serves as independent quality assurance and plausibility check. More importantly, though, the lack of closure allows investigation into the reasons why. Especially in the case of PM2.5, the lack of mass closure is predominantly caused by other organic components, whose mass remains unknown due to the specific OC measurement. In order to report organic mass (OM) the factor OM/OC is commonly used and can vary between 1.4 and 2.5 (e.g. Turpin and Lim, 2001; Aiken et al., 2008), largely due to the oxygen content in OM. Measurements made during SOAS indicate that the OM/OC factor can vary significantly from hour to hour depending on time of day and air mass transported to the site. Dependencies for varying OM/OC in PM2.5 as well as for varying lack of NOy closure are investigated and presented. Overall, NO and particulate nitrate were always the smallest contributors to NOy, both showing highest values early mornings before and around sunrise. Organic and per-nitrates showed broad peaks late mornings, while HNO3 peaked mid to late afternoon. Nighttime levels of NO2 were systematically higher than daytime, causing NOy diurnal profiles to appear mostly with a broad nighttime peak. Occasional bimodal character correlated with CO, indicating an influence of mobile sources in urban air mass being transported to the site. Diurnal profiles of the boundary layer height determined by an on-site ceilometer (Jenoptik CHM15k Nimbus LIDAR) support such air mass transport. The sum of NOy species seems to exceed the directly measured total NOy during low concentration 'clean' episodes, while inversely under 'polluted' conditions, total NOy systematically exceeds the sum of individual species. Possible reasons for this are being investigated and presented.
NASA Astrophysics Data System (ADS)
Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.
2015-08-01
Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.
Crust and mantle of the gulf of Mexico
Moore, G.W.
1972-01-01
A SEEMING paradox has puzzled investigators of the crustal structure of the Gulf of Mexico since Ewing et al.1 calculated that a unit area of the rather thick crust in the gulf contains less mass than does a combination of the crust and enough of the upper mantle to make a comparable thickness in the Atlantic Ocean. They also noted that the free-air gravity of the gulf is essentially normal and fails by a large factor to be low enough to reflect the mass difference that they calculated. We propose a solution to this problem. ?? 1972 Nature Publishing Group.
Factors influencing the uptake of a mass media intervention to improve child feeding in Bangladesh.
Kim, Sunny S; Roopnaraine, Terry; Nguyen, Phuong H; Saha, Kuntal K; Bhuiyan, Mahbubul I; Menon, Purnima
2018-04-11
Mass media are increasingly used to deliver health messages to promote social and behaviour change, but there has been little evidence of mass media use for improving a set of child feeding practices, other than campaigns to promote breastfeeding. This study aimed to examine the factors influencing the uptake of infant and young child feeding messages promoted in TV spots that were launched and aired nationwide in Bangladesh. We conducted a mixed-methods study, using household surveys (n = 2,000) and semistructured interviews (n = 251) with mothers of children 0-23.9 months and other household members. Factors associated with TV spot viewing and comprehension were analysed using multivariable logistic regression models, and interview transcripts were analysed by systematic coding and iterative summaries. Exposure ranged from 36% to 62% across 6 TV spots, with comprehension ranging from 33% to 96% among those who viewed the spots. Factors associated with comprehension of TV spot messages included younger maternal age and receipt of home visits by frontline health workers. Three direct narrative spots showed correct message recall and strong believability, identification, and feasibility of practicing the recommended behaviours. Two spots that used a metaphorical and indirect narrative style were not well understood by respondents. Understanding the differences in the uptake factors may help to explain variability of impacts and ways to improve the design and implementation of mass media strategies. © 2018 The Authors. Maternal and Child Nutrition Published by John Wiley & Sons, Ltd.
Mixing and ageing in the polar lower stratosphere in winter 2015-2016
NASA Astrophysics Data System (ADS)
Krause, Jens; Hoor, Peter; Engel, Andreas; Plöger, Felix; Grooß, Jens-Uwe; Bönisch, Harald; Keber, Timo; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Oelhaf, Hermann
2018-05-01
We present data from winter 2015-2016, which were measured during the POLSTRACC (The Polar Stratosphere in a Changing Climate) aircraft campaign between December 2015 and March 2016 in the Arctic upper troposphere and lower stratosphere (UTLS). The focus of this work is on the role of transport and mixing between aged and potentially chemically processed air masses from the stratosphere which have midlatitude and low-latitude air mass fractions with small transit times originating at the tropical lower stratosphere. By combining measurements of CO, N2O and SF6 we estimate the evolution of the relative contributions of transport and mixing to the UTLS composition over the course of the winter. We find an increasing influence of aged stratospheric air partly from the vortex as indicated by decreasing N2O and SF6 values over the course of the winter in the extratropical lower and lowermost stratosphere between Θ = 360 K and Θ = 410 K over the North Atlantic and the European Arctic. Surprisingly we also found a mean increase in CO of (3.00 ± 1.64) ppbV from January to March relative to N2O in the lower stratosphere. We show that this increase in CO is consistent with an increased mixing of tropospheric air as part of the fast transport mechanism in the lower stratosphere surf zone. The analysed air masses were partly affected by air masses which originated at the tropical tropopause and were quasi-horizontally mixed into higher latitudes. This increase in the tropospheric air fraction partly compensates for ageing of the UTLS due to the diabatic descent of air masses from the vortex by horizontally mixed, tropospheric-influenced air masses. This is consistent with simulated age spectra from the Chemical Lagrangian Model of the Stratosphere (CLaMS), which show a respective fractional increase in tropospheric air with transit times under 6 months and a simultaneous increase in aged air from upper stratospheric and vortex regions with transit times longer than 2 years. We thus conclude that the lowermost stratosphere in winter 2015-2016 was affected by aged air from the upper stratosphere and vortex region. These air masses were significantly affected by increased mixing from the lower latitudes, which led to a simultaneous increase in the fraction of young air in the lowermost Arctic stratosphere by 6 % from January to March 2016.
NASA Astrophysics Data System (ADS)
Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan
2017-04-01
The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust particles (characterized by typical elements like Al, Si, Ca, Fe). To estimate the influence of the selected regions, we compare the time series of the dominating elements or molecular fragments to the times with trajectories from specific source regions. For differentiation between short and long-range transported particles, molecules that are typical for aging processes in the atmosphere, e.g., products from reaction with ozone, nitric and sulfuric acid will be considered. Additionally, modifications of the internal mixing state of the particles during the measurement period will be studied. This project was supported by DFG (FOR 1525 "INUIT) and has received funding from the European Union's Seventh Framework Programme (FP7) project BACCHUS under grant agreement no. 603445 and from the European Union's Horizon 2020 research and innovation programme ACTRIS-2 under grant agreement No 654109.
Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower
NASA Astrophysics Data System (ADS)
Lee, Hyunsub; Son, Gihun
2017-11-01
Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.
A rocket-borne mass analyzer for charged aerosol particles in the mesosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan
2008-10-15
An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number densitymore » of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges.« less
NASA Technical Reports Server (NTRS)
Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin
2004-01-01
We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.
Mitch, M G; Zimmerman, B E; Lamperti, P J; Seltzer, S M; Coursey, B M
2000-10-01
The response of well-ionization chambers to the emissions of 103Pd and 125I radioactive seed sources used in prostate cancer brachytherapy has been measured. Calibration factors relating chamber response (current or dial setting) to measured air-kerma strength have been determined for seeds from nine manufacturers, each with different designs. Variations in well-ionization chamber response relative to measured air-kerma strength have been observed because of differences in the emitted energy spectrum due to both the radionuclide support material (125I seeds) and the mass ratio of 103Pd to 102Pd (103Pd seeds). Obtaining accurate results from quality assurance measurements using well-ionization chambers at a therapy clinic requires knowledge of such differences in chamber response as a function of seed design.
Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary
2014-01-01
Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.
A high-resolution and observationally constrained OMI NO 2 satellite retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.
Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less
A high-resolution and observationally constrained OMI NO 2 satellite retrieval
Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; ...
2017-09-26
Here, this work presents a new high-resolution NO 2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO 2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO 2 vertical profile shape factors from a 1.25° × 1° (~110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO 2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situmore » aircraft observations to recalculate tropospheric air mass factors and tropospheric NO 2 vertical columns during summertime in the eastern US. In this new product, OMI NO 2 tropospheric columns increase by up to 160% in city centers and decrease by 20–50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO 2 and Airborne Compact Atmospheric Mapper (ACAM) NO 2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO 2 monitors in urban areas has improved dramatically: r 2 = 0.60 in the new product vs. r 2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NO x emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO 2 satellite retrievals.« less
A high-resolution and observationally constrained OMI NO2 satellite retrieval
NASA Astrophysics Data System (ADS)
Goldberg, Daniel L.; Lamsal, Lok N.; Loughner, Christopher P.; Swartz, William H.; Lu, Zifeng; Streets, David G.
2017-09-01
This work presents a new high-resolution NO2 dataset derived from the NASA Ozone Monitoring Instrument (OMI) NO2 version 3.0 retrieval that can be used to estimate surface-level concentrations. The standard NASA product uses NO2 vertical profile shape factors from a 1.25° × 1° (˜ 110 km × 110 km) resolution Global Model Initiative (GMI) model simulation to calculate air mass factors, a critical value used to determine observed tropospheric NO2 vertical columns. To better estimate vertical profile shape factors, we use a high-resolution (1.33 km × 1.33 km) Community Multi-scale Air Quality (CMAQ) model simulation constrained by in situ aircraft observations to recalculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime in the eastern US. In this new product, OMI NO2 tropospheric columns increase by up to 160 % in city centers and decrease by 20-50 % in the rural areas outside of urban areas when compared to the operational NASA product. Our new product shows much better agreement with the Pandora NO2 and Airborne Compact Atmospheric Mapper (ACAM) NO2 spectrometer measurements acquired during the DISCOVER-AQ Maryland field campaign. Furthermore, the correlation between our satellite product and EPA NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in the new product vs. r2 = 0.39 in the operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to recalculate satellite data in areas with large spatial heterogeneities in NOx emissions. Although the current work is focused on the eastern US, the methodology developed in this work can be applied to other world regions to produce high-quality region-specific NO2 satellite retrievals.
2017-01-01
We report a computational fluid dynamics–discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas–solid contact efficiencies. Cluster gas–solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors. PMID:28553011
Carlos Varas, Álvaro E; Peters, E A J F; Kuipers, J A M
2017-05-17
We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system behavior in detail. The most important factors are found to be directly related to particle cluster formation. Low air-to-solids flux ratios lead to more heterogeneous systems, where the cluster formation is more pronounced and mass transfer more influenced. Falling clusters can be partially circumvented by the gas phase, which therefore does not fully interact with the cluster particles, leading to poor gas-solid contact efficiencies. Cluster gas-solid contact efficiencies are quantified at several gas superficial velocities, reaction rates, and dilution factors in order to gain more insight regarding the influence of clustering phenomena on the performance of riser reactors.
NASA Astrophysics Data System (ADS)
Thorenz, U. R.; Baker, A. K.; Leedham Elvidge, E. C.; Sauvage, C.; Riede, H.; van Velthoven, P. F. J.; Hermann, M.; Weigelt, A.; Oram, D. E.; Brenninkmeijer, C. A. M.; Zahn, A.; Williams, J.
2017-06-01
Between March 2009 and March 2011 a commercial airliner equipped with a custom built measurement container (IAGOS-CARIBIC observatory) conducted 13 flights between South Africa and Germany at 10-12 km altitude, traversing the African continent north-south. In-situ measurements of trace gases (CO, CH4, H2O) and aerosol particles indicated that strong surface sources (like biomass burning) and rapid vertical transport combine to generate maximum concentrations in the latitudinal range between 10°N and 10°S coincident with the inter-tropical convergence zone (ITCZ). Pressurized air samples collected during these flights were subsequently analyzed for a suite of trace gases including C2-C8 non-methane hydrocarbons (NMHC) and halocarbons. These shorter-lived trace gases, originating from both natural and anthropogenic sources, also showed near equatorial maxima highlighting the effectiveness of convective transport in this region. Two source apportionment methods were used to investigate the specific sources of NMHC: positive matrix factorization (PMF), which is used for the first time for NMHC analysis in the upper troposphere (UT), and enhancement ratios to CO. Using the PMF method three characteristic airmass types were identified based on the different trace gas concentrations they obtained: biomass burning, fossil fuel emissions, and "background" air. The first two sources were defined with reference to previously reported surface source characterizations, while the term "background" was given to air masses in which the concentration ratios approached that of the lifetime ratios. Comparison of enhancement ratios between NMHC and CO for the subset of air samples that had experienced recent contact with the planetary boundary layer (PBL) to literature values showed that the burning of savanna and tropical forest is likely the main source of NMHC in the African upper troposphere (10-12 km). Photochemical aging patterns for the samples with PBL contact revealed that the air had different degradation histories depending on the hemisphere in which they were emitted. In the southern hemisphere (SH) air masses experienced more dilution by clean background air whereas in the northern hemisphere (NH) air masses are less diluted or mixed with background air still containing longer lived NMHC. Using NMHC photochemical clocks ozone production was seen in the BB outflow above Africa in the NH.
Assessing exposure to diesel exhaust particles: a case study.
See, Siao Wei; Balasubramanian, Rajasekhar; Yang, Tzuo Sern; Karthikeyan, Sathrugnan
2006-11-01
The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this study, the physical (mass and number concentration, and size distribution) and chemical (PAHs) properties were investigated at a major bus interchange in Singapore, influenced only by diesel exhausts. Number concentration and size distribution of particles were determined in real time, while the mass concentrations of PM2.5, and PAHs were measured during operating and nonoperating hours. The average mass concentrations of PM2.5 and PAHs increased by a factor of 2.34 and 5.18, respectively, during operating hours. The average number concentration was also elevated by a factor of 5.07 during operating hours. This increase in the concentration of PM2.5 particles and their chemical constituents during operating hours was attributable to diesel emissions from in-use buses based on the particle size analysis, correlation among PAHs, and the commonly used PAHs diagnostic ratios. To evaluate the potential health threat due inhalation of air pollutants released from diesel engines, the incremental lifetime cancer risk was also calculated for a maximally exposed individual. The findings indicate that the air quality at the bus interchange poses adverse health effects.
Nowosad, J; Stach, A; Kasprzyk, I; Grewling, Ł; Latałowa, M; Puc, M; Myszkowska, D; Weryszko-Chmielewska, E; Piotrowska-Weryszko, K; Chłopek, K; Majkowska-Wojciechowska, B; Uruska, A
The aim of the study was to determine the characteristics of temporal and space-time autocorrelation of pollen counts of Alnus , Betula , and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001-2005 and 2009-2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus , Betula , and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30-40 % of pollen count variation); (2) long-lasting factors (50-60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models.
NASA Technical Reports Server (NTRS)
Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary
2015-01-01
Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.
NASA Astrophysics Data System (ADS)
Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan
2012-12-01
Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the major trajectories of air mass from 2006 to 2009 originated from the southwest direction of the receptor, but in 2005, the air mass appeared to be locally originated.
NASA Astrophysics Data System (ADS)
Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.
2006-12-01
The North Pacific region is subject to various climatic phenomena such as the Pacific Decadal Oscillation (PDO), the El Niño-Southern Oscillation (ENSO), and the Arctic Oscillation (AO), significantly affecting the ocean and the atmosphere. Additionally, material circulation is also very active in this region such as spring dust storms in the desert and arid regions of East Asia and forest fires in Siberia and Alaska. Understanding the complex connections among the climatic phenomena and the material circulation would help in attempts to predict future climate changes. For this subject, we drilled a 50-m ice core at the summit of Mount Wrangell, which is located near the coast of Alaska (62°162'170"162°171'N, 144°162'170"162;°171'W, and 4100-m). We analyzed dust particle number density, tritium concentration, and 171 171 171 171 170 162 171 D in the core. The ice core spanned the years from 1992 to 2002 and we finally divided the years into five parts (early-spring; late-spring; summer; fall; winter). Dust and tritium amounts varied annually and intra-annually. For further understanding of the factors on those variations, we should know the origins of the seasonal dust and tritium. Hence, we examined their origins by the calculation of everyday 10-days backward trajectory analysis from January 1992 to August 2002 with 3-D wind data of the European Center for Medium-Range Weather Forecast (ECMWF). In early spring, the air mass from East Asia increased and it also explained dust increases in springtime, although the air contribution in winter increased too. In late spring, the air mass from the stratosphere increased, and it also corresponded to the stratospheric tritium increase in the ice core. The air masses from Siberia and the North Pacific in the mid-latitude always significantly contributed to Mount Wrangell, although those maximum contributions were fall and summer, respectively. The air mass originating in the interior of Alaska and North America did not contribute to Mount Wrangell so much. Intra-annual data of ice core is important for the discussion of detailed-seasonal climate variations in the periods when there are no meteorological data. Our preliminary study suggests that we may be able to obtain an important perspective on seasonal climate change in the past by connecting meteorological analysis with ice core data.
NASA Astrophysics Data System (ADS)
Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.
2002-02-01
The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.
NASA Astrophysics Data System (ADS)
Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.
2003-02-01
The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.
da Cruz, André Luis; Pedretti, Ana Carolina Elias; Fernandes, Marisa Narciso
2009-05-01
The stomach of Pterygoplichthys anisitsi has a thin, translucent wall and a simple squamous epithelium with an underlying dense capillary network. In the cardiac and pyloric regions, most cells have short microvilli distributed throughout the cell surface and their edges are characterized by short, densely packed microvilli. The mucosal layer of the stomach has two types of pavement epithelial cells that are similar to those in the aerial respiratory organs. Type 1 pavement epithelial cells, resembling the Type I pneumocyte in mammal lungs, are flat, with a large nucleus, and extend a thin sheet of cytoplasm on the underlying capillary. Type 2 cells, resembling the Type II pneumocyte, possess numerous mitochondria, a well-developed Golgi complex, rough endoplasmic reticulum, and numerous lamellar bodies in different stages of maturation. The gastric glands, distributed throughout the mucosal layer, also have several cells with many lamellar bodies. The total volume (air + tissue), tissue, and air capacity of the stomach when inflated, increase along with body mass. The surface-to-tissue-volume ratio of stomach varies from 108 cm(-1) in the smallest fish (0.084 kg) to 59 cm(-1) in the largest fish (0.60 kg). The total stomach surface area shows a low correlation to body mass. Nevertheless, the body-mass-specific surface area varied from 281.40 cm(2) kg(-1) in the smallest fish to 68.08 cm(2) kg(-1) in the largest fish, indicating a negative correlation to body mass (b = -0.76). The arithmetic mean barrier thickness between air and blood was 1.52 +/- 0.07 microm, whereas the harmonic mean thickness (tau(h)) of the diffusion barrier ranged from 0.40 to 0.74 microm. The anatomical diffusion factor (ADF = cm(2) microm(-1) kg(-1)) and the morphological O(2) diffusion capacity (D(morphol)O(2) = cm(3) min(-1) mmHg(-1) kg(-1)) are higher in the smallest specimen and lower in the largest one. In conclusion, the structure and morphometric data of P. anisitsi stomach indicate that this organ is adapted for oxygen uptake from air. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zander, R.; Messina, A.; Godek, M. L.
2012-12-01
The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).
NASA Astrophysics Data System (ADS)
Keene, W. C.; Long, M. S.; Duplessis, P.; Kieber, D. J.; Maben, J. R.; Frossard, A. A.; Kinsey, J. D.; Beaupre, S. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.
2017-12-01
During a September-October 2016 cruise of the R/V Endeavor in the western North Atlantic Ocean, primary marine aerosol (PMA) was produced in a high capacity generator during day and night via detrainment of bubbles from biologically productive and oligotrophic seawater. The turbulent mixing of clean air and seawater in a Venturi nozzle produced bubble plumes with tunable size distributions. Physicochemical characteristics of size-resolved PMA and seawater were measured. PMA number production efficiencies per unit air detrained (PEnum) increased with increasing detainment rate. For given conditions, PEnum values summed over size distributions were roughly ten times greater than those for frits whereas normalized size distributions were similar. Results show that bubble size distributions significantly modulated number production fluxes but not relative shapes of corresponding size distributions. In contrast, mass production efficiencies (PEmass) decreased with increasing air detrainment and were similar to those for frits, consistent with the hypothesis that bubble rafts on the seawater surface modulate emissions of larger jet droplets that dominate PMA mass production. Production efficiencies of organic matter were about three times greater than those for frits whereas organic enrichment factors integrated over size distributions were similar.
Spatial Variations and Sources of Trace Elements in Recent Snow from Glaciers at the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Huang, J.; Li, Y.; Li, Z.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L.
2017-12-01
Various trace element (TEs) could be long-range transported through the atmosphere and deposited onto the snow surface. Recently, with the development of economy of China and the surrounding countries, TEs such as Pb, Cd, Mo and Sb in several glaciers from the Tibetan Plateau (TP) have been gradually affected by anthropogenic activities. This study presents the acid leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the TP from April to May of 2013. The different concentrations of TEs in the surface snow and snow pit samples over the five glaciers show that TEs were influenced both by surrounding environment of glaciers and seasonal variations of atmospheric impurity loading. Comparison of TEs concentrations with data of other sites, elevated concentrations of As, Cu, Mo, Pb and Sb were observed in glaciers of TP, showing significant atmospheric TEs pollution. Enrichment factor(EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr and Cu mainly originated from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion and traffic emission made an important contribution to the Mo, Pb and Sb. Evidences from air mass back trajectories show the air masses arrived at QMLK mostly came from the Taklimakan desert, the TEs from the Taklimakan desert and the western TP could be transported to the MK and YZF glaciers . The air masses derived from the western TP and the southwestern TP affected the environment of the XDKMD and GRHK glaciers. Futhermore, the air masses passed through some big cities with developed industry and large population such as Urumqi, Bishkek, Dushanbe and some countries such as Pakistan and India could also bring pollutants to the studied glaciers.
Volatile and semivolatile organic compounds in laboratory peat fire emissions
NASA Astrophysics Data System (ADS)
George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.
2016-05-01
In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.
NASA Astrophysics Data System (ADS)
Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi
Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.
NASA Astrophysics Data System (ADS)
Bui, A. T.; Wallace, H. W., IV; Alvarez, S. L.; Erickson, M.; Alwe, H. D.; May, N.; Cook, R.; Connor, M.; Slade, J. H., Jr.; Shi, Q.; Kavassalis, S.; Tyndall, G. S.; Shepson, P. B.; Pratt, K.; Ault, A. P.; Millet, D. B.; Murphy, J. G.; Usenko, S.; Sheesley, R. J.; Flynn, J. H., III; Griffin, R. J.; Wang, W.
2017-12-01
Forests are a rich source of biogenic volatile organic compounds (BVOCs). Oxidation of BVOCs can result in the formation of secondary organic aerosol (SOA) and in the presence of NOx (NO+NO2) produce organic nitrate-containing particles. However, the distribution of both BVOCs and oxidants can be dramatically altered by the physical barriers provided by a forest canopy. Global models currently neglect the effect of these canopies on SOA formation in forested regions. In this work, we characterize non-refractory submicron aerosol (NR-PM1) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) during the 2016 Program on Oxidants: Photochemistry, Emissions, and Transport-Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS) campaign. This site is located in a rural forest in northern Michigan and features a tower that allowed for both above and below canopy measurements. Our results indicate that organic aerosols (OA) account for a substantial portion of the NR-PM1 measured at this site. Organic nitrate aerosol can contribute up to 18% of the total OA and an average of 75% of the total measured nitrate aerosol. Episodes of above- and below-canopy NR-PM1 concentration differences indicate that above-canopy OA concentrations can be up to 40% greater than below-canopy, which represents an increase of up to 1.5 µg/m3. Organic fragment ions such as CxHy, CxHyOz, and CxHyO1 contribute to enhanced above-canopy OA concentrations. Positive matrix factorization analysis of the high-resolution OA mass spectra identified three SOA factors: low volatility oxygenated OA (LVOOA), isoprene-derived OOA (ISOOA), and oxygenated organic aerosol. Analysis of air mass backward trajectories and correlations with external data indicate that LVOOA correlates well with sulfate and aged, urban-influenced air masses, whereas ISOOA correlates well with isoprene SOA tracers and air masses originating from semi-remote areas. Our results indicate that the OA at this site is dominated by SOA formation and that vertical differences in OA can exist in the presence of a forest canopy. Results from this work have important implications in understanding the role that canopies play in SOA formation and provide useful data to help accurately validate biosphere-atmosphere exchange models.
Settlement with Amherst, Mass., Company Reduces Emissions to Air
Under the terms of a recent settlement with the U.S. Environmental Protection Agency (EPA), John S. Lane and Son, Inc. (JS Lane), a sand and gravel company in Amherst, Mass., has taken steps to reduce air pollution, as required by the Clean Air Act (CAA).
40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...)(i) by demonstrating that mass emissions per mass product are less than or equal to the level...
NASA Astrophysics Data System (ADS)
Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír
2016-07-01
PM2.5 mass concentrations and chemical compositions sampled over a 13-month period at a Central European rural background site (Košetice) are presented in this work. A comprehensive chemical analysis of PM2.5 was performed, which provided elemental composition (Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, and Pb) and the concentration of water-soluble inorganic anions (SO42 -, NO3-. Cl-, NO2-, Br-, and H2PO4-) and cations (Na+, NH4+, K+, Ca2 +, and Mg2 +), elemental and organic carbon (EC and OC), and levoglucosan. Spearman correlation coefficients between individual chemical species and particle number concentrations were calculated for the following six size ranges: 10-25 nm (N10-25), 25-50 nm (N25-50), 50-80 nm (N50-80), 80-150 nm (N80-150), 150-300 nm (N150-300), and 300-800 nm (N300-800). Average concentrations of individual species were comparable with concentrations reported from similar sites across Central Europe. Organic matter (OM) accounted for 45% of the PM2.5 mass (calculated from OC by a factor of 1.6), while the second most common component were secondary aerosols (SO42 -: 19%, NO3-: 14%, NH4+: 10%), which accounted for 43% of the mass. Based on levoglucosan analysis, 31% of OM was attributed to emissions associated with biomass burning (OMBB). EC concentrations, determined using the EUSAAR_2 thermal optical protocol, contributed 4% to PM2.5 mass. A total of 1% of the mass was attributed to a mineral matter source, while the remaining 6% was from an undetermined mass. Seasonal variations showed highest concentrations of NO3- and OMBB in winter, nitrate share in spring, and an increase in percentage of SO42 - and mineral matter in summer. The largest seasonal variation was found for species associated with wood and coal combustion (levoglucosan, K+, Zn, Pb, As), which had clear maxima during winter. Correlation analysis of different size fraction particle number concentrations was used to distinguish the influence of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.
Effect of magnetic field on seed germination and seedling growth of sunflower
NASA Astrophysics Data System (ADS)
Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.
2012-07-01
The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.
NASA Astrophysics Data System (ADS)
Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.
2011-12-01
The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to non-sea salt sulfate increased ca. 50% which suggested that automobile exhaust emission increased. In addition, the concentration of soil-originated components such as iron and aluminum increased ca. 2.6 times and ca. 3.0 times, suggesting a probable desertification. We also report the calculated background concentrations of water-soluble chemical components and acid-digested metals at Okinawa, Japan.
Subtropical air masses over eastern Canada: Their links to extreme precipitation
NASA Astrophysics Data System (ADS)
Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad
2017-04-01
We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this expression for precipitation rate to study the extreme precipitation events in Montreal that are associated with these same cases of extreme warm, moist air masses, and their physical impacts on the precipitation rate. Implications of this air mass modulation on precipitation rate are discussed in the context of longer-term global climate change.
Yu, Quan; Zhang, Qian; Lu, Xinqiong; Qian, Xiang; Ni, Kai; Wang, Xiaohao
2017-12-05
The performance of a miniature mass spectrometer in atmospheric analysis is closely related to the design of its sampling system. In this study, a simplified vacuum electrospray ionization (VESI) source was developed based on a combination of several techniques, including the discontinuous atmospheric pressure interface, direct capillary sampling, and pneumatic-assisted electrospray. Pulsed air was used as a vital factor to facilitate the operation of electrospray ionization in the vacuum chamber. This VESI device can be used as an efficient atmospheric sampling interface when coupled with a miniature rectilinear ion trap (RIT) mass spectrometer. The developed VESI-RIT instrument enables regular ESI analysis of liquid, and its qualitative and quantitative capabilities have been characterized by using various solution samples. A limit of detection of 8 ppb could be attained for arginine in a methanol solution. In addition, extractive electrospray ionization of organic compounds can be implemented by using the same VESI device, as long as the gas analytes are injected with the pulsed auxiliary air. This methodology can extend the use of the proposed VESI technique to rapid and online analysis of gaseous and volatile samples.
NASA Astrophysics Data System (ADS)
Herenz, Paul; Wex, Heike; Henning, Silvia; Bjerring Kristensen, Thomas; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank
2018-04-01
Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90 nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (NCN). Generally, NCN ranged from 20 to 500 cm-3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cm-3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter κ of the CCN was determined to be 0.23 on average and variations in κ were largely attributed to measurement uncertainties. Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.
NASA Astrophysics Data System (ADS)
Kim, Hwajin; Zhang, Qi; Heo, Jongbae
2018-05-01
Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) from 14 April to 15 June 2016, as a part of the Korea-US Air Quality Study (KORUS-AQ) campaign. This was the first highly time-resolved, real-time measurement study of springtime aerosol in SMA and the results reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicrometer aerosol (PM1 = NR-PM1 + black carbon (BC)) was 22.1 µg m-3, which was composed of 44 % organics, 20 % sulfate, 17 % nitrate, 12 % ammonium, and 7 % BC. Organics had an average atomic oxygen-to-carbon (O / C) ratio of 0.49 and an average organic mass-to-carbon (OM/OC) ratio of 1.82. Four distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA; O / C = 0.15; 17 % of OA mass), food cooking activities represented by a cooking-influenced OA factor (COA; O / C = 0.19; 22 % of OA mass), and secondary organic aerosol (SOA) represented by a semi-volatile oxygenated OA factor (SV-OOA; O / C = 0.44; 27 % of OA mass) and a low-volatility oxygenated OA factor (LV-OOA; O / C = 0.91; 34 % of OA mass). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation, with sulfate, nitrate, ammonium, SV-OOA, and LV-OOA together accounting for 76 % of the PM1 mass. In particular, the formation of LV-OOA and sulfate was mainly promoted by elevated ozone concentrations and photochemical reactions during daytime, whereas SV-OOA and nitrate formation was contributed by both nocturnal processing of VOC and nitrogen oxides, respectively, and daytime photochemical reactions. In addition, lower nighttime temperature promoted gas-to-particle partitioning of semivolatile species and formation of SV-OOA and nitrate. During a period of 4 days (from 20 to 23 May ), LV-OOA increased dramatically and accounted for up to 41 % of the PM1 mass. This intense LV-OOA formation event was associated with large enhancements of both anthropogenic and biogenic VOCs (e.g., isoprene and toluene), high concentration of Ox ( = O3 + NO2), strong solar radiation, and stagnant conditions, suggesting that it was mainly driven by local photochemical formation. We have also investigated the formation and evolution mechanisms of severe haze episodes. Unlike the winter haze events which were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events appeared to be influenced by both regional and local factors. For example, there were episodes of long-range transport of plumes followed by calm meteorology conditions, which promoted the formation and accumulation of local secondary species, leading to high concentrations of PM. Overall, our results indicate that PM pollutants in urban Korea originate from complex emission sources and atmospheric processes and that the concentrations and composition of PM are controlled by various factors, including meteorological conditions, local anthropogenic emissions, and upwind sources.
DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING
The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...
Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.
40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers... with § 63.1316 by demonstrating that mass emissions per mass product are less than or equal to the...
40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat... content, percent by mass Typical organic HAP, percent by mass Aliphatic (Mineral Spirits 135, Mineral...
Impact of traffic intensity and pavement aggregate size on road dust particles loading
NASA Astrophysics Data System (ADS)
Amato, F.; Pandolfi, M.; Alastuey, A.; Lozano, A.; Contreras González, J.; Querol, X.
2013-10-01
Road dust emissions severely hamper PM10 urban air quality and their burden is expected to increase relatively to primary motor exhaust emissions. Beside the large influence of climate and meteorology, the emission potential varies widely also from one road to another due to numerous factors such as traffic conditions, pavement type and external sources. Nevertheless none of these factors is sufficiently known for a reliable description in emission modelling and for decision making in air quality management. In this study we carried out intensive road dust measurement campaigns in South Spain, with the aim of investigating the relationship between emission potential (i.e. road dust load) and traffic intensity, pavement aggregate size and distance from braking zones. Results indicate that, while no impact from braking activity can be drawn on the bulk road dust mass, an increase in traffic intensity or mean pavement aggregate size clearly reduce the single vehicle emission potential.
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
Clarke, R W; Coull, B; Reinisch, U; Catalano, P; Killingsworth, C R; Koutrakis, P; Kavouras, I; Murthy, G G; Lawrence, J; Lovett, E; Wolfson, J M; Verrier, R L; Godleski, J J
2000-01-01
Pulmonary inflammatory and hematologic responses of canines were studied after exposure to concentrated ambient particles (CAPs) using the Harvard ambient particle concentrator (HAPC). For pulmonary inflammatory studies, normal dogs were exposed in pairs to either CAPs or filtered air (paired studies) for 6 hr/day on 3 consecutive days. For hematologic studies, dogs were exposed for 6 hr/day for 3 consecutive days with one receiving CAPs while the other was simultaneously exposed to filtered air; crossover of exposure took place the following week (crossover studies). Physicochemical characterization of CAPs exposure samples included measurements of particle mass, size distribution, and composition. No statistical differences in biologic responses were found when all CAPs and all sham exposures were compared. However, the variability in biologic response was considerably higher with CAPs exposure. Subsequent exploratory graphical analyses and mixed linear regression analyses suggested associations between CAPs constituents and biologic responses. Factor analysis was applied to the compositional data from paired and crossover experiments to determine elements consistently associated with each other in CAPs samples. In paired experiments, four factors were identified; in crossover studies, a total of six factors were observed. Bronchoalveolar lavage (BAL) and hematologic data were regressed on the factor scores. Increased BAL neutrophil percentage, total peripheral white blood cell (WBC) counts, circulating neutrophils, and circulating lymphocytes were associated with increases in the aluminum/silicon factor. Increased circulating neutrophils and increased BAL macrophages were associated with the vanadium/nickel factor. Increased BAL neutrophils were associated with the bromine/lead factor when only the compositional data from the third day of CAPs exposure were used. Significant decreases in red blood cell counts and hemoglobin levels were correlated with the sulfur factor. BAL or hematologic parameters were not associated with increases in total CAPs mass concentration. These data suggest that CAPs inhalation is associated with subtle alterations in pulmonary and systemic cell profiles, and specific components of CAPs may be responsible for these biologic responses. PMID:11133399
NASA Astrophysics Data System (ADS)
de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.
2004-12-01
As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.
VOLATILIZATION OF ALKYLBENZENES FROM WATER.
Rathbun, R.E.; Tai, D.Y.
1985-01-01
Volatilization is a physical process of importance in determining the fate of many organic compounds in streams and rivers. This process is frequently described by the conceptual-two-film model. The model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the water and air films are related to an overall mass-transfer coefficient for volatilization through the Henry's law constant.
NASA Astrophysics Data System (ADS)
Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.
2008-12-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.
Volatile Organic Compounds (VOCs) measurements onboard the HALO research aircraft during OMO-ASIA
NASA Astrophysics Data System (ADS)
Safadi, Layal; Neumaier, Marco; Fischbeck, Garlich; Geiger, Felix; Förster, Eric; Tomsche, Laura; Zahn, Andreas
2017-04-01
The objective of the OMO-Asia campaign that took place in summer 2015 was to study the free-radical chemistry at higher altitudes during the Asian summer monsoon taken over a wide area of Asia. VOC measurements (e.g. acetone, acetonitrile, benzene, and toluene) were conducted using a strongly modified instrument based on a commercial Proton-Transfer-Reaction Mass Spectrometer (PTRMS) from Ionicon. The PTRMS data are generally in good agreement with VOC measurements taken by the GC instrument from Max Planck Institute for Chemistry. In the outflow of the Monsoon plume acetone and acetonitrile volume mixing ratios (VMR) up to 1500 pptV and 180 pptV have been measured, respectively, pointing to a small contribution from biomass burning sources of which acetonitrile is an important tracer. Comparison with VOCs simulated in the atmospheric chemistry model EMAC model exhibits an underestimation (factor of 3 for acetone). The measured data were analyzed with the help of 10 days back trajectories to distinguish air mass origins. For air masses originating from North America (NA) an enhancement of 500 pptV acetone relative to the atmospheric background ( 500 pptV) can be traced back to active biogenic acetone sources in the NA boreal summer. An average enhancement of 400 pptV acetone comes from the Asian summer monsoon. Acetone - CO correlations in the monsoon relative to background air is being analyzed for further characterization and estimation of the sources.
Particle loading rates for HVAC filters, heat exchangers, and ducts.
Waring, M S; Siegel, J A
2008-06-01
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles. The results in this paper suggest important factors that lead to particle deposition on HVAC components in residential and commercial buildings. This knowledge informs the development and comparison of control strategies to limit particle deposition. The predicted mass loading rates allow for the assessment of pressure drop and indoor air quality consequences that result from particle mass loading onto HVAC system components.
Risk factors increasing health hazards after air dives.
Kaczerska, Dorota; Pleskacz, Katarzyna; Siermontowski, Piotr; Olszański, Romuald; Krefft, Karolina
2015-01-01
The aim of the present study was to determine the effect of postprandial hypertriglyceridemia on the risk of decompression stress following hyperbaric air exposures. The study involved 55 male individuals aged 20-48 years (31.47 ± 5.49 years), body mass index 20.3-33.2 kg/m2 (25.5 ± 2.58 kg/m2). Blood was sampled two hours after a meal each participant had in accordance with individual dietary preferences to determine the following parameters: blood cell counts, activity of aspartate aminotransferase (AST) and alanine ammotransterase (ALT), concentrations of total cholesterol and triglycerides. After each hyperbaric exposure, the presence and intensity of decompression stress were assessed using the Doppler method. Decompression stress was found in 30 individuals. Postprandial hypertriglyceridemia and hypercholesterolemia increased the risk of decompression stress after hyperbaric air exposures.
Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, Aron M; Wilbert, Stefan; Jessen, Wilko
This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on themore » impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.« less
J.A. O' Donnell; J.W. Harden; A.D. McGuire; V.E. Romanovsky
2011-01-01
In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil...
Assessing Public Opinion Toward the Military
1985-05-01
establish and manage any short-falls which might e-ffect national secur i ty? How then has our past developed factors which may shape our -future...experience functioning as advocates. There appears to be a shortage of Air Force officers, trained in human resource management , who have the skills of...colonels; in government, perhaps the permanent senior civil servants; in industry the general managers or the district representatives; in mass
NASA Astrophysics Data System (ADS)
Czech, Hendryk; Pieber, Simone M.; Tiitta, Petri; Sippula, Olli; Kortelainen, Miika; Lamberg, Heikki; Grigonyte, Julija; Streibel, Thorsten; Prévôt, André S. H.; Jokiniemi, Jorma; Zimmermann, Ralf
2017-06-01
Small-scale pellet boilers and stoves became popular as a wood combustion appliance for domestic heating in Europe, North America and Asia due to economic and environmental aspects. Therefore, an increasing contribution of pellet boilers to air pollution is expected despite their general high combustion efficiency. As emissions of primary organic aerosol (POA) and permanent gases of pellet boilers are well investigated, the scope of this study was to investigate the volatile organic emissions and the formation potential of secondary aerosols for this type of appliance. Fresh and aged emissions were analysed by a soot-particle aerosol time-of-flight mass spectrometry (SP-AMS) and the molecular composition of the volatile precursors with single-photon ionisation time-of-flight mass spectrometry (SPI-TOFMS) at different pellet boiler operation conditions. Organic emissions in the gas phase were dominated by unsaturated hydrocarbons while wood-specific VOCs, e.g. phenolic species or substituted furans, were only detected during the starting phase. Furthermore, organic emissions in the gas phase were found to correlate with fuel grade and combustion technology in terms of secondary air supply. Secondary organic aerosols of optimised pellet boiler conditions (OPT, state-of-the-art combustion appliance) and reduced secondary air supply (RSA, used as a proxy for pellet boilers of older type) were studied by simulating atmospheric ageing in a Potential Aerosol Mass (PAM) flow reactor. Different increases in OA mass (55% for OPT, 102% for RSA), associated with higher average carbon oxidation state and O:C, could be observed in a PAM chamber experiment. Finally, it was found that derived SOA yields and emission factors were distinctly lower than reported for log wood stoves.
Phuong, Le My; Huong, Do Thi Thanh; Malte, Hans; Nyengaard, Jens Randel; Bayley, Mark
2018-02-01
The air-breathing fish Pangasianodon hypophthalmus has been shown to have highly plastic branchial surfaces whose area (SA) increases with temperature and aquatic hypoxia. This modulation occurs through development of inter-lamellar cell mass (ILCM). Paradoxically, in conditions where this fish has been shown capable of covering its entire aerobic scope from the water phase, it has been shown to have a very small branchial SA. To address this paradox, we measured the SA, harmonic mean diffusion distance (τ h ) and calculated the anatomic diffusion factor (ADF) of the branchial and swim bladder surfaces in fish ranging from 3 to 1900 g at 27°C in normoxia. Since the lamellae were distinguishable from the ILCM, we measured the actual SA as well as the potential SA if ILCM were lost. As a result of low τ h , P. hypophthalmus has a high capacity for branchial oxygen uptake with or without ILCM. Actual and potential gill ADF were 361 and 1002 cm 2 µm -1 kg -1 , respectively, for a 100 g fish and the ADF of the swim bladder was found to be 308 cm 2 µm -1 kg -1 By swimming fish to exhaustion at different temperatures, we show that modulation of this SA is rapid, indicating that the apparent paradox between previous studies is eliminated. Regression analysis of log-log plots of respiratory SA in relation to body mass shows that the gill scales with mass similarly to the SA in active water-breathing fish, whereas the swim bladder scales with mass more like the mammalian lung does. This fish presents a combination of respiratory surfaces not previously seen in air-breathing fish. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.
2016-02-01
Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.
NASA Astrophysics Data System (ADS)
Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł
2017-12-01
Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
NASA Astrophysics Data System (ADS)
Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.
2017-12-01
The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.
Evaluation of automotive mass airflow sensors for animal environment research and control
USDA-ARS?s Scientific Manuscript database
Mass air flow is an important parameter to consider in animal research applications, especially for the generation of heat and moisture production data. The high flow rates and low operating pressures in animal research facilities present a unique and costly challenge for measurement of mass air fl...
NASA Astrophysics Data System (ADS)
Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng
2011-07-01
Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.
Urban organic aerosols measured by single particle mass spectrometry in the megacity of London
NASA Astrophysics Data System (ADS)
Dall'Osto, M.; Harrison, R. M.
2011-02-01
During the month of October 2006, as part of the REPARTEE-I experiment (Regent's Park and Tower Environmental Experiment) an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed at an urban background location in the city of London, UK. Fifteen particle types were classified, some of which were accompanied by Aerosol Mass Spectrometer (AMS) quantitative aerosol mass loading measurements (Dall'Osto et al., 2009a, b). In this manuscript the origins and properties of four particle types associated with locally generated aerosols, independent of the air mass type advected into London, are examined. One particle type, originating from lubricating oil (referred to as Ca-EC), was associated with morning rush hour traffic emissions. A second particle type, composed of both inorganic and organic species (called Na-EC-OC), was found enhanced in particle number concentration during evening time periods, and is likely to originate from a source operating at this time of day, or more probably from condensation of semi-volatile species, and contains both primary and secondary components. A third class, internally mixed with organic carbon and sulphate (called OC), was found to spike both in the morning and evenings. The fourth class (SOA-PAH) exhibited maximum frequency during the warmest part of the day, and a number of factors point towards secondary production from traffic-related volatile aromatic compounds. Single particle mass spectra of this particle type showed an oxidized polycyclic aromatic compound signature. Finally, a comparison of ATOFMS particle class data is made with factors obtained by Positive Matrix Factorization from AMS data.. Both the Ca-EC and OC particle types correlate with the AMS HOA primary organic fraction (R2 = 0.65 and 0.50 respectively), and Na-EC-OC, but not SOA-PAH, which correlates weakly with the AMS OOA secondary organic aerosol factor (R2 = 0.35). A detailed analysis was conducted to identify ATOFMS particle type(s) representative of the AMS COA cooking aerosol factor, but no convincing associations were found.
Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer
NASA Astrophysics Data System (ADS)
Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.
2015-12-01
In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.
Heat Transfer of Confined Impinging Air-water Mist Jet
NASA Astrophysics Data System (ADS)
Chang, Shyy Woei; Su, Lo May
This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.
NASA Astrophysics Data System (ADS)
Huang, X.-F.; He, L.-Y.; Hu, M.; Canagaratna, M. R.; Kroll, J. H.; Ng, N. L.; Zhang, Y.-H.; Lin, Y.; Xue, L.; Sun, T.-L.; Liu, X.-G.; Shao, M.; Jayne, J. T.; Worsnop, D. R.
2010-11-01
The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China, but it is also noted for its severe air pollution due to industrial/metropolitan emissions. In order to continuously improve the understanding and quantification of air pollution in this region, an intensive campaign was executed in PRD during October-November 2008. Here, we report and analyze Aerodyne High-Resolution Aerosol Mass Spectrometer measurements at Kaiping, a rural site downwind of the highly-polluted central PRD area, to characterize the general features of submicron particulate pollution in the regional air. The mean measured PM1 mass concentration was 33.1 ± 18.1 μg m-3 during the campaign and composed of organic matter (33.8%), sulfate (33.7%), ammonium (14.0%), nitrate (10.7%), black carbon (6.7%), and chloride (1.1%), which is characterized by high fractions of inorganic ions due to huge emissions of SO2 and NOx in PRD. The average size distributions of the species (except BC) were all dominated by an accumulation mode peaking at ~450 nm in vacuum aerodynamic diameter. Calculations based on high-resolution organic mass spectra indicate that C, H, O, and N on average contributed 56.6, 7.0, 35.1, and 1.3% to the total organic mass, respectively, corresponding to an organic matter mass to organic carbon mass ratio (OM/OC) of 1.77 ± 0.08. Based on the high-resolution organic mass spectral dataset observed, Positive Matrix Factorization (PMF) analysis differentiated the organic aerosol into three components, i.e., biomass burning (BBOA) and two oxygenated (LV-OOA and SV-OOA) organic aerosols, which on average accounted for 24.5, 39.6 and 35.8% of the total organic mass, respectively. The BBOA showed strong features of biomass burning emissions and has been mainly attributed to field rice straw burning after harvest. The LV-OOA and SV-OOA were found to correspond to more aged (and thus less-volatile) and fresher (and semi-volatile) secondary organic aerosol, respectively. Analysis of meteorological influence supported that regional transport from the central PRD area was the major origin of the PM1 components observed at the Kaiping site.
Long term measurements of optical properties and their hygroscopic enhancement
NASA Astrophysics Data System (ADS)
Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.
2014-11-01
Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
40 CFR 63.4550 - By what date must I conduct the initial compliance demonstration?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and... next 12 months. You must determine the mass of organic HAP emissions and mass of coating solids used...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins... mass emissions per mass product are less than or equal to the level specified in § 63.1316(b)(1)(i) (i...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins... mass emissions per mass product are less than or equal to the level specified in § 63.1316(b)(1)(i) (i...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...
NASA Astrophysics Data System (ADS)
Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima
2018-03-01
In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.
Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses
NASA Astrophysics Data System (ADS)
Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.
2018-04-01
Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol growth was frequently observed in a range of air masses (urban, wildfire, forested) and oxidant conditions (day vs. night), with rates ranging from 0.8 to 10.2 nm h-1.
NASA Astrophysics Data System (ADS)
Amador-Muñoz, Omar; Villalobos-Pietrini, Rafael; Agapito-Nadales, Ma. Cristina; Munive-Colín, Zenaida; Hernández-Mena, Leonel; Sánchez-Sandoval, Magdalena; Gómez-Arroyo, Sandra; Bravo-Cabrera, José Luis; Guzmán-Rincón, Judith
2010-01-01
Airborne particulate mass was collected in a cascade impactor, and the mass concentration of solvent extracted organic matter (SEOM) and polycyclic aromatic hydrocarbons (PAH) were determined. A greater mass concentration of particles, SEOM and PAH were obtained in the dry season than in the rainy season for all impact stages; however, in the rainy season the proportion of SEOM/particles mass increased for all stages. There was an average decrease in particle mass concentration of 52.1 ± 6.7%, a 33.6 ± 12.3% decrease in SEOM and a 43.9 ± 16.9% decrease in heavy PAH (≥228 g mol -1) in the rainy season. Heavy PAH were distributed in fine particles, while light PAH were more abundant in coarse particles. Estimations of SEOM and PAH inhaled daily by a person were made. Considering the carcinogenic PAH median mass (10th-90th percentiles) in 20 m 3 of air, and the sum of all stages that could be inhaled daily by a person, estimates of 137 ng day -1 (74-246) in the dry season and 57 ng day -1 (21-101) in the rainy season were determined. The toxic equivalent factors were calculated to more accurately characterize the carcinogenic properties of PAH mixtures. This was based on the contribution of the carcinogenic potency of benzo[ a]pyrene. These estimations would need to be considered in establishing standards for Mexican air quality. Correlations were shown between other atmospheric pollutants and masses of particles, SEOM and PAH. Vehicles were suggested as an emission source for SEOM and PAH.
NASA Astrophysics Data System (ADS)
Faïn, X.; Obrist, D.; Hallar, A. G.; McCubbin, I.; Rahn, T.
2009-10-01
The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m-3 (GEM), 20 pg m-3 (RGM) and 9 pg m-3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m-3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols) showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~-0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent mercury, that high RGM levels are not limited to upper tropospheric air masses, but that the build-up of high RGM in the troposphere is limited to the presence of dry air.
Effects of oxygen partial pressure on Li-air battery performance
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin
2017-10-01
For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.
An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle
NASA Astrophysics Data System (ADS)
Waung, Timothy S.
Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.
Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph
2003-06-01
A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.
Exposure to urban air pollution and bone health in clinically healthy six-year-old children.
Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre
2013-01-01
Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.
NASA Technical Reports Server (NTRS)
Whitney, W. J.
1977-01-01
The stage work distribution among the three stages was very close to the design value. The specific work output-mass flow characteristics of the three stages were closely matched. The efficiency of the 3 1/2 stage turbine at design specific work output and design speed was within 0.008 of the estimated value, and this agreement was felt to demonstrate the adequacy of the prediction method in the high stage loading factor regime.
Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...
2015-04-01
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage
NASA Technical Reports Server (NTRS)
Kaufman, Harold R; Koffel, William K
1952-01-01
The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.
Clean Air Markets - Part 75 Emissions Monitoring Policy Manual
Learn about monitoring mass sulfur dioxide and mass carbon dioxide emissions, nitrogen oxide emission rate, and heat input by units affected by the Acid Rain Program and the Clean Air Interstate Rule.
Characterizing ultrafine particles and other air pollutants in and around school buses.
Zhu, Yifang; Zhang, Qunfang
2014-03-01
Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter < 100 nm). Children are particularly at risk because of their immature respiratory systems and higher breathing rates per body mass. This study aimed to characterize UFP, PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter), and other vehicular-emitted pollutants in and around school buses. Four sub-studies were conducted, including: 1. On-road tests to measure in-cabin air pollutant levels while school buses were being driven; 2. Idling tests to determine the contributions of tailpipe emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age, window position, driving speed, driving route, and operating conditions. Emissions from idling school buses increased the PNC close to the tailpipe by a factor of up to 26.0. Under some circumstances, tailpipe emissions of idling school buses increased the in-cabin PNC by factors ranging from 1.2 to 5.8 in the 10-30 nm particle size range. Retrofit systems significantly reduced the tailpipe emissions of idling school buses. With both DOC and CFS installed, PNC in tailpipe emissions dropped by 20%-94%. No unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The operation of the air conditioning (AC) unit and the pollutant concentrations in the surrounding ambient air played more important roles than retrofit technologies in determining in-cabin air quality. The use of a HEPA air purifier removed up to 50% of in-cabin particles. Because each sub-study tested only a subset of the 24 school buses, the results should be seen as more exploratory than definitive.
Method and apparatus for igniting an in situ oil shale retort
Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.
1981-01-01
A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.
Veremchuk, Lyudmila V; Tsarouhas, Konstantinos; Vitkina, Tatyana I; Mineeva, Elena E; Gvozdenko, Tatyana A; Antonyuk, Marina V; Rakitskii, Valeri N; Sidletskaya, Karolina A; Tsatsakis, Aristidis M; Golokhvast, Kirill S
2018-04-01
Environmental pollution, local climatic conditions and their association with the prevalence and exacerbation of asthma are topics of intense current medical investigation. Air pollution in the area of Vladivostock was estimated both by the index of emission volumes of "air gaseous components" (nitrogen oxide and nitrogen dioxide, formaldehyde, hydrogen sulfide, carbon monoxide) in urban atmosphere and by mass spectrometric analysis of precipitates in snow samples. A total of 172 local asthma patients (101 controlled-asthma patients-CAP and 71 non-controlled asthma patients - nCAP) were evaluated with the use of spirometry and body plethysmography. Airway obstruction reversibility was evaluated with the use of an inhaled bronchodilator. Using discriminant analysis the association of environmental parameters with clinical indices of asthma patients is explored and thresholds of impact are established. CAP presented high sensitivity to large-size suspended air particles and to several of the studied climatic parameters. Discriminant analysis showed high values of Wilks' lambda index (α = 0.69-0.81), which implies limited influence of environmental factors on the respiratory parameters of CAP. nCAP were more sensitive and susceptible to the majority of the environmental factors studied, including air suspended toxic metals particles (Cr, Zn and Ni). Air suspended particles showed higher tendency for pathogenicity in nCAP population than in the CAP, with a wider range of particle sizes being involved. Dust fractions ranging from 0 to 1 μm and from 50 to 100 μm were additionally implicated compared to CAP group. Considerably lowest thresholds levels of impact are calculated for nCAP. Copyright © 2017. Published by Elsevier Ltd.
Sorption of atmospheric gases by bulk lithium metal
Hart, C. A.; Skinner, C. H.; Capece, A. M.; ...
2016-01-01
Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H 2O, CO, CO 2) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ~1 cm 2 surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. Amore » 9 mg sample achieved a final mass gain corresponding to complete conversion to Li 2CO 3 after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components.« less
Source Apportionment of VOCs in Edmonton, Alberta
NASA Astrophysics Data System (ADS)
McCarthy, M. C.; Brown, S. G.; Aklilu, Y.; Lyder, D. A.
2012-12-01
Regional emissions at Edmonton, Alberta, are complex, containing emissions from (1) transportation sources, such as cars, trucks, buses, and rail; (2) industrial sources, such as petroleum refining, light manufacturing, and fugitive emissions from holding tanks or petroleum terminals; and (3) miscellaneous sources, such as biogenic emissions and natural gas use and processing. From 2003 to 2009, whole air samples were collected at two sites in Edmonton and analyzed for over 77 volatile organic compounds (VOCs). VOCs were sampled in the downtown area (Central) and the industrial area on the eastern side of the city (East). Concentrations of most VOCs were highest at the East site. The positive matrix factorization (PMF) receptor model was used to apportion ambient concentration measurements of VOCs into eleven factors, which were associated with emissions source categories. Factors of VOCs identified in the final eleven-factor solution include transportation sources (both gasoline and diesel vehicles), industrial sources, a biogenic source, and a natural-gas-related source. Transportation sources accounted for more mass at the Central site than at the East site; this was expected because Central is in a core urban area where transportation emissions are concentrated. Transportation sources accounted for nearly half of the VOC mass at the Central site, but only 6% of the mass at the East site. Encouragingly, mass from transportation sources has declined by about 4% a year in this area; this trend is similar to the decline found throughout the United States, and is likely due to fleet turnover as older, more highly polluting cars are replaced with newer, cleaner cars. In contrast, industrial sources accounted for ten times more VOC mass at the East site than at the Central site and were responsible for most of the total VOC mass observed at the East site. Of the six industrial factors identified at the East site, four were linked to petrochemical industry production and storage. The two largest contributors to VOC mass at the East site were associated with fugitive emissions of volatile species (butanes, pentanes, hexane, and cyclohexane); together, these two factors accounted for more than 50% of the mass at the East site and less than 2% of the mass at the Central site. Natural-gas-related emissions accounted for 10% to 20% of the mass at both sites. Biogenic emissions and VOCs associated with well-mixed global background were less than 10% of the VOC mass at the Central site and less than 3% of the mass at the East site. Controllable emissions sources account for the bulk of the identified VOC mass. Efforts to reduce ozone or particulate matter precursors or exposure to toxic pollutants can now be directed to those sources most important to the Edmonton area.
Enhanced Ionization Of Propellant Through Carbon Nanotube Growth On Angled Walls
2017-06-01
FEEP field emission electric propulsion MUF mass utilization factor NSTAR NASA Solar Technology Application Readiness SCATHA Spacecraft Charging at...Experiments This experiment, Spacecraft Charging at High Altitudes (SCATHA), was developed by the U.S. Air Force along with NASA [5]. A satellite was launched...propulsion system, gimbal mounted and deployed on DS1. Source: [6]. 3. DAWN A more recent use of XIPS is the DAWN Spacecraft from NASA . Orbiting the
Characteristics of vertical air motion in isolated convective clouds
Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...
2016-08-11
The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (< 500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (> 20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less
Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.
Chang, Shuenn-Chin; Lee, Chung-Te
2007-09-01
The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.
Dahly, Darren L; Li, Xia; Smith, Hazel A; Khashan, Ali S; Murray, Deirdre M; Kiely, Mairead E; O'B Hourihane, Jonathan; McCarthy, Fergus P; Kenny, Louise C; Kearney, Patricia M
2018-02-01
Neonatal body composition likely mediates fetal influences on life long chronic disease risk. A better understanding of how maternal lifestyle is related to newborn body composition could thus inform intervention efforts. Using Cork participant data (n = 1754) from the Screening for Pregnancy Endpoints (SCOPE) cohort study [ECM5(10)05/02/08], we estimated how pre-pregnancy body size, gestational weight gain, exercise, alcohol, smoking and diet were related to neonatal fat and fat-free mass, as well as length and gestational age at birth, using quantile regression. Maternal factors were measured by a trained research midwife at 15 gestational weeks, in addition to a 3rd trimester weight measurement used to calculate weight gain. Infant body composition was measured using air-displacement plethysmography. Healthy (versus excess) gestational weight gain was associated with lower median fat-free mass [-112 g, 95% confidence interval (CI): -47 to -176) and fat mass (-33 g, 95% CI: -1 to -65) in the offspring; and a 103 g decrease in the 95th centile of fat mass (95% CI: -33 to -174). Maternal normal weight status (versus obesity) was associated with lower median fat mass (-48 g, 95% CI: -12 to -84). At the highest centiles, fat mass was lower among infants of women who engaged in frequent moderate-intensity exercise early in the pregnancy (-92 g at the 95th centile, 95% CI: -168 to -16). Lastly, women who never smoked tended to have longer babies with more fat mass and fat-free mass. No other lifestyle factors were strongly related to infant body composition. These results suggest that supporting healthy maternal lifestyles could reduce the risk of excess fat accumulation in the offspring, without adversely affecting fat-free mass development, length or gestational age. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
NASA Astrophysics Data System (ADS)
Fuchs, Julia; Cermak, Jan; Andersen, Hendrik
2017-04-01
This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.
NASA Astrophysics Data System (ADS)
Olszowski, Tomasz
2017-10-01
The paper contains the results of a study into mass concentration of the dispersed aerosol fraction with the aerodynamic diameter of up to 2.5 and 10 micrometers. The study was conducted during classes with students participating in them in two laboratories located at Faculty of Mechanical Engineering, Opole University of Technology as well as outdoor outside the building. It was demonstrated that the values of the mass concentration of PM2.5 and PM10 measured in the laboratories differ considerably from the levels measured in the ambient air in the outdoor areas surrounding the faculty building. It was concluded that the diversity of PM2.5/PM10 ratio was greater in the laboratories. Direct correlation was not established between the concentrations of the particular PM fractions in the two investigated environments. It was demonstrated that there is a statistically significant relation between the concentration of PM2.5 and PM10 and the number of people present in the laboratory. The conducted cluster analysis led to the detection of the existence of dominant structures determining air quality parameters. For the analyzed case, endogenic factors are responsible for the aerosanitary condition. The study demonstrated that the evaluation of air quality needs to be performed individually for the specific rooms.
Emissions of volatile organic compounds and particulate matter from small-scale peat fires
NASA Astrophysics Data System (ADS)
George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.
2013-12-01
Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.
NASA Astrophysics Data System (ADS)
Han, J.; Shin, B.; Lee, M.; Hwang, G.; Kim, J.; Shim, J.; Lee, G.; Shim, C.
2015-11-01
Ieodo Ocean Research Station (IORS), a research tower (~ 40 m a.s.l.) for atmospheric and oceanographic observations, is located in the East China Sea (32.07° N, 125.10° E). The IORS is almost equidistant from South Korea, China, and Japan and, therefore, it is an ideal place to observe Asian outflows without local emission effects. The seasonal variation of ozone was distinct, with a minimum in August (37 ppbv) and two peaks in April and October (62 ppbv), and was largely affected by the seasonal wind pattern over east Asia. At IORS, six types of air masses were distinguished with different levels of O3 concentrations by the cluster analysis of backward trajectories. Marine air masses from the Pacific Ocean represent a relatively clean background air with a lowest ozone level of 32 ppbv, which was most frequently observed in summer (July-August). In spring (March-April) and winter (December-February), the influence of Chinese outflows was dominant with higher ozone concentrations of 62 and 49 ppbv, respectively. This study confirms that the influence of Chinese outflows was the main factor determining O3 levels at IORS and its extent was dependent on meteorological state, particularly at a long-term scale.
Aerosol Pollution from Small Combustors in a Village
Zwozdziak, A.; Samek, L.; Sowka, I.; Furman, L.; Skrętowicz, M.
2012-01-01
Urban air pollution is widely recognized. Recently, there have been a few projects that examined air quality in rural areas (e.g., AUPHEP project in Austria, WOODUSE project in Denmark). Here we present the results within the International Cooperation Project RER/2/005 targeted at studying the effect of local combustion processes to air quality in the village of Brzezina in the countryside north-west of Wroclaw (south western Poland). We identified the potential emission sources and quantified their contributions. The ambient aerosol monitoring (PM10 and elemental concentrations) was performed during 4 measurement cycles, in summer 2009, 2010 and in winter 2010, 2011. Some receptor modeling techniques, factor analysis-multiple linear regression analysis (FA-MLRA) and potential source localization function (PSLF), have been used. Different types of fuel burning along with domestic refuse resulted in an increased concentration of PM10 particle mass, but also by an increased in various other compounds (As, Pb, Zn). Local combustion sources contributed up to 80% to PM10 mass in winter. The effect of other sources was small, from 6 to 20%, dependently on the season. Both PM10 and elemental concentrations in the rural settlement were comparable to concentrations at urban sites in summer and were much higher in winter, which can pose asignificant health risk to its inhabitants. PMID:22629226
NASA Astrophysics Data System (ADS)
Shingler, T.; Crosbie, E. C.; Ziemba, L. D.; Anderson, B. E.; Campuzano Jost, P.; Jimenez, J. L.; Mikoviny, T.; Wisthaler, A.; Sorooshian, A.
2014-12-01
The hygroscopic growth of atmospheric aerosol particles is a key air quality parameter, impacting the radiation budget, visibility, and cloud formation. During the DC3 and SEAC4RS field campaigns (>300 total flight hours), measurements were made over 32 US states, Canada, the Pacific Ocean, and the Gulf of Mexico, between the surface and 41,000 feet ASL. The aircraft research payloads included a suite of in-situ aerosol and gas phase instruments. The Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP) and the Langley Aerosol Research Group Experiment (LARGE) humidified nephelometer instrument applied different techniques to measure water uptake by aerosol particles at prescribed relative humidity values. Size-resolved growth factor (GF ≡ Dp,wet/Dp,dry) measurements by the DASH-SP are compared to bulk scattering measurements (f(RH) ≡ σscat,wet/σscat,dry) by the LARGE instrument. Spatial location and volatile organic compound tracers such as isoprene and acetonitrile are used to classify the origin of distinct air masses, including: forest fires, biogenic-emitting forests, agricultural use lands, marine boundary layer, urban, and rural background. Analyses of GF results by air mass origin are reported and results are compared with f(RH) measurements. A parameterization between the f(RH) and GF measurements and its potential uses are discussed.
Meteorological conditions during the summer 1986 CITE 2 flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott
1990-01-01
An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.
Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain
First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.
Rajsić, Slavica F; Tasić, Mirjana D; Novaković, Velibor T; Tomasević, Milica N
2004-01-01
As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.
NASA Astrophysics Data System (ADS)
Gullett, Brian; Touati, Abderrahmane; Oudejans, Lukas
Emissions of aromatic air toxics from aircraft ground equipment (AGE) were measured with a resonance enhanced multiphoton ionization-time of flight mass spectrometry (REMPI-TOFMS) system consisting of a pulsed solid state laser for photoionization and a TOFMS for mass discrimination. This instrument was capable of characterizing turbine emissions and the effect of varying load operations on pollutant production. REMPI-TOFMS is capable of high selectivity and low detection limits (part per trillion to part per billion) in real time (1 s resolution). Hazardous air pollutants and criteria pollutants were measured during startups and idle and full load operations. Measurements of compounds such as benzene, toluene, ethylbenzene, xylenes, styrene, and polycyclic aromatic hydrocarbons compared well with standard methods. Startup emissions from the AGE data showed persistent concentrations of pollutants, unlike those from a diesel generator, where a sharp spike in emissions rapidly declined to steady state levels. The time-resolved responses of air toxics concentrations varied significantly by source, complicating efforts to minimize these emissions with common operating prescriptions. The time-resolved measurements showed that pollutant concentrations decline (up to 5×) in a species-specific manner over the course of multiple hours of operation, complicating determination of accurate and precise emission factors via standard extractive sampling. Correlations of air toxic concentrations with more commonly measured pollutants such as CO or PM were poor due to the relatively greater changes in the measured toxics' concentrations.
Atmospheric particulate measurements in Norfolk, Virginia
NASA Technical Reports Server (NTRS)
Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.
1975-01-01
Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.
On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.
2001-06-01
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.
Oxidation of mercury by bromine in the subtropical Pacific free troposphere
NASA Astrophysics Data System (ADS)
Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.
2015-12-01
Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
NASA Astrophysics Data System (ADS)
Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira
2010-05-01
The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa, Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Maddalena, R.L.; Dowdy, D.L.
1995-12-31
The magnitude of potential human exposure through foods can be and has been assessed through food-product samples. Reducing these exposures requires that measuring not only the exposure media (food) concentrations but also defining the processes that link various contaminant sources to food. The authors present here a general approach for quantifying human exposure to contaminants in home-grown foods using four factors-ambient environmental concentrations in air and soil; bioconcentration factors between air, soil, leaves, and roots; translocations from leaves and roots to edible-plant parts; and human activity patterns associated with consumption of home-grown food products. The authors combined these factors inmore » a general model and used sensitivity analyses to assess the important contributions to the imprecision of exposure estimates. Despite large uncertainties about human activities, they found the major source of uncertainty (variance) in exposure estimates is attributable to imprecision in quantifying bioconcentration. This is especially evident for persistent and fat-soluble compounds--such as PCBs, PAHs, dioxins, and furans. The evaluation of analytical and theoretical methods used to characterize bioconcentration factors reveals that molecular connectivity indices (MCIs) based on molecular structure are better predictors of bioconcentration in plants than are the solubility factors currently in use. The authors describe ongoing laboratory experiments in exposure chambers with garden foods such as leafy vegetables and root crops. They then assess the ability of these methods to better define chemical mass transfers among the components of the home-garden system-air, soil-organic phases, soil solution, plant roots, and plant leaves.« less
Rostami, Ali A; Pithawalla, Yezdi B; Liu, Jianmin; Oldham, Michael J; Wagner, Karl A; Frost-Pineda, Kimberly; Sarkar, Mohamadi A
2016-08-16
Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.
Fluid core size of Mars from detection of the solar tide
NASA Technical Reports Server (NTRS)
Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.
2003-01-01
The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.
Fluid Core Size of Mars from Detection of the Solar Tide
NASA Astrophysics Data System (ADS)
Yoder, C. F.; Konopliv, A. S.; Yuan, D. N.; Standish, E. M.; Folkner, W. M.
2003-04-01
The solar tidal deformation of Mars, measured by its k2 potential Love number, has been obtained from an analysis of Mars Global Surveyor radio tracking. The observed k2 of 0.153 +/- 0.017 is large enough to rule out a solid iron core and so indicates that at least the outer part of the core is liquid. The inferred core radius is between 1520 and 1840 kilometers and is independent of many interior properties, although partial melt of the mantle is one factor that could reduce core size. Ice-cap mass changes can be deduced from the seasonal variations in air pressure and the odd gravity harmonic J3, given knowledge of cap mass distribution with latitude. The south cap seasonal mass change is about 30 to 40% larger than that of the north cap.
Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2016-03-01
The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.
Centrifugal study of zone of influence during air-sparging.
Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng
2011-09-01
Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.
NASA Astrophysics Data System (ADS)
Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria
2015-04-01
Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The significance of our findings for the eastern Mediterranean Sea is thoroughly discussed. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.
Biomass burning and biogenic aerosols in northern Australia during the SAFIRED campaign
NASA Astrophysics Data System (ADS)
Milic, Andelija; Mallet, Marc D.; Cravigan, Luke T.; Alroe, Joel; Ristovski, Zoran D.; Selleck, Paul; Lawson, Sarah J.; Ward, Jason; Desservettaz, Maximilien J.; Paton-Walsh, Clare; Williams, Leah R.; Keywood, Melita D.; Miljevic, Branka
2017-03-01
There is a lack of knowledge of how biomass burning aerosols in the tropics age, including those in the fire-prone Northern Territory in Australia. This paper reports chemical characterization of fresh and aged aerosols monitored during the 1-month-long SAFIRED (Savannah Fires in the Early Dry Season) field study, with an emphasis on the chemical signature and aging of organic aerosols. The campaign took place in June 2014 during the early dry season when the surface measurement site, the Australian Tropical Atmospheric Research Station (ATARS), located in the Northern Territory, was heavily influenced by thousands of wild and prescribed bushfires. ATARS was equipped with a wide suite of instrumentation for gaseous and aerosol characterization. A compact time-of-flight aerosol mass spectrometer was deployed to monitor aerosol chemical composition. Approximately 90 % of submicron non-refractory mass was composed of organic material. Ozone enhancement in biomass burning plumes indicated increased air mass photochemistry. The diversity in biomass burning emissions was illustrated through variability in chemical signature (e.g. wide range in f44, from 0.06 to 0.18) for five intense fire events. The background particulate loading was characterized using positive matrix factorization (PMF). A PMF-resolved BBOA (biomass burning organic aerosol) factor comprised 24 % of the submicron non-refractory organic aerosol mass, confirming the significance of fire sources. A dominant PMF factor, OOA (oxygenated organic aerosol), made up 47 % of the sampled aerosol, illustrating the importance of aerosol aging in the Northern Territory. Biogenic isoprene-derived organic aerosol factor was the third significant fraction of the background aerosol (28 %).
Metals and possible sources of lead in aerosols at the Dinghushan nature reserve, southern China.
Zhu, Xiao-min; Kuang, Yuan-wen; Li, Jiong; Schroll, Reiner; Wen, Da-zhi
2015-08-15
Aerosols play an important role in depositing metals into forest ecosystems. Better understanding of forest aerosols with regard to their metal content and their possible sources is of great significance for air quality and forest health. Particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)) in aerosols was collected every month for 20 months using moderate-volume samplers in the Dinghushan (DHS) nature reserve in southern China. The concentrations of metals (Al, Cd, Mn, Ni, Pb, and Zn) as well as the Pb isotopic ratios in the PM(2.5) samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). Moderate pollution with aerosol PM(2.5) was detected at the DHS nature reserve with the air mass from mainland China being the predominant PM(2.5) source. The high enrichment factors (EFs) for the heavy metals Pb, Cd, and Zn, as well as the PM(2.5) mass concentrations, coupled with backward trajectory analysis, indicated the anthropogenic origins of the PM(2.5) and of the heavy metals in the PM(2.5). The Pb isotopic ratios revealed the contributions from various Pb sources, which varied between seasons. Industrial emissions and automobile exhaust from the Pearl River Delta (PRD) primarily contributed to the anthropogenic Pb in PM(2.5), although there was occasionally a contribution from coal combustion during the wet season. Pb isotopic ratios analyses are helpful for air quality assessment and Pb source tracing. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zheng, Jun; Garzón, Jessica P.; Huertas, María E.; Zhang, Renyi; Levy, Misti; Ma, Yan; Huertas, José I.; Jardón, Ricardo T.; Ruíz, Luis G.; Tan, Haobo; Molina, Luisa T.
2013-05-01
As part of the Cal-Mex 2010 air quality study, a proton transfer reaction-mass spectrometer (PTR-MS) was deployed at the San Diego-Tijuana border area to measure volatile organic compounds (VOCs) from 15 May to 30 June 2010. The major VOCs identified during the study included oxygenated VOCs (e.g., methanol, acetaldehyde, acetone, and methyl ethyl ketone) and aromatics (e.g., benzene, toluene, C8- and C9-aromatics). Biogenic VOCs (e.g., isoprene) were scarce in this region because of the lack of vegetation in this arid area. Using an U.S. EPA positive matrix factorization model, VOCs together with other trace gases (NOx, NOz and SO2) observed in this border region were attributed to four types of sources, i.e., local industrial solvent usage (58% in ppbC), gasoline vehicle exhaust (19% in ppbC), diesel vehicle exhaust (14% in ppbC), and aged plume (9% in ppbC) due to regional background and/or long-range transport. Diesel vehicle emission contributed to 87% of SO2 and 75% of NOx, and aged plume contributed to 92% of NOz. An independent conditional probability function analysis of VOCs, wind direction, and wind speed indicated that the industrial source did not show a significant tendency with wind direction. Both gasoline and diesel engine emissions were associated with air masses passing through two busy cross-border ports. Aged plumes were strongly associated with NW wind, which likely brought in aged air masses from the populated San Diego area.
Precipitation chemistry over urban, rural and high altitude Himalayan stations in eastern India
NASA Astrophysics Data System (ADS)
Roy, Arindam; Chatterjee, Abhijit; Tiwari, Suresh; Sarkar, Chirantan; Das, Sanat Kumar; Ghosh, Sanjay Kumar; Raha, Sibaji
2016-11-01
A study of precipitation (rainwater) chemistry during the two consecutive summer monsoon seasons of 2013 and 2014 at a high altitude station (2200 m asl) at eastern Himalaya region (Darjeeling); a typical metropolitan urban location (Kolkata), and a rural environment near the Bay of Bengal (Falta) was conducted. The volume-weighted mean (VWM) concentration shows that total ionic composition was maximum over Kolkata (391 μeq l- 1) followed by Falta (204 μeq l- 1) and Darjeeling (64 μeq l- 1). 85% rain samples were alkaline over Kolkata, whereas, 55 and 65% samples were acidic over Falta and Darjeeling respectively. Ca2 + was the most potential species to completely neutralize the acidity over Kolkata, whereas, NH4+ was the potential species to partially neutralize the acidity over Falta and Darjeeling. The deposition fluxes of anthropogenic and dust species over Kolkata was remarkably higher than Falta and Darjeeling. Anthropogenic and dust chemical species in rainwater were found to be dominant over Kolkata and Falta when the air masses passes from the polluted continental region. Rainwater acidity over Darjeeling was highest when air masses arrived from the Arabian Sea compared to air masses from the Bay of Bengal. Positive matrix factorization model was used for the source apportionment of the ionic species scavenged by rain. Comparable contributions of marine, dust, and anthropogenic sources were identified as major source over Kolkata. The major contributions were identified from marine and fossil fuel burning over Falta, whereas, marine, biomass/coal burning, ammonia from agricultural activities and domestic wastes were identified as the major sources over Darjeeling.
NASA Astrophysics Data System (ADS)
Müller, Stefan; Hoor, Peter; Bozem, Heiko; Gute, Ellen; Vogel, Bärbel; Zahn, Andreas; Bönisch, Harald; Keber, Timo; Krämer, Martina; Rolf, Christian; Riese, Martin; Schlager, Hans; Engel, Andreas
2016-08-01
The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.
NASA Astrophysics Data System (ADS)
Damatto, S.; Maduar, M.; Pecequilo, B.; Nogueira, P.; Nisti, M.
2014-12-01
Beryllium-7 (T1/2 = 53.3 days), a cosmogenic radionuclide produced continuosly in the upper atmosphere by cosmic ray spallation reactions with oxygen and nitrogen can be found in different compartments of the environment and its concentration is influenced by several factors, such as, temperature, precipitation, air velocity, air masses, altitude and as well as latitude. It is quickly attached to aerosols after its formation, becoming a useful tool to study the dynamics of aerosol particles in the atmosphere. Long-term measurements of the spatial and temporal variation of 7Be allows assessment of the influence of these factors. Data of 7Be concentrations in rainfall, air surface, soil and sediments are very well reported in Northern Hemisphere; however these same results are limited in Southern Hemisphere. During a period of 13 years, from October 2001 to October 2014, 7Be concentration was measured every 15 days in surface air at Instituto de Pesquisas Energéticas e Nucleares (IPEN), in the city of São Paulo, São Paulo, Brazil. IPEN campus is located approximately 10 km west from downtown of the city of São Paulo, which is situated on a plateau in Southeastern Brazil, at latitude 23°33'58.27"S and longitude 46°44'14.82"W and an average altitude of 760m above sea level. The climate in the area is temperate tropical with dry period in winter and rainy in summer. The concentrations of 7Be in air filters were measured by non-destructive g-ray spectrometry using a coaxial Be-layer HPGe detector with 15% relative efficiency and live counting time ranged from 100,000s to 250,000 s. The results obtained were correlated to seasons, rainfall, temperature and sunspot number. The concentrations displayed clearly seasonal variations with higher values in spring and summer time and with the amount of precipitation.
A meteorological interpretation of the Arctic Boundary Layer Expedition (ABLE) 3B flight series
NASA Technical Reports Server (NTRS)
Shipham, Mark C.; Bachmeier, A. Scott; Cahoon, Donald R., Jr.; Gregory, Gerald L.; Anderson, Bruce E.; Browell, Edward V.
1994-01-01
The Arctic Boundary Layer Expedition (ABLE) 3B was conducted to determine the summertime tropospheric distribution, sources, and sinks of important trace gas and aerosol species over the wetlands and boreal forests of central and eastern Canada. Isentropic trajectories and analyzed midtropospheric circulation patterns were used to group flights according to the transport histories of polar, midlatitude, or tropical air masses which were sampled. These data were then divided into bands of potential temperature levels representing the low, middle, and maximum aircraft altitudes to assess the effects of both local and long distance transport and natural and man-made pollutants to the measured chemical species. Detailed case studies are provided to depict the complex three-dimensional airflow regimes that transported air with differing chemical signatures to the study area. Mission 6 details the large-scale movement of smoke in the generally prevailing west to northwesterly airflow that was observed on the majority of flights. Mission 1 analyzes the horizontal and vertical motions of maritime Pacific air in the upper troposphere that was routinely mixed downward to the aircraft altitude. Finally, mission 14 tracks the far northward excursion of tropical air that had been associated with a Pacific typhoon. The following three factors all had important influences on the collected chemical data sets: (1) local and distant stratospheric in puts into the upper and middle troposphere; (2) biomass-burning plumes from active fires in Alaska and Canada; (3) a band of 'low ozone' upper tropospheric air that was observed by airborne differential absorption lidar (DIAL) above the aircraft maximum altitude. Other modification factors observed on some flights included urban pollution from U.S. and Canadian cities, tropical air that had been associated with a Pacific typhoon, and precipitation scavenging by clouds and rain. Many flights were affected by several of the above factors which led to complex chemical signatures that will be discussed in other companion papers.
The effect of ventilation on indoor exposure to semivolatile organic compounds.
Liu, C; Zhang, Y; Benning, J L; Little, J C
2015-06-01
A mechanistic model was developed to examine how natural ventilation influences residential indoor exposure to semivolatile organic compounds (SVOCs) via inhalation, dermal sorption, and dust ingestion. The effect of ventilation on indoor particle mass concentration and mass transfer at source/sink surfaces, and the enhancing effect of particles on mass transfer at source/sink surfaces are included. When air exchange rate increases from 0.6/h to 1.8/h, the steady-state SVOC (gas-phase plus particle phase with log KOA varying from 9 to 13) concentration in the idealized model decreases by about 60%. In contrast, for the same change in ventilation, the simulated indoor formaldehyde (representing volatile organic compounds) gas-phase concentration decreases by about 70%. The effect of ventilation on exposure via each pathway has a relatively insignificant association with the KOA of the SVOCs: a change of KOA from 10(9) to 10(13) results in a change of only 2-30%. Sensitivity analysis identifies the deposition rate of PM2.5 as a primary factor influencing the relationship between ventilation and exposure for SVOCs with log KOA = 13. The relationship between ventilation rate and air speed near surfaces needs to be further substantiated. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel
2018-02-09
New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.
Satellite remote sensing of fine particulate air pollutants over Indian mega cities
NASA Astrophysics Data System (ADS)
Sreekanth, V.; Mahesh, B.; Niranjan, K.
2017-11-01
In the backdrop of the need for high spatio-temporal resolution data on PM2.5 mass concentrations for health and epidemiological studies over India, empirical relations between Aerosol Optical Depth (AOD) and PM2.5 mass concentrations are established over five Indian mega cities. These relations are sought to predict the surface PM2.5 mass concentrations from high resolution columnar AOD datasets. Current study utilizes multi-city public domain PM2.5 data (from US Consulate and Embassy's air monitoring program) and MODIS AOD, spanning for almost four years. PM2.5 is found to be positively correlated with AOD. Station-wise linear regression analysis has shown spatially varying regression coefficients. Similar analysis has been repeated by eliminating data from the elevated aerosol prone seasons, which has improved the correlation coefficient. The impact of the day to day variability in the local meteorological conditions on the AOD-PM2.5 relationship has been explored by performing a multiple regression analysis. A cross-validation approach for the multiple regression analysis considering three years of data as training dataset and one-year data as validation dataset yielded an R value of ∼0.63. The study was concluded by discussing the factors which can improve the relationship.
Yang, Wulin; Watson, Valerie J; Logan, Bruce E
2016-08-16
Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.
NASA Astrophysics Data System (ADS)
Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young
1990-09-01
Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.
NASA Astrophysics Data System (ADS)
Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.
2015-12-01
The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also contain single pollution plumes that perturb the background tracer distribution. These plumes could be traced back to biomass burning or flaring in remote regions, as well as local ship emissions within the measurement region.
Dose measurement in heterogeneous phantoms with an extrapolation chamber
NASA Astrophysics Data System (ADS)
Deblois, Francois
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.
de Gennaro, Gianluigi; Trizio, Livia; Di Gilio, Alessia; Pey, Jorge; Pérez, Noemi; Cusack, Michael; Alastuey, Andrés; Querol, Xavier
2013-10-01
An artificial neural network (ANN) was developed and tested to forecast PM10 daily concentration in two contrasted environments in NE Spain, a regional background site (Montseny), and an urban background site (Barcelona-CSIC), which was highly influenced by vehicular emissions. In order to predict 24-h average PM10 concentrations, the artificial neural network previously developed by Caselli et al. (2009) was improved by using hourly PM concentrations and deterministic factors such as a Saharan dust alert. In particular, the model input data for prediction were the hourly PM10 concentrations 1-day in advance, local meteorological data and information about air masses origin. The forecasted performance indexes for both sites were calculated and they showed better results for the regional background site in Montseny (R(2)=0.86, SI=0.75) than for urban site in Barcelona (R(2)=0.73, SI=0.58), influenced by local and sometimes unexpected sources. Moreover, a sensitivity analysis conducted to understand the importance of the different variables included among the input data, showed that local meteorology and air masses origin are key factors in the model forecasts. This result explains the reason for the improvement of ANN's forecasting performance at the Montseny site with respect to the Barcelona site. Moreover, the artificial neural network developed in this work could prove useful to predict PM10 concentrations, especially, at regional background sites such as those on the Mediterranean Basin which are primarily affected by long-range transports. Hence, the artificial neural network presented here could be a powerful tool for obtaining real time information on air quality status and could aid stakeholders in their development of cost-effective control strategies. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne
2017-01-01
A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.
NASA Astrophysics Data System (ADS)
A, Sotaro; S, Yuka; I, Moriaki; N, Fumiya; H, Daishi; A, Takemitsu; T, Akira
2010-05-01
Economy of East Asia has been growing rapidly, and atmospheric aerosols discharged from this region have been transported to Japan. Okinawa island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km of south Korea. Its location in Asian is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air mass which has been affected by anthropogenic activities. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using the same type of high volume air samplers at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We determined the concentrations of acid-digested metals using atomic absorption spectrometer and inductively-coupled plasma mass spectrometry (ICP-MS). We report and discuss spatial and temporal distribution of metals in the bulk atmospheric aerosols collected at CHAAMS, Kume island and Minami-Daitou island during June, 2008 to June 2009. We also determined 'background' concentration of metals in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume island and Minami-Daitou island to elucidate the influence of the transport processes and distances from Asian continent on metal concentrations.
Comprehensive characterization of PM2.5 aerosols in Singapore
NASA Astrophysics Data System (ADS)
Balasubramanian, R.; Qian, W.-B.; Decesari, S.; Facchini, M. C.; Fuzzi, S.
2003-08-01
A comprehensive characterization of PM2.5 aerosols collected in Singapore from January through December 2000 is presented. The annual average mass concentration of PM2.5 was 27.2 μg/m3. The atmospheric loading of PM2.5 was elevated sporadically from March through May, mainly due to advection of biomass burning (deliberate fires to clear plantation areas) impacted air masses from Sumatra, Indonesia. Satellite images of the area, trajectory calculations, and surface wind direction data are in support of the transport of pyrogenic products from Sumatra toward Singapore. Aerosol samples collected during the dry season were analyzed for water-soluble ions, water-soluble organic compounds (WSOC), elemental carbon (EC), organic carbon, and trace elements using a number of analytical techniques. The major components were sulfate, EC, water-soluble carbonaceous materials, and water-insoluble carbonaceous materials. Aerosol WSOC were characterized based on a combination of chromatographic separations by ion exchange chromatography, functional group investigation by proton nuclear magnetic resonance, and total organic carbon determination. The comprehensive chemical characterization of PM2.5 particles revealed that both non-sea-salt sufate (nss-SO42-) and carbonaceous aerosols mainly contributed to the increase in the mass concentration of aerosols during the smoke haze period. Using a mass closure test (a mass balance), we determined whether the physical measurement of gravimetric fine PM concentration of a sample is equal to the summed concentrations of the individually identified chemical constituents (measured or inferred) in the sample. The sum of the determined groups of aerosol components and the gravimetrically determined mass agreed reasonably well. Principal component analysis was performed from the combined data set, and five factors were observed: a soil dust component, a metallurgical industry factor, a factor representing emissions from biomass burning and automobiles, a sea-salt component, and an oil combustion factor.
Characteristics of Submicron Aerosols in 2013 summer of Beijing
NASA Astrophysics Data System (ADS)
Guo, Song; Hu, Min; Shang, Dongjie; Zheng, Jing; Du, Zhuofei; Wu, Yusheng; Lu, Sihua; Zeng, Limin; Zhang, Renyi
2016-04-01
To characterize the air pollution of North China Plain of China, CAREBEIJING-2013 field campaign (Campaigns of Air quality REsearch in BEIJING and surrounding region) was conducted in summer of 2013. Submicron aerosols were measured at an urban site PKU (Peking University, 39° 59'21"N, 116° 18'25"E) from July 28th to September 31st 2013. A suite of integrated instruments was used to measure the size distribution, effective density and hygroscopicity of ambient particles. The chemical composition of submicron particles were measured by using an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (Billerica, MA, USA). The average PM2.5 concentration was 73.0±70.7 μg m-3 during the measurement. The particulate pollution showed distinct 4-7 days cycles controlled by the meteorological conditions. Each cycle started with low PM2.5 mass concentrations (<20 μg m-3), since the air mass was from relatively clean mountainous area. The particle number concentrations were high, but and the sizes were small (<30 nm) at this stage, which can be explained by the new particle formation. In the succeeding days, both the particle mass and size continuously increased. The PM2.5concentration increased rapidly by >60 μg day-1, and the particle mean diameter grew to >100 nm. It is interesting to note that the mean diameters showed similar trend to PM2.5 mass concentrations, indicating the particle pollution attributed to the growth of the newly formed small particles. During the measurement, the average particle densities are between 1.3-1.5 g cm-3, indicating organics and sulfate were dominant in the particles. The densities of smaller particles, i.e. 46 nm, 81nm, showed single peak at 1.3-1.5 g cm-3, indicating the particles are internal mixed sulfate and organics. While the 150nm and 240 nm particle densities exhibited bimodal distribution with an additional small peak at ˜1.1 g cm-3, which is considered as external mixed organic particles or aged soot particles. The particle hygroscopic growth factor for all the measured sizes at RH of 90% showed bimodal distribution, attributing to external mixed organics (or aged soot) and internal mixed organics and sulfate. Both the density and HGF were higher than Tijuana, but similar to Houston. PMF (Positive Matrix Factorization) model was deployed to quantify the contributions of different mixing state particles. Internal mixed organics and sulfate were dominant in the ambient particles in Beijing.
Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.
2014-01-01
Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149
Passive air sampling theory for semivolatile organic compounds.
Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W
2005-07-01
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.
NASA Astrophysics Data System (ADS)
Lazarev, L. A.
2015-07-01
An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.
2008-07-21
and calisthenics ,) Despite this new mandate, 77.1% males (35 years and older) in the Air Force are overweight and 21% are obese. New fitness...than your regular job, did you participate in any physical activities or exercises such as running, calisthenics , golf, gardening, or walking for...such as running, calisthenics , golf, gardening, or walking for exercise? Thinking about the vigorous activities you do in a usual week, do do
Birch, Heidi; Andersen, Henrik R; Comber, Mike; Mayer, Philipp
2017-05-01
During simulation-type biodegradation tests, volatile chemicals will continuously partition between water phase and headspace. This study addressed how (1) this partitioning affects test results and (2) can be accounted for by combining equilibrium partition and dynamic biodegradation models. An aqueous mixture of 9 (semi)volatile chemicals was first generated using passive dosing and then diluted with environmental surface water producing concentrations in the ng/L to μg/L range. After incubation for 2 h to 4 weeks, automated Headspace Solid Phase Microextraction (HS-SPME) was applied directly on the test systems to measure substrate depletion by biodegradation relatively to abiotic controls. HS-SPME was also applied to determine air to water partitioning ratios. Biodegradation rate constants relating to the chemical in the water phase, k water , were generally a factor 1 to 11 times higher than biodegradation rate constants relating to the total mass of chemical in the test system, k system , with one exceptional factor of 72 times for a long chain alkane. True water phase degradation rate constants were found (i) more appropriate for risk assessment than test system rate constants, (ii) to facilitate extrapolation to other air-water systems and (iii) to be better defined input parameters for aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Suleiman, R. M.; Chance, K.; Liu, X.; Kurosu, T. P.; Gonzalez Abad, G.
2014-12-01
We present and discuss a detailed description of the retrieval algorithms for the OMI BrO product. The BrO algorithms are based on direct fitting of radiances from 319.0-347.5 nm. Radiances are modeled from the solar irradiance, attenuated and adjusted by contributions from the target gas and interfering gases, rotational Raman scattering, undersampling, additive and multiplicative closure polynomials and a common mode spectrum. The version of the algorithm used for both BrO includes relevant changes with respect to the operational code, including the fit of the O2-O2 collisional complex, updates in the high resolution solar reference spectrum, updates in spectroscopy, an updated Air Mass Factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical profiles in the level 2 products. Updates to the algorithms include accurate scattering weights and air mass factor calculations, scattering weights and profiles in outputs and available cross sections. We include retrieval parameter and window optimization to reduce the interference from O3, HCHO, O2-O2, SO2, improve fitting accuracy and uncertainty, reduce striping, and improve the long-term stability. We validate OMI BrO with ground-based measurements from Harestua and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.
Glucose Homeostasis Variables in Pregnancy versus Maternal and Infant Body Composition
Henriksson, Pontus; Löf, Marie; Forsum, Elisabet
2015-01-01
Intrauterine factors influence infant size and body composition but the mechanisms involved are to a large extent unknown. We studied relationships between the body composition of pregnant women and variables related to their glucose homeostasis, i.e., glucose, HOMA-IR (homeostasis model assessment-insulin resistance), hemoglobin A1c and IGFBP-1 (insulin-like growth factor binding protein-1), and related these variables to the body composition of their infants. Body composition of 209 women in gestational week 32 and of their healthy, singleton and full-term one-week-old infants was measured using air displacement plethysmography. Glucose homeostasis variables were assessed in gestational week 32. HOMA-IR was positively related to fat mass index and fat mass (r2 = 0.32, p < 0.001) of the women. Maternal glucose and HOMA-IR values were positively (p ≤ 0.006) associated, while IGFBP-1was negatively (p = 0.001) associated, with infant fat mass. HOMA-IR was positively associated with fat mass of daughters (p < 0.001), but not of sons (p = 0.65) (Sex-interaction: p = 0.042). In conclusion, glucose homeostasis variables of pregnant women are related to their own body composition and to that of their infants. The results suggest that a previously identified relationship between fat mass of mothers and daughters is mediated by maternal insulin resistance. PMID:26184296
The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry
ERIC Educational Resources Information Center
Driscoll, John N.; Warneck, Peter
1973-01-01
Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)
Identification of PM10 air pollution origins at a rural background site
NASA Astrophysics Data System (ADS)
Reizer, Magdalena; Orza, José A. G.
2018-01-01
Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.
NASA Astrophysics Data System (ADS)
Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.
2005-01-01
We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.
NASA Astrophysics Data System (ADS)
Nergui, T.; Lee, Y.; Chung, S. H.; Lamb, B. K.; Yokelson, R. J.; Barsanti, K.
2017-12-01
A number of chamber and field measurements have shown that atmospheric organic aerosols and their precursors produced from wildfires are significantly underestimated in the emission inventories used for air quality models for various applications such as regulatory strategy development, impact assessments of air pollutants, and air quality forecasting for public health. The AIRPACT real-time air quality forecasting system consistently underestimates surface level fine particulate matter (PM2.5) concentrations in the summer at both urban and rural locations in the Pacific Northwest, primarily result of errors in organic particulate matter. In this work, we implement updated chemical speciation and emission factors based on FLAME-IV (Fourth Fire Lab at Missoula Experiment) and other measurements in the Blue-Sky fire emission model and the SMOKE emission preprocessor; and modified parameters for the secondary organic aerosol (SOA) module in CMAQ chemical transport model of the AIRPACT modeling system. Simulation results from CMAQ version 5.2 which has a better treatment for anthropogenic SOA formation (as a base case) and modified parameterization used for fire emissions and chemistry in the model (fire-soa case) are evaluated against airborne measurements downwind of the Big Windy Complex Fire and the Colockum Tarps Fire, both of which occurred in the Pacific Northwest in summer 2013. Using the observed aerosol chemical composition and mass loadings for organics, nitrate, sulfate, ammonium, and chloride from aircraft measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), we assess how new knowledge gained from wildfire measurements improve model predictions for SOA and its contribution to the total mass of PM2.5 concentrations.
Radiant heat transfer from flames in a single tubular turbojet combustor / Leonard Topper
NASA Technical Reports Server (NTRS)
Topper, Leonard
1952-01-01
An experimental investigation of thermal radiation from the flame of a single tubular turbojet-engine combustor to the combustor liner is presented. The effects of combustor inlet-air pressure, air mass flow, and fuel-air ratio on the radiant intensity and the temperature and emissivity of the flame are reported. The total radiation of the "luminous" flames (containing incandescent soot particles) was much greater (4 to 21 times) than the "nonluminous" molecular radiation. The intensity of radiation from the flame increased rapidly with an increase in combustor inlet-air pressure; it was affected to a lesser degree by variations in fuel-air ratio and air mass flow.
Assessment of air pollution of settlement areas in Ulaanbaatar city, Mongolia
NASA Astrophysics Data System (ADS)
Ch, Sonomdagva; Ch, Byambatseren; Batdelger, B.
2017-05-01
The purpose of this study is to analyses mass concentration varied by its measurement of air pollution in Ulaanbaatar city, Mongolia. Ulaanbaatar city will have been increasing air pollution due to rapidly expanding vehicular population, growing industrial sector in last 10 years ago. In addition, people use to heat the carbon from 10 month in every year. This becomes a base cause of air pollution in Ulaanbaatar. We studied a change of mass concentration an air pollution elements in Ulaanbaatar, Mongolia. To research work, we used information that based on data of my measurements of air pollution and Metropolitan air quality agency until 2006 to 2016. This research important result is air pollution levels are limited to the areas around Ulaanbaatar areas are the most polluted in the center of city are the least polluted areas whereas Tolgoit, Sapporo, 1st Khoroolol, Amgalan, Shar Khad are moderately polluted and the areas around Baruun 4 zam, Factory, Zaisan, Nisekh are normally polluted. The results of pollution are illustrated four zones. By dividing the polluted areas into such zones, we are trying to make it easier to take preventive measures against the pollution itself and protective measures for safeguarding the health of mass population.
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.
2014-01-01
The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.
NASA Astrophysics Data System (ADS)
Michael, R. A.; Stuart, A. L.
2007-12-01
Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.
Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M
2016-05-15
This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
NASA Astrophysics Data System (ADS)
Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.
2018-02-01
A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.
Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan
2004-06-01
The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had symptoms of work-related illnesses, p = 0.0185.
NASA Astrophysics Data System (ADS)
Pawar, Harshita; Sachan, Himanshu; Garg, Saryu; Arya, Ruhani; Singh, Nitin Kumar; Sinha, Baerbel; Sinha, Vinayak
2013-04-01
We investigate the climatology of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.67°N, 76.73°E; 310 m amsl) through 3-day backtrajectories arriving at 20 m above ground level for the period August 2011-November 2012. IISER Mohali is a suburban site in the North-Western Indo Gangetic Basin. The trajectories are computed in ensemble mode twice daily with an arrival time of 2:30 pm local time (daytime) and 4:30 am local time (nighttime) using the HYSPLIT 4 model with the National Oceanic and Atmospheric Administration's GDAS file as meterological input data. Due to the close proximity of the site to the Himalayan mountain range the trajectory output is found to be very sensitive to the models input data. IISER Air Quality station is located in the IGB at an altitude of 310 m amsl approximately 20 km south west of the Shivalik hills, but the model terrain height for the site in the ensemble run output varies between 200 m amsl and 3500 m amsl for the GDAS dataset and 200 m amsl to 5000 m amsl for the reanalysis dataset. We conclude that the GDAS dataset performs better than than reanalysis dataset for our site and selected only those trajectories from the trajectory ensemble for cluster analysis, for which the terrain height in the model output was < 400 m amsl for IISER Mohali (in the IGB) and > 400 m amsl for Shimla (a site located at an altitude of 1000 m amsl in the mountains 60 km north east of Mohali). We subjected the trajectories to hierarchical, and non-hierarchical (K-means) clustering and found that the air mass transport to our station can be characterised by 10 distinct airflow patterns; 3 of which occur only during the monsoon season. For pre-monsoon season (March-June), post-monsoon season (Sept-Nov) and winter season (Dec-Feb), air mass transport to our site is predominantly from the west. Direct transport of north westerly air masses to our site is subdivided into three clusters (slow, medium and rapid) while other clusters are attributed to south westerly air currents or arise from the fact that westerly air masses are deflected and descend along the slope of the Himalayan mountain range and reach our site from the north or south-east. A local recirculation cluster is found to occur particularly during wintertime when stagnant conditions with windspeeds < 1 m/s can presist for several days. We find that several air pollutants measured at the IISER Mohali air quality station are significantly influenced by regional transport and long range transport during pre-monsoon (March-June) and post-monsoon (Sept-Nov) season. This is particularly true for PM10 where the highest loadings (730 μg/m3) are found in air masses with rapid air mass transport from a north western direction during pre-monsoon season. In medium and slow transport from the NW we observe 260 μg/m3 and 210 μg/m3 PM10 respectively. The lowest PM10 loading during pre-monsoon season are associated with local recirculation of air masses (170 μg/m3) and air masses with a long residence time over the eastern IGB (190μg/m3). For NOx, SO2 and CO the lowest concentrations are observed in air masses influenced by rapid long range transport from the NW (4.7, 2.6 and 220 ppbv respectively) while the highest NOx, SO2 and concentrations are observed in air masses transported with slow or medium speed from the NW (7.1, 5.2 and 380 ppbv respectively). During winter season local and regional sources are found to dominate over long range transport, with long range transport accounting for less than 30 % of the observed variablity in the chemical composition of the air masses. During monsoon season removal of pollutants through wet deposition dominates the measured concentrations. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD), India and IISER Mohali for funding the facility. Chinmoy Sarkar is acknowledged for technical support, SG thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding the research, H. Panwar, H. Sachan and N. K. Singh acknowledge the DST-INSPIRE Fellowship program and R. Arya thanks IISER Mohali for providing an IISER Summer Research Fellowship.
NASA Astrophysics Data System (ADS)
Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki
2016-07-01
We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.
Inomata, Yayoi; Ohizumi, Tsuyoshi; Take, Naoko; Sato, Keiichi; Nishikawa, Masataka
2016-05-15
Sulfur isotopic ratios (δ(34)S) in size separated aerosol particles (PM2.5 and coarse particles) were measured at Niigata-Maki facing the Sea of Japan. Non-sea salt δ(34)S (δ(34)Snss) in PM2.5 showed seasonal variations with relatively high values in winter (1.0-3.9‰ in spring, 2.8-4.5‰ in summer, 1.3-4.5‰ in autumn, 3.7-5.7‰ in winter). Taking into consideration air mass transport routes, δ(34)Snss in the air masses which originated in the Asian continent and were transported over the Sea of Japan to the monitoring sites were higher than those values for air masses which were transported over the Japanese islands after leaving the Asian continent for each season. Considering that the δ(34)Snss in sulfuric acid derived from domestic emissions in Japan are lower than those of δ(34)Snss in coal, the lower δ(34)Snss for the air mass transported over the Japanese islands suggest that sulfuric acid in PM2.5 modified the δ(34)Snss due to aerosol mixing with sulfuric acid in Japan. Material balance calculations suggested that the relative contribution of transboundary transport in winter was also higher than for other seasons (40-75% in spring, 51-63% in summer, 45-73% in autumn, and 53-81% in winter). In particular, the contribution to the air masses which were transported directly from the Asian continent was relatively large (75% in spring, 59% in autumn, 78% in winter) in comparison with that for the air masses which were transported over Japan. Copyright © 2016 Elsevier B.V. All rights reserved.
Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging
NASA Technical Reports Server (NTRS)
Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.
2013-01-01
Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.
Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.
2000-01-01
The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.
Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.
2002-01-01
The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.
Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan
NASA Astrophysics Data System (ADS)
Chou, Charles
2014-05-01
From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate, OM and EC) were consistently reaching their respective maxima in spring, agreeing with dust particle, suggesting the influences of long range transport of air pollutants. This study also found that both the mass fraction of OM in aerosols and OC/EC ratio exhibited peaks in summertime. Secondary organic aerosols (SOA) produced from photochemical reactions and heteo-nucleation were among the major factors controlling the seasonal variations of aerosol concentration in Taipei area. Because the formation of SOA could alter the interactions between aerosols and cloud/fog and, in turn, have potential impacts upon the regional radiation budget, this study suggests conduct an in-depth study upon the relationship between cloud condensation nuclei (CCN) and SOA in this region.
NASA Astrophysics Data System (ADS)
Golobokova, Liudmila; Polkin, Victor
2014-05-01
The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of aerosols while the natural ones are of lower severity due to low temperatures endemic for the Arctic Ocean areas. For doing the assessment of the air mass components chemical formulation samples of water soluble fraction of the atmospheric aerosol underwent chemical analysis. Sum of main ions within the aerosol composition varied from 0.23 to 16.2 mkg/m3. Minimum ion concentrations are defined in the aerosol sampled over the Chukotka sea surface at still. Chemical composition of the Beringov and Chukotka sea aerosol was dominated by impurities of sea origin coming from the ocean with air mass. Ion sum increased concentrations were observed in the Pevek area (Eastern Siberia Sea). Aerosol chemical composition building was impacted by air mass coming from the shore. Maximum concentrations of the bespoken components are seen in the aerosol sampled during stormy weather. Increase of wind made it for raising into the air of the sea origin particles. Ingestion of sprays onto the filter was eliminated by covering the sample catcher with a special protective hood. This completed survey is indicative of favourable state of atmosphere in the arctic resource of the Russian Arctic Eastern Section during Summer-Autumn season of 2013. The job is done under financial support of project. 23 Programs of fundamental research of the RAS Presidium, Partnership Integration Project, SB RAS. 25.
Key issues in controlling air pollutants in Dhaka, Bangladesh
NASA Astrophysics Data System (ADS)
Begum, Bilkis A.; Biswas, Swapan K.; Hopke, Philip K.
2011-12-01
Particulate matter (PM) sampling for both coarse and fine fractions was conducted in a semi-residential site (AECD) in Dhaka from February 2005 to December 2006. The samples were analyzed for mass, black carbon (BC), and elemental compositions. The resulting data set were analyzed for sources by Positive Matrix Factorization (EPA-PMF). From previous studies, it is found that, the air quality became worse in the dry winter period compared to the rainy season because of higher particulate matter concentration in the ambient air. Therefore, seasonal source contributions were determined from seasonally segregated data using EPA-PMF modeling so that further policy interventions can be undertaken to improve air quality. From the source apportionment results, it is observed that vehicular emissions and emission from brick kiln are the major contributors to air pollution in Dhaka especially in the dry seasons, while contribution from emissions from metal smelters increases during rainy seasons. The Government of Bangladesh is considering different interventions to reduce the emissions from those sources by adopting conversion of diesel/petrol vehicles to CNG, increasing traffic speed in the city and by introducing green technologies for brick production. However, in order to reduce the transboundary effect it is necessary to take action regionally.
Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza
2016-06-01
Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P < 0.001). Mild right ventricular dilatation and grade I pulmonary hypertension were present in three (12 %) workers of the coke-making part, but none of the controls (P = 0.010). According to these results, occupational air pollution exposure in workers of the steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.
Airborne survey of major air basins in California
NASA Technical Reports Server (NTRS)
Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.
1974-01-01
An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.
Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.
1988-05-01
A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.
NASA Astrophysics Data System (ADS)
Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak
2013-04-01
Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong implications for the oxidizing capacity of the atmosphere increased from an average value of 14 /s (N.F.E.) to 40 /s (F.E.) just due to CO, NOx and the measured aromatics. The observed increase in ozone was 10ppbV higher after sunrise on the day after the fire plume was sampled and driven by the sudden NOx availability at a site that normally falls in a NOx limited ozone production regime. The strong pollutant enhancements in carcinogenic aromatic hydrocarbons that are also highly reactive and fuel ozone and secondary organic aerosol formation when accompanied by the high NOx and CO levels resulting from crop residue burning in N. India, clearly highlight the need to address the practice of crop residue burning which strongly alters the composition and chemistry of the atmosphere with adverse effects on both air quality and health. This study is the first from within India to combine fast in-situ PTR-MS VOC emission tracer measurements with online measurements of primary pollutants and MODIS satellite data. Further targeted studies employing a comprehensive measurement suite of both aerosol and gas species are needed to assess the full impact of crop residue burning on atmospheric chemistry and regional air quality. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD),India and IISER Mohali for funding the facility. Vinod Kumar acknowledges the DST INSPIRE Fellowship programme. Chinmoy Sarkar thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding support.
CHEMICAL MASS BALANCE MODEL: EPA-CMB8.2
The Chemical Mass Balance (CMB) method has been a popular approach for receptor modeling of ambient air pollutants for over two decades. For the past few years the U.S. Environmental Protection Agency's Office of Research and Development (ORD) and Office of Air Quality Plannin...
Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm
Kim, Baek-Min; Hong, Ja-Young; Jun, Sang-Yoon; Zhang, Xiangdong; Kwon, Hataek; Kim, Seong-Joong; Kim, Joo-Hong; Kim, Sang-Woo; Kim, Hyun-Kyung
2017-01-01
In January 2016, the Arctic experienced an extremely anomalous warming event after an extraordinary increase in air temperature at the end of 2015. During this event, a strong intrusion of warm and moist air and an increase in downward longwave radiation, as well as a loss of sea ice in the Barents and Kara seas, were observed. Observational analyses revealed that the abrupt warming was triggered by the entry of a strong Atlantic windstorm into the Arctic in late December 2015, which brought enormous moist and warm air masses to the Arctic. Although the storm terminated at the eastern coast of Greenland in late December, it was followed by a prolonged blocking period in early 2016 that sustained the extreme Arctic warming. Numerical experiments indicate that the warming effect of sea ice loss and associated upward turbulent heat fluxes are relatively minor in this event. This result suggests the importance of the synoptically driven warm and moist air intrusion into the Arctic as a primary contributing factor of this extreme Arctic warming event. PMID:28051170
Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui
2016-04-01
Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of the relative optical air mass on ultraviolet erythemal irradiance
NASA Astrophysics Data System (ADS)
Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.
2009-12-01
The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.
Mass and heat transfer model of Tubular Solar Still
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Amimul; Fukuhara, Teruyuki
2010-07-15
In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover andmore » trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)« less
NASA Technical Reports Server (NTRS)
Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch
2014-01-01
The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.
Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.
Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian
2015-10-01
Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.
Estimating the Life Cycle Cost of Space Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.
An index of anomalous convective instability to detect tornadic and hail storms
NASA Astrophysics Data System (ADS)
Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong
2017-12-01
In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.
Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia
NASA Astrophysics Data System (ADS)
Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.
2001-12-01
Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.
Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management
2015-08-01
Micrometer ml Milliliter MS Mass Spectrometry MW Molecular Weight MΩ Mega-ohm NAS Naval Air Station 6 NASNI Naval Air Station North Island...feasibility studies. ..........42 Table 5-2 Compounds screened in the laboratory for IS2 sampling ......................................44 Table 5-3 Mass ...concentration data is derived directly from the mass of analyte recovered from the sorbent cartridge and the known volume of water processed. This
Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.
Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre
2017-04-01
Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Hixson, M.; Kleeman, M. J.
2012-02-01
The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23%, nitrate increasing by 58%, and sulfate decreasing by 46%.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Hixson, M.; Kleeman, M. J.
2012-08-01
The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23 %, nitrate increasing by 58%, and sulfate decreasing by 46%.
NASA Technical Reports Server (NTRS)
Vongierke, H. E.; Brinkley, J. W.
1975-01-01
The degree to which impact acceleration is an important factor in space flight environments depends primarily upon the technology of capsule landing deceleration and the weight permissible for the associated hardware: parachutes or deceleration rockets, inflatable air bags, or other impact attenuation systems. The problem most specific to space medicine is the potential change of impact tolerance due to reduced bone mass and muscle strength caused by prolonged weightlessness and physical inactivity. Impact hazards, tolerance limits, and human impact tolerance related to space missions are described.
Nuclear and Non-Nuclear Airblast Effects.
1984-02-14
algorithms. 2 The above methodologr has been applied to a series of test prorlems initiated by a spherical high- explosive (HE) detonation In air . An...used, together with a real- air equation of state, to follow the development of an explosion initialized with the 1-kton standard as it reflects from the...interior. Stage (1) is not contained in our model; since the weapon mass greatly exceeds the ,mass of air contained within the initial explosion radius
NASA Astrophysics Data System (ADS)
Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.
2007-12-01
Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and urbanization. In the outflow region, air pollutants characteristics depend largely on the air mass climatology. In most cases, increases of air pollutants level are observed with the transport events directly from the source region.
NASA Astrophysics Data System (ADS)
Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D. D.; Reeves, C. E.; Schlager, H.; Atlas, E.; Blake, D. R.; Coe, H.; Crosier, J.; Flocke, F. M.; Holloway, J. S.; Hopkins, J. R.; McQuaid, J.; Purvis, R.; Rappenglück, B.; Singh, H. B.; Watson, N. M.; Whalley, L. K.; Williams, P. I.
2006-12-01
The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches" is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.
NASA Technical Reports Server (NTRS)
Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.;
2006-01-01
The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.
A Meteorological Overview of the TC4 Mission
NASA Technical Reports Server (NTRS)
Pfister, L.; Selkirk, H. B.; Starr, D. O.; Rosenlof, K.; Newman, P. F.
2010-01-01
The TC4 mission in Central America during summer 2007 examined convective transport into the tropical Upper Troposphere/Lower Stratosphere (UTLS) and the evolution of cirrus clouds. The tropical tropopause layer (TTL) circulation is dominated by the Asian monsoon anticyclone and westward winds that stretch from the western Pacific into the Atlantic. During TC4, TTL westward flow over Central America was stronger than normal. Incidence of cold clouds over the Central American region was the third lowest out of 34 years sampled. The major factor was an incipient La Nina, specifically anomalously cold temperatures off the Pacific Coast of South America. Weakness in the low level Caribbean jet caused a shift in the coldest clouds from the Caribbean to the Pacific side of Central America. The character of tropopause temperature variability was that of upward propagating waves generated by local and nonlocal convection. These waves produced tropopause temperature variations of 3 K, with peak-to-peak variations of 8 K. At low levels in Central America, flow from the Sahara desert predominated; further south, the air came from the Amazon region. Convectively influenced air in the upper troposphere came from Central America, the northern Amazon region, the Atlantic ITCZ, and the North American monsoon. In the TTL, Asian and African convection affected the observed air masses. North of 10N in the Central American TTL, African and Asian convection may have contributed as much to the air masses as Central and South American convection. South of 8N, Asian and African convection had far less impact.
NASA Technical Reports Server (NTRS)
Hovel, H.; Woodall, J. M.
1976-01-01
Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.
Variability in ozone and its precursor gases over the Bay of Bengal during post-monsoon
NASA Astrophysics Data System (ADS)
Mallik, Chinmay; Lal, Shyam; Venkataramani, Sethuram; Naja, Manish; Ojha, Narendra
2013-04-01
O3 and precursor gases were measured during a ship campaign over the Bay of Bengal (BoB) during 28 October -17 November, 2010. The measurements revealed the large spatial heterogeneity in trace gas levels over the BoB during post-monsoon months. The heterogeneity was attributed to unique transport patterns over north and south BoB during this period. Four distinct types of air-masses influenced by heavy pollution from nearby source regions (49% time over North-West Myanmar, East Bangladesh and North-East India), mixed type (25% time over Myanmar, Thailand and Vietnam and 75% time over East BoB), affected by long-range transport of pollutants (59% time over continental South Myanmar, Vietnam and Hong-Kong region of China) and pristine marine (99% time over oceanic regions) were identified. Among these, the continental air masses were fresher compared to marine air masses. High O3 and CO levels were observed in air masses coming from South-East Asia. O3, C4H10 and alkenes were highest in air masses arriving from eastern IGP, Bangladesh, Myanmar via the North BoB. The C2H2 to CO slope of 0.004 and C3H8 to CO slope of 0.003 indicated predominance of biofuel/biomass burning in air masses from South-East Asia. The i-C4H10 to n- C4H10 value of 0.62 indicated contributions of urban/industrial sources in air masses arriving from Bangladesh, India and North-West Myanmar. 'Potential Source Contribution Function' analysis indicated fire impacted South of Myanmar and Thailand regions as potential contributors to high CO levels above 260 ppbv measured on 14 November. Observed enhancements in surface CO during 2-3 November were attributed to the faster transport of continental pollutants associated with cyclonic winds. The O3 e-fold time of 2.3 days indicated the higher rate of O3 destruction over the BoB due to higher precursor levels. Principle component analysis indicated that transport from continental source regions played a major role in determining the chemical composition of the air masses during the campaign and presence of regional sources of NOx. Diurnal variations of surface O3 revealed effects of advection, entrainment and photochemistry. Chemical box model simulations of O3 diurnal variations over the BoB were found to be very sensitive to background O3 and NO2 levels as well as dilution.
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Six new experiments are described for use in elementary school classrooms. Phenomena explored include friction, mass of air, kinetic energy, air condensers, and hot-air balloons. Instructions are explicit. (PS)
Woods, Jason; Kozubal, Eric
2018-02-06
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Jason; Kozubal, Eric
Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less
NASA Astrophysics Data System (ADS)
Karandana Gamalathge, T. D.; Chen, L. W. A.
2015-12-01
Large-scale biomass burning such as forest fires represents an important and yet uncertain source of air pollutants and greenhouse gases on a global scale. Due to the highly accidental nature of forest fires, satellite remote sensing could be a promising method to develop regional and global fire emission inventories on a real-time basis. Reliable fire radiative power (FRP)-based fuel consumption and emission factors are critical in this approach. In an attempt to obtain the information, laboratory combustion experiments were conducted to simultaneously monitor FRP, fuel consumption, and emissions of fine particulate matter (PM2.5), carbon monoxide (CO), and reactive nitrogen oxides (NO and NO2). FRP were quantified using temperature-resolved values from a thermal imager instead of conventionally used average temperature, as the former provides more realistic estimates. For dry Ponderosa pine branches, a common fuel in the Sierra Nevada, a strong correlation (r2 ~ 0.8) between FRP and the mass reduction rate (MRR) was found. This led to a radiative energy yield (REY) of 8.5 ± 1.2 MJ/kg, assuming blackbody radiation and a flame emissivity of 0.5. Mass-based emission factors were determined with the carbon balance approach. Considering the ratio of mass-based emission factors and the REY, FRP-based emission factors: PM2.5: 11 g/MJ, CO: 8.0 g/MJ, NO: 0.33 g/MJ, and NO2: 0.07 g/MJ were quantified. The application of this approach to other fuel types and uncertainties in the measurements will be discussed.
Seasonal Ventilation of the Stratosphere: Robust Diagnostics from One-Way Flux Distributions
NASA Technical Reports Server (NTRS)
Orbe, Clara; Holzer, Mark; Polvani, Lorenzo M.; Waugh, Darryn W.; Li, Feng; Oman, Luke D.; Newman, Paul A.
2014-01-01
We present an analysis of the seasonally varying ventilation of the stratosphere using one-way flux distributions. Robust transport diagnostics are computed using GEOSCCM subject to fixed present-day climate forcings. From the one-way flux, we determine the mass of the stratosphere that is in transit since entry through the tropical tropopause to its exit back into the troposphere, partitioned according to stratospheric residence time and exit location. The seasonalities of all diagnostics are quantified with respect to the month of year (a) when air enters the stratosphere, (b) when the mass of the stratosphere is partitioned, and (c) when air exits back into the troposphere. We find that the return flux, within 3 months since entry, depends strongly on when entry occurred: (34 +/- 10)% more of the air entering the stratosphere in July leaves poleward of 45 deg N compared to air that enters in January. The month of year when the air mass is partitioned is also found to be important: The stratosphere contains about six times more air of tropical origin during late summer and early fall that will leave poleward of 45 deg within 6 months since entering the stratosphere compared to during late winter to late spring. When the entire mass of the air that entered the stratosphere at the tropics regardless of its residence time is considered, we find that (51 +/- 1)% and (39 +/- 2)% will leave poleward of 10 deg in the Northern Hemisphere (NH) and Southern Hemisphere (SH), respectively.
Temporal and modal characterization of DoD source air toxic ...
This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for organic air toxics, laser induced breakdown spectroscopy (LIBS) for metallic air toxics, and optical remote sensing (ORS) methods for measurement of criteria pollutants and other hazardous air pollutants (HAPs). Conventional emission measurements were used for verification of the real-time monitoring results. The REMPI-TOFMS system was demonstrated on the following: --a United States U.S. Marine Corps (USMC) diesel generator, --a U.S. Air Force auxiliary power unit (APU), --the waste combustor at the Portsmouth Naval Shipyard, during a multi-monitor environmental technology verification (ETV) test for dioxin monitoring systems, --two dynamometer-driven high mobility multi-purpose wheeled vehicles (HMMWVs), --an idling Abrams battle tank, --a Bradley infantry fighting vehicle (IFV), and --an F-15 and multiple F-22 U.S. Air Force aircraft engines. LIBS was tested and applied solely to the U.S. Marine Corps diesel generator. The high detection limits of LIBS for toxic metals limited its usefulness as a real time analyzer for most DoD sources. ORS was tested only on the APU with satisfactory results for non-condensable combustion products (carbon monoxide [CO], carbon dioxide
NASA Astrophysics Data System (ADS)
Tihay-Felicelli, V.; Santoni, P. A.; Gerandi, G.; Barboni, T.
2017-06-01
The aim of this study was to investigate emission characteristics in relation to differences in fuel moisture content (FMC) and initial dry mass. For this purpose, branches and twigs with leaves of Cistus monspeliensis were burned in a Large Scale Heat Release apparatus coupled to a Fourier Transform Infrared Spectrometer. A smoke analysis was conducted and the results highlighted the presence of CO2, H2O, CO, CH4, NO, NO2, NH3, SO2, and non-methane organic compounds (NMOC). CO2, NO, and NO2 species are mainly released during flaming combustion, whereas CO, CH4, NH3, and NMOC are emitted during both flaming and smoldering combustion. The emission of these compounds during flaming combustion is due to a rich fuel to air mixture, leading to incomplete combustion. The fuel moisture content and initial dry mass influence the flame residence time, the duration of smoldering combustion, the combustion efficiency, and the emission factors. By increasing the initial dry mass, the emission factors of NO, NO2, and CO2 decrease, whereas those of CO and CH4 increase. The increase of FMC induces an increase of the emission factors of CO, CH4, NH3, NMOC, and aerosols, and a decrease of those of CO2, NO, and NO2. Increasing fuel moisture content reduces fuel consumption, duration of smoldering, and peak heat release rate, but simultaneously increases the duration of propagation within the packed bed, and the flame residence time. Increasing the initial dry mass, causes all the previous combustion parameters to increase. These findings have implications for modeling biomass burning emissions and impacts.
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Doerksen, G.; Jones, K.; Munoz, A.
2017-07-01
Black carbon (BC) is of significant interest from a human exposure perspective but also due to its impacts as a short-lived climate pollutant. In this study, sources of BC influencing air quality in Ontario, Canada were investigated using nine concurrent Aethalometer datasets collected between June 2015 and May 2016. The sampling sites represent a mix of background and near-road locations. An optical model was used to estimate the relative contributions of fossil fuel combustion and biomass burning to ambient concentrations of BC at every site. The highest annual mean BC concentration was observed at a Toronto highway site, where vehicular traffic was found to be the dominant source. Fossil fuel combustion was the dominant contributor to ambient BC at all sites in every season, while the highest seasonal biomass burning mass contribution (35%) was observed in the winter at a background site with minimal traffic contributions. The mass absorption cross-section of BC was also investigated at two sites, where concurrent thermal/optical elemental carbon data were available, and was found to be similar at both locations. These results are expected to be useful for comparing the optical properties of BC at other near-road environments globally. A strong seasonal dependence was observed for fossil fuel BC at every Ontario site, with mean summer mass concentrations higher than their respective mean winter mass concentrations by up to a factor of two. An increased influence from transboundary fossil fuel BC emissions originating in Michigan, Ohio, Pennsylvania and New York was identified for the summer months. The findings reported here indicate that BC should not be considered as an exclusively local pollutant in future air quality policy decisions. The highest seasonal difference was observed at the highway site, however, suggesting that changes in fuel composition may also play an important role in the seasonality of BC mass concentrations in the near-road environment. This finding has implications for future policies aiming to improve air quality in urban environments where fuel composition changes as a function of season.
NASA Astrophysics Data System (ADS)
Goldan, P. D.; Kuster, W. C.; Williams, E.; Fehsenfeld, F. C.
2003-12-01
During the NEAQS 2002 study, in-situ NMHC measurements were made aboard the NOAA research vessel Ronald H. Brown by a two channel automated gas chromatograph using both flame ionization and mass-spectrometric detection techniques. Five minute average samples were cryogenically trapped each 1/2 hour and analyzed immediately for C2 through C10 alkanes, C2 through C5 alkenes, C6 through C9 aromatics, C2 through C8 aldehydes and ketones, C1 through C5 alcohols and a variety of compounds of biogenic origin including 6 monoterpenes, isoprene and its primary oxidation products methacrolein and methylvinyl ketone. The relative contributions of these classes of compounds to OH photochemistry has been determined for air masses ranging from those showing significant anthropogenic influence to clean marine air. For the most anthropogenically influenced air masses, alkenes were observed to play a dominant role whereas oxy-hydrocarbons, principally acetaldehyde, were observed to dominate under clean marine conditions. Both the NMHC measurements and back trajectory analyses indicated periods of significant influx into the New England coastal region of urban air masses showing elevated ozone levels from the Boston/Providence urban corridor. About as frequently, less photochemically mature air masses, depleted in ozone but laden with light reactive alkenes, were observed coming from the Portsmouth NH/Kittery ME coastal urban complex. Even in the presence of these anthropogenic plumes, biogenic hydrocarbons appear to dominate OH photochemistry in the New England region much of the time. Data demonstrating all of these conclusions will be shown.
Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max
2018-02-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM 2.5 ) and coarse (aerodynamic diameter 2.5-10 μm; PM 2.5-10 ) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM 2.5-10 is natural windblown soil and road dust, whereas the predominant source of PM 2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.
Zhou, Yu; Fu, Lixin; Cheng, Linglin
2007-09-01
China's national government and Beijing city authorities have adopted additional control measures to reduce the negative impact of vehicle emissions on Beijing's air quality. An evaluation of the effectiveness of these measures may provide guidance for future vehicle emission control strategy development. In-use emissions from light-duty gasoline vehicles (LDGVs) were investigated at five sites in Beijing with remote sensing instrumentation. Distance-based mass emission factors were derived with fuel consumption modeled on real world data. The results show that the recently implemented aggressive control strategies are significantly reducing the emissions of on-road vehicles. Older vehicles are contributing substantially to the total fleet emissions. An earlier program to retrofit pre-Euro cars with three-way catalysts produced little emission reduction. The impact of model year and driving conditions on the average mass emission factors indicates that the durability of vehicles emission controls may be inadequate in Beijing.
Combustion mode switching with a turbocharged/supercharged engine
Mond, Alan; Jiang, Li
2015-09-22
A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.
Analysis of heat and mass transfer during condensation over a porous substrate.
Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L
2006-09-01
Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.
A STUDY OF PERSISTENT ELEVATED POLLUTION EPISODES IN THE NORTHEASTERN UNITED STATES
To examine chemical transformation within stagnant air masses and the atmospheric processes acting upon such air masses, the U.S.E.P.A. sponsored a study in the summer of 1980 in the northeastern United States. Ten research aircraft and several mobile and stationary surface monit...
Measurement of absorbed dose with a bone-equivalent extrapolation chamber.
DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B
2002-03-01
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.
NASA Astrophysics Data System (ADS)
Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien
2015-04-01
The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.
NASA Astrophysics Data System (ADS)
Pszenny, A.; Keene, W. C.; Sander, R.; Bearekman, R.; Deegan, B.; Maben, J. R.; Warrick-Wriston, C.; Young, A.
2011-12-01
Bulk and size-segregated aerosol samples were collected 22 m AGL at the Boulder Atmospheric Observatory (40°N, 105°W, 1563 m ASL) from 18 February to 13 March 2011. Total concentrations of Na, Mg, Al, Cl, V, Mn, Br and I in bulk samples were determined by neutron activation analysis. Ionic composition of all size-segregated and a subset of bulk samples was determined by ion chromatography of aqueous extracts. Mg, Al, V and Mn mass concentrations were highly correlated and present in ratios similar to those in Denver area surface soils. Na and Cl were less well correlated with these soil elements but, after correction for soil contributions, highly correlated with each other. Linear regression of non-soil Cl vs. non-soil Na yielded a slope of 1.69 ± 0.09 (95% C.I.; n = 173), a value between the mass ratios of sea salt (1.80) and halite (1.54). The median Na and Cl concentrations (6.8 and 6.6 nmol m-3 STP, respectively) were factors of 25 to 35 less than those typically measured in the marine boundary layer. Br and I were somewhat correlated and appeared to represent a third aerosol component. The average bulk Cl-:total Cl ratio was 0.99 ± 0.03 (n = 44) suggesting that essentially all aerosol chlorine was water-soluble. Na+ and Cl- mass distributions were bimodal with most of the masses (medians 75% and 78%, respectively, n = 45) in supermicrometer particles. Possible origins of the "salt" component will be discussed based on consideration of 5-day HYSPLIT back trajectories and other information on sampled air mass characteristics.
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
Experimental study of the spray characteristics of a research airblast atomizer
NASA Technical Reports Server (NTRS)
Acosta, W. A.
1985-01-01
Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.
Experimental study of the spray characteristics of a research airblast atomizer
NASA Technical Reports Server (NTRS)
Acosta, W. A.
1985-01-01
Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radically outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.
NASA Astrophysics Data System (ADS)
Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.
2018-01-01
The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).
Physico-chemical characterization of grain dust in storage air of Bangalore.
Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R
1998-06-01
An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.
Centrifugal Compressor Surge Controlled
NASA Technical Reports Server (NTRS)
Skoch, Gary J.
2003-01-01
It shows the variation in compressor mass flow with time as the mass flow is throttled to drive the compressor into surge. Surge begins where wide variations in mass flow occur. Air injection is then turned on to bring about a recovery from the initial surge condition and stabilize the compressor. The throttle is closed further until surge is again initiated. Air injection is increased to again recover from the surge condition and stabilize the compressor.
A 100g Mass Comparator with an Improved Readability and Measuring Environment
NASA Astrophysics Data System (ADS)
Ueki, Masaaki; Sun, Jian-Xin; Ueda, Kazunaga
In order to achieve higher accuracy of the mass standard in the mass range equal to or less than 100g, it is necessary for a mass comparator in the range to have a relative sensitivity of the order of 1×10-9. For this purpose, a 111g capacity fully-automatic mass comparator has been renovated so that its readability is improved from 1 to 0.1µg. The mass comparator is also installed in an air-tight chamber originally developed by the NMIJ, so that it can be kept in stable environment, especially in the air of constant density. With these renovations, standard deviation of the mass comparisons is reduced and uncertainty of the air buoyancy corrections is lessened. This paper reports the features of the improved 100g mass comparator, the empirical method to evaluate its performance and the obtained results. As a result, the standard deviations of the mass difference measurements have been greatly improved to 0.22µg in the average with the chamber closed, compared with 0.97µg with the one open. The linearity of the comparator has been also verified by the mass difference measurements of weights at the six masses of 10, 20, 30, 50, 70 and 100g, and it confirms that the non-linearity errors of the comparator are within 0.28µg, showing good measuring performance.
Is there an aerosol signature of aqueous processing?
NASA Astrophysics Data System (ADS)
Ervens, B.; Sorooshian, A.
2017-12-01
The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.
NASA Astrophysics Data System (ADS)
Liu, S.; Cui, Y.; Zhixuan, B.; Bian, J.; McKeen, S. A.; Watts, L. A.; Ciciora, S. J.; Gao, R. S.
2017-12-01
Measurements of aerosols in the Tibetan Plateau are scant due to the high altitude and harsh climate. To bridge this gap, we carried out the first field measurements of aerosol size distributions in Lhasa, a major city in the Tibetan Plateau that has been experiencing fast urbanization and reduced air quality. Aerosol number size distribution was continuously measured using an optical particle size spectrometer near the center of Lhasa city during the Asian summer monsoon season in 2016. The mass concentration of fine particles was modulated by boundary layer dynamics, with an average of 11 µg m-3 and the high values exceeding 50 µg m-3 during religious holidays. Daytime high concentration coincided with the religious burning of biomass and incense in the temples during morning hours, which produced heavy smoke. Factor analysis revealed a factor that is likely induced by religious burning. The factor contributed 34% of the campaign-average fine particle mass and the contribution reached up to 80% during religious holidays. The mass size distribution of aerosols produced from religious burnings peaked at 500 nm, indicating that these particles could efficiently decrease visibility and promote health risk. Because of its significance, our results suggest that more attention should be paid to religious burning, a currently under-studied source, in the Tibetan Plateau and in other regions of the world where religious burnings are frequently practiced.
McGann, Christopher L; Daniels, Grant C; Giles, Spencer L; Balow, Robert B; Miranda-Zayas, Jorge L; Lundin, Jeffrey G; Wynne, James H
2018-06-01
The threat of chemical warfare agents (CWA) compels research into novel self-decontaminating materials (SDM) for the continued safety of first-responders, civilians, and active service personnel. The capacity to actively detoxify, as opposed to merely sequester, offending agents under typical environmental conditions defines the added value of SDMs in comparison to traditional adsorptive materials. Porous polymers, synthesized via the high internal phase emulsion (HIPE) templating, provide a facile fabrication method for materials with permeable open cellular structures that may serve in air filtration applications. PolyHIPEs comprising polydicyclopentadiene (polyDCPD) networks form stable hydroperoxide species following activation in air under ambient conditions. The hydroperoxide-containing polyDCPD materials react quickly with CWA simulants, Demeton-S and 2-chloroethyl ethyl sulfide, forming oxidation products as confirmed via gas chromatography mass spectrometry. The simplicity of the detoxification chemistry paired with the porous foam form factor presents an exciting opportunity for the development of self-decontaminating filter media. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ventilation potential during the emissions survey in Toluca Valley, Mexico
NASA Astrophysics Data System (ADS)
Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.
2017-12-01
During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.
Quantifying black carbon light absorption enhancement with a novel statistical approach
NASA Astrophysics Data System (ADS)
Wu, Cheng; Wu, Dui; Zhen Yu, Jian
2018-01-01
Black carbon (BC) particles in the atmosphere can absorb more light when coated by non-absorbing or weakly absorbing materials during atmospheric aging, due to the lensing effect. In this study, the light absorption enhancement factor, Eabs, was quantified using a 1-year measurement of mass absorption efficiency (MAE) in the Pearl River Delta region (PRD). A new approach for calculating primary MAE (MAEp), the key for Eabs estimation, is demonstrated using the minimum R squared (MRS) method, exploring the inherent source independency between BC and its coating materials. A unique feature of Eabs estimation with the MRS approach is its insensitivity to systematic biases in elemental carbon (EC) and σabs measurements. The annual average Eabs550 is found to be 1.50 ± 0.48 (±1 SD) in the PRD region, exhibiting a clear seasonal pattern with higher values in summer and lower in winter. Elevated Eabs in the summertime is likely associated with aged air masses, predominantly of marine origin, along with long-range transport of biomass-burning-influenced air masses from Southeast Asia. Core-shell Mie simulations along with measured Eabs and absorption Ångström exponent (AAE) constraints suggest that in the PRD, the coating materials are unlikely to be dominated by brown carbon and the coating thickness is higher in the rainy season than in the dry season.
Air Support Control Officer Individual Position Training Simulation
2017-06-01
Analysis design development implementation evaluation ASCO Air support control officer ASLT Air support liaison team ASNO Air support net operator...Instructional system design LSTM Long-short term memory MACCS Marine Air Command and Control System MAGTF Marine Air Ground Task Force MASS Marine Air...information to designated MACCS agencies. ASCOs play an important part in facilitating the safe and successful conduct of air operations in DASC- controlled
Microseismicity of an Unstable Rock Mass: From Field Monitoring to Laboratory Testing
NASA Astrophysics Data System (ADS)
Colombero, C.; Comina, C.; Vinciguerra, S.; Benson, P. M.
2018-02-01
The field-scale microseismic (MS) activity of an unstable rock mass is known to be an important tool to assess damage and cracking processes eventually leading to macroscopic failures. However, MS-event rates alone may not be enough for a complete understanding of the trigger mechanisms of mechanical instabilities. Acoustic Emission (AE) techniques at the laboratory scale can be used to provide complementary information. In this study, we report a MS/AE comparison to assess the stability of a granitic rock mass in the northwestern Italian Alps (Madonna del Sasso). An attempt to bridge the gap between the two different scales of observation, and the different site and laboratory conditions, is undertaken to gain insights on the rock mass behavior as a function of external governing factors. Time- and frequency-domain parameters of the MS/AE waveforms are compared and discussed with this aim. At the field scale, special attention is devoted to the correlation of the MS-event rate with meteorological parameters (air temperature and rainfalls). At the laboratory scale, AE rates, waveforms, and spectral content, recorded under controlled temperature and fluid conditions, are analyzed in order to better constrain the physical mechanisms responsible for the observed field patterns. The factors potentially governing the mechanical instability at the site were retrieved from the integration of the results. Abrupt thermal variations were identified as the main cause of the site microsesimicity, without highlighting irreversible acceleration in the MS-event rate potentially anticipating the rock mass collapse.
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro; ...
2017-06-06
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sa, Suzane S.; Palm, Brett B.; Campuzano-Jost, Pedro
The atmospheric chemistry of isoprene contributes to the production of a substantial mass fraction of the particulate matter (PM) over tropical forests. Isoprene epoxydiols (IEPOX) produced in the gas phase by the oxidation of isoprene under HO 2-dominant conditions are subsequently taken up by particles, thereby leading to production of secondary organic PM. The present study investigates possible perturbations to this pathway by urban pollution. The measurement site in central Amazonia was located 4 to 6 hours downwind of Manaus, Brazil. Measurements took place from February through March 2014 of the wet season, as part of the GoAmazon2014/5 experiment. Massmore » spectra of organic PM collected with an Aerodyne Aerosol Mass Spectrometer were analyzed by positive-matrix factorization. One resolved statistical factor (“IEPOX-SOA factor”) was associated with PM production by the IEPOX pathway. Loadings of this factor correlated with independently measured mass concentrations of tracers of IEPOX-derived PM, namely C 5-alkene triols and 2-methyltetrols (R = 0.96 and 0.78, respectively). Factor loading, as well as the ratio of the factor loading to organic PM mass concentration, decreased under polluted compared to background conditions. For the study period, sulfate concentration explained 37 % of the variability in the factor loading. After segregation of the data set by NO y concentration, the sulfate concentration explained up to 75 % of the variability in factor loading within the NO y subsets. The sulfate-detrended IEPOX-SOA factor loading decreased by two- to three-fold for an increase in NO y concentration from 0.5 to 2 ppb. Here, the suppressing effects of elevated NO dominated over the enhancing effects of higher sulfate with respect to the production of IEPOX-derived PM. Relative to background conditions, the Manaus pollution contributed more significantly to NO y than to sulfate. In this light, increased emissions of nitrogen oxides, as anticipated for some scenarios of Amazonian economic development, could significantly alter pathways of PM production that presently prevail over the tropical forest, implying changes to air quality and regional climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clode, W.; Sobral, V.; Baptista, A.M.
1959-10-31
Clinical results are reviewed for a group of 117 patients treated for hyperthyroidism with iodine-131. The importance of clinical, biological, and physical factors on results is stressed. Various methods for determining thyroid mass are discussed. A visualization technique, called pneumothyroid, is described in which the thyroid volume is determined from a series of x rays and tomographs following the injection of air into the tissue surrounding the thyroid capsule. The apparatus used resembles that used in pneumothorax. This method was found superior to palpation for estimations of thyroid weight prior to calculation of iodine-131 dose. (C.H.)
Transient flow characteristics of a high speed rotary valve
NASA Astrophysics Data System (ADS)
Browning, Patrick H.
Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.
Volatile halogenated hydrocarbons over the western Pacific between 43° and 4°N
NASA Astrophysics Data System (ADS)
Quack, Birgit; Suess, Erwin
1999-01-01
A spectrum of halogenated hydrocarbon compounds in marine air masses were surveyed over an area in the western Pacific between 43°N, 150°E and 4°N, 113°E in September 1994. The ship's track between northern Japan and Singapore traversed three climatic zones of the northern hemisphere. Recently polluted air, clean marine air derived from the central Pacific Ocean from different latitudes, and marine air from the Indonesian archipelago were collected. Tetrachloroethene and trichloroethene of anthropogenic origin, brominated halocarbons as tribromomethane, dibromochloromethane and bromodichloromethane of anthropogenic and natural sources, and other trace gases were measured in the air samples. Very sparse data on the distribution of these compounds exist for the western Pacific atmosphere. The distribution patterns of the compounds were related to synoptic-scale meteorology, spatial conditions, and origin of the air masses. Anthropogenic and natural sources for both chlorinated and brominated substances were identified. Tetrachloroethene and trichloroethene concentrations and their ratios identify anthropogenic sources. Their mixing ratios were quite low compared to previously published data. They are in agreement with expected low concentrations of photochemically active substances during autumn, with an overall decrease in concentrations toward lower latitudes, and with a decrease of emissions during recent years. Strong evidence for a natural source of trichloroethene was discovered in the tropical region. The concentrations of naturally released brominated species were high compared to other measurements over the Pacific. Gradients toward the coasts and elevated concentrations in air masses influenced by coastal emissions point to significant coastal sources of these compounds. The trace gas composition of anthropogenic and natural compounds clearly identified the air masses which were traversed during the cruise.
NASA Astrophysics Data System (ADS)
Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.
2009-12-01
The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.
Analysis of major air pollutants and submicron particles in New York City and Long Island
NASA Astrophysics Data System (ADS)
Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.
2017-01-01
A year-long sampling campaign of major air pollutants and submicron particle number size distributions was conducted at two sites taken as representative of city-wide air quality in New York City and Long Island, respectively. A number of species were quantified with hourly time resolution, including particle number concentrations in 6 size ranges (20-30 nm, 30-50 nm, 50-70 nm, 70-100 nm, 100-200 nm, and >200 nm), nitrogen oxides, sulfur dioxide, ozone, carbon monoxide, methane, non-methane hydrocarbons, PM2.5 mass concentration and some PM major components (sulfate, organic and elemental carbon). Hourly concentrations of primary and secondary organic carbon were estimated using the EC tracer method. Data were matched with weather parameters and air parcel back-trajectories. A series of tools were thus applied to: (i) study the seasonal, weekly, diurnal cycles of pollutants; (ii) investigate the relationships amongst pollutants through correlation and lagged correlation analyses; (iii) depict the role of atmospheric photochemical processes; (iv) examine the location of the potential sources by mean of conditional bivariate probability function analysis and (v) investigate the role of regional transport of air masses to the concentrations of analyzed species. Results indicate that concentrations of NOx, SO2, CO, non-methane hydrocarbons, primary OC and EC are predominantly determined by local sources, but are also affected by regional transports of polluted air masses. On the contrary, the transport of continental polluted air masses has a main effect in raising the concentrations of secondary PM2.5 (sulfate and secondary organic carbon). By providing direct information on the concentrations and trends of key pollutants and submicron particle number concentrations, this study finally enables some general considerations about air quality status and atmospheric processes over the New York City metropolitan area.
Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav
2012-01-01
Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.
NASA Astrophysics Data System (ADS)
WANG, J.; Zhang, B.
2016-12-01
The Rocky Mountains are the highest and most extensive of all in the North America. To quantify mass elevation effect (MEE) of the Rocky Mountains, we applied meteorological station records, NCAR/NCEP free air temperature and DEM data to calculate temperature difference (ΔT) between the inner and outer Rocky Mountains, defined as the magnitude of MEE. Results show that the mean ΔT for all adopted stations was 1.8 °, with high ΔT occurring in the Southern Rocky Mountains in the Colorado State and in the basins of Southern Wyoming. The MEE of the Rocky Mountains can be modeled with three factors of mountain base elevation (MBE), latitude and hygric continentality as independent variables. The model has a high explanatory power of 68.9%, and the three factors contribute 45.65%, 36.05% and 18.03%, respectively. Especially, MBE contributed the most to MEE of both the whole and the Southern Rocky Mountains, i.e., 45.65%, and 55.21%, respectively. Moreover, we investigated the significance of MEE for treeline distribution. The treeline is always higher in the inner than in the outer mountains, with a difference of 600 m to 1300 m. This difference corresponds well to air temperature difference between the inner and outer mountain ranges. This study developed a quantitative model for the MEE of the Rocky Mountains and improves our understanding of the intra-mountain ecology and especially the high treelines in the Rocky Mountains.
The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013.
Milic, A; Miljevic, B; Alroe, J; Mallet, M; Canonaco, F; Prevot, A S H; Ristovski, Z D
2016-08-01
Prescribed burnings are conducted in Queensland each year from August until November aiming to decrease the impact of bushfire hazards and maintain the health of vegetation. This study reports chemical characteristics of the ambient aerosol, with a focus on source apportionment of the organic aerosol (OA) fraction, during the prescribed biomass burning (BB) season in Brisbane 2013. All measurements were conducted within the International Laboratory for Air Quality and Health (ILAQH) located in Brisbane's Central Business District. Chemical composition, degree of ageing and the influence of BB emission on the air quality of central Brisbane were characterized using a compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS). AMS loadings were dominated by OA (64%), followed by, sulfate (17%), ammonium (14%) and nitrates (5%). Source apportionment was applied on the AMS OA mass spectra via the multilinear engine solver (ME-2) implementation within the recently developed Source Finder (SoFi) interface. Six factors were extracted including hydrocarbon-like OA (HOA), cooking-related OA (COA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semivolatile oxygenated OA (SV-OOA), and nitrogen-enriched OA (NOA). The aerosol fraction that was attributed to BB factor was 9%, on average over the sampling period. The high proportion of oxygenated OA (72%), typically representing aged emissions, could possess a fraction of oxygenated species transfored from BB components on their way to the sampling site. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji
1994-08-01
Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less
Patient warming excess heat: the effects on orthopedic operating room ventilation performance.
Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher
2013-08-01
Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had no noticeable effect on ventilation airflows. These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery.
NASA Astrophysics Data System (ADS)
Schwartz, R.
1994-01-01
Adsorption layers on stainless steel mass standards (OIML classes E1 and E2) have been determined directly and precisely by the optical method of ellipsometry as a function of relative humidity in the range 0,03 <= h <= 0,77, the relevant influencing factors being surface cleanliness, roughness, steel composition and ambient temperature. Under the same environmental conditions, two pairs of 1 kg artefacts, having geometrical surfaces differing in area by about δ A = 390 cm2, but the same material properties and surface finish as the mass standards, have been compared on a 1 kg mass comparator. The two independent measuring techniques yield strongly correlated results, the standard uncertainties of the measured surface coverings being
NASA Astrophysics Data System (ADS)
Healy, R. M.; Sciare, J.; Poulain, L.; Wiedensohler, A.; Jeong, C.; McGuire, M.; Evans, G. J.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J.
2012-12-01
The size-resolved chemical composition of single particles at an urban background site in Paris, France, was determined using an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) as part of the MEGAPOLI winter campaign in January/February 2010. A variety of mixing states were identified for organic aerosol by mass spectral clustering and apportioned to both fossil fuel and biomass burning sources. The ATOFMS data were scaled in order to produce mass concentration estimates for each organic aerosol particle type identified. Potassium-containing organic aerosol internally mixed with nitrate, associated with local wood burning, was observed to dominate during periods characterised by marine air masses. Sulfate-rich potassium-containing organic aerosol, associated with transboundary transport of biomass burning emissions, dominated during periods influenced by continental air masses. The scaled total mass concentration for potassium-containing particles was well correlated (R2 = 0.79) with concurrent measurements of potassium mass concentration measured with a Particle-Into-Liquid-Sampler (PILS). Another organic particle type, also containing potassium but rich in trimethylamine and sulfate, was detected exclusively during continental air mass events. These particles are postulated to have accumulated gas phase trimethylamine through heterogeneous reaction before arriving at the sampling site. Potential source regions for transboundary organic aerosols have been investigated using the potential source contribution function (PSCF). Comparison with aerosol mass spectrometer (AMS) measurements will also be discussed.
Influence of drying air parameters on mass transfer characteristics of apple slices
NASA Astrophysics Data System (ADS)
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2011 CFR
2011-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2013 CFR
2013-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2010 CFR
2010-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2012 CFR
2012-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
40 CFR Appendix A to Subpart D of... - Tables
Code of Federal Regulations, 2014 CFR
2014-07-01
... post-test values) kPa Ra Relative humidity of the ambient air percent T Absolute temperature at air...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment... torque related to maximum torque for the test mode percent mass Pollutant mass flow g/h nd, i Engine...
Toward a better understanding of the impact of mass transit air pollutants on human health
USDA-ARS?s Scientific Manuscript database
Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...
Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C
2013-01-01
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.
The mass and speed dependence of meteor air plasma temperatures
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
The mass and speed dependence of meteor air plasma temperatures.
Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L
2004-01-01
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.
1995-04-01
1 50 I 15.0 - 40.09 of mass 95 1 20.5 1 75 1 30.0 - 60.0% of mass 95 1 41.5 95 1 Base peak , 100% relative abundance 1100.0 1 96 1 5.0 - 9.0% of mass...2.0% of mass 69 1 .0_( 1 127 1 40.0 - 60.0% of mass 198 141.7- I 197 1 Less than 1.0% of mass 198 1 .0 1 198 1 Base peak , i00% relative abundance...48.3 1 701 Less than 2.0% of mass 69 1 .0_(. .( I 127 1 40.0 - 60.0% of mass 198 1 40.2 I 197 1 Less than 1.00 of mass 198 1 .0 1 198 1 Base peak
NASA Astrophysics Data System (ADS)
Millet, Dylan B.; Goldstein, Allen H.; Holzinger, Rupert; Williams, Brent J.; Allan, James D.; Jimenez, José L.; Worsnop, Douglas R.; Roberts, James M.; White, Allen B.; Hudman, Rynda C.; Bertschi, Isaac T.; Stohl, Andreas
2006-12-01
We present a factor analysis-based method for differentiating air masses on the basis of source influence and apply the method to a broad suite of trace gas and aerosol measurements collected at Chebogue Point, Nova Scotia, during the summer of 2004 to characterize the chemical composition of atmospheric outflow from eastern North America. CO, ozone, and aerosol mass were elevated by 30%, 56%, and more than 300% at Chebogue Point during U.S. outflow periods. Organic aerosol mass was highest during U.S. pollution events, but made up the largest fraction (70%) of the total aerosol during periods of primary and especially secondary biogenic influence, indicating the importance of both anthropogenic and biogenic organic aerosol. Anthropogenic and oxygenated volatile organic compounds account for the bulk of the gas-phase organic carbon under most conditions; however, biogenic compounds are important in terms of chemical reactivity. Biogenic emissions thus have a significant impact on the chemistry of air masses downwind of the polluted northeastern United States. Using output from a global 3-D model of atmospheric composition (GEOS-Chem), we estimate that CO directly emitted from U.S. pollution sources makes up 28% of the total CO observed at Chebogue Point during U.S. outflow events and 19% at other times, although more work is needed to improve U.S. emission estimates for CO and other pollutants. We conclude that the effects of North American pollution on the chemistry of the western North Atlantic boundary layer are pervasive and not restricted to particular events.
Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R
2015-07-01
Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. Copyright © 2015 Elsevier Inc. All rights reserved.
Gibby, Jacob T; Njeru, Dennis K; Cvetko, Steve T; Heiny, Eric L; Creer, Andrew R; Gibby, Wendell A
We correlate and evaluate the accuracy of accepted anthropometric methods of percent body fat (%BF) quantification, namely, hydrostatic weighing (HW) and air displacement plethysmography (ADP), to 2 automatic adipose tissue quantification methods using computed tomography (CT). Twenty volunteer subjects (14 men, 6 women) received head-to-toe CT scans. Hydrostatic weighing and ADP were obtained from 17 and 12 subjects, respectively. The CT data underwent conversion using 2 separate algorithms, namely, the Schneider method and the Beam method, to convert Hounsfield units to their respective tissue densities. The overall mass and %BF of both methods were compared with HW and ADP. When comparing ADP to CT data using the Schneider method and Beam method, correlations were r = 0.9806 and 0.9804, respectively. Paired t tests indicated there were no statistically significant biases. Additionally, observed average differences in %BF between ADP and the Schneider method and the Beam method were 0.38% and 0.77%, respectively. The %BF measured from ADP, the Schneider method, and the Beam method all had significantly higher mean differences when compared with HW (3.05%, 2.32%, and 1.94%, respectively). We have shown that total body mass correlates remarkably well with both the Schneider method and Beam method of mass quantification. Furthermore, %BF calculated with the Schneider method and Beam method CT algorithms correlates remarkably well with ADP. The application of these CT algorithms have utility in further research to accurately stratify risk factors with periorgan, visceral, and subcutaneous types of adipose tissue, and has the potential for significant clinical application.
Source identification analysis for the airborne bacteria and fungi using a biomarker approach
NASA Astrophysics Data System (ADS)
Lee, Alex K. Y.; Lau, Arthur P. S.; Cheng, Jessica Y. W.; Fang, Ming; Chan, Chak K.
Our recent studies have reported the feasibility of employing the 3-hydoxy fatty acids (3-OH FAs) and ergosterol as biomarkers to determine the loading of the airborne endotoxin from the Gram-negative bacteria and fungal biomass in atmospheric aerosols, respectively [Lee, A.K.Y., Chan, C.K., Fang, K., Lau, A.P.S., 2004. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment 38, 6807-6317; Lau, A.P.S., Lee, A.K.Y., Chan, C.K., Fang, K., 2006. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment 40, 249-259]. These quantified biomarkers do not, however, provide information on their sources. In this study, the year-long dataset of the endotoxin and ergosterol measured in Hong Kong was integrated with the common water-soluble inorganic ions for source identification through the principal component analysis (PCA) and backward air mass trajectory analysis. In the coarse particles (PM 2.5-10), the bacterial endotoxin is loaded in the same factor group with Ca 2+ and accounted for about 20% of the total variance of the PCA. This implies the crustal origin for the airborne bacterial assemblage. The fungal ergosterol in the coarse particles (PM 2.5-10) had by itself loaded in a factor group of 10.8% of the total variance in one of the sampling sites with large area of natural vegetative coverage. This suggests the single entity nature of the fungal spores and their independent emission to the ambient air upon maturation of their vegetative growth. In the fine particles (
Chabane, Foued; Moummi, Noureddine; Benramache, Said
2013-01-01
The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486
Chabane, Foued; Moummi, Noureddine; Benramache, Said
2014-03-01
The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.
The fractionation factors of stable carbon and hydrogen isotope ratios for VOCs
NASA Astrophysics Data System (ADS)
Kawashima, H.
2014-12-01
Volatile organic compounds (VOCs) are important precursors of ozone and secondary organic aerosols in the atmosphere, some of which are carcinogenic, teratogenic, or mutagenic. VOCs in ambient air originate from many sources, including vehicle exhausts, gasoline evaporation, solvent use, natural gas emissions, and industrial processes, and undergo intricate chemical reactions in the atmosphere. To develop efficient air pollution remediation strategies, it is important to clearly identify the emission sources and elucidate the reaction mechanisms in the atmosphere. Recently, stable carbon isotope ratios (δ13C) of VOCs in some sources and ambient air have been measured by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In this study, we measured δ13C and stable hydrogen isotope ratios (δD) of atmospheric VOCs by using the gas chromatography/thermal conversion/isotope ratio mass spectrometry coupled with a thermal desorption instrument (TD-GC/TC/IRMS). The wider δD differences between sources were found in comparison with the δ13C studies. Therefore, determining δD values of VOCs in ambient air is potentially useful in identifying VOC sources and their reactive behavior in the atmosphere. However, to elucidate the sources and behavior of atmospheric VOCs more accurately, isotopic fractionation during atmospheric reaction must be considered. In this study, we determined isotopic fractionation of the δ13C and δD values for the atmospheric some VOCs under irradiation conditions. As the results, δ13C for target all VOCs and δD for most VOCs were increasing after irradiation. But, the δD values for both benzene and toluene tended to decrease as irradiation time increased. We also estimated the fractionation factors for benzene and toluene, 1.27 and 1.05, respectively, which differed from values determined in previous studies. In summary, we were able to identify an inverse isotope effect for the δD values of benzene and toluene under ultraviolet irradiation, which might provide a new approach for studying photochemical reactions of volatile organic compounds in the atmosphere.
Assessment of Particle Pollution from Jetliners: from Smoke Visibility to Nanoparticle Counting.
Durdina, Lukas; Brem, Benjamin T; Setyan, Ari; Siegerist, Frithjof; Rindlisbacher, Theo; Wang, Jing
2017-03-21
Aviation is a substantial and a fast growing emissions source. Besides greenhouse gases, aircraft engines emit black carbon (BC), a climate forcer and air pollutant. Aviation BC emissions have been regulated and estimated through exhaust smoke visibility (smoke number). Their impacts are poorly understood because emission inventories lack representative data. Here, we measured BC mass and number-based emissions of the most popular airliner's engines according to a new emission standard. We used a calibrated engine performance model to determine the emissions on the ground, at cruise altitude, and over entire flight missions. Compared to previous estimates, we found up to a factor of 4 less BC mass emitted from the standardized landing and takeoff cycle and up to a factor of 40 less during taxiing. However, the taxi phase accounted for up to 30% of the total BC number emissions. Depending on the fuel composition and flight distance, the mass and number-based emission indices (/kg fuel burned) were 6.2-14.7 mg and 2.8 × 10 14 - 8.7 × 10 14 , respectively. The BC mass emissions per passenger-km were similar to gasoline vehicles, but the number-based emissions were relatively higher, comparable to old diesel vehicles. This study provides representative data for models and will lead to more accurate assessments of environmental impacts of aviation.
NASA Astrophysics Data System (ADS)
Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin
2016-12-01
A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.
Kalkstein, L S; Greene, J S
1997-01-01
A new air mass-based synoptic procedure is used to evaluate climate/mortality relationships as they presently exist and to estimate how a predicted global warming might alter these values. Forty-four large U.S. cities with metropolitan areas exceeding 1 million in population are analyzed. Sharp increases in mortality are noted in summer for most cities in the East and Midwest when two particular air masses are present. A very warm air mass of maritime origin is most important in the eastern United States, which when present can increase daily mortality by as many as 30 deaths in large cities. A hot, dry air mass is important in many cities, and, although rare in the East, can increase daily mortality by up to 50 deaths. Cities in the South and Southwest show lesser weather/mortality relationships in summer. During winter, air mass-induced increases in mortality are considerably less than in summer. Although daily winter mortality is usually higher than summer, the causes of death that are responsible for most winter mortality do not vary much with temperature. Using models that estimate climate change for the years 2020 and 2050, it is estimated that summer mortality will increase dramatically and winter mortality will decrease slightly, even if people acclimatize to the increased warmth. Thus, a sizable net increase in weather-related mortality is estimated if the climate warms as the models predict. PMID:9074886
Dusty air masses transport between Amazon Basin and Caribbean Islands
NASA Astrophysics Data System (ADS)
Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis
2015-04-01
Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.
Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings
NASA Astrophysics Data System (ADS)
Shrestha, Suman K.
Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was referenced to the rotor surface speed for radial injection cooling. The mass flow rates for the radial injection were 0.032, 0.0432, 0.054 and 0.068 Kg/min, which result in average injection speed of 150, 200, 250 and 300% of rotor surface speed. Several thermocouples were attached at various circumferential directions of the bearing sleeve, two plenums, bearing holder and ball bearing housings to collect the temperature data of the bearing at 30krpm under 10lb of load. Both axial cooling and radial injection are effective cooling mechanism and effectiveness of both cooling methods is directly proportional to the total mass flow rates. However, axial cooling is slightly more efficient in controlling the average temperature of the bearing sleeve, but results in higher thermal gradient of the shaft along the axial direction and also higher thermal gradient of the bearing sleeve along the circumferential direction compared to the radial injection cooling. The smaller thermal gradient of the radial injection cooling is due to the direct cooling effect of the shaft by impinging jets. While the axial cooling has an effect on only the bearing, the radial injection has a cooling effect on both the bearing sleeve and shaft. It is considered the radial injection cooling needs to be further optimized in terms of number of injection holes and their locations.
Time lag between the tropopause height and the levels of 7Be concentration in near surface air
NASA Astrophysics Data System (ADS)
Ioannidou, A.; Vasileiadis, A.; Melas, D.
2012-04-01
The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62' N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p < 0.0001), and also between 7Be concentration and the temperature T (°C) (R = 0.97, p < 0.001), confirm that the increased rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.