Science.gov

Sample records for air mass mixing

  1. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  2. Leptons Masses and Mixing

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2016-03-01

    We apply our successful modest revision of the quark mass sector of the Standard Model to leptons. We include the effects of the possibility of dark matter fermions, which appear as a number of sterile neutrinos. Email: tjgoldman@post.harvard.edu.

  3. Neutrino Masses and Flavor Mixing

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong

    2010-06-01

    I give a theoretical overview of some basic properties of massive neutrinos in these lectures. Particular attention is paid to the origin of neutrino masses, the pattern of lepton flavor mixing, the feature of leptonic CP violation and the electromagnetic properties of massive neutrinos. I highlight the TeV seesaw mechanisms as a possible bridge between neutrino physics and collider physics in the era characterized by the Large Hadron Collider.

  4. What masses do the neutrinos have? Mixing

    SciTech Connect

    Efrosinin, V. P.

    2010-06-15

    Possible mechanisms for the production of low-mass neutrinos and sterile neutrinos are considered. The quark mixing angles are calculated under the assumption that the traces of left-right symmetry are stable with respect to the masses of constituent quarks. Order-of-magnitude estimates of the neutrino masses are obtained with the aid of experimental data on neutrino oscillations.

  5. Neutrino mass, mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei Y.

    2013-07-01

    Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry Gf to different residual symmetries Gl and Gv in the charged lepton and neutrino sectors. In this framework the symmetry group condition has been derived which allows to get relations between the lepton mixing elements immediately without explicit model building. The condition has been applied to different residual neutrino symmetries Gv. For generic (mass independent) Gv = Z2 the condition leads to two relations between the mixing parameters and fixes one column of the mixing matrix. In the case of Gv = Z2 × Z2 the condition fixes the mixing matrix completely. The non-generic (mass spectrum dependent) Gv lead to relations which include mixing angles, neutrino masses and Majorana phases. The symmetries Gl, Gv, Gf are identified which lead to the experimentally observed values of the mixing angles and allow to predict the CP phase.

  6. Convective mixing in intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro

    2015-08-01

    Of the many processes occurring in the stellar interiors, mixing is one of the most important because stars will never forget its effects, for the rest of their lives. In the placid evolutionary phases of intermediate mass stars it is perhaps the most challenging one because, while we know that convection is certainly the main mixing agent, very little is known about its extension outside the unstable zones and its efficiency in regions with chemical profiles. In spite of the great efforts made in the last decades to improve our understanding of the mixing processes, much of our knowledge still relies on empirical calibrations. In this review, I will focus on the impact of mixing during the main nuclear burning phases of intermediate mass stars and discuss potentially helpful tests such as, the transition mass between low-and intermediate mass stars, the blue and red helium burning sequences, and the helium burning lifetimes.

  7. Fermion masses, flavour mixing and CP violation

    SciTech Connect

    Ross, G. G.

    2008-11-23

    The pattern of neutrino masses and mixings is characteristically different from those observed in the quark sector. I discuss how this can be elegantly explaned through a combination of an underlying family symmetry and the see-saw mechanism.

  8. Disentangling Mass and Mixing Hierarchies.

    PubMed

    Knapen, Simon; Robinson, Dean J

    2015-10-16

    We present a fully perturbative mechanism that naturally generates mass hierarchies for the standard model (SM) fermions in a flavor-blind sector. The dynamics generating the mass hierarchies can therefore be independent from the source of flavor violation, and hence this dynamics may operate at a much lower scale. This mechanism works by dynamically enforcing simultaneous diagonalization--alignment--among a set of flavor-breaking spurions, as well as generating highly singular spectra for them. It also has general applications in model building beyond the SM, wherever alignment between exotic and SM sources of flavor violation is desired.

  9. Subsidence, Mixing and Denitrification of Polar Vortex Air Measured During Polaris

    NASA Technical Reports Server (NTRS)

    Rex, M.; Salawitch, R.; Toon, G.; Sen, B.; Margitan, J.; Osterman, G.; Blavier, J.; Gao, R.; Del Negro, L.; Donnelly, S.; Keim, E.; Neuman, J.; Fahey, D.; Webster, C.; Scott, D.; Herman, B.; May, R.; Moyer, L.; Gunson, M.; Irion, F.; Chang, A.; Rinsland, R.; Bui, P.; Loewenstein, M.

    1998-01-01

    We use the correlation between CH(sub 4) and N(sub 2)O as measured during the POLARIS campaign in spring 1997 to estimate the degree of mixing between descended air masses from the vortex and air masses from mid-latitudes.

  10. Relating lepton mixing angles with lepton mass hierarchy

    NASA Astrophysics Data System (ADS)

    Borah, Debasish

    2016-01-01

    We revisit the possibility of relating lepton mixing angles with lepton mass hierarchies in a model-independent way. Guided by the existence of such relations in the quark sector, we first consider all the mixing angles, both in charged lepton and neutrino sectors to be related to the respective mass ratios. This allows us to calculate the leptonic mixing angles observed in neutrino oscillations as functions of the lightest neutrino mass. We show that for both normal and inverted hierarchical neutrino masses, this scenario does not give rise to correct leptonic mixing angles. We then show that correct leptonic mixing angles can be generated with normal hierarchical neutrino masses if the relation between mixing angle and mass ratio is restricted to 1-2 and 1-3 mixing in both charged lepton and neutrino sectors leaving the 2-3 mixing angles as free parameters. We then restrict the lightest neutrino mass as well as the difference between 2-3 mixing angles in charged lepton and neutrino sectors from the requirement of producing correct leptonic mixing angles. We constrain the lightest neutrino mass to be around 0.002 eV and leptonic Dirac CP phase δCP such that sin2δ CP ˜ (0.35-0.50). We also construct the leptonic mass matrices in terms of 2-3 mixing angles and lightest neutrino mass and briefly comment on the possibility of realizing texture zeros in the neutrino mass matrix.

  11. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    SciTech Connect

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  12. The impact of mixing on Age of Air

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Birner, Thomas; Bönisch, Harald

    2013-04-01

    Transport in the stratosphere is determined both by the mean meridional circulation and two-way mixing. Stratospheric age of air (AoA) is a measure of the integrated effect of all transport processes that affected an air parcel on its way through the stratosphere after crossing the tropopause. Mean AoA is often used to quantify the transport circulation in the stratosphere, namely the Brewer-Dobson Circulation (BDC). Global models project an increase in the mean meridional circulation in a changing climate, and simultaneously a decrease in AoA. However, evidence of changes in mean AoA from observations is weak. To infer from the AoA measurements on changes in the residual circulation, that cannot be measured directly, a better understanding of the relation between AoA and the residual circulation is necessary. Global models provide residual circulation data consistent with AoA, and thus can be used to investigate this relationship. We use trajectories driven only by the residual circulation to derive the hypothetical 'age' that air would have if it was transported only by the residual circulation. This quantity is referred to as 'residual circulation transit time' (RCTT). The difference between AoA and RCTT is then the additional aging of air caused by mixing processes. It is shown that this aging by mixing is positive throughout the lower stratosphere, only in the lowermost stratosphere at high latitudes, air is younger than expected from residual circulation transport only. The processes of the impact of mixing on AoA are further investigated using a simple tropical leaky pipe (TLP) model. The TLP model can explain the general increase of AoA in the lower stratosphere and above by mixing with the recirculation of air parcels. Aging by mixing is dependent both on 1) the mixing strength, that controls the fraction of air that recirculates, and 2) the residual circulation strength, that controls the speed of recirculation. Thus, stronger mixing increases aging by

  13. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  14. THE MASS MIXING LENGTH IN CONVECTIVE STELLAR ENVELOPES

    SciTech Connect

    Trampedach, Regner; Stein, Robert F. E-mail: stein@pa.msu.edu

    2011-04-20

    The scale length over which convection mixes mass in a star can be calculated as the inverse of the vertical derivative of the unidirectional (up or down) mass flux. This is related to the mixing length in the mixing length theory of stellar convection. We give the ratio of mass mixing length to pressure scale height for a grid of three-dimensional surface convection simulations, covering from 4300 K to 6900 K on the main sequence, and up to giants at log g = 2.2, all for solar composition. These simulations also confirm what is already known from solar simulations that convection does not proceed by discrete convective elements, but rather as a continuous, slow, smooth, warm upflow and turbulent, entropy deficient, fast down drafts. This convective topology also results in mixing on a scale comparable to the classic mixing length formulation, and is simply a consequence of mass conservation on flows in a stratified atmosphere.

  15. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  16. Methane and air mixing times under nonreacting and reacting conditions

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1996-12-31

    Mixing times of methane and air under nonreacting or reacting conditions in the presence of a constant rate of temperature or pressure are examined using a mixing model based on the ideal gas law and the equation of continuity. The model is valid for low pressure ratios combustors under nonreacting conditions. The model is also valid under reacting conditions for the fresh mixture which contains only trace amounts of combustion products. The effects of initial pressure, temperature, velocity divergence and initial fluid composition on mixing time are also analyzed. Results show that under both reacting and nonreacting conditions, the mixing time is directly proportional to the initial pressure and temperature of mixture and inversely proportional to rates of pressure and temperature and to the velocity divergence. The mixing time is shorter for the case of fuel dispersing into the surrounding air, than for the case of air penetrating into the fuel flow. The rates of pressure of less than 1 atm/s alone can provide a mixing time in excess of one second which is unacceptably long for many applications, in particular gas turbine combustion. Rates of temperature produced by flame may provide mixing times of less than 0.1 s. To assure mixing times of a few milliseconds for efficient combustion, coupled with low pollutants emission, high velocity gradients between the fuel and air flows are required. The results show that a combination of several effects must be used in parallel for achieving this goal. This analysis of mixing time is intended to provide important design guidelines for the development of high intensity and high efficiency combustors having low pollutants emission.

  17. Simplified symmetric quark mass matrices and flavor mixing

    SciTech Connect

    Frampton, P.H. ); Okada, Y. )

    1991-07-30

    In this paper a formula relating flavor mixing and quark masses is derived from an ansatz for mass matrices. In particular, given m{sub u}, m{sub c} and {vert bar}V{sub cb}{vert bar} the formula relates the top mass m{sub t} to {vert bar}V{sub ub}{vert bar}.

  18. Low energy threshold corrections to neutrino masses and mixing angles

    NASA Astrophysics Data System (ADS)

    Chankowski, P. H.; Wąsowicz, P.

    2002-03-01

    We compute the low energy threshold corrections to neutrino masses and mixing in the standard model (SM) and its minimal supersymmetric version, using the effective theory technique. We demonstrate that they stabilize the results for neutrino masses and mixing with respect to the choice of the scale to which the renormalization group (RG) equation is integrated. (This confirms the correctness of the recent re-derivation of the RGE for the SM in hep-ph/0108005.) Since, as is known, those corrections are potentially very important for phenomenology we derive for them the explicit formulae that can be applied to specific models of neutrino masses and mixing.

  19. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  20. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  1. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  2. Models of neutrino mass, mixing and CP violation

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2015-12-01

    In this topical review we argue that neutrino mass and mixing data motivates extending the Standard Model (SM) to include a non-Abelian discrete flavour symmetry in order to accurately predict the large leptonic mixing angles and {C}{P} violation. We begin with an overview of the SM puzzles, followed by a description of some classic lepton mixing patterns. Lepton mixing may be regarded as a deviation from tri-bimaximal mixing, with charged lepton corrections leading to solar mixing sum rules, or tri-maximal lepton mixing leading to atmospheric mixing rules. We survey neutrino mass models, using a roadmap based on the open questions in neutrino physics. We then focus on the seesaw mechanism with right-handed neutrinos, where sequential dominance (SD) can account for large lepton mixing angles and {C}{P} violation, with precise predictions emerging from constrained SD (CSD). We define the flavour problem and discuss progress towards a theory of favour using GUTs and discrete family symmetry. We classify models as direct, semidirect or indirect, according to the relation between the Klein symmetry of the mass matrices and the discrete family symmetry, in all cases focussing on spontaneous {C}{P} violation. Finally we give two examples of realistic and highly predictive indirect models with CSD, namely an A to Z of flavour with Pati-Salam and a fairly complete A 4 × SU(5) SUSY GUT of flavour, where both models have interesting implications for leptogenesis.

  3. Reactor mixing angle from hybrid neutrino masses

    NASA Astrophysics Data System (ADS)

    Sierra, D. Aristizabal; de Medeiros Varzielas, I.

    2014-07-01

    In terms of its eigenvector decomposition, the neutrino mass matrix (in the basis where the charged lepton mass matrix is diagonal) can be understood as originating from a tribimaximal dominant structure with small deviations, as demanded by data. If neutrino masses originate from at least two different mechanisms, referred to as "hybrid neutrino masses", the experimentally observed structure naturally emerges provided one mechanism accounts for the dominant tribimaximal structure while the other is responsible for the deviations. We demonstrate the feasibility of this picture in a fairly model-independent way by using lepton-number-violating effective operators, whose structure we assume becomes dictated by an underlying A 4 flavor symmetry. We show that if a second mechanism is at work, the requirement of generating a reactor angle within its experimental range always fixes the solar and atmospheric angles in agreement with data, in contrast to the case where the deviations are induced by next-to-leading order effective operators. We prove this idea is viable by constructing an A 4-based ultraviolet completion, where the dominant tribimaximal structure arises from the type-I seesaw while the subleading contribution is determined by either type-II or type-III seesaw driven by a non-trivial A 4 singlet (minimal hybrid model). After finding general criteria, we identify all the N symmetries capable of producing such A 4-based minimal hybrid models.

  4. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  5. Age of stratospheric air and aging by mixing in global models

    NASA Astrophysics Data System (ADS)

    Garny, Hella; Dietmüller, Simone; Plöger, Felix; Birner, Thomas; Bönisch, Harald; Jöckel, Patrick

    2016-04-01

    The Brewer-Dobson circulation is often quantified by the integrated transport measure age of air (AoA). AoA is affected by all transport processes, including transport along the residual mean mass circulation and two-way mixing. A large spread in the simulation of AoA by current global models exists. Using CCMVal-2 and CCMI-1 global model data, we show that this spread can only in small parts be attributed to differences in the simulated residual circulation. Instead, large differences in the "mixing efficiency" strongly contribute to the differences in the simulated AoA. The "mixing efficiency" is defined as the ratio of the two-way mixing mass flux across the subtropical barrier to the net (residual) mass flux, and this mixing efficiency controls the relative increase in AoA by mixing. We derive the mixing efficiency from global model data using the analytical solution of a simplified version of the tropical leaky pipe (TLP) model, in which vertical diffusion is neglected. Thus, it is assumed that only residual mean transport and horizontal two-way mixing across the subtropical barrier controls AoA. However, in global models vertical mixing and numerical diffusion modify AoA, and these processes likely contribute to the differences in the mixing efficiency between models. We explore the contributions of diffusion and mixing on mean AoA by a) using simulations with the tropical leaky pipe model including vertical diffusion and b) explicit calculations of aging by mixing on resolved scales. Using the TLP model, we show that vertical diffusion leads to a decrease in tropical AoA, i.e. counteracts the increase in tropical mean AoA due to horizontal mixing. Thus, neglecting vertical diffusion leads to an underestimation of the mixing efficiency. With explicit calculations of aging by mixing via integration of daily local mixing tendencies along residual circulation trajectories, we explore the contributions of vertical and horizontal mixing for aging by mixing. The

  6. Fermion masses and mixing in Δ (27 ) flavor model

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed; Khalil, Shaaban

    2015-03-01

    An extension of the Standard Model (SM) based on the non-Abelian discrete group Δ (27 ) is considered. The Δ (27 ) flavor symmetry is spontaneously broken only by gauge singlet scalar fields, therefore our model is free from any flavor changing neutral current (FCNC). We show that the model accounts simultaneously for the observed quark and lepton masses and their mixing. In the quark sector, we find that the up-quark mass matrix is flavor diagonal and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix arises from down quarks. In the lepton sector, we show that the charged lepton mass matrix is almost diagonal. We also adopt type-I seesaw mechanism to generate neutrino masses. A deviated mixing matrix from tri-bimaximal Maki-Nakagawa-Sakata (MNS), with a correlation between sin θ13 and sin2θ23 are illustrated.

  7. Phenomenological relations for neutrino masses and mixing parameters

    SciTech Connect

    Khruschov, V. V.

    2013-11-15

    Phenomenological relations for masses, angles, and CP phases in the neutrino mixing matrix are proposed with allowance for available experimental data. For the case of CP violation in the lepton sector, an analysis of the possible structure of the neutrino mass matrix and a calculation of the neutrino mass features and the Dirac CP phase for the bimodal-neutrino model are performed. The values obtained in this way can be used to interpret and predict the results of various neutrino experiments.

  8. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  9. Organic aerosol mixing observed by single-particle mass spectrometry.

    PubMed

    Robinson, Ellis Shipley; Saleh, Rawad; Donahue, Neil M

    2013-12-27

    We present direct measurements of mixing between separately prepared organic aerosol populations in a smog chamber using single-particle mass spectra from the high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Docosane and docosane-d46 (22 carbon linear solid alkane) did not show any signs of mixing, but squalane and squalane-d62 (30 carbon branched liquid alkane) mixed on the time scale expected from a condensational-mixing model. Docosane and docosane-d46 were driven to mix when the chamber temperature was elevated above the melting point for docosane. Docosane vapors were shown to mix into squalane-d62, but not the other way around. These results are consistent with low diffusivity in the solid phase of docosane particles. We performed mixing experiments on secondary organic aerosol (SOA) surrogate systems finding that SOA derived from toluene-d8 (a surrogate for anthropogenic SOA (aSOA)) does not mix into squalane (a surrogate for hydrophobic primary organic aerosol (POA)) but does mix into SOA derived from α-pinene (biogenic SOA (bSOA) surrogate). For the aSOA/POA, the volatility of either aerosol does not limit gas-phase diffusion, indicating that the two particle populations do not mix simply because they are immiscible. In the aSOA/bSOA system, the presence of toluene-d8-derived SOA molecules in the α-pinene-derived SOA provides evidence that the diffusion coefficient in α-pinene-derived SOA is high enough for mixing on the time scale of 1 min. The observations from all of these mixing experiments are generally invisible to bulk aerosol composition measurements but are made possible with single-particle composition data.

  10. Neutrino masses and mixing in A5 with flavor antisymmetry

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Nath, Newton

    2016-08-01

    We discuss the consequences of assuming that the (Majorana) neutrino mass matrix Mν and the charged lepton mass matrix Ml satisfy SνTMνSν=-Mν and Tl†MlMl†Tl=MlMl† with respect to some discrete groups Sν and Tl contained in A5. These assumptions lead to a neutrino mass spectrum with two degenerate and one massless neutrino and also constrain mixing among them. We derive possible mixing patterns following from the choices Sν=Z2 , Z2×Z2 , and Tl=Z2,Z2×Z2,Z3,Z5 as subgroups of A5. One predicts the maximal atmospheric neutrino mixing angle θ23 and μ -τ reflection symmetry in a large number of cases, but it is also possible to obtain nonmaximal values for θ23. Only the third column of the neutrino mixing matrix can be obtained at the leading order due to degeneracy in masses of two of the neutrinos. We take up a specific example within the A5 group and identify Higgs vacuum expectation values which realize the above assumptions. Nonleading terms present in this example are shown to lead to splitting among degenerate pairs and a consistent description of both neutrino masses and mixing angles.

  11. Connecting Fermion Masses and Mixings to BSM Physics - Quarks

    NASA Astrophysics Data System (ADS)

    Goldman, Terrence; Stephenson, Gerard J., Jr.

    2015-10-01

    The ``democratic'' mass matrix with BSM physics assumptions has been studied without success. We invert the process and use the ``democratic'' mass matrix plus a parametrization of all possible BSM corrections to analyze the implications of the observed masses and CKM weak interaction current mixing for the BSM parameter values for the up-quarks and down-quarks. We observe that the small mixing of the so-called ``third generation'' is directly related to the large mass gap from the two lighter generations. Conversely, the relatively large value of the Cabibbo angle arises because the mass matrices in the light sub-sector (block diagonalized from the full three channel problem) are neither diagonal nor degenerate and differ significantly between the up and down cases. Alt email:t.goldman@gmail.com

  12. Neutrino mass and mixing in the seesaw playground

    NASA Astrophysics Data System (ADS)

    King, Stephen F.

    2016-07-01

    We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right-handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focusing on the Littlest Seesaw and its distinctive predictions.

  13. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. For a single-story house with ceiling supply air diffusers, ducts are often removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling.

  14. Masses and mixings in a grand unified toy model

    NASA Astrophysics Data System (ADS)

    McKeen, David; Rosner, Jonathan L.; Thalapillil, Arun M.

    2007-10-01

    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggest that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In this paper we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1)F⊗Z2'⊗Z2''⊗Z2''' family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector.

  15. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  16. Simple mass matrices of neutrinos and quarks consistent with observed mixings and masses

    NASA Astrophysics Data System (ADS)

    Nishiura, Hiroyuki; Fukuyama, Takeshi

    2016-02-01

    We propose a simple phenomenological model of quarks-leptons mass matrices having fundamentally universal symmetry structure. These mass matrices consist of democratic and semi-democratic mass matrix terms commonly to the neutrino and the quark sectors and have only eight free parameters. We show that this mass matrix model well reproduces all the observed values of the MNS lepton and the CKM quark mixing angles, the neutrino mass squared difference ratio, and quark mass ratios, with an excellent agreement. The model also predicts δCPℓ = - 94 ° for the leptonic CP violating phase and < m > ≃ 0.0073 eV for the effective Majorana neutrino mass.

  17. Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Vien, V. V.

    2016-03-01

    We study a neutrino mass model based on S4 flavor symmetry which accommodates lepton mass, mixing with nonzero θ13 and CP violation phase. The spontaneous symmetry breaking in the model is imposed to obtain the realistic neutrino mass and mixing pattern at the tree-level with renormalizable interactions. Indeed, the neutrinos get small masses from one SU(2)L doublet and two SU(2)L singlets in which one being in 2̲ and the two others in 3̲ under S4 with both the breakings S4 → S3 and S4 → Z3 are taken place in charged lepton sector and S4 →𝒦 in neutrino sector. The model also gives a remarkable prediction of Dirac CP violation δCP = π 2 or -π 2 in both the normal and inverted spectrum which is still missing in the neutrino mixing matrix. The relation between lepton mixing angles is also represented.

  18. Distribution and Room Air Mixing Risks to Retrofitted Homes

    SciTech Connect

    Burdick, A.

    2014-12-01

    An energy efficiency upgrade reduces a home’s heating and cooling load. If the load reduction is great enough and the heating, ventilation, and air conditioning system warrants replacement, that system is often upgraded with a more efficient, lower capacity system that meets the load of the upgraded house. For a single-story house with floor supply air diffusers, the ducts often are removed and upgraded. For houses with ducts that are embedded in walls, the cost of demolition precludes the replacement of ducts. The challenge with the use of existing ducts is that the reduced airflow creates a decreased throw at the supply registers, and the supply air and room air do not mix well, leading to potential thermal comfort complaints. This project investigates this retrofit scenario. The issues and solutions discussed here are relevant to all climate zones, with emphasis on climates that require cooling. In this project, IBACOS performed load calculations for a two-story 1960s house and characterized duct sizes and layouts based on industry “rules of thumb” (Herk et al. 2014). The team performed duct-sizing calculations for unaltered ducts and post-retrofit airflows and examined airflow velocities and pressure changes with respect to various factors. The team then used a mocked-up duct and register setup to measure the characteristics of isothermal air—to reduce the effects of buoyancy from the observations—passing through the duct and leaving the register.

  19. Water Mass Modification through Mixing in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Alberty, Marion; MacKinnon, Jennifer; Sprintall, Janet

    2015-04-01

    The Solomon Sea is a semi-enclosed sea located in the Equatorial southwest Pacific. With its complex topography and strong channel flow, the Solomon Sea has the potential to strongly mix water masses consisting of Antarctic Intermediate Water and South Pacific Subtropical Mode Water traveling equatorward to join the Equatorial Undercurrent. Observations of temperature and salinity relationships from the primary entry and exit points of the Solomon Sea circulation display erosion of the transported water masses and relaxation of the temperature-salinity gradients. In addition the surface signature in the northeast channels indicate the presence of a different water mass implying recirculation and variability in the surface transport which is consistent with model simulations of the region. The spatial and temporal variations in mixing through out the sea are investigated using CTD and LADCP profiles taken during two cruises in the Solomon Sea. Turbulent diffusivity is estimated by two fine scale parameterization methods. The first method takes advantage of an empirical ratio of Thorpe to Ozmidov length scales below the mixed layer and estimates diffusivity from overturn length and local stratification. This method employs data from the CTD at 1 m resolution. The second method uses shear derived from LADCP data and compares the variance of the spectra to that of the canonical Garrett-Munk model. The same is done with strain variance from CTD estimated buoyancy profiles and the ratio of the shear to strain variance is estimated for the region. Further estimates of mixing are derived from ARGO profiles, utilizing the region's ratio of shear to strain variance derived from the shipboard profiles. The spatial patterns display enhanced mixing near abrupt topographic features and in channels where vertical shear is strongest. Mixing in the thermocline layer is enhanced during the first cruise, which was concurrent with strong regional monsoonal wind forcing.

  20. Modeling indoor air concentrations near emission sources in imperfectly mixed rooms.

    PubMed

    Furtaw, E J; Pandian, M D; Nelson, D R; Behar, J V

    1996-09-01

    Assessments of exposure to indoor air pollutants usually employ spatially well-mixed models which assume homogeneous concentrations throughout a building or room. However, practical experience and experimental data indicate that concentrations are not uniform in rooms containing point sources of emissions; concentrations tend to be greater in close proximity to the source than they are further from it. This phenomenon could account for the observation that "personal air" monitors frequently yield higher concentrations than nearby microenvironmental monitors (i.e., the so-called "personal cloud" effect). In this project, we systematically studied the concentrations of a tracer gas at various distances from its emission source in a controlled-environment, room-size chamber under a variety of ventilation conditions. Measured concentrations in the proximity of the source deviated significantly above the predictions of a conventional well-mixed single-compartment mass balance model. The deviation was found to be a function of distance from the source and total room air flow rate. At typical air flow rates, the average concentration at arm's length (approximately 0.4 meters) from the source exceeds the theoretical well-mixed concentration by a ratio of about 2:1. However, this ratio is not constant; the monitored concentration appears to vary randomly from near the theoretical value to several times above it. Concentration data were fitted to a two-compartment model with the source located in a small virtual compartment within the room compartment. These two compartments were linked with a stochastic air transfer rate parameter. The resulting model provides a more realistic simulation of exposure concentrations than does the well-mixed model for assessing exposure to emissions from active sources. Parameter values are presented for using the enhanced model in a variety of typical situations. PMID:8925388

  1. Neutrino mixing and mass hierarchy in Gaussian landscapes

    SciTech Connect

    Hall, Lawrence J.; Salem, Michael P.; Watari, Taizan

    2009-01-15

    The flavor structure of the standard model may arise from random selection on a landscape. In a class of simple models, called ''Gaussian landscapes,'' Yukawa couplings derive from overlap integrals of Gaussian zero-mode wave functions on an extra-dimensional space. Statistics of vacua are generated by scanning the peak positions of these wave functions, giving probability distributions for all flavor observables. Gaussian landscapes can account for all of the major features of flavor, including both the small electroweak mixing in the quark sector and the large mixing observed in the lepton sector. We find that large lepton mixing stems directly from lepton doublets having broad wave functions on the internal manifold. Assuming the seesaw mechanism, we find the mass hierarchy among neutrinos is sensitive to the number of right-handed neutrinos and can provide a good fit to neutrino oscillation measurements.

  2. Fermion masses and mixing in general warped extra dimensional models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Hamzaoui, Cherif; Pourtolami, Nima; Toharia, Manuel

    2015-06-01

    We analyze fermion masses and mixing in a general warped extra dimensional model, where all the Standard Model (SM) fields, including the Higgs, are allowed to propagate in the bulk. In this context, a slightly broken flavor symmetry imposed universally on all fermion fields, without distinction, can generate the full flavor structure of the SM, including quarks, charged leptons and neutrinos. For quarks and charged leptons, the exponential sensitivity of their wave functions to small flavor breaking effects yield hierarchical masses and mixing as it is usual in warped models with fermions in the bulk. In the neutrino sector, the exponential wave-function factors can be flavor blind and thus insensitive to the small flavor symmetry breaking effects, directly linking their masses and mixing angles to the flavor symmetric structure of the five-dimensional neutrino Yukawa couplings. The Higgs must be localized in the bulk and the model is more successful in generalized warped scenarios where the metric background solution is different than five-dimensional anti-de Sitter (AdS5 ). We study these features in two simple frameworks, flavor complimentarity and flavor democracy, which provide specific predictions and correlations between quarks and leptons, testable as more precise data in the neutrino sector becomes available.

  3. Turbulent Fluxes and Pollutant Mixing during Wintertime Air Pollution Episodes in Complex Terrain.

    PubMed

    Holmes, Heather A; Sriramasamudram, Jai K; Pardyjak, Eric R; Whiteman, C David

    2015-11-17

    Cold air pools (CAPs) are stagnant stable air masses that form in valleys and basins in the winter. Low wintertime insolation limits convective mixing, such that pollutant concentrations can build up within the CAP when pollutant sources are present. In the western United States, wintertime CAPs often persist for days or weeks. Atmospheric models do not adequately capture the strength and evolution of CAPs. This is in part due to the limited availability of data quantifying the local turbulence during the formation, maintenance, and destruction of persistent CAPs. This paper presents observational data to quantify the turbulent mixing during two CAP episodes in Utah's Salt Lake Valley during February of 2004. Particulate matter (PM) concentration data and turbulence measurements for CAP and non-CAP time periods indicate that two distinct types of mixing scenarios occur depending on whether the CAP is dry or cloudy. Where cloudy, CAPs have enhanced vertical mixing due to top-down convection from the cloud layer. A comparison between the heat and momentum fluxes during 5 days of a dry CAP episode in February to those of an equivalent 5 day time period in March with no CAP indicates that the average turbulent kinetic energy during the CAP was suppressed by approximately 80%.

  4. Fermion flavor mixing in models with dynamical mass generation

    SciTech Connect

    Benes, Petr

    2010-03-15

    We present a model-independent method of dealing with fermion flavor mixing in the case when instead of constant, momentum-independent mass matrices one has rather momentum-dependent self-energies. This situation is typical for strongly coupled models of dynamical fermion mass generation. We demonstrate our approach on the example of quark mixing. We show that quark self-energies with a generic momentum dependence lead to an effective Cabibbo-Kobayashi-Maskawa matrix, which turns out to be in general nonunitary, in accordance with previous claims of other authors, and to nontrivial flavor changing electromagnetic and neutral currents. We also discuss some conceptual consequences of the momentum-dependent self-energies and show that in such a case the interaction basis and the mass basis are not related by a unitary transformation. In fact, we argue that the latter is merely an effective concept, in a specified sense. While focusing mainly on the fermionic self-energies, we also study the effects of momentum-dependent radiative corrections to the gauge bosons and to the proper vertices. Our approach is based on an application of the Lehmann-Symanzik-Zimmermann reduction formula and for the special case of constant self-energies it gives the same results as the standard approach based on the diagonalization of mass matrices.

  5. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.

    PubMed

    Braida, W J; Ong, S K

    2001-10-12

    Air sparging in conjunction with soil vapor extraction is one of many technologies currently being applied for the remediation of groundwater contaminated with volatile organic compounds (VOCs). Mass transfer at the air-water interface during air sparging is affected by various soil and VOC properties. In this study with a single air-channel apparatus, mass transfer of VOCs was shown to occur within a thin layer of saturated porous media next to the air channel. In this zone, the VOCs were found to rapidly deplete during air sparging resulting in a steep concentration gradient while the VOC concentration outside the zone remained fairly constant. The sizes of the mass transfer zone were found to range from 17 to 41 mm or 70d(50) and 215d(50) (d(50)=mean particle size) for low organic carbon content media (<0.01% OC). The size of the mass transfer zone was found to be proportional to the square root of the aqueous diffusivity of the VOC, and was affected by the mean particle size, and the uniformity coefficient. Effects of the volatility of the VOCs as represented by the Henry's law constants and the airflow rates on the mass transfer zone were found to be negligible but VOC mass transfer from air-water interface to bulk air phase seems to play a role. A general correlation for predicting the size of the mass transfer zone was developed. The model was developed using data from nine different VOCs and verified by two other VOCs. The existence of the mass transfer zone provides an explanation for the tailing effect of the air phase concentration under prolonged air sparging and the rebound in the VOC air phase concentration after the sparging system is turned off.

  6. Synergistic, ultrafast mass storage and removal in artificial mixed conductors.

    PubMed

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-11

    Mixed conductors-single phases that conduct electronically and ionically-enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the 'super-ionic' conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors. PMID:27510217

  7. Synergistic, ultrafast mass storage and removal in artificial mixed conductors

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chin; Fu, Lijun; Maier, Joachim

    2016-08-01

    Mixed conductors—single phases that conduct electronically and ionically—enable stoichiometric variations in a material and, therefore, mass storage and redistribution, for example, in battery electrodes. We have considered how such properties may be achieved synergistically in solid two-phase systems, forming artificial mixed conductors. Previously investigated composites suffered from poor kinetics and did not allow for a clear determination of such stoichiometric variations. Here we show, using electrochemical and chemical methods, that a melt-processed composite of the ‘super-ionic’ conductor RbAg4I5 and the electronic conductor graphite exhibits both a remarkable silver excess and a silver deficiency, similar to those found in single-phase mixed conductors, even though such behaviour is not possible in the individual phases. Furthermore, the kinetics of silver uptake and release is very fast. Evaluating the upper limit set by interfacial ambipolar diffusion reveals chemical diffusion coefficients that are even higher than those achieved for sodium chloride in bulk liquid water. These results could potentially stimulate systematic research into powerful, even mesoscopic, artificial mixed conductors.

  8. NREL Provides Guidance to Improve Air Mixing and Thermal Comfort in Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    NREL research determines optimal HVAC system design for proper air mixing and thermal comfort in homes. As U.S. homes become more energy efficient, heating, ventilation, and cooling (HVAC) systems will be downsized, and the air flow volumes required to meet heating and cooling loads may be too small to maintain uniform room air mixing-which can affect thermal comfort. Researchers at the National Renewable Energy Laboratory (NREL) evaluated the performance of high sidewall air supply inlets and confirmed that these systems can achieve good air mixing and provide suitable comfort levels for occupants. Using computational fluid dynamics modeling, NREL scientists tested the performance of high sidewall supply air jets over a wide range of parameters including supply air temperature, air velocity, and inlet size. This technique uses the model output to determine how well the supply air mixes with the room air. Thermal comfort is evaluated by monitoring air temperature and velocity in more than 600,000 control volumes that make up the occupied zone of a single room. The room has an acceptable comfort level when more than 70% of the control volumes meet the comfort criteria on both air temperature and velocity. The study shows that high sidewall supply air jets achieve uniform mixing in a room, which is essential for providing acceptable comfort levels. The study also provides information required to optimize overall space conditioning system design in both heating and cooling modes.

  9. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  10. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  11. Fitting fermion masses and mixings in F-theory GUTs

    NASA Astrophysics Data System (ADS)

    Carta, Federico; Marchesano, Fernando; Zoccarato, Gianluca

    2016-03-01

    We analyse the structure of Yukawa couplings in local SU(5) F-theory models with E 7 enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire compactification space. In this setup the E 7 symmetry is broken down to SU(5) by means of a 7-brane T-brane background, and further to the MSSM gauge group by means of a hypercharge flux that also implements doublet-triplet splitting. At tree-level only one family of quarks and charged leptons is massive, while the other two obtain hierarchically smaller masses when stringy non-perturbative effects are taken into account. We find that there is a unique E 7 model with such hierarchical flavour structure. The relative simplicity of the model allows to perform the computation of Yukawa couplings for a region of its parameter space wider than previous attempts, obtaining realistic fermion masses and mixings for large parameter regions. Our results are also valid for local models with E 8 enhancement, pointing towards a universal structure to describe realistic fermion masses within this framework.

  12. The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2007-01-01

    This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.

  13. Venus cloud properties - Infrared opacity and mass mixing ratio

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Herath, L. W.; Kunde, V. G.; Maguire, W. C.

    1975-01-01

    By using the Mariner 5 temperature profile and a homogeneous cloud model, and assuming that CO2 and cloud particles are the only opacity sources, the wavelength dependence of the Venus cloud opacity is inferred from the infrared spectrum of the planet between 450 and 1250 per cm. Volume extinction coefficients varying from 0.000005 to 0.000015 per cm, depending on the wavelength, are determined at the tropopause level of 6110 km. By using all available data, a cloud mass mixing ratio of approximately 0.000005 and a particle concentration of about 900 particles per cu cm at this level are also inferred. The derived cloud opacity compares favorably with that expected for a haze of droplets of a 75% aqueous solution of sulfuric acid.

  14. Subgrid models for mass and thermal diffusion in turbulent mixing

    SciTech Connect

    Sharp, David H; Lim, Hyunkyung; Li, Xiao - Lin; Gilmm, James G

    2008-01-01

    We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without resolving the

  15. Mixed neutralino dark matter in nonuniversal gaugino mass models

    SciTech Connect

    Chattopadhyay, Utpal; Das, Debottam; Roy, D. P.

    2009-05-01

    We have considered nonuniversal gaugino mass models of supergravity, arising from a mixture of two superfield contributions to the gauge kinetic term, belonging to a singlet and a nonsinglet representation of the grand unified theory group. In particular we analyze two models, where the contributing superfields belong to the singlet and the 75-dimensional, and the singlet and the 200-dimensional representations of SU(5). The resulting lightest superparticle is a mixed bino-Higgsino state in the first case and a mixed bino-wino-Higgsino state in the second. In both cases one obtains cosmologically compatible dark matter relic density over broad regions of the parameter space. We predict promising signals in direct dark matter detection experiments as well as in indirect detection experiments via high energy neutrinos coming from their pair annihilation in the Sun. Besides, we find interesting {gamma}-ray signal rates that will be probed in the Fermi gamma-ray space telescope. We also expect promising collider signals at LHC in both cases.

  16. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  17. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  18. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  19. Analysis of mass transfer performance in an air stripping tower

    SciTech Connect

    Chung, T.W.; Lai, C.H.; Wu, H.

    1999-10-01

    The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

  20. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  1. Analysis of gaseous fuel and air mixing in flames and flame quenching

    SciTech Connect

    Brasoveanu, D.

    1997-07-01

    A model for fuel-air mixing in flames is presented and applied to study the mixing and quenching of methane-air flames. The model is based on the ideal gas law, the energy equation, the equation of continuity and Arrhenius form of rate equation and is, therefore, strictly valid for mixtures having low density, i.e., for low pressure combustors. In the absence of preferential diffusion, chemical reactions cause an unbalanced consumption of fuel and oxygen in non-stoichiometric flames. Until the desired equivalence ratio is achieved, enhanced preferential diffusion of oxygen or fuel is required in fuel-rich or fuel-lean flames, respectively. After desired equivalence ratio is achieved, preferential diffusion of oxygen or fuel should be reduced to the exact level required to compensate the unbalanced consumption of fuel and air. In the absence of these conditions, flame chemistry cannot be strictly controlled. In addition, unless the desired equivalence ratio is at a position of stable equilibrium over an extended range of operational conditions, the flame may be quenched. Net transport of fuel or oxygen due to diffusion is correlated with distributions of pressure, temperature, velocity, species mass fractions and heat transfer through radiation and conduction. Results show that negative rates of pressure (or positive rates of temperature) and positive rates of pressure (or negative rates of temperature) can enhance preferential diffusion of oxygen and fuel, respectively. Negative velocity divergence also enhances diffusion of oxygen, while positive velocity divergence enhances diffusion of fuel. Recirculation of burnt gases improves the stability of all flames.

  2. Fuel economizer employing improved turbulent mixing of fuel and air

    SciTech Connect

    Howes, L.D.

    1980-11-25

    A fuel economizer is described for internal combustion engines which increases turbulence of the fuel and air mixture in the carburetor by decreasing the throat of its venturi to a predetermined minimum necessary to induce fuel flow through its fuel jets and then downstream of the venturi adding further atmospheric air for complete combustion.

  3. Mixed species radioiodine air sampling readout and dose assessment system

    DOEpatents

    Distenfeld, Carl H.; Klemish, Jr., Joseph R.

    1978-01-01

    This invention provides a simple, reliable, inexpensive and portable means and method for determining the thyroid dose rate of mixed airborne species of solid and gaseous radioiodine without requiring highly skilled personnel, such as health physicists or electronics technicians. To this end, this invention provides a means and method for sampling a gas from a source of a mixed species of solid and gaseous radioiodine for collection of the mixed species and readout and assessment of the emissions therefrom by cylindrically, concentrically and annularly molding the respective species around a cylindrical passage for receiving a conventional probe-type Geiger-Mueller radiation detector.

  4. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  5. Venus cloud properties: Infrared opacity and mass mixing ratio

    NASA Technical Reports Server (NTRS)

    Samuelson, R. E.; Hanel, R. A.; Herath, L. W.; Kunde, V. G.; Maguire, W. C.

    1974-01-01

    By using the Mariner 5 temperature profile and a homogeneous cloud model, and assuming that CO2 and cloud particles are the only opacity sources, the wavelength dependence of the Venus cloud opacity is inferred from the infrared spectrum of the planet between 450 and 1250/cm. Justification for applying the homogeneous cloud model is found in the fact that numerous polarization and infrared data are mutually consistent within the framework of such a model; on the other hand, dense cloud models are not satisfactory. Volume extinction coefficients varying from 0.000005 to 0.000015/cm depending on the wavelength, are determined at the tropopause level of 6110 km. By using all available data, a cloud mass mixing ratio of approximately 0.000005 and a particle concentration of about 900 particles per cu cm at this level are also inferred. The derived cloud opacity compares favorably with that expected for a haze of droplets of a 75% aqueous solution of sulfuric acid.

  6. Subgrid models for mass and thermal diffusion in turbulent mixing

    NASA Astrophysics Data System (ADS)

    Lim, H.; Yu, Y.; Glimm, J.; Li, X.-L.; Sharp, D. H.

    2010-12-01

    We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.

  7. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  8. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  9. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  10. Maximum mixing times of methane and air under non-reacting and reacting conditions

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    Mixing times between methane and air under non-reacting or reacting conditions in the presence of rates of temperature and pressure and velocity gradients are examined using a mixing model based on the ideal gas law and the equation of continuity. The model is valid for low pressure combustors under non-reacting conditions. The model is also valid under reacting conditions for the fresh mixture which contains only trace amounts of combustion products. The effects of initial pressure, temperature and fluid composition on mixing time are also analyzed. In general, the exact mixing time has to be determined numerically. Nevertheless maximum values of mixing times can be determined analytically for a broad range of operational conditions. Results show that under both reacting and non-reacting conditions, the maximum mixing time is directly proportional to the initial pressure and temperature of mixture and inversely proportional to rates of pressure and temperature, and to velocity divergence. Mixing through fuel dispersion into the surrounding air is shown to be faster than via air penetration into the fuel flow. Rates of pressure of less than 1 atm/s acting along provide a mixing time in excess of one second which is unacceptably long for many applications, in particular gas turbine combustion. Rates of temperature produced by flame may provide mixing times shorter than 0.1 s. Mixing times of the order of a few milliseconds for efficient combustion and low emission, require high velocity gradients at the fuel-air boundary. Results show that enhanced mixing is achieved by combining temperature and velocity gradients. This analysis of mixing time is intended to provide important design guidelines for the development of high intensity, high efficiency and low emission combustors.

  11. Mixed Meson Mass for Domain-Wall Valence and Staggered Sea Fermions

    SciTech Connect

    Konstantinos Orginos; Andre Walker-Loud

    2007-05-01

    Mixed action lattice calculations allow for an additive lattice spacing dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is the most important lattice artifact to determine for mixed action calculations: because it modifies the pion mass, it plays a central role in the low energy dynamics of all hadronic correlation functions. We determine the leading order and next to leading order additive mass renormalization of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and staggered sea fermions. We find that on the asqtad improved coarse MILC lattices, the leading order additive mass renormalization for the mixed mesons is Δ(am)^2 LO = 0.0409(11) which corresponds to a^2 Δ_Mix = (319 MeV)^2± (53 MeV)^2 for a = 0.125 fm. We also find significant next to leading order contributions which reduce the mass renormalization by a significant amount, such that for 0 < am_π ≤ 0.22 the mixed meson mass renormalization is well approximated by Δ(am)^2 = 0.0340 (23) or a^2δ_Mix = (290 MeV)^2 ± (76 MeV)^2. The full next-to-leading order analysis is presented in the text.

  12. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  13. Impacts of Typhoon and Air-Mass Pathways on Rainwater Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Cheng, M.; You, C.

    2006-12-01

    To assess the importance of chemical fluxes on trace elements by wet precipitation, we have collected time- series rain waters between 06/20/04 and 09/20/05 for ICPMS and IC measurements. The sampling site is located at Tainan city in southwest Taiwan and there were four typhoons, namely Mindulle, Rananim, Aere, and Haima, hit the island during this period. Combining trace element compositions with HYSPLIT model for air-mass transportation designed by NOAA, we were able to understand possible source, flux and migration pathway of pollutants in rainwater. Our results show that seasalt contribution and trace element fluxes were higher during typhoon events. The Na and Pb flux varied largely, between 0.03~1388 and 0.0002~2000 mg/m2/day respectively, depended on the pathways of air mass trajectory and wind strength. It is clear that typhoons carry not only sea spray but also major anthropogenic pollutants from south Asia. Among the four typhoons, the Mindulle carried the largest fluxes of seasalt and trace elements while Rananim was weak in strength and brought the lowest Na and Pb due to less degree of mixing with air mass on land. The calculated enriched factors normalized to seawater (EFsea) were near unity for Na and Mg, but were much larger for K and Ca possibly due to crust source contamination and biomass burning. The EFcrust or EFsea values of various trace metals (e.g., V, Cr, Mn, Co, Ni, Cu, Zn, As, Ba and Pb were all significantly larger than 10 indicating the importance of anthropogenic sources. Interestingly, the PCA results confirm that rain waters with similar chemical characteristics have shared common air mass backward trajectory history.

  14. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use

    PubMed Central

    Rostami, Ali A.; Pithawalla, Yezdi B.; Liu, Jianmin; Oldham, Michael J.; Wagner, Karl A.; Frost-Pineda, Kimberly; Sarkar, Mohamadi A.

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  15. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use.

    PubMed

    Rostami, Ali A; Pithawalla, Yezdi B; Liu, Jianmin; Oldham, Michael J; Wagner, Karl A; Frost-Pineda, Kimberly; Sarkar, Mohamadi A

    2016-01-01

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time. PMID:27537903

  16. A novel and economical explanation for SM fermion masses and mixings

    NASA Astrophysics Data System (ADS)

    Hernández, A. E. Cárcamo

    2016-09-01

    I propose the first multiscalar singlet extension of the standard model (SM), which generates tree level top quark and exotic fermion masses as well as one and three loop level masses for charged fermions lighter than the top quark and for light active neutrinos, respectively, without invoking electrically charged scalar fields. That model, which is based on the S3× Z8 discrete symmetry, successfully explains the observed SM fermion mass and mixing pattern. The charged exotic fermions induce one loop level masses for charged fermions lighter than the top quark. The Z8 charged scalar singlet χ generates the observed charged fermion mass and quark mixing pattern.

  17. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  18. Abatement of NO/sub x/ from heterogeneous combustion sources by ultrahomogeneous air-EGR mixing

    SciTech Connect

    Showalter, M.R.

    1986-09-02

    A technique is described for achieving calculated NO/sub x/ reductions from EGR in heterogeneous combustion systems comprising a burner where fuel and oxidizer are heterogeneously mixed and burned and wherein the products of such burning are cooled to produce useful energy and the products of combustion, called exhaust gas are available in a duct at relatively moderate temperatures, ducting means whereby a fraction of the exhaust gas is recycled into the intake air supplying the burner and whereby the mixing of air and EGR is accomplished with a vortex mixer wherein alternate layered bodies of air and EGR are introduced into the entrance upstream of the vortex so that the high shear structured turbulent mixing process of the vortex acts to produce microscale homogeneity for very large scale mixer sections.

  19. discrete group as a source of the quark mass and mixing pattern in models

    NASA Astrophysics Data System (ADS)

    Cárcamo Hernández, A. E.; Martinez, R.; Nisperuza, Jorge

    2015-02-01

    We propose a model based on the gauge symmetry with an extra discrete group, which successfully accounts for the SM quark mass and mixing pattern. The observed hierarchy of the SM quark masses and quark mixing matrix elements arises from the and symmetries, which are broken at a very high scale by the scalar singlets (,) and , charged under these symmetries, respectively. The Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining quark mixing angles. The obtained magnitudes of the CKM matrix elements, the CP violating phase, and the Jarlskog invariant are in agreement with the experimental data.

  20. Functional forms for approximating the relative optical air mass

    NASA Astrophysics Data System (ADS)

    Rapp-Arrarás, Ígor; Domingo-Santos, Juan M.

    2011-12-01

    This article constitutes a review and systematic comparison of functional forms for approximating the air mass from the zenith to the horizon. Among them, we find the most meaningful forms in atmospheric optics, geophysics, meteorology, and solar energy science, as well as several forms arising from the study of the atmospheric delay of electromagnetic signals, whose relationship with the air mass was recently proved by the authors. In total, we have compared 26 functional forms, and the fits have been done for three atmospheric profiles, an observer at sea level, and the median wavelength of the Sun's spectral irradiance (0.7274 μm). As a result, the best of the uniparametric forms has more than three centuries of history; the best of the biparametric forms was recently introduced by one of the authors; the best of the tri- and tetraparametric forms were originally proposed for modeling the atmospheric delay of radio signals; and the best of the forms with more than four parameters is used here for the first time. On the basis of these, for the 1976 U.S. Standard Atmosphere (USSA-76), we provide one-, two-, three-, four-, and five-parameter formulas whose maximum deviations are 1.70, 2.91 × 10-1, 3.28 × 10-2, 2.49 × 10-3, and 3.24 × 10-4, respectively.

  1. Sneutrino-antisneutrino mixing and neutrino mass in anomaly-mediated supersymmetry breaking scenario.

    PubMed

    Choi, Kiwoon; Hwang, Kyuwan; Song, Wan Young

    2002-04-01

    In supersymmetric models with nonzero Majorana neutrino mass, the sneutrino and antisneutrino mix, which may lead to same-sign dilepton signals in future collider experiments. We point out that the anomaly-mediated supersymmetry breaking scenario has a good potential to provide an observable rate of such signals for the neutrino masses suggested by the atmospheric and solar neutrino oscillations. It is noted also that the sneutrino-antisneutrino mixing can provide much stronger information on some combinations of the neutrino masses and mixing angles than the neutrino experiments.

  2. Mixing of Multiple Jets with a Confined Subsonic Crossflow: Part III--The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdemann, James D.; Chang, Clarence T.

    2008-01-01

    This study was motivated by a goal to understand the mixing and emissions in the Rich-burn/Quick-mix/Lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported herein was a reacting jet-in-crossflow experiment at atmospheric pressure. The jets were injected from the perimeter of a cylindrical duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of J = 57. The size of individual orifices was decreased as the number of orifices increased to maintain a constant total area; the jet-to-mainstream mass-flow ratio was constant at MR = 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer might not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheating both main and jet air did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of an RQL combustor may comprise over 70 percent of the total air flow, the overall NOx emission levels were found to be more sensitive to main stream air preheat than to jet stream air preheat.

  3. MASSES OF SUBGIANT STARS FROM ASTEROSEISMOLOGY USING THE COUPLING STRENGTHS OF MIXED MODES

    SciTech Connect

    Benomar, O.; Bedding, T. R.; Stello, D.; White, T. R.; Deheuvels, S.; Christensen-Dalsgaard, J.

    2012-02-15

    For a few decades now, asteroseismology, the study of stellar oscillations, has enabled us to probe the interiors of stars with great precision. It allows stringent tests of stellar models and can provide accurate radii, masses, and ages for individual stars. Of particular interest are the mixed modes that occur in subgiant solar-like stars since they can place very strong constraints on stellar ages. Here, we measure the characteristics of the mixed modes, particularly the coupling strength, using a grid of stellar models for stars with masses between 0.9 and 1.5 M{sub Sun }. We show that the coupling strength of the l = 1 mixed modes is predominantly a function of stellar mass and appears to be independent of metallicity. This should allow an accurate mass evaluation, further increasing the usefulness of mixed modes in subgiants as asteroseismic tools.

  4. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 1: Analysis and results

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.

  5. An explicit SU(12) family and flavor unification model with natural fermion masses and mixings

    SciTech Connect

    Albright, Carl H.; Feger, Robert P.; Kephart, Thomas W.

    2012-07-01

    We present an SU(12) unification model with three light chiral families, avoiding any external flavor symmetries. The hierarchy of quark and lepton masses and mixings is explained by higher dimensional Yukawa interactions involving Higgs bosons that contain SU(5) singlet fields with VEVs about 50 times smaller than the SU(12) unification scale. The presented model has been analyzed in detail and found to be in very good agreement with the observed quark and lepton masses and mixings.

  6. Neutrino masses and deviation from tribimaximal mixing in Δ (27 ) model with inverse seesaw mechanism

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammed; Khalil, Shaaban; Rashed, Ahmed; Sil, Arunansu

    2016-01-01

    We propose a scheme, based on Δ (27 ) flavor symmetry and supplemented by other discrete symmetries and the inverse seesaw mechanism, where both the light neutrino masses and the deviation from tribimaximal mixing matrix can be linked to the source of lepton number violation. The hierarchies of the charged leptons are explained. We find that the quark masses including their hierarchies and the mixing can also be constructed in a similar way.

  7. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  8. Time Series of CO2 Mixing Ratios, Delta-13C, and Delta-18O in Air in Pasadena, CA

    NASA Astrophysics Data System (ADS)

    Newman, S.; Stolper, E.

    2008-12-01

    Flask air samples have been collected mid-afternoon every 1-2 days since October 1998 on the Caltech campus in Pasadena, CA, located ~14 km northeast of Los Angeles. The samples were analyzed by manometry for CO2 mixing ratio and by dual inlet mass spectrometry for δ13C and δ18O. Preliminary time series analyses of all three parameters reveal periodicities at 1 and 0.5 year and 7 days. For comparison, time series of CO2 mixing ratios, δ13C, and δ18O for the Mauna Loa observatory only show periodicities of approximately 1 and 0.5 years (although the record for Mauna Loa cannot show a periodicity at 1 week given the sampling frequency). Seasonal plant growth patterns can explain the 0.5 and 1 year signals. The 7-day cycle in Pasadena could well be due to emissions from burning of fossil fuels, especially gasoline during the workweek. More detailed investigation of seasonal patterns in the Pasadena time series reveals that the seasonal variation amplitudes for δ13C and δ18O are twice as large for Pasadena air as for clean Hawaiian air, and the δ13C pattern is inverted in Pasadena relative to that at Mauna Loa. There is no well-defined seasonal variation in CO2 mixing ratio in Pasadena, in contrast to the well-known Mauna Loa pattern. The seasonal variations in Pasadena reflect the superposition of local contributions of CO2 in Pasadena on global temporal variations, as reflected at clean air sites such as Mauna Loa. The local contributions are significant: e.g., the total CO2 concentration in Pasadena is ~30 ppm higher than at Mauna Loa. The Pasadena pattern reflects burning of fossil fuels that introduces light CO2 into the atmosphere preferentially during the hot summer months when there is more demand for electricity for air conditioning. Thus, CO2 mixing ratios do not decrease during the summer in the urban Los Angeles basin, but rather, the local anthropogenic contribution overwhelms the seasonal pattern observed in clean air.

  9. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  10. Direct mass limits for chiral fourth-generation quarks in all mixing scenarios.

    PubMed

    Flacco, Christian J; Whiteson, Daniel; Tait, Tim M P; Bar-Shalom, Shaouly

    2010-09-10

    Present limits on chiral fourth-generation quark masses mb' and mt' are broadly generalized and strengthened by combining both t' and b' decays and considering a full range of t' and b' flavor-mixing scenarios with the lighter generations (to 1-‖V44‖2≈10(-13)). Various characteristic mass-splitting choices are considered. With mt'>mb' we find that CDF Collaboration limits on the b' mass vary by no more than 10%-20% with any choice of flavor mixing, while for the t' mass, we typically find stronger bounds, in some cases up to mt'>430  GeV. For mb'>mt', we find mb'>380-430  GeV, depending on the flavor mixing and the size of the mt'-mb' mass splitting.

  11. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  12. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  13. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  14. Evaluation of Aerosol Mixing State Classes in the GISS Modele-matrix Climate Model Using Single-particle Mass Spectrometry Measurements

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-01-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 micron, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 micron contain large fractions of organic material, internally-mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  15. Evaluation of aerosol mixing state classes in the GISS modelE-MATRIX climate model using single-particle mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Ault, Andrew; Prather, Kimberly A.

    2013-09-01

    Aerosol particles in the atmosphere are composed of multiple chemical species. The aerosol mixing state, which describes how chemical species are mixed at the single-particle level, provides critical information on microphysical characteristics that determine the interaction of aerosols with the climate system. The evaluation of mixing state has become the next challenge. This study uses aerosol time-of-flight mass spectrometry (ATOFMS) data and compares the results to those of the Goddard Institute for Space Studies modelE-MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) model, a global climate model that includes a detailed aerosol microphysical scheme. We use data from field campaigns that examine a variety of air mass regimens (urban, rural, and maritime). At all locations, polluted areas in California (Riverside, La Jolla, and Long Beach), a remote location in the Sierra Nevada Mountains (Sugar Pine) and observations from Jeju (South Korea), the majority of aerosol species are internally mixed. Coarse aerosol particles, those above 1 µm, are typically aged, such as coated dust or reacted sea-salt particles. Particles below 1 µm contain large fractions of organic material, internally mixed with sulfate and black carbon, and few external mixtures. We conclude that observations taken over multiple weeks characterize typical air mass types at a given location well; however, due to the instrumentation, we could not evaluate mass budgets. These results represent the first detailed comparison of single-particle mixing states in a global climate model with real-time single-particle mass spectrometry data, an important step in improving the representation of mixing state in global climate models.

  16. Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum

    DOE PAGES

    Aab, Alexander

    2016-09-28

    Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less

  17. Distinction between tectonic mixing and mass transfer processes in a ductile shear zone

    NASA Astrophysics Data System (ADS)

    Yang, X.-Y.; O'Hara, K. D.; Moecher, D. P.

    1998-08-01

    A petrological, geochemical and microtextural study of an upper amphibolite facies shear zone, developed in interlayered mafic and felsic layers, permits the relative roles of tectonic mixing and fluid-assisted mass transfer processes to be determined. Geochemical evidence indicates that the chemical changes in the deformed rocks result from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. During mylonitization, most major elements and some trace elements (LREE, Rb, Sr, Ba, Cu, Ni) exhibited mobile behavior. The HREEs, Ti, V, Sc, Co and Fe, on the other hand, were immobile. Based on mass conservation of these elements, a two-component mixing model using mafic and felsic rocks from outside the shear zone as end-members explains the major and trace element data. The chemical composition of the felsic mylonite is modeled by mixing 12±5% mafic rock and 88±5% felsic rock, whereas, the mafic mylonite is modeled by mixing 55±4% mafic rock and 45±4% felsic rock. A closed system mixing model yields a good fit for immobile elements, such as HREEs, Ti, V, and Sc, but significant chemical differences between the calculated data and observed data are explained by fluid-assisted mass transfer of mobile elements under open system conditions. A 24% volume loss in the felsic mylonite and 13% volume loss in mafic mylonite are derived from the mass balance, assuming the HREE, Ti, V and Sc were immobile.

  18. Fourth SM family, breaking of mass democracy, and the CKM mixings

    SciTech Connect

    Atag, S.; Celikel, A.; Ciftci, A.K.; Sultansoy, S. |; Yilmaz, U.O.

    1996-11-01

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed. {copyright} {ital 1996 The American Physical Society.}

  19. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  20. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals. PMID:23745861

  1. Predictive model for radiatively induced neutrino masses and mixings with dark matter.

    PubMed

    Gustafsson, Michael; No, Jose M; Rivera, Maximiliano A

    2013-05-24

    A minimal extension of the standard model to naturally generate small neutrino masses and provide a dark matter candidate is proposed. The dark matter particle is part of a new scalar doublet field that plays a crucial role in radiatively generating neutrino masses. The symmetry that stabilizes the dark matter also suppresses neutrino masses to appear first at three-loop level. Without the need of right-handed neutrinos or other very heavy new fields, this offers an attractive explanation of the hierarchy between the electroweak and neutrino mass scales. The model has distinct verifiable predictions for the neutrino masses, flavor mixing angles, colliders, and dark matter signals.

  2. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  3. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  4. Changing air mass frequencies in Canada: potential links and implications for human health.

    PubMed

    Vanos, J K; Cakmak, S

    2014-03-01

    Many individual variables have been studied to understand climate change, yet an overall weather situation involves the consideration of many meteorological variables simultaneously at various times diurnally, seasonally, and yearly. The current study identifies a full weather situation as an air mass type using synoptic scale classification, in 30 population centres throughout Canada. Investigative analysis of long-term air mass frequency trends was completed, drawing comparisons between seasons and climate zones. We find that the changing air mass trends are highly dependent on the season and climate zone being studied, with an overall increase of moderate ('warm') air masses and decrease of polar ('cold') air masses. In the summertime, general increased moisture content is present throughout Canada, consistent with the warming air masses. The moist tropical air mass, containing the most hot and humid air, is found to increase in a statistically significant fashion in the summertime in 46% of the areas studied, which encompass six of Canada's ten largest population centres. This emphasises the need for heat adaptation and acclimatisation for a large proportion of the Canadian population. In addition, strong and significant decreases of transition/frontal passage days were found throughout Canada. This result is one of the most remarkable transition frequency results published to date due to its consistency in identifying declining trends, coinciding with research completed in the United States (US). We discuss relative results and implications to similar US air mass trend analyses, and draw upon research studies involving large-scale upper-level air flow and vortex connections to air mass changes, to small-scale meteorological and air pollution interactions. Further research is warranted to better understand such connections, and how these air masses relate to the overall and city-specific health of Canadians.

  5. Mixing models for the simulation of plume interaction with ambient air

    NASA Astrophysics Data System (ADS)

    Clark, Peter A.; Cocks, Alan T.

    This paper reports the development and evaluation of an improved treatment of the mixing of plume material with ambient air for use in reactive plume models, to examine the effects of dispersion in more detail. Two mixing schemes based upon a multiple expanding box model are examined. Previous work has shown that the rate of turbulent mixing of ambient material into a plume is of primary importance, and a major feature of the schemes considered is that they allow the plume boundary to be precisely defined, so that the ambient air may be treated as uniform and the flux of ambient material into the plume area precisely calculated. It is shown that these schemes, while not formulated in terms of diffusion, can be considered to be equivalent to finite difference approximations to the diffusion equation on an expanding grid. This use of an expanding grid is shown to lead to unconditionally stable equations which exhibit very little numerical diffusion. This allows the choice of timestep in a numerical integration to be governed by the chemistry. Tests performed using a full chemical scheme to control the timesteps show that the mixing schemes give excellent agreement with analytical solutions for passive tracers. The schemes thus provide a sound basis for the further investigation of the effect of entrainment on plume chemistry. Comparison of the results of reactive plume simulations using multiple and uniform expanding box models shows that it is the total amount of ambient air mixed into the plume which is of primary importance in determining total overall reaction, rather than the details of mixing within the plume.

  6. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  7. 2-D Numerical Simulation of Eruption Clouds : Effects of Turbulent Mixing between Eruption Cloud and Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.

    2001-05-01

    Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of

  8. Broken S flavor symmetry of leptons and quarks: Mass spectra and flavor mixing patterns

    NASA Astrophysics Data System (ADS)

    Xing, Zhi-zhong; Yang, Deshan; Zhou, Shun

    2010-06-01

    We apply the discrete S3 flavor symmetry to both lepton and quark sectors of the Standard Model extended by introducing one Higgs triplet and realizing the type-II seesaw mechanism for finite neutrino masses. The resultant mass matrices of charged leptons (Ml), neutrinos (Mν), up-type quarks (Mu) and down-type quarks (Md) have a universal form consisting of two terms: one is proportional to the identity matrix I and the other is proportional to the democracy matrix D. We argue that the textures of Ml, Mu and Md are dominated by the D term, while that of Mν is dominated by the I term. This hypothesis implies a near mass degeneracy of three neutrinos and can naturally explain why the mass matrices of charged fermions are strongly hierarchical, why the quark mixing matrix is close to I and why the lepton mixing matrix contains two large angles. We discuss a rather simple perturbation ansatz to break the S3 symmetry and obtain more realistic mass spectra of leptons and quarks as well as their flavor mixing patterns. We stress that the I term, which used to be ignored from Ml, Mu and Md, is actually important because it can significantly modify the smallest lepton flavor mixing angle θ13 or three quark flavor mixing angles.

  9. Air sampling of flame retardants based on the use of mixed-bed sorption tubes--a validation study.

    PubMed

    Lazarov, Borislav; Swinnen, Rudi; Spruyt, Maarten; Maes, Frederick; Van Campenhout, Karen; Goelen, Eddy; Covaci, Adrian; Stranger, Marianne

    2015-11-01

    An analytical methodology using automatic thermal desorption and gas chromatography mass spectrometry analysis was optimized and validated for simultaneous determination of a set of components from three different flame retardant chemical classes: polybrominated diphenyl ethers (PBDEs) (PBDE-28, PBDE-47, PBDE-66, PBDE-85, PBDE-99, PBDE-100), organophosphate flame retardants (PFRs) (tributyl phosphate, tripropyl phosphate, tris(2-chloroethyl)phosphate-, tris(1,3-dichloro-2-propyl) phosphate, tris(2-ethylhexyl) phosphate, triphenyl phosphate, tris(2-chloro-1-methylethyl) phosphate and tricresylphosphate), and "novel" brominated flame retardants (NBFRs) (pentabromotoluene, 2,3,4,5,6-pentabromoethylbenzene, (2,3-dibromopropyl) (2,4,6-tribromophenyl) ether, hexabromobenzene, and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate) in air. The methodology is based on low volume active air sampling of gaseous and particulate air fractions on mixed-bed (polydimethylsiloxane (PDMS)/Tenax TA) sorption tubes. The optimized method provides recoveries >88%; a limit of detection in the range of 6-25 pg m(-3) for PBDEs, 6-171 pg m(-3) for PFRs, and 7-41 pg m(-3) for NBFRs; a linearity greater than 0.996; and a repeatability of less than 10% for all studied compounds. The optimized method was compared with a standard method using active air sampling on XAD-2 sorbent material, followed by liquid extraction. On the one hand, the PDMS/Tenax TA method shows comparable results at longer sampling time conditions (e.g., indoor air sampling, personal air sampling). On the other hand, at shorter sampling time conditions (e.g., sampling from emission test chambers), the optimized method detects up to three times higher concentrations and identifies more flame retardant compounds compared to the standard method based on XAD-2 loading.

  10. Effects of Mass and Volume Fraction Skewness in Variable Density Mixing Processes

    NASA Astrophysics Data System (ADS)

    Wachtor, Adam J.; Bakosi, Jozsef; Ristorcelli, Raymond

    2015-11-01

    Among the parameters characterizing mixing by variable density turbulence of fluids involving density variations of a factor of 5 to 10 are the Atwood, Froude, Schmidt, and Reynolds numbers. There is evidence that the amount of each fluid present when the two pure fluids mix, as described by the probability density function of the mass or molar (volume) fraction, also strongly affects the mixing process. To investigate this phenomena, implicit large-eddy simulations (ILES) are performed for binary fluid mixtures in statistically homogenous environments under constant acceleration. These coarse grained simulations are used as data for theory validation and mix model development. ILES has been demonstrated to accurately capture the mixing behavior of a passive scalar field through stirring and advection by a turbulent velocity field. The present work advances that research and studies the extent to which an under-resolved active scalar drives the subsequent fluid motion and determines the nature of the mixing process. Effects of initial distributions of the mass and molar (volume) fraction probability density function on the resulting variable density turbulence and mixing are investigated and compared to direct numerical simulations from the Johns Hopkins Turbulence Database. Funded by the LANL LDRD-ER on ``Inserting Nonlinear N-Material Coupling PDF Information into Turbulent Mixing Models'' through exploratory research project number 20150498ER.

  11. Prediction of Air Mixing From High Sidewall Diffusers in Cooling Mode: Preprint

    SciTech Connect

    Ridouane, E. H.; Gawlik, K.

    2011-02-01

    Computational fluid dynamics modeling was used to evaluate the performance of high sidewall air supply in cooling mode. The research focused on the design, placement, and operation of air supply diffusers located high on a sidewall and return grilles located near the floor on the same sidewall. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions and room dimensions. Thermal loads characteristic of high performance homes were applied at the walls and room temperature was controlled via a thermostat. The results are intended to provide information to guide the selection of high sidewall supply diffusers to provide proper room mixing for cooling of high performance homes.

  12. A Model of Fermion Masses and Flavor Mixings with Family Symmetry SU(3) otimes U(1)

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Min; Wang, Qi; Zhong, Jin-Jin

    2012-01-01

    The family symmetry SU(3) otimes U(1) is proposed to solve flavor problems about fermion masses and flavor mixings. It is breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group Z2 is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of θl13 and JlCP in neutrino physics. All of the results are promising to be tested in the future experiments.

  13. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  14. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyong; Smirnov, Alexei Yu.

    2016-05-01

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U PMNS ˜ V CKM † U 0, where structure of U 0 is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m D , the portal mass matrix M D and the mass matrix of singlets M S are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A 4 × Z 4 as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U 0 ˜ U TBM or U BM. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  15. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  16. Surface shear rheology of WPI-monoglyceride mixed films spread at the air-water interface.

    PubMed

    Carrera Sánchez, Cecilio; Rodríguez Patino, Juan M

    2004-07-01

    Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.

  17. Characteristic time scales of mixing, mass transfer and biomass growth in a Taylor vortex algal photobioreactor.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2015-12-01

    Recently it has been demonstrated that algal biomass yield can be enhanced using fluid flow patterns known as Taylor vortices. It has been suggested that these growth rate improvements can be attributed to improved light delivery as a result of rapid transport of microorganisms between light and dark regions of the reactor. However, Taylor vortices also strongly impact fluid mixing and interphase (gas-liquid) mass transport, and these in turn may also explain improvements in biomass productivity. To identify the growth-limiting factor in a Taylor vortex algal photobioreactor, experiments were performed to determine characteristic time scales for mixing and mass transfer. By comparing these results with the characteristic time scale for biomass growth, it is shown that algal growth rate in Taylor vortex reactors is not limited by fluid mixing or interphase mass transfer, and therefore the observed biomass productivity improvements are likely attributable to improved light utilization efficiency.

  18. Understanding the masses and mixings of one-zero textures in 3+1 scenario

    NASA Astrophysics Data System (ADS)

    Nath, Newton; Ghosh, Monojit; Gupta, Shivani

    2016-08-01

    We present a detailed analysis and phenomenological consequences of neutrino mass matrix, Mν, with one-zero texture in the flavor basis where the active neutrino sector is extended by one sterile neutrino (3+1 case). In particular, our aim is to explore behavior of the sterile mixing parameters in detail when one of the elements of the neutrino mass matrix goes to zero. To study this, we consider two distinct mass spectrum of the active neutrinos: (i) completely hierarchical mass spectrum with a vanishing neutrino mass and (ii) completely quasidegenerate mass spectrum. In 3+1 scenario, the low energy neutrino mass matrix, Mν, is a 4 × 4 matrix and has 10 independent elements. Thus it can have 10 possible one-zero textures. From the earlier studies it can be inferred that, if one assumes one vanishing neutrino mass, then only seven of these Mν are phenomenologically allowed by the current neutrino oscillation data. On the other hand, if the neutrinos are quasidegenerate then there are eight phenomenologically viable one-zero textures. In this paper, we study the correlations between the sterile mixing parameters for each of these allowed textures for both mass spectrum and also their implications on the effective Majorana mass.

  19. The relationship among air quality, mixing heights, and winds observed during the entire TexAQS-II field study

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Knoderer, C. A.; Zahn, P.

    2007-12-01

    The Texas Air Quality Study II (TexAQS-II) was designed to provide support for State Implementation Plan (SIP) revisions. The SIP revisions outline strategies for improving air quality to meet the new federal 8-hr ozone standard and regional haze requirements. As part of TexAQS-II, a field study was conducted to collect air quality and meteorological data throughout eastern Texas from May 1, 2005, through October 15, 2006. As part of the field study, various organizations made upper-air meteorological measurements at several locations. These measurements were collected by twelve 915-MHz radar wind profilers (RWPs), three 404 MHz RWPs, nine Radio Acoustic Sounding Systems (RASS), two sodars, and one lidar. These instruments provide vertically, horizontally, and temporally resolved wind, virtual temperature (Tv), and mixing height information. This presentation will address the three-dimensional and temporal characteristics of these parameters throughout the study domain for the entire study period and how these characteristic vary by season, month, and synoptic weather pattern. The presentation will also address how these characteristics influence regional and local air quality conditions throughout the study domain, including the relationship among various transport statistics, mixing height characteristics (e.g., time of peak mixing, morning mixing height growth rate, peak mixing height, average morning mixing height, etc.) and air quality. In addition, case studies will illustrate the finer-scale details of the relationship among the evolution of mixing heights, diurnal variability of winds, and air quality.

  20. Application of continuous remote sensing of mixing layer height for assessment of airport air quality

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Helmis, Costas; Emeis, Stefan; Sgouros, George; Kurtenbach, Ralf; Wiesen, Peter; Münkel, Christoph; Jahn, Carsten; Hoffmann, Maria; Anamaterou, Evi; O'Connor, Michael

    2010-10-01

    The assessment of airport air quality requires not only the knowledge of the emissions and the temporal and spatial distribution of meteorological parameters like wind direction and wind speed but also of the mixing layer height, because this variable controls the vertical space for rapid mixing of near-surface pollutants. It was demonstrated that the lowest stable layer or temperature inversion limits the vertical exchange of primary pollutants emitted at or near the surface and thus controls the near-surface pollutant concentrations. Remote sensing is a suitable tool to determine mixing layer height continuously as was demonstrated in urban and sub-urban areas (Hannover, Munich, Budapest, Augsburg) as well as at airports (Zurich, Paris CDG, Mexico City International Airport, Athens International Airport). The Vaisala ceilometer LD40 was used which is an eye-safe commercial lidar and designed originally to detect cloud base heights and vertical visibility for aviation safety purposes. These measurements of the vertical aerosol distribution are routinely retrieved for mixing layer height estimation by using software which was improved continuously and compared with radiosonde data. Further, mixing layer height was determined by remote sensing with a combination of a Doppler- SODAR (Sound Detection and Ranging), a RASS (Radio Acustic Sounding System) and in-situ measurements. Vertical wind, temperature and turbulence parameter profiles up to 1500 m maximum were measured by this method too. Some results of interpretation of measured data at Athens International Airport will be discussed as the influence of mixing layer height upon airport air quality and estimation of the airport emission source strengths.

  1. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  2. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  3. Near maximal atmospheric neutrino mixing in neutrino mass models with two texture zeros

    NASA Astrophysics Data System (ADS)

    Dev, S.; Gautam, R. R.; Singh, Lal; Gupta, Manmohan

    2014-07-01

    The implications of a large value of the effective Majorana neutrino mass for a class of two texture zero neutrino mass matrices have been studied in the flavor basis. It is found that these textures predict a near maximal atmospheric neutrino mixing angle in the limit of a large effective Majorana neutrino mass. It is noted that this prediction is independent of the values of solar and reactor neutrino mixing angles. We present the symmetry realization of these textures using the discrete cyclic group Z3. It is found that the texture zeros realized in this work remain stable under renormalization group running of the neutrino mass matrix from the seesaw scale to the electroweak scale, at one-loop level.

  4. Air Mass Origin as a Diagnostic of Seasonally-Varying Transport into the Arctic

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Waugh, D. W.; Holzer, M. B.; Newman, P. A.; Polvani, L. M.; Oman, L.; Li, F.

    2013-12-01

    While the signatures of the seasonal cycle on basic state variables such as temperature, winds and on chemical composition have been explored in depth, its signature on air mass composition has received relatively little attention. To this end, we present the first analysis of the seasonally varying transport from the northern hemisphere (NH) midlatitudes into the Arctic using rigorously defined air masses. The fractional contribution from each air mass partitions Arctic air according to where it was last in the planetary boundary layer (PBL) at midlatitudes over the Pacific and Atlantic oceans, North America, Europe, and Asia. Air mass fractions are computed using the coupled climate-chemistry model GEOSCCM subject to fixed present-day climate forcings. We find that during DJF 48% of the air in the free troposphere poleward of 60N was last at midlatitudes primarily at the Pacific and Atlantic oceans, at 20% and 10% respectively. During JJA, however, the largest contributions to Arctic air come from Asian and North American source regions, revealing that transport from the industrialized midlatitude regions dominates during boreal summer. Preliminary calculations of future air masses for a model integration subject to A1B greenhouse gases also reveal the model's climate change response in arctic air mass composition. In concert with weakened tropospheric eddy kinetic energy and a weakened Hadley cell, we find that changes in annual mean arctic air mass fractions are of the order 10%, with increased contributions from air that was last in contact with the PBL over North America and over the Atlantic and Pacific oceans. Air-mass fractions, and their changes, thus help to isolate the role of transport to changes in composition, which are not only driven by changes in chemistry and emissions but also crucially by changes in atmospheric flow.

  5. Mass and mixing angle patterns in the Standard Model and its material Supersymmetric Extension

    SciTech Connect

    Ramond, P.

    1992-01-01

    Using renormalization group techniques, we examine several interesting relations among masses and mixing angles of quarks and lepton in the Standard Model of Elementary Particle Interactions as a functionof scale. We extend the analysis to the minimal Supersymmetric Extension to determine its effect on these mass relations. For a heavy to quark, and minimal supersymmetry, most of these relations, can be made to agree at one unification scale.

  6. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  7. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  8. Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.

    1999-01-01

    The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.

  9. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  10. Standard Model fermion masses and mixing angles generated in 3HDM

    NASA Astrophysics Data System (ADS)

    Ibarra, A.; Solaguren-Beascoa, A.

    2016-05-01

    We present a framework to generate the mass hierarchies and mixing angles of the fermionic sector of the Standard Model with two extra Higgs doublets and one right-handed neutrino. The masses of the first and second generation are generated by small quantum effects, explaining the hierarchy with the third generation. The model also generates a natural hierarchy between the first and second generation after the assumption that the Yukawa couplings are of rank 1. All the quark and lepton mixing matrices can also be generated by quantum effects, reproducing the hierarchies of the experimental values. The parameters generated radiatively depend logarithmically on the heavy Higgs masses. Therefore this framework can be reconciled with the stringent limits on flavour violation by postulating a sufficiently large new physics scale.

  11. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  12. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants.

    PubMed

    Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J

    2015-02-01

    Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint.

  13. Entropy of adsorption of mixed surfactants from solutions onto the air/water interface

    USGS Publications Warehouse

    Chen, L.-W.; Chen, J.-H.; Zhou, N.-F.

    1995-01-01

    The partial molar entropy change for mixed surfactant molecules adsorbed from solution at the air/water interface has been investigated by surface thermodynamics based upon the experimental surface tension isotherms at various temperatures. Results for different surfactant mixtures of sodium dodecyl sulfate and sodium tetradecyl sulfate, decylpyridinium chloride and sodium alkylsulfonates have shown that the partial molar entropy changes for adsorption of the mixed surfactants were generally negative and decreased with increasing adsorption to a minimum near the maximum adsorption and then increased abruptly. The entropy decrease can be explained by the adsorption-orientation of surfactant molecules in the adsorbed monolayer and the abrupt entropy increase at the maximum adsorption is possible due to the strong repulsion between the adsorbed molecules.

  14. A study on supersonic mixing by circular nozzle with various injection angles for air breathing engine

    NASA Astrophysics Data System (ADS)

    Aso, S.; Inoue, K.; Yamaguchi, K.; Tani, Y.

    2009-09-01

    SCRAM-jet engine is considered to be one of the useful system propulsion for super/hypersonic transportation vehicle and various researches were made to develop the engine. However, there are a lot of problems to be solved to develop it and one of them is the problem of supersonic mixing. In the SCRAM-jet engine combustor, main airflow is supersonic and residence time of the air is very short (about 1 ms). Hence rapid mixing of air and fuel is necessary. However, usually it is quite difficult to mix fuel with air in very short distance. Also total pressure loss occurs by flow interaction the air and fuel. Total pressure loss is not preferable because it causes the thrust loss. Therefore, supersonic mixing with very rapid mixing and lower total pressure loss ratio is highly requested. In order to develop the supersonic mixing, it is very important to understand the effect of injection angle. In present study, we investigate the effect of injection angle with circular sonic nozzle by changing the injection angle. Experimental and computational studies on supersonic mixing phenomena of two-dimensional slot injector with various injection angles were conducted. Supersonic wind tunnel was used for the experiments. The free stream Mach number is 3.8, total pressure is 1.1 MPa and total temperature is 287 K on average. As a secondary gas, helium gas was injected at sonic speed from the circular nozzle. The injection angle is 30°, 90° and 150°. Its total pressure is 0.4 MPa and total temperature is 287 K on average. The same flow field was also simulated by solving three-dimensional full Navier-Stokes equation with AUSM-DV scheme [Y. Wada, M.S. Liou, A flux splitting scheme with high-resolution and robustness for discontinuities, AIAA Paper 94-0083, 1994] for convective terms and full implicit LU-ADI factorization method [S. Obayashi, K. Matsushima, K. Fujii, K. Kuwahara, Improvements in efficiency and reliability for Navier-Stokes computations using the LU

  15. Mixing layer height and its implications for air pollution over Beijing, China

    NASA Astrophysics Data System (ADS)

    Tang, Guiqian; Zhang, Jinqiang; Zhu, Xiaowan; Song, Tao; Münkel, Christoph; Hu, Bo; Schäfer, Klaus; Liu, Zirui; Zhang, Junke; Wang, Lili; Xin, Jinyuan; Suppan, Peter; Wang, Yuesi

    2016-03-01

    The mixing layer is an important meteorological factor that affects air pollution. In this study, the atmospheric mixing layer height (MLH) was observed in Beijing from July 2009 to December 2012 using a ceilometer. By comparison with radiosonde data, we found that the ceilometer underestimates the MLH under conditions of neutral stratification caused by strong winds, whereas it overestimates the MLH when sand-dust is crossing. Using meteorological, PM2.5, and PM10 observational data, we screened the observed MLH automatically; the ceilometer observations were fairly consistent with the radiosondes, with a correlation coefficient greater than 0.9. Further analysis indicated that the MLH is low in autumn and winter and high in spring and summer in Beijing. There is a significant correlation between the sensible heat flux and MLH, and the diurnal cycle of the MLH in summer is also affected by the circulation of mountainous plain winds. Using visibility as an index to classify the degree of air pollution, we found that the variation in the sensible heat and buoyancy term in turbulent kinetic energy (TKE) is insignificant when visibility decreases from 10 to 5 km, but the reduction of shear term in TKE is near 70 %. When visibility decreases from 5 to 1 km, the variation of the shear term in TKE is insignificant, but the decrease in the sensible heat and buoyancy term in TKE is approximately 60 %. Although the correlation between the daily variation of the MLH and visibility is very poor, the correlation between them is significantly enhanced when the relative humidity increases beyond 80 %. This indicates that humidity-related physicochemical processes is the primary source of atmospheric particles under heavy pollution and that the dissipation of atmospheric particles mainly depends on the MLH. The presented results of the atmospheric mixing layer provide useful empirical information for improving meteorological and atmospheric chemistry models and the forecasting

  16. Mixing layer growth and background air-quality measurements over the Colorado oil-shale area

    SciTech Connect

    Laulainen, N.S.; Whiteman, C.D.; Davis, W.E.; Thorp, J.M.

    1981-06-01

    The daily growth of convective boundary layers over the complex terrain of the oil shale areas of Colorado is a prominent feature of the meteorology of the region. The development of these layers was investigated using airsondes, rawinsondes, and aircraft. The deep growth of the layers in August, to heights in excess of 5500-m MSL on clear or partly cloudy days, is expected to have important implications for the dispersal of pollutants released in the region as the oil shale resource undergoes future development. Aircraft observations show that the present background air quality is good over the region and that pollutants, when present, become well mixed throughout the depth of the convective boundary layer. The layer therefore represents an important natural means of dilution for pollutants introduced into the atmosphere. Work is proceeding to incorporate the time-dependent convective boundary layer growth into air pollution models for the region.

  17. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  18. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  19. Planar Rayleigh Scattering Results in Helium/Air Mixing Experiments in a Mach 6 Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Balla, R. Jeffrey; Hillard, M. E.; Anders, J. B.; Exton, R. J.; Waitz, I. A.

    1991-01-01

    Planar Rayleigh scattering measurements using an ArF-excimer laser have been performed to investigate helium mixing into air at supersonic speeds. The capability of the Rayleigh scattering technique for flow visualization of a turbulent environment is demonstrated in a large-scale, Mach 6facility. The detection limit obtained with the present setup indicates that planar, quantitative measurements of density can be made over a large cross sectional area (5 cm by 10 cm) of the flow field in the absence of clusters.

  20. 77 FR 50651 - Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot Mix Asphalt Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; New Hampshire; Hot... Hampshire Hot Mix Asphalt Plant Rule at Env-A 2703.02(a). This rule establishes and requires limitations on visible emissions from all hot mix asphalt plants. This revision is consistent with the maintenance of...

  1. ISSUES THAT MUST BE ADDRESSED FOR RISK ASSESSMENT OF MIXED EXPOSURES: THE EPA EXPERIENCE WITH AIR QUALITY

    EPA Science Inventory

    Issues that Must be Addressed for Risk Assessment of Mixed Exposures: The EPA Experience with Air Quality

    Daniel L. Costa, Sc.D.

    Abstract
    Humans are routinely exposed to a complex mixture of air pollutants in both their outdoor and indoor environments. The wide...

  2. Novel mixing tank for improved gas-liquid mass transfer and solids suspension

    SciTech Connect

    Palmer, H.J.; Hughes, C.M.C.; Lessen, M.; Geenleaf, J.; Buehler, K.L.; Villalobos, C.

    1999-10-01

    A novel, baffleless, mixing tank configuration presented provides greater mixing efficiency than conventional technologies under a wide variety of operating conditions. The concept uses a cylindrical tank with a contoured bottom and a shroud that surrounds an axial flow impeller and supports a set of stationary antiswirl fins positioned in close proximity to the impeller blades. The angle and pitch of the fins impart an angular component to the flow that is equal and opposite to the swirl induced by impeller rotation, thereby eliminating the need for wall baffles. The contoured bottom eliminates dead space beneath the impeller and n the corners of flat-bottom mixing tanks. This alternative mixing system, named the ASSET system, is compared to conventional mixing configurations through experiments of power consumption, gas-liquid mass transfer, and solids suspension. Measurements of Power number vs. Reynolds number reveal that it has power requirements similar to those of high-efficiency axial-flow turbines in a conventional tank geometry. Unsteady-state oxygen absorption and stripping experiments are used to determine the interphase mass-transfer coefficient as a function of power input for each configuration at superficial gas feed velocities of 0.057 to 0.17 cm/s. With this system, K{sub L}a values are on average 30 to 50% greater than those obtained in a conventional mixing tank at the same power input. Measurements of the height of the well-mixed region of suspended solids in a 15 wt. % mixture of 0.1-cm-dia. glass beads in water indicate that the ASSET system requires {approximately} 30% less power to achieve equivalent extents of solids suspension than the conventional setup.

  3. A realistic pattern of lepton mixing and masses from and CP

    NASA Astrophysics Data System (ADS)

    Feruglio, Ferruccio; Hagedorn, Claudia; Ziegler, Robert

    2014-02-01

    We present a supersymmetric model with the flavour symmetry and a CP symmetry which are broken to a subgroup of the flavour symmetry in the charged lepton sector and to CP () in the neutrino one at leading order. This model implements an approach capable of predicting lepton mixing angles and Dirac as well as Majorana phases in terms of one free parameter. This parameter, directly related to the size of the reactor mixing angle , can be naturally of the correct order in our model. Atmospheric mixing is maximal, while . All three phases are predicted: the Dirac phase is maximal, whereas the two Majorana phases are trivial. The neutrino mass matrix contains only three real parameters at leading order and neutrino masses effectively only depend on two of them. As a consequence, they have to be normally ordered and the absolute neutrino mass scale and the sum of the neutrino masses are predicted. The vacuum of the flavons can be correctly aligned. We study subleading corrections to the leading order results and show that they are small.

  4. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    SciTech Connect

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  5. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  6. Stellar evolution at high mass with semiconvective mixing according to the Ledoux criterion

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1975-01-01

    The effects of semiconvective mixing are investigated in evolutionary sequences of models for stars of 10, 15, and 30 solar masses with four different initial chemical compositions. The models are constructed using the Ledoux criterion for both the definition of convective instability and the state of convective neutrality assumed to be attained in regions with a gradient of mean molecular weight. It is shown that semiconvection is nonexistent at 10 solar masses, of minor importance at 15 solar masses, but covers most of the intermediate zone at 30 solar masses, developing into full convection if the initial hydrogen and metals abundances are high. The effects of low initial hydrogen and metals abundances are examined, and the critical importance is demonstrated of the depths of the semiconvective zone and the outer convective envelope in promoting a blue loop and determining the maximum effective temperature on the loop. The extent of the thermally stable stages of the blue-loop phase is determined.

  7. Lagrangian analysis of mixing and transport of water masses in the marine bays

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Ponomarev, V. I.; Budyansky, M. V.; Uleysky, M. Yu.; Fayman, P. A.

    2013-01-01

    The Lagrangian approach to studying the mixing and transport of a passive admixture in marine bays and gulfs based on the methods of a theory of dynamic systems is developed. This approach is employed to investigate the lateral mixing and transport of waters in the Peter the Great Bay, Japan Sea, using a velocity field of the predictive numerical hydrodynamic circulation model of a synoptic scale. It is shown that the Lagrangian characteristics, such as the maximum accumulated Lyapunov exponent, the time of particle stay in the bay, particle relative displacements, and the number of cyclonic and anticyclonic rotations, allow us to describe the movement of water masses, the character of mixing, and chaos in the Bay. In integrating the advection equations forward and backward in time, maps showing a number of particle arrivals to different regions of the Bay make it possible to establish corridors through which particles leave and enter the Bay.

  8. Impact of water mass mixing on the biogeochemistry and microbiology of the Northeast Atlantic Deep Water

    NASA Astrophysics Data System (ADS)

    Reinthaler, Thomas; Álvarez Salgado, Xosé Antón; Álvarez, Marta; Aken, Hendrik M.; Herndl, Gerhard J.

    2013-12-01

    The extent to which water mass mixing contributes to the biological activity of the dark ocean is essentially unknown. Using a multiparameter water mass analysis, we examined the impact of water mass mixing on the nutrient distribution and microbial activity of the Northeast Atlantic Deep Water (NEADW) along an 8000 km long transect extending from 62°N to 5°S. Mixing of four water types (WT) and basin scale mineralization from the site where the WT where defined to the study area explained up to 95% of the variability in the distribution of inorganic nutrients and apparent oxygen utilization. Mixing-corrected average O2:N:P mineralization ratios of 127(±11):13.0(±0.7):1 in the core of the NEADW suggested preferential utilization of phosphorus compounds while dissolved organic carbon mineralization contributed a maximum of 20% to the oxygen demand of the NEADW. In conjunction with the calculated average mineralization ratios, our results indicate a major contribution of particulate organic matter to the biological activity in the NEADW. The variability in prokaryotic abundance, high nucleic acid containing cells, and prokaryotic heterotrophic production in the NEADW was explained by large scale (64-79%) and local mineralization processes (21-36%), consistent with the idea that deep-water prokaryotic communities are controlled by substrate supply. Overall, our results suggest a major impact of mixing on the distribution of inorganic nutrients and a weaker influence on the dissolved organic matter pool supporting prokaryotic activity in the NEADW.

  9. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  10. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  11. Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S.

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Fuentes, J. D.; Collins, D. R.; Cleveland, M. J.; Keene, W. C.

    During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s -1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm -3), corresponding surface area (142 μm 2 cm -3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s -1), mean number concentrations were higher (>6000 cm -3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.

  12. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  13. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  14. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    SciTech Connect

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D.

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  15. Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

    NASA Astrophysics Data System (ADS)

    Gong, Xianda; Zhang, Ci; Chen, Hong; Nizkorodov, Sergey A.; Chen, Jianmin; Yang, Xin

    2016-04-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a 5-day period in December 2013. The refractory black carbon (rBC) mass concentrations measured by SP2 averaged 3.2 µg m-3, with the peak value of 12.1 µg m-3 at 04:26 LT on 7 December. The number of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into five major classes: (1) Pure BC; (2) BC attributed to biomass burning (BBBC); (3) K-rich BC-containing (KBC); (4) BC internally mixed with OC and ammonium sulfate (BCOC-SOx); (5) BC internally mixed with OC and ammonium nitrate (BCOC-NOx). The size distribution of internally mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ˜ 230 nm and droplet mode peaked around ˜ 380 nm, with a clear valley in the size distribution around ˜ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small rBC core (˜ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ˜ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The biomass burning particles had a larger rBC core (˜ 80-130 nm) and a thick ACT (˜ 110-300 nm). The highly aged traffic emissions had a smaller core (˜ 60-80 nm) and a very thick ACT (˜ 130-300 nm), which is larger than reported in any previous literature. A fast growth rate (˜ 20 nm h-1) of rBC with small core sizes was observed during the experiment. High concentrations pollutants like NO2 likely accelerated the aging process and resulted in a continuous size growth of r

  16. Operation of a 1/10 scale mixed water incinerator air pollution control system

    SciTech Connect

    Burns, D.B.; Wong, A.; Walker, W.

    1996-08-01

    The Consolidated Incineration Facility (CIF) at the Savannah River Site is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. The technologies selected for use in the CIF air pollution control system (APCS) were based on reviews of existing commercial and DOE incinerators, on-site air pollution control experience, and recommendations from contracted consultants. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, known as the Offgas Components Test Facility (OCTF) was constructed and has been in operation since late 1994. Its current mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Due to the nature of the wastes to be incinerated at the CIF, High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas stream before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber.

  17. Stellar evolution at high mass with semiconvective mixing according to the Schwarzschild criterion

    NASA Technical Reports Server (NTRS)

    Stothers, R.; Chin, C.-W.

    1976-01-01

    Evolutionary sequences for stellar models with 10, 15, 30, and 60 solar masses, as well as four different initial chemical compositions, are calculated to the end of core helium burning using the Schwarzschild criterion for convection. The results are analyzed in terms of the modifications of interior structure and surface parameters induced by semiconvective mixing as a result of adopting the Schwarzschild criterion. It is found that the main differences from results based on the Ledoux criterion are the great extent of the convectively unstable layers in the intermediate zone and the eventual development of a fully convective zone at the base of the semiconvective one. It is shown that semiconvection develops outside the convective core just after the ZAMS stage for masses greater than 12 solar masses and just before the stage of central hydrogen exhaustion for masses greater than 6 solar masses. The present models are found to be insufficiently hot in comparison with the bulk of observed stable blue supergiants and to predict far too many red supergiants fro the range above 20 solar masses. It is concluded that something is fundamentally wrong with the models, the most likely suspects being the stellar opacities adopted and the neglect of mass loss.

  18. A numerical study of ignition in the supersonic hydrogen/air laminar mixing layer

    SciTech Connect

    Nishioka, M.; Law, C.K.

    1997-01-01

    The ignition evolution in the supersonic nonpremixed hydrogen/air laminar mixing layer, consisting of a relatively hot, fast air stream next to a cold, slower hydrogen stream, was computationally simulated using detailed transport and chemical reaction mechanisms and compared with results from asymptotic analysis with reduced mechanisms. The study emphasizes identifying the controlling chemical mechanisms in effecting ignition, on the relative importance of external versus viscous heating as the dominant ignition source, on the roles of thermal versus kinetic-induced ignition in which heat release and hence nonlinear thermal feedback are not needed in initiating system runaway, and on the consequences of imposing the conventional constant property assumptions in analytical studies. Results show that the state of the hydrogen/oxygen second explosion limit has the dominant influence in the system response in that, for all practical purposes, ignition is not possible when the air-stream temperature is lower than the crossover temperature, even allowing for viscous heating. On the other hand, when the air-stream temperature is higher than the crossover temperature, the predicted ignition distance indicates that ignition is feasible within practical supersonic combustion engines. Furthermore, for the latter situations, the ignition event is initiated by radical proliferation and hence runaway instead of thermal runaway. Finally, it is shown that, while the present computed results qualitatively agree well with those from the asymptotic analysis with reduced mechanisms, the analytically predicted ignition distances are much shorter than the computed values because the analysis has overemphasized the viscous effect through the constant Chapman-Rubesin parameter {rho}{mu} and unity Prandtl number assumptions.

  19. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy

    NASA Astrophysics Data System (ADS)

    Reidenbach, Matthew A.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2007-07-01

    Laboratory experiments obtained fine scale measurements of turbulent shear stresses and rates of mixing and mass transfer over a nonliving bed of the coral, Porites compressa, the dominant species found in Kaneohe Bay, Hawaii. A reef canopy was placed in a recirculating wave-current flume and flow was generated that simulated the flow characteristics of the reef flat of Kaneohe Bay. Turbulence and velocity structure under both unidirectional and wave-dominated currents were measured using a two-dimensional laser Doppler anemometer. Mass transport measurements were made using a planar laser-induced fluorescence technique in which the scalar transport of Rhodamine 6G dye, fluxed from the surfaces of the coral, was quantified. Results show that the action of surface waves, interacting with the structure of the reef, can increase instantaneous shear and mixing up to six times compared to that of unidirectional currents. Maximum shear and mass transport events coincided with flow separation within the wave-current boundary layer and the ejection of vortices into the flow. Wave action also acted to increase the vertical flux of water from within the coral structure. The combined effects of increased turbulent stress and fluid exchange from the interior of the canopy increased mass flux due to wave action 2.3±0.5 times that measured for comparable unidirectional currents.

  20. Neutrino mass and mixing in the 3-3-1 model with neutral leptons based on D4 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Vien, V. V.

    2014-07-01

    We propose a new D4 flavor model based on SU(3)C⊗SU(3)L ⊗U(1)X gauge symmetry responsible for fermion masses and mixings in which all fermion fields act only as singlets under D4 which differs from our previous work. The neutrinos get small masses from two SU(3)L anti-sextets and one SU(3)L triplet which are all in singlets under D4. If a SU(3)L Higgs triplet, lying in {1}''' under D4, is considered as a perturbation the corresponding neutrino mass mixing matrix gets the most general form. In this case, the model can fit the most recent data on neutrino masses and mixing with nonzero θ13. Our results show that the neutrino masses are naturally small. The sum of three light neutrino masses and the effective mass governing neutrinoless double beta decay are obtained that are consistent with the recent data.

  1. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  2. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  3. Entangled maximal mixings in UPMNS=Ul†Uν, and a connection to complex mass textures

    NASA Astrophysics Data System (ADS)

    Niehage, Svenja; Winter, Walter

    2008-07-01

    We discuss two different configurations of UPMNS=Uℓ†Uν with maximal mixings in both Uℓ and Uν. The nonmaximal mixing angles are assumed to be small, which means that they can be expanded in. Since we are particularly interested in the implications for CP violation, we fully take into account complex phases. We demonstrate that one possibility leads to intrinsically large sin⁡22θ13 and strong deviations from maximal mixings. The other possibility is generically close to tribimaximal mixing, and allows for large CP violation. We demonstrate how the determination of the θ23 octant and the precision measurement of δCP could discriminate among different qualitative cases. In order to constrain the unphysical and observable phases even further, we relate our configurations to complex mass matrix textures. In particular, we focus on phase patterns which could be generated by powers of a single complex quantity η≃θCexp⁡(iΦ), which can be motivated by Froggatt-Nielsen-like models. For example, it turns out that in all of the discussed cases, one of the Majorana phases is proportional to Φ to leading order. In the entire study, we encounter three different classes of sum rules, which we systematically classify.

  4. Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Cabot, William H.; Thornber, Ben

    2016-05-01

    Rayleigh-Taylor instability (RTI) and Richtmyer-Meshkov instability (RMI) are serious practical issues in inertial confinement fusion research, and also have relevance to many cases of astrophysical fluid dynamics. So far, much of the attention has been paid to the late-time scaling of the mixed width, which is used as a surrogate to how well the fluids have been mixed. Yet, the actual amount of mixed mass could be viewed as a more direct indicator on the evolution of the mixing layers due to hydrodynamic instabilities. Despite its importance, there is no systematic study as yet on the scaling of the mixed mass for either the RTI or the RMI induced flow. In this article, the normalized mixed mass (Ψ) is introduced for measuring the efficiency of the mixed mass. Six large numerical simulation databases have been employed: the RTI cases with heavy-to-light fluid density ratios of 1.5, 3, and 9; the single shock RMI cases with density ratios of 3 and 20; and a reshock RMI case with density ratio of 3. Using simulated flow fields, the normalized mixed mass Ψ is shown to be more sensitive in discriminating the variation with Atwood number for the RTI flows. Moreover, Ψ is demonstrated to provide more consistent results for both the RTI and RMI flows when compared with the traditional mixedness parameters, Ξ and Θ.

  5. Development of a gas-promoted oil agglomeration process: Air-promoted oil agglomeration of moderately hydrophobic coals. 2: Effect of air dosage in a model mixing system

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1996-07-01

    In a selective oil agglomeration process for cleaning coal, fine-size particles are suspended in water and treated with a water-immiscible hydrocarbon which can range from pentane to heavy fuel oil. Vigorous agitation is applied to disperse the oil and to produce frequent contacts between oil-coated particles. In Part 1 of this series of papers, it was shown that a definite amount of air had to be present in a laboratory mixing unit which produced a moderate shear rate in order to form compact, spherical agglomerates in an aqueous suspension of moderately hydrophobic coal using heptane or hexadecane as an agglomerate. In this paper, the effects of different amounts of air including dissolved air are discussed. The results indicate that a small amount of air will trigger the process of agglomeration, and even the air dissolved in water under equilibrium conditions at room temperature and pressure is sufficient to promote agglomeration provided it is released from solution.

  6. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  7. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2011-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations can be mainly explained by biogenic emissions from deciduous trees, ranging from 0.1 to 7.5 μg m-3. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations found to be largest right above the ground and the vertical profile suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. The relative contribution of diverse monoterpene species to the ambient concentrations revealed a dominance of α-pinene in the lower and of limonene in the upper part of the canopy, both accounting for up to 70 % of the total monoterpene concentration during summer months. The main contributing monoterpene during wintertime was Δ3-carene accounting for 60 % of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies.

  8. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest

    NASA Astrophysics Data System (ADS)

    Noe, S. M.; Hüve, K.; Niinemets, Ü.; Copolovici, L.

    2012-05-01

    The vertical distribution of ambient biogenic volatile organic compounds (BVOC) concentrations within a hemiboreal forest canopy was investigated over a period of one year. Variability in temporal and spatial isoprene concentrations, ranging from 0.1 to 7.5 μg m-3, can be mainly explained by biogenic emissions from deciduous trees. Monoterpene concentrations exceeded isoprene largely and ranged from 0.01 to 140 μg m-3 and during winter time anthropogenic contributions are likely. Variation in monoterpene concentrations were found to be largest right above the ground and the vertical profiles suggest a weak mixing leading to terpene accumulation in the lower canopy. Exceptionally high values were recorded during a heat wave in July 2010 with very high midday temperatures above 30 °C for several weeks. During summer months, monoterpene exceeded isoprene concentrations 6-fold and during winter 12-fold. During summer months, dominance of α-pinene in the lower and of limonene in the upper part of the canopy was observed, both accounting for up to 70% of the total monoterpene concentration. During wintertime, Δ3-carene was the dominant species, accounting for 60% of total monoterpene concentration in January. Possible biogenic monoterpene sources beside the foliage are the leaf litter, the soil and also resins exuding from stems. In comparison, the hemiboreal mixed forest canopy showed similar isoprene but higher monoterpene concentrations than the boreal forest and lower isoprene but substantially higher monoterpene concentrations than the temperate mixed forest canopies. These results have major implications for simulating air chemistry and secondary organic aerosol formation within and above hemiboreal forest canopies. Possible effects of in-cartridge oxidation reactions are discussed as our measurement technique did not include oxidant scavenging. A comparison between measurements with and without scavenging oxidants is presented.

  9. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  10. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-01

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  11. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  12. Synchronic interval Gaussian mixed-integer programming for air quality management.

    PubMed

    Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong

    2015-12-15

    To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can

  13. Investigating the effect of mixing ratio on molar mass distributions of synthetic polymers determined by MALDI-TOF mass spectrometry using design of experiments.

    PubMed

    Brandt, Heike; Ehmann, Thomas; Otto, Matthias

    2010-11-01

    It is well known that the mixing ratio affects the molar mass distribution of synthetic polymers determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surely, the molar mixing ratio determines whether a mass spectrum will be obtained or not. However, depending on the mass range, several effects such as multimer formation occur, which might be a source of errors in molar mass distribution calculations. In this study, the effect of mixing ratio was investigated for several synthetic polymers, including polystyrene (PS), poly(dimethylsiloxane) (PDMS), poly(ethylene glycol) (PEG), and poly(methyl methacrylate) (PMMA) using statistical designs of experiments. The 2(3) full factorial design was found to be suitable in the study of more than 1000 samples. The obtained MALDI mass spectra as well as the ANOVA statistics show that the mixing ratio affects the molar mass distribution. The optimal mixing ratio for a defined synthetic polymer depends on the studied combination (matrix, cationization reagent, solvent). PMID:20685132

  14. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  15. Ultrafast (1 μs) Mixing and Fast Protein Folding in Nanodrops Monitored by Mass Spectrometry.

    PubMed

    Mortensen, Daniel N; Williams, Evan R

    2016-03-16

    The use of theta-glass emitters and mass spectrometry to monitor reactions that occur as fast as one μs is demonstrated. Acidified aqueous solutions containing unfolded proteins are mixed with aqueous ammonium acetate solutions to increase the solution pH and induce protein folding during nanoelectrospray ionization. Protein charge-state distributions show the extent to which folding occurs, and reaction times are obtained from known protein folding time constants. Shorter reaction times are obtained by decreasing the solution flow rate, and reaction times between 1.0 and 22 μs are obtained using flow rates between 48 and 2880 pL/s, respectively. Remarkably similar reaction times are obtained for three different proteins (Trp-cage, myoglobin, and cytochrome c) with folding time constants that differ by more than an order of magnitude (4.1, 7, and 57 μs, respectively), indicating that the reaction times obtained using rapid mixing from theta-glass emitters are independent of protein identity. A folding time constant of 2.2 μs is obtained for the formation of a β-hairpin structure of renin substrate tetradecapeptide, which is the fastest folding event measured using a rapid mixing technique. The 1.0 μs reaction time obtained here is about an order of magnitude lower than the shortest reaction time probed using a conventional mixer (8 μs). Moreover, this fast reaction time is obtained with a 48 pL/s flow rate, which is 2000-times less than the flow rate required to obtained the 8 μs reaction time using a conventional mixer. These results indicate that rapid mixing with theta-glass emitters can be used to access significantly faster reaction times while consuming substantially less sample than in conventional mixing apparatus. PMID:26902747

  16. Mixing of cloud and clear air in centimeter scales observed in laboratory by means of particle image velocimetry.

    NASA Astrophysics Data System (ADS)

    Malinowski, S. P.; Korczyk, P.; Kowalewski, T. A.; Jaczewski, A.

    2003-04-01

    Turbulent mixing of cloud with unsaturated environmental air in a laboratory chamber is visualized in two-dimensional vertical cross-section by pulses of laser light. Turbulence is produced by evaporative cooling of cloud water and the following generation of negative buoyancy. Images of cloudy filaments created by mixing are collected by the high resolution CCD camera. Consecutive images are analysed with the Particle Image Velocimetry (PIV) techniques allowing for determination of two components of turbulent velocities of cloud patterns in scales of order of few millimetres. Examples of mixing events (patterns and corresponding velocities)as well as statistics of observed velocity fields will be presented and discussed.

  17. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  18. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  19. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  20. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  1. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  2. Size distribution and mixing state of black carbon particles during a heavy air pollution episode in Shanghai

    NASA Astrophysics Data System (ADS)

    Gong, X.; Zhang, C.; Chen, H.; Nizkorodov, S. A.; Chen, J.; Yang, X.

    2015-12-01

    A Single Particle Aerosol Mass Spectrometer (SPAMS), a Single Particle Soot Photometer (SP2) and various meteorological instruments were employed to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai over a five-day period in December 2013. The average PM2.5 and BC mass concentrations were 221 and 3.2 μg m-3, respectively, with the PM2.5 peak value of 636 μg m-3 at noon of 6 December and the BC peak value of 12.1 μg m-3 at 04:26 LT on 7 December. The number size of BC cores was distributed over ~ 60-400 nm, with a peak around ~ 60 nm. The BC core mass size distribution was within ~ 70-500 nm, with a peak around ~ 200 nm. The number concentration of BC-containing particles captured by SPAMS in the size range 200-1200 nm agreed very well with that detected by SP2 (R2 = 0.87). A cluster analysis of the single particle mass spectra allowed for the separation of BC-containing particles into seven classes. Pure BC accounted for 0.53 % of BC-containing particles; BC attributed to biomass burning (BBBC) accounted for 22.60 %; K-rich BC-containing (KBC), NaK-rich BC-containing (NaKBC), BC internally-mixed with OC and ammonium sulfate (BCOC-SOx), BC internally-mixed with OC and ammonium nitrate (BCOC-NOx) were all attributed to traffic emissions and accounted for 73.24 %; unidentified particles accounted for 3.63 %. The size distribution of internally-mixed BC particles was bimodal. Detected by SP2, the condensation mode peaked around ~ 230 nm and droplet mode peaked around ~ 380 nm, with a clear valley in the size distribution around ~ 320 nm. The condensation mode mainly consisted of traffic emissions, with particles featuring a small BC core (~ 60-80 nm) and a relatively thin absolute coating thickness (ACT, ~ 50-130 nm). The droplet mode included highly aged traffic emission particles and biomass burning particles. The highly aged traffic emissions had a small core (~ 60-80 nm) and a

  3. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320–590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  4. NUMERICAL SIMULATIONS OF THERMOHALINE CONVECTION: IMPLICATIONS FOR EXTRA-MIXING IN LOW-MASS RGB STARS

    SciTech Connect

    Denissenkov, Pavel A.

    2010-11-01

    Low-mass stars are known to experience extra-mixing in their radiative zones on the red giant branch (RGB) above the bump luminosity. To determine if the salt-fingering transport of chemical composition driven by {sup 3}He burning is efficient enough to produce RGB extra-mixing, two-dimensional numerical simulations of thermohaline convection for physical conditions corresponding to the RGB case have been carried out. We have found that the effective ratio of a salt finger's length to its diameter a{sub eff} {approx}< 0.5 is more than 10 times smaller than the value needed to reproduce observations (a{sub obs} {approx}> 7). On the other hand, using the thermohaline diffusion coefficient from linear stability analysis together with a = a{sub obs} is able to describe the RGB extra-mixing at all metallicities so well that it is tempting to believe that it may represent the true mechanism. In view of these results, follow-up three-dimensional numerical simulations of thermohaline convection for the RGB case are clearly needed.

  5. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  6. Deep Atmosphere Ammonia Mixing Ratio at Jupiter from the Galileo Probe Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Niemann, H. B.; Demick, J. E.

    1999-01-01

    New laboratory studies employing the Engineering Unit (EU) of the Galileo Probe Mass Spectrometer (GPMS) have resulted in a substantial reduction in the previously reported upper limit on the ammonia mixing ratio derived from the GPMS experiment at Jupiter. This measurement is complicated by background ammonia contributions in the GPMS during direct atmospheric sampling produced from the preceding gas enrichment experiments. These backgrounds can be quantified with the data from the EU studies when they are carried out in a manner that duplicates the descent profile of pressure and enrichment cell loading. This background is due to the tendency of ammonia to interact strongly with the walls of the mass spectrometer and on release to contribute to the gas being directly directed into the ion source from the atmosphere through a capillary pressure reduction leak. It is evident from the GPMS and other observations that the mixing ratio of ammonia at Jupiter reaches the deep atmosphere value at substantially higher pressures than previously assumed. This is a likely explanation for the previously perceived discrepancy between ammonia values derived from ground based microwave observations and those obtained from attenuation of the Galileo Probe radio signal.

  7. Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014: evidence of policy success in improving air quality

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Lanoisellé, M. E.; Fisher, R. E.; Martin, M.; Fowler, C. M. R.; France, J. L.; Hernández-Paniagua, I. Y.; Novelli, P. C.; Sriskantharajah, S.; O’Brien, P.; Rata, N. D.; Holmes, C. W.; Fleming, Z. L.; Clemitshaw, K. C.; Zazzeri, G.; Pommier, M.; McLinden, C. A.; Nisbet, E. G.

    2016-05-01

    Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of ‘clean Atlantic background’ air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50 ppb per year) in the 1997–2003 period but continues post 2003. A ‘local CO increment’ can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and ‘bottom-up’ inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK.

  8. Marked long-term decline in ambient CO mixing ratio in SE England, 1997-2014: evidence of policy success in improving air quality.

    PubMed

    Lowry, D; Lanoisellé, M E; Fisher, R E; Martin, M; Fowler, C M R; France, J L; Hernández-Paniagua, I Y; Novelli, P C; Sriskantharajah, S; O'Brien, P; Rata, N D; Holmes, C W; Fleming, Z L; Clemitshaw, K C; Zazzeri, G; Pommier, M; McLinden, C A; Nisbet, E G

    2016-01-01

    Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of 'clean Atlantic background' air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50 ppb per year) in the 1997-2003 period but continues post 2003. A 'local CO increment' can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and 'bottom-up' inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK. PMID:27210416

  9. Marked long-term decline in ambient CO mixing ratio in SE England, 1997–2014: evidence of policy success in improving air quality

    PubMed Central

    Lowry, D.; Lanoisellé, M. E.; Fisher, R. E.; Martin, M.; Fowler, C. M. R.; France, J. L.; Hernández-Paniagua, I. Y.; Novelli, P. C.; Sriskantharajah, S.; O’Brien, P.; Rata, N. D.; Holmes, C. W.; Fleming, Z. L.; Clemitshaw, K. C.; Zazzeri, G.; Pommier, M.; McLinden, C. A.; Nisbet, E. G.

    2016-01-01

    Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of ‘clean Atlantic background’ air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50 ppb per year) in the 1997–2003 period but continues post 2003. A ‘local CO increment’ can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and ‘bottom-up’ inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK. PMID:27210416

  10. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  11. Neutrino masses and mixings: Status of known and unknown 3ν parameters

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2016-07-01

    Within the standard 3ν mass-mixing framework, we present an up-to-date global analysis of neutrino oscillation data (as of January 2016), including the latest available results from experiments with atmospheric neutrinos (Super-Kamiokande and IceCube DeepCore), at accelerators (first T2K ν ‾ and NO νAν runs in both appearance and disappearance modes), and at short-baseline reactors (Daya Bay and RENO far/near spectral ratios), as well as a reanalysis of older KamLAND data in the light of the "bump" feature recently observed in reactor spectra. We discuss improved constraints on the five known oscillation parameters (δm2, | Δm2 |, sin2 ⁡θ12, sin2 ⁡θ13, sin2 ⁡θ23), and the status of the three remaining unknown parameters: the mass hierarchy [sign (± Δm2)], the θ23 octant [sign (sin2 ⁡θ23 - 1 / 2)], and the possible CP-violating phase δ. With respect to previous global fits, we find that the reanalysis of KamLAND data induces a slight decrease of both δm2 and sin2 ⁡θ12, while the latest accelerator and atmospheric data induce a slight increase of | Δm2 |. Concerning the unknown parameters, we confirm the previous intriguing preference for negative values of sin ⁡ δ (with best-fit values around sin ⁡ δ ≃ - 0.9), but we find no statistically significant indication about the θ23 octant or the mass hierarchy (normal or inverted). Assuming an alternative (so-called LEM) analysis of NO νA data, some δ ranges can be excluded at > 3 σ, and the normal mass hierarchy appears to be slightly favored at ∼ 90% C.L. We also describe in detail the covariances of selected pairs of oscillation parameters. Finally, we briefly discuss the implications of the above results on the three non-oscillation observables sensitive to the (unknown) absolute ν mass scale: the sum of ν masses Σ (in cosmology), the effective νe mass mβ (in beta decay), and the effective Majorana mass mββ (in neutrinoless double beta decay).

  12. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  13. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  14. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame

    SciTech Connect

    Cheng, T.S.; Wehrmeyer, J.A.; Pitz, R.W. . Dept. of Mechanical Engineering); Jarrett, O. Jr.; Northam, G.B. . Langley Research Center)

    1994-10-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) from a KrF excimer laser are combined to simultaneously measure temperature, major species concentrations (H[sub 2], O[sub 2], N[sub 2], H[sub 2]O), and OH radical concentration in a supersonic lifted co-flowing hydrogen-air diffusion flame. The axisymmetric flame is formed when a sonic jet of hydrogen mixes with a Mach 2 annular jet of vitiated air. Mean and rms profiles of temperature, species concentrations, and mixture fraction are obtained throughout the supersonic flame. Simultaneous measurements of the chemical species and temperature are compared with frozen chemistry and equilibrium chemistry limits to assess the local state of the mixing and chemistry. Upstream of the lifted flame base, a very small amount of reaction occurs form mixing with hot vitiated air. Downstream of the lifted flame base, strong turbulent mixing leads to sub equilibrium values of temperature and OH concentration. Due to the interaction of velocity and temperature in supersonic compressible flames, the fluctuations of temperature and species concentrations are found to be higher than subsonic flames. Farther downstream, slow three-body recombination reactions result in super equilibrium OH concentrations that depress temperatures below their equilibrium values.

  15. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  16. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  19. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  20. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  1. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  2. Characterization of volatile organic compounds (VOCs) in Asian and North American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Meinardi, S.; Simpson, I. J.; Atlas, E. L.; Beyersdorf, A. J.; Baker, A. K.; Blake, N. J.; Yang, M.; Midyett, J. R.; Novak, B. J.; McKeachie, R. J.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Campos, T.; Weinheimer, A. J.; Sherwood Rowland, F.; Blake, D. R.

    2009-03-01

    We present results from the Intercontinental Chemical Transport Experiment - Phase B (INTEX-B) aircraft mission conducted in spring 2006. By analyzing the mixing ratios of volatile organic compounds (VOCs) measured during the second part of the field campaign, together with kinematic back trajectories, we were able to identify five plumes originating from China, four plumes from other Asian regions, and three plumes from the United States. To identify specific tracers for the different air masses, we focused on characterizing the VOC composition of these different pollution plumes. The Chinese and other Asian air masses were significantly enhanced in carbonyl sulfide (OCS) and methyl chloride (CH3Cl), while all CFC replacement compounds were elevated in US plumes, particularly HCFC-134a. Although elevated mixing ratios of Halon-1211 were measured in some of the Chinese plumes, several measurements at background levels were also observed. After analyzing the VOC distribution in the Chinese pollution plumes and the correlations among selected compounds, we suggest the use of a suite of species, rather than the use of a single gas, to be used as specific tracers of Chinese air masses (namely OCS, CH3Cl, 1,2-dichloroethane, and Halon-1211). In an era of constantly changing halocarbon usage patterns, this suite of gases best reflects new emission characteristics from China.

  3. Spatiotemporal Linear Mixed Effects Modeling for the Mass-univariate Analysis of Longitudinal Neuroimage Data

    PubMed Central

    Bernal-Rusiel, Jorge L.; Reuter, Martin; Greve, Douglas N.; Fischl, Bruce; Sabuncu, Mert R.

    2013-01-01

    We present an extension of the Linear Mixed Effects (LME) modeling approach to be applied to the mass-univariate analysis of longitudinal neuroimaging (LNI) data. The proposed method, called spatiotemporal LME or ST-LME, builds on the flexible LME framework and exploits the spatial structure in image data. We instantiated ST-LME for the analysis of cortical surface measurements (e.g. thickness) computed by FreeSurfer, a widely-used brain Magnetic Resonance Image (MRI) analysis software package. We validate the proposed ST-LME method and provide a quantitative and objective empirical comparison with two popular alternative methods, using two brain MRI datasets obtained from the Alzheimer’s disease neuroimaging initiative (ADNI) and Open Access Series of Imaging Studies (OASIS). Our experiments revealed that ST-LME offers a dramatic gain in statistical power and repeatability of findings, while providing good control of the false positive rate. PMID:23702413

  4. Calculation of mass of Y(4140) by introducing mixed molecule state in quark model

    NASA Astrophysics Data System (ADS)

    Chen, Xiaozhao; Lü, Xiaofu; Shi, Renbin; Guo, Xiurong

    2016-08-01

    Using the general form of the Bethe-Salpeter wave functions for the bound states consisting of two vector fields given in our previous work, we investigate the molecular state composed of Ds*+ Ds*-. However, for the SU(3) symmetry the component Ds*+ Ds*- is coupled with the other components D*0D bar * 0 and D*+D*-. Then we interpret the internal structure of the observed Y (4140) state as a mixed state of pure molecule states D*0D bar * 0, D*+D*- and Ds*+ Ds*-with quantum numbers JP =0+. In this paper, the operator product expansion is used to introduce the nonperturbative contribution from the vacuum condensates into the interaction between two heavy mesons. The calculated mass of Y (4140) is consistent with the experimental value, and we conclude that it is a more reasonable scenario to explain the structure of Y (4140) as a mixture of pure molecule states.

  5. Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS

    SciTech Connect

    Adamson, P.

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25 x 10$^{20}$ protons on target. A fit to neutrino oscillations yields values of |Δm$^{2}$| = (2.32$^{+0.12}_{-0.08}$) x 10$^{-3}$ eV$^{2}$ for the atmospheric mass splitting and sin $^{2}$(2θ) > 0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  6. Measurement of the neutrino mass splitting and flavor mixing by MINOS.

    PubMed

    Adamson, P; Andreopoulos, C; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Boehnlein, D J; Bogert, D; Cavanaugh, S; Cherdack, D; Childress, S; Choudhary, B C; Coelho, J A B; Coleman, S J; Corwin, L; Cronin-Hennessy, D; Danko, I Z; de Jong, J K; Devenish, N E; Diwan, M V; Dorman, M; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grant, N; Grzelak, K; Habig, A; Harris, D; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, X; Hylen, J; Ilic, J; Irwin, G M; Isvan, Z; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kopp, S; Kordosky, M; Kreymer, A; Lang, K; Lefeuvre, G; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGowan, A M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Mitchell, J; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Ospanov, R; Paley, J; Patterson, R B; Pawloski, G; Pearce, G F; Petyt, D A; Phan-Budd, S; Plunkett, R K; Qiu, X; Ratchford, J; Raufer, T M; Rebel, B; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreiner, P; Shanahan, P; Smith, C; Sousa, A; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Toner, R; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Yang, T; Zwaska, R

    2011-05-01

    Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.

  7. A tale of two timescales: Mixing, mass generation, and phase transitions in the early universe

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Kost, Jeff; Thomas, Brooks

    2016-02-01

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically—such as during cosmological mass-generating phase transitions—the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system—often by many orders of magnitude—but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "reoverdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings.

  8. Analysis of mixed biofilm (Staphylococcus aureus and Pseudomonas aeruginosa) by laser ablation electrospray ionization mass spectrometry.

    PubMed

    Dean, Scott N; Walsh, Callee; Goodman, Haddon; van Hoek, Monique L

    2015-01-01

    Pseudomonas aeruginosa and Staphylococcus aureus are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. This study is the first to use laser ablation electrospray ionization mass spectrometry (LAESI-MS) to rapidly study bacteria within a mixed biofilm. Fast, direct, non-invasive LAESI-MS analysis of biofilm could significantly accelerate biofilm studies and provide previously unavailable information on both biofilm composition and the effects of antibiofilm treatment. LAESI-MS was applied directly to a polymicrobial biofilm and analyzed with respect to whether P. aeruginosa and S. aureus were co-localized or self-segregated within the mixed biofilm. LAESI-MS was also used to analyze ions following LL-37 antimicrobial peptide treatment of the biofilm. This ambient ionization method holds promise for future biofilm studies. The use of this innovative technique has profound implications for the study of biofilms, as LAESI-MS eliminates the need for lengthy and disruptive sample preparation while permitting rapid analysis of unfixed and wet biofilms. PMID:25672229

  9. Theory and Experiments on Supersonic Air-to-Air Ejectors.

    NASA Technical Reports Server (NTRS)

    Fabri, J; Paulon, J

    1958-01-01

    A comparison of experiment with theory is made for air ejectors having cylindrical mixing sections and operating under conditions of supersonic primary flow and either mixed or supersonic regimes of mixing. The effect on ejector performance of such parameters as mixer length and cross section, terminating diffuser, primary Mach number, and primary nozzle position is presented in terms of mass flow and pressure ratio.

  10. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  11. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  12. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  13. Mixing of cloud and clear air in centimeter scales observed in laboratory by means of Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Korczyk, Piotr; Malinowski, Szymon P.; Kowalewski, Tomasz A.

    2006-11-01

    Cloudy air, containing small (∅ 14 μm) water droplets, undergoes mixing with the unsaturated environment inside the cloud chamber in the process resembling smallest scales of entrainment and mixing in real clouds. Particle Image Velocimetry (PIV) applied to images from the chamber interior is used to investigate dynamics of the process in scales from 1.2 mm to few centimeters. A special algorithm, allowing for investigation of droplets motion, is developed, tested and adapted to the experimental data. Two velocity components retrieved in the vertical cross-section through the chamber interior indicate anisotropy of small-scale turbulent motions, with the preferred vertical direction. This result confirms earlier numerical studies, indicating that evaporation of cloud droplets at the cloud-clear air interface may substantially influence the small-scale turbulence in clouds.

  14. Transport and mixing in the atmosphere: Anomalous diffusion and stratosphere-troposphere mass exchange

    NASA Astrophysics Data System (ADS)

    Seo, Kyong-Hwan

    2001-10-01

    Particle dispersion in the stratosphere and mass exchange between the stratosphere and troposphere are investigated in a Lagrangian framework using the United Kingdom Meteorological Office assimilated winds. In the winter stratosphere, isentropic dispersion can be characterized as chaotic advection. Parcel trajectories intermittently alternate between flying in jets and trapping in coherent quasi-stationary vortices. We show that these trajectories are described by a power-law probability density function (PDF) with a decay exponent of less than 3. For these PDFs mean square displacement per flight step is divergent and the trajectories correspond to Lévy flights (random walk processes with divergent second moment). The variance of the zonal displacement grows faster than linearly with time, corresponding to superdiffusive dispersion. The self- similarity in the trajectories is revealed by the convergence of the scaled PDFs of displacement and the saturation of the normalized third and fourth moments with time. Stratosphere-troposphere exchange (STE), calculated by a Lagrangian method, exhibits a pronounced annual cycle. The northern hemisphere net flux of stratospheric air into the troposphere across the extratropical tropopause has a primary peak in late spring or early summer, which is consistent with observation. The southern hemisphere net flux of stratospheric air into the troposphere shows a maximum in winter. The preferred locations for stratosphere-to-troposphere transport are identified as the regions with the highest frequency of Rossby wave breaking events and with the storm tracks. This suggests that tropopause folding and baroclinic eddy activity are a primary mechanism for STE. The greatest diabatic injection of tropospheric air into the tropical stratosphere takes place following the annual variation of the Hadley circulation. The tropical upward transport occurs in association with the monsoon anticyclones. The interannual change of total column

  15. Rheological, mass transfer, and mixing characterization of cellulase-producing Trichoderma reesei suspensions

    SciTech Connect

    Marten, M.R.; Velkovska, S.; Khan, S.A.; Ollis, D.F.

    1996-09-01

    Steady and dynamic shear measurements are utilized to characterize the rheological behavior of Trichoderma reesei RUT-C30 fungal suspensions during batch growth on xylose (soluble substrate) or cellulose (particulate solid substrate) at three different fermentor impeller speeds (250, 400, and 550 rpm). Biomass concentrations versus time were unimodal on xylose and bimodal on cellulose. This behavior is consistent with relatively rapid, early growth on easily metabolized growth medium components (yeast extract), followed by a second, slower growth phase due to hydrolysis of recalcitrant cellulose by increasing cellulose concentrations. Critical dissolved oxygen (DO) concentration for T. reesei growth on cellulose was found to be 0.073 mmol/L. The DO was kept above this level by supplementing the air feed with pure oxygen, implying that mass transfer limitations were not the cause of bimodal cell growth. Steady shear rheological data showed shear thinning behavior and a yield stress for all broth samples regardless of substrate. Dynamic shear measurements on broth suspensions indicated `gel-like` behavior at low strains, with microstructural breakdown at larger displacements. Time variations of the Casson model parameters (yield stress and Casson viscosity) and dynamic moduli (elastic and viscous modulus) followed both cell mass and morphology. 45 refs., 14 figs.

  16. The Gell-Mann - Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

    SciTech Connect

    Konstantinos Orginos; Silas Beane; Martin Savage

    2007-10-01

    We explore the Gell-Mann - Okubo mass relation among the octet baryons using fully-dynamical, mixed-action (domain-wall on rooted-staggered) lattice QCD calculations at a lattice spacing of b {approx} 0.125 fm and pion masses of m{sub pi} {approx} 290 MeV, 350 MeV, 490 MeV and 590 MeV. Deviations from the Gell-Mann - Okubo mass relation are found to be small at each quark mass.

  17. Lidar observations of the diurnal variations in the depth of urban mixing layer: a case study on the air quality deterioration in Taipei, Taiwan.

    PubMed

    Chou, Charles C-K; Lee, C-T; Chen, W-N; Chang, S-Y; Chen, T-K; Lin, C-Y; Chen, J-P

    2007-03-01

    An aerosol light detection and ranging (LIDAR) system was used to measure the depth of the atmospheric mixing layer over Taipei, Taiwan in the spring of 2005. This paper presents the variations of the mixing height and the mixing ratios of air pollutants during an episode of air quality deterioration (March 7-10, 2005), when Taipei was under an anti-cyclonic outflow of a traveling high-pressure system. It was found that, during those days, the urban mixing height reached its daily maximum of 1.0-1.5 km around noon and declined to 0.3-0.5 km around 18:00 (LST). In terms of hourly averages, the mixing height increased with the ambient temperature linearly by a slope of 166 m/degrees C in daytime. The consistency between the changes in the mixing height and in the ambient temperature implied that the mixing layer dynamics were dominated by solar thermal forcing. As the cap of the mixing layer descended substantially in the afternoon, reduced dispersion in the shallow mixing layer caused the concentrations of primary air pollutants to increase sharply. Consequently, the pollutant concentration exhibited an anti-correlation with the mixing height. While attentions are usually focused on the pollution problems occurring in a morning inversion layer, the results of this study indicate that the air pollution and its health impacts could be even more severe as the mixing layer is getting shallow in the afternoon.

  18. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  19. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  20. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Newman, P. A.; Waugh, D. W.; Holzer, M. B.; Oman, L.; Polvani, L. M.; Li, F.

    2014-12-01

    Long-range transport from Northern Hemisphere (NH) midlatitudes plays a key role in setting the distributions of trace species and aerosols in the Arctic. While comprehensive models project a strengthening and poleward shift in the midlatitude tropospheric jets in response to future warming, relatively little attention has been paid to assessing the large-scale transport response in the Arctic. A natural way to quantify transport and its future changes is in terms of rigorously defined air masses that partition air according to where it last contacted the planetary boundary layer (PBL). Here we present climatologies of Arctic air mass origin for NH winter and summer, computed from two integrations of the Goddard Earth Observing System chemistry-climate model (GEOSCCM) subject to present-day and future climate forcings. The modeled transport response to A1B greenhouse-gas induced warming reveals that in the future ~10% more air in the Arctic will originate over NH midlatitudes, with a slighter weaker albeit significant increase in winter compared to summer. Our results indicate that transport changes alone may lead to "cleaner" Arctic winters, as air will be 5-10% more likely to have last contacted the PBL over the East Pacific and the Atlantic Oceans and less likely to have originated over Europe and North America. Conversely, in future summers the air mass fractions originating over Asia and North America increase by ~10%, indicating that Arctic pollutant levels may be enhanced owing solely to changes in transport. In particular, our results suggest that more stringent emissions caps may be needed to combat enhanced transport into the Arctic from Asia, where increases in black carbon emissions have already posed concerns. Future changes in air mass fractions are interpreted in terms of large-scale circulation responses that are consistent with CMIP5 multi-model mean projections - namely, upward and poleward shifted meridional transient eddies in future winters and

  1. Measurement of mass attenuation coefficients in air by application of detector linearity tests

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Chantler, C. T.; Paterson, D.; McMahon, P. J.; Irving, T. H.; Lin, J. J.; Nugent, K. A.; Brunton, A. N.; McNulty, I.

    2002-10-01

    Accurate knowledge of x-ray mass attenuation coefficients is essential for studies as diverse as atomic physics, materials science, and radiation safety. However, a significant discrepancy exists between theoretical tabulated results for air at soft x-ray energies. We outline a precision measurement of the mass attenuation coefficients for air at various energies using two types of detectors and a simple test of detector response. We discuss whether sufficient accuracy can be obtained using this data to distinguish between competing theoretical estimates. In the process, we investigate the intensity response of two common synchrotron x-ray detectors: an x ray to optical charge-coupled device camera using a crystal scintillator and an x-ray sensitive photodiode.

  2. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  3. Food Insecurity and Body Mass Index: A Longitudinal Mixed Methods Study, Chelsea, Massachusetts, 2009–2013

    PubMed Central

    Shen, Aileen; Oo, Sarah; Tilahun, Hailu; Cohen, Marya J.; Berkowitz, Seth A.

    2015-01-01

    Introduction Cross-sectional studies show an association between food insecurity and higher body mass index (BMI), but this finding has not been evaluated longitudinally. Patient perspectives on food choice in resource-constrained environments are not well understood. The objective of this study was to evaluate the longitudinal association between food insecurity and BMI. Methods This mixed methods study used both a retrospective matched cohort and focus groups. For the quantitative analysis, all patients in a community health center who reported food insecurity from October 2009 through March 2010 (n = 457) were followed through August 2013 and compared with controls matched by age, sex, and race/ethnicity (n = 1,974). We evaluated the association between food insecurity and change in BMI by using linear, mixed effects longitudinal models. The qualitative analysis included patients with food insecurity, stratified by BMI. Qualitative data were analyzed by using open coding and grounded theory. Results The mean age of participants was 51 years; 61% were women, and 73% were Hispanic. Baseline BMI was similar in food insecure participants and matched controls. After adjustment in longitudinal analyses, food insecurity was associated with greater increase in BMI (0.15 kg/m2 per year more than controls, P < .001). Themes identified in 4 focus groups included attitudes and knowledge about food, food access, and food practices. Participants with BMI of 30 kg/m2 or less highlighted skills such as budgeting and portion control. Conclusion Food insecurity is associated with increase in BMI. The skills of food insecure participants who were not obese, such as portion control and budgeting, may be useful in weight management interventions for vulnerable patients. PMID:26247425

  4. Reevaluated martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Franz, Heather B.; Trainer, Melissa G.; Wong, Michael H.; Mahaffy, Paul R.; Atreya, Sushil K.; Manning, Heidi L. K.; Stern, Jennifer C.

    2015-05-01

    The Sample Analysis at Mars (SAM) instrument suite of the Mars Science Laboratory (MSL) Curiosity rover is a miniature geochemical laboratory designed to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). SAM began sampling the martian atmosphere to measure its chemical and isotopic composition shortly after Curiosity landed in Mars' Gale Crater in August 2012 (Mahaffy et al., 2013). Analytical methods and constants required for atmospheric measurements with SAM's quadrupole mass spectrometer (QMS) were provided in a previous contribution (Franz et al., 2014). Review of results obtained through application of these constants to repeated analyses over a full martian year and supporting studies with laboratory instruments offer new insights into QMS performance that allow refinement of the calibration constants and critical reassessment of their estimated uncertainties. This report describes the findings of these studies, provides updated calibration constants for atmospheric analyses with the SAM QMS, and compares volume mixing ratios for the martian atmosphere retrieved with the revised constants to those initially reported (Mahaffy et al., 2013). Sufficient confidence is enabled by the extended data set to support calculation of precise abundances for CO rather than an upper limit. Reanalysis of data acquired on mission sols 45 and 77 (at solar longitudes of 175° and 193°, respectively) with the revised constants leads to the following average volume mixing ratios: CO2 0.957(±0.016), N2 0.0203(±0.0003), Ar 0.0207(±0.0002), O2 1.73(±0.06)×10-3, CO 7.49(±0.026)×10-4.

  5. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  6. Mass transport and crystal growth of the mixed ZrS2-ZrSe2 system

    NASA Technical Reports Server (NTRS)

    Wiedemeier, Heribert; Goldman, Howard

    1986-01-01

    The solid solubility of the ZrS2-ZrSe2 system was reinvestigated by annealing techniques to establish the relationship between composition and lattice parameters. Mixed crystals of ZrS(2x)Se2(1-x) for selected compositions of the source material were grown by chemical vapor transport and characterized by X-ray diffraction and microscopic methods. The mass transport rates and crystal growth of ZrSSe were investigated and compared with those of other compositions. The mass fluxes of the mixed system showed an increase with increasing selenium content. The transport products were richer in ZrSe2 than the residual source materials when the ZrSe2 content of the starting materials was greater than 50 mol.-pct. The mass transport rates revealed an increasing mass flux with pressure.

  7. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  8. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  11. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  12. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  13. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  14. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

    SciTech Connect

    Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.

    2010-03-15

    The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)

  15. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  16. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  17. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  18. Knudsen effusion mass spectrometric determination of mixing thermodynamic data of liquid Ag-In-Sn alloy

    NASA Astrophysics Data System (ADS)

    Bencze, L.; Popovic, A.

    2008-03-01

    The vaporisation of a liquid Ag-In-Sn system has been investigated at 1273-1473 K by Knudsen effusion mass spectrometry (KEMS) and the data fitted to a Redlich-Kister-Muggianu (RKM) sub-regular solution model. Nineteen different compositions have been examined at six fixed indium mole fractions, XIn = 0.10, 0.117, 0.20, 0.30, 0.40 and 0.50. The ternary L-parameters, the thermodynamic activities and the thermodynamic properties of mixing have been evaluated using standard KEMS procedures and from the measured ion intensity ratios of Ag+ to In+ and Ag+ to Sn+, using a mathematical regression technique described by us for the first time. The intermediate data obtained directly from the regression technique are the RKM ternary L-parameters. From the obtained ternary L-parameters the integral molar excess Gibbs free energy, the excess chemical potentials, the activity coefficients and the activities have been evaluated. Using the temperature dependence of the activities, the integral and partial molar excess enthalpies and entropies were determined. In addition, for comparison, for some compositions, also the Knudsen effusion isothermal evaporation method (IEM) and the Gibbs-Duhem ion intensity ratio method (GD-IIR) were used to determine activities and good agreement was obtained with the data obtained from fitting to the RKM model.

  19. Mixing state of ambient aerosols in Nanjing city by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; An, Junlin; Shen, Lijuan; Zhu, Bin; Xia, Li; Duan, Qing; Zou, Jianan

    2016-05-01

    To investigate the mixing state and size-resolved aerosol in Nanjing, measurements were carried out for the period 14th January-1st February 2013 by using a Single Particle Aerosol Mass Spectrometer (SPAMS). A total of 10,864,766 particles were sized with vacuum aerodynamic diameter (dva) in the range of 0.2-2.0 μm. Of which, 1,989,725 particles were successfully ionized. Aerosol particles employed for analyzing SPAMS data utilized 96% of the hit particles to identify 5 main particle groups. The particle classes include: K-rich particles (K-CN, K-Nitrate, K-Sulfate and K-Secondary), sodium particles, ammonium particles, carbon-rich particles (OC, EC and OCEC) and heavy-metal particles (Fe-Secondary, Pb-Nitrate, Cu-Mn-Secondary and V-Secondary). EC was the largest contributor with a fraction of 21.78%, followed by K-Secondary (17.87%), K-Nitrate (12.68%) and K-CN (11.25%). High particle level and high RH (relative humidity) are two important factors decreasing visibility in Nanjing. Different particle classes have distinct extinction effects. It anti-correlated well with visibility for the K-secondary, sodium, ammonium, EC, Fe-Secondary and K-Nitrate particles. The proportion of EC particles at 0.65-1.4 μm was up to 25% on haze days and was below 10% on clean days.

  20. On the role of mass diffusion and fluid dynamics in the dissipation of chunk mix

    SciTech Connect

    Cloutman, L D

    1999-03-01

    When numerically simulating multicomponent turbulent flows, subgrid-scale diffusion of chemical species requires closure. This mixing of chemical species at the molecular level dissipates concentration uctuations, which limits possible demixing and affects other pro- cesses such as energy transport and reaction rates at the subgrid level. We discuss some of the physical processes that reduce small chunks of a heavy material in a light gas or plasma to a mixture at the atomic level. Preliminary direct numerical simulations of these processes are presented using the dissipation of small spheres of heavy gas in a light gas as an archetypal process in turbulent micromixing in multicomponent ows, including classical uid instabilities and shock ejecta. We use a detailed approach for the diffusion process, directly solving the Stefan-Maxwell equations for the mass fluxes. We discuss the dissipa- tion of a 24µm sphere of xenon in helium in three different flow regimes, and we present suggestions for future work intended as input to improved subgrid-scale turbulence models.

  1. Separating biogeochemical cycling of neodymium from water mass mixing in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Stichel, Torben; Hartman, Alison E.; Duggan, Brian; Goldstein, Steven L.; Scher, Howie; Pahnke, Katharina

    2015-02-01

    The radiogenic neodymium (Nd) isotope ratio 143Nd/144Nd (expressed in εNd) is being used as a tracer in paleo and modern ocean circulation. However, the mechanisms controlling input, distribution, and internal cycling are far from understood. For example, globally, Nd concentration ([Nd]) commonly follows patterns of nutrient tracers, generally increasing with depth below the thermocline, while εNd, tends to reflect the water masses, which has often been referred to as the 'Nd-paradox'. Here we present dissolved Nd isotopes and concentrations at unprecedented vertical and spatial resolution from the eastern part of the US GEOTRACES North Atlantic Zonal Transect (Gulf of Cadiz - Mauritanian Shelf - Cape Verde Islands). The [Nd] of all samples ranges from 12.3 to 36.7 pmol/kg, with lowest [Nd] usually found within the layer of highest chlorophyll-a levels (chl-max), suggesting removal through scavenging. The Nd isotope compositions range between εNd = - 13.4 and -9.9, with lower values at the surface within the extension of the Saharan dust plume and a benthic nepheloid layer (BNL). Less negative values are found in oligotrophic surface waters, Mediterranean Outflow Water (MOW), and near the Cape Verde Islands. Overall, water mass mixing derived from εNd is best visible at the Strait of Gibraltar, where MOW enters the Atlantic Ocean. Most of the sub-thermocline εNd varies within a small range with poor water mass distinction due to the dominance of North Atlantic Deep Water. High surface [Nd] associated with more negative εNd is interpreted to be the result of dust deposition and dissolution. Local [Nd] maxima with no apparent change in εNd compared to ambient seawater, observed within a zone of minimum oxygen concentration (OMZ) at ∼500 m depth off Mauritania, suggest minor input of lithogenic Nd but a rather high contribution through desorption of previously scavenged Nd. That is, Saharan dust in this area has only a minor influence on the isotope

  2. Retained gas sampler extractor mixing and mass transfer rate study: Experimental and simulation results

    SciTech Connect

    Recknagle, K.P.; Bates, J.M.; Shekarriz, A.

    1997-11-01

    Research staff at Pacific Northwest National Laboratory conducted experimental testing and computer simulations of the impeller-stirred Retained Gas Sampler (RGS) gas extractor system. This work was performed to verify experimentally the effectiveness of the extractor at mixing viscous fluids of both Newtonian and non-Newtonian rheology representative of Hanford single- and double-shell wastes, respectively. Developing the computational models and validating their results by comparing them with experimental results would enable simulations of the mixing process for a range of fluid properties and mixing speeds. Five tests were performed with a full-scale, optically transparent model extractor to provide the data needed to compare mixing times for fluid rheology, mixer rotational direction, and mixing speed variation. The computer model was developed and exercised to simulate the tests. The tests demonstrated that rotational direction of the pitched impeller blades was not as important as fluid rheology in determining mixing time. The Newtonian fluid required at least six hours to mix at the hot cell operating speed of 3 rpm, and the non-Newtonian fluid required at least 46 hours at 3 rpm to become significantly mixed. In the non-Newtonian fluid tests, stagnant regions within the fluid sometimes required days to be fully mixed. Higher-speed (30 rpm) testing showed that the laminar mixing time was correlated to mixing speed. The tests demonstrated that, using the RGS extractor and current procedures, complete mixing of the waste samples in the hot cell should not be expected. The computer simulation of Newtonian fluid mixing gave results comparable to the test while simulation of non-Newtonian fluid mixing would require further development. In light of the laboratory test results, detailed parametric analysis of the mixing process was not performed.

  3. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  4. Fermion masses and mixing in a 4+1 dimensional SU(5) domain-wall brane model

    SciTech Connect

    Callen, Benjamin D.; Volkas, Raymond R.

    2011-03-01

    We study the fermion mass and mixing hierarchy problems within the context of the SU(5) 4+1d domain-wall brane model of Davies, George, and Volkas. In this model, the ordinary fermion mass relations of SU(5) grand unified theories are avoided, since the masses are proportional to overlap integrals of the profiles of the electroweak Higgs and the chiral components of each fermion, which are split into different 3+1d hyperplanes according to their hypercharges. We show that the fermion mass hierarchy without electroweak mixing can be generated naturally from these splittings, that generation of the Cabibbo-Kobayashi-Maskawa matrix looks promising, and that the Cabibbo angle, along with the mass hierarchy, can be generated for the case of Majorana neutrinos from a more modest hierarchy of parameters. We also show that, under some assumptions made on the parameter space, the generation of realistic lepton mixing angles is not possible without fine-tuning, which argues for a flavor symmetry to enforce the required relations.

  5. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  6. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  7. Water mass structure and deep mixing processes in the Tyrrhenian Sea: Results from the VECTOR project

    NASA Astrophysics Data System (ADS)

    Falco, Pierpaolo; Trani, Marilisa; Zambianchi, Enrico

    2016-07-01

    In this study, we analyze data from observations conducted in the southern Tyrrhenian Sea, within the framework of the VECTOR project, initiated in 2006. In the six cruises organized as part of the project, in November 2006, in February, April and June 2007, in February 2008 and in January 2009, repeated hydrological measurements were collected along a transect. Data collected at the same stations in a subsequent cruise in November 2010 were also incorporated into the study. The main Tyrrhenian water masses were clearly identified in vertical sections. In particular, a positive salinity anomaly, observed both in the first (late autumn) and second (winter) cruise, associated with an anti-cyclonic structure, characterized the surface layer. The intermediate layer revealed salinity values higher than the climatological salinities, continuing the rising trend observed in the previous works, because of the influence of the Eastern Mediterranean Transient on the western basin hydrology. At the bottom, both temperature and salinity showed higher values with respect to the historical data, but were nearly constant during the study period. However, the water column between 600 m and 2500 m exhibited a trend of increases in temperature and salinity at a mean rate of 0.025°/y and 0.0075/y, higher than the findings in earlier studies. This discrepancy is likely due to the downward transfer of excess heat and salt from the intermediate depths. In the Tyrrhenian Sea, one of the main mechanisms responsible for transferring heat and salt in the deep layers is double diffusion, which is particularly active here. Double diffusion forms 'staircase' structures that are better developed and more stable than in other areas of the world's oceans. Such structures are clearly seen in the analysis of the CTD data collected at an offshore station. These features occur at depths below 600 m, where the Levantine Intermediate Water (LIW) encounters the Tyrrhenian Dense Water, and mixing

  8. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  9. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  10. Field-scale tests for determining mixing patterns associated with coarse-bubble air diffuser configurations, Egan Quarry, Illinois

    USGS Publications Warehouse

    Hornewer, N.J.; Johnson, G.P.; Robertson, D.M.; Hondzo, Miki

    1997-01-01

    The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers, Chicago District did field-scale tests in August-September 1996 to determine mixing patterns associated with different configurations of coarse-bubble air diffusers. The tests were done in an approximately 13-meter deep quarry near Chicago, Ill. Three-dimensional velocity, water-temperature, dissolved oxygen concentration, and specific-conductivity profiles were collected from locations between approximately 2 to 30 meters from the diffusers for two sets of five test configurations; one set for stratified and one set for destratified conditions in the quarry. The data-collection methods and instrumentation used to characterize mixing patterns and interactions of coarse-bubble diffusers were successful. An extensive data set was collected and is available to calibrate and verify aeration and stratification models, and to characterize basic features of bubble-plume interaction.

  11. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  12. Knudsen effusion mass spectrometric determination of mixing thermodynamic data of liquid Al-Cu-Sn alloy

    NASA Astrophysics Data System (ADS)

    Bencze, L.; Milacic, R.; Jacimovic, R.; Zigon, D.; Mátyás, L.; Popovic, A.

    2010-01-01

    The vaporisation of a liquid Al-Cu-Sn system has been investigated at 1273-1473 K by Knudsen effusion mass spectrometry (KEMS) and the data fitted to a Redlich-Kister-Muggianu (RKM) sub-regular solution model. Thirty-one different compositions (41 samples) have been examined at eight fixed copper mole fractions, XCu = 0.10, 0.20, 0.30, 0.333, 0.40, 0.50, 0.60 and 0.70. The ternary L-parameters, the thermodynamic activities and the thermodynamic functions of mixing have been evaluated using standard KEMS procedures. In addition, the same quantities were obtained from the measured ion intensity ratios of Al+ to Cu+, Al+ to Sn+ and Cu+ to Sn+ using a mathematical regression technique. The intermediate data obtained directly are the RKM ternary L-parameters that are, as a function of temperature, as follows:L(0)=(14270+/-1270)+(100.1+/-7.6)T-(11.77+/-0.93)T[thin space]ln(T);L(1)=(145600+/-9780)+(101.6+/-58.7)T-(15.56+/-7.14)T[thin space]ln(T);L(2)=(76730+/-1240)+(79.2+/-7.4)T-(15.69+/-0.91)T[thin space]ln(T). From the obtained ternary L-parameters the integral molar excess Gibbs energy, the excess chemical potentials, the activity coefficients and the activities have been evaluated. Using the temperature dependence of the activities, the integral and partial molar excess enthalpies and entropies can be also determined. In addition, for comparison, for some compositions, the Knudsen effusion isothermal evaporation method (IEM) and the Gibbs-Duhem ion intensity ratio method (GD-IIR) were used to determine activities and good agreement was obtained from the RKM model.

  13. Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement

    SciTech Connect

    Dornseiffer, P.; Meyer, B.; Heinzle, E.

    1995-02-05

    Anaerobic wastewater treatment is an attractive alternative to aerobic treatment because of lower operating costs, less sludge production, energy recovery (biogas), and control of odor emission in necessarily contained systems. The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H{sup 13}CO{sub 3}{sup {minus}} pulses and measurement of {sup 12}CH{sub 4} and {sup 13}CH{sub 4} production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO{sub 2}/CH{sub 4} production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high K{sub s} value of 2.5 mmol m{sup {minus}3}, it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monrod kinetics, both for CO{sub 2} and hydrogen, were able to describe the experimental data adequately.

  14. Angular momentum redistribution by mixed modes in evolved low-mass stars. II. Spin-down of the core of red giants induced by mixed modes

    NASA Astrophysics Data System (ADS)

    Belkacem, K.; Marques, J. P.; Goupil, M. J.; Mosser, B.; Sonoi, T.; Ouazzani, R. M.; Dupret, M. A.; Mathis, S.; Grosjean, M.

    2015-07-01

    The detection of mixed modes in subgiants and red giants by the CoRoT and Kepler space-borne missions allows us to investigate the internal structure of evolved low-mass stars, from the end of the main sequence to the central helium-burning phase. In particular, the measurement of the mean core rotation rate as a function of the evolution places stringent constraints on the physical mechanisms responsible for the angular momentum redistribution in stars. It showed that the current stellar evolution codes including the modelling of rotation fail to reproduce the observations. An additional physical process that efficiently extracts angular momentum from the core is thus necessary. Our aim is to assess the ability of mixed modes to do this. To this end, we developed a formalism that provides a modelling of the wave fluxes in both the mean angular momentum and the mean energy equations in a companion paper. In this article, mode amplitudes are modelled based on recent asteroseismic observations, and a quantitative estimate of the angular momentum transfer is obtained. This is performed for a benchmark model of 1.3 M⊙ at three evolutionary stages, representative of the evolved pulsating stars observed by CoRoT and Kepler. We show that mixed modes extract angular momentum from the innermost regions of subgiants and red giants. However, this transport of angular momentum from the core is unlikely to counterbalance the effect of the core contraction in subgiants and early red giants. In contrast, for more evolved red giants, mixed modes are found efficient enough to balance and exceed the effect of the core contraction, in particular in the hydrogen-burning shell. Our results thus indicate that mixed modes are a promising candidate to explain the observed spin-down of the core of evolved red giants, but that an other mechanism is to be invoked for subgiants and early red giants.

  15. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  16. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  17. Fermion masses and neutrino mixing in an U(1){sub H} flavor symmetry model with hierarchical radiative generation for light charged fermion masses

    SciTech Connect

    Hernandez-Galeana, Albino

    2007-11-01

    I report the analysis performed on fermion masses and mixing, including neutrino mixing, within the context of a model with hierarchical radiative mass generation mechanism for light charged fermions, mediated by exotic scalar particles at one and two loops, respectively, meanwhile the neutrinos get Majorana mass terms at tree level through the Yukawa couplings with two SU(2){sub L} Higgs triplets. All the resulting mass matrices in the model, for the u, d, and e fermion charged sectors, the neutrinos and the exotic scalar particles, are diagonalized in exact analytical form. Quantitative analysis shows that this model is successful to accommodate the hierarchical spectrum of masses and mixing in the quark sector as well as the charged lepton masses. The lepton mixing matrix, V{sub PMNS}, is written completely in terms of the neutrino masses m{sub 1}, m{sub 2}, and m{sub 3}. Large lepton mixing for {theta}{sub 12} and {theta}{sub 23} is predicted in the range of values 0.7 < or approx. sin{sup 2}2{theta}{sub 12} < or approx. 0.7772 and 0.87 < or approx. sin{sup 2}2{theta}{sub 23} < or approx. 0.9023 by using 0.033 < or approx. s{sub 13}{sup 2} < or approx. 0.04. These values for lepton mixing are consistent with 3{sigma} allowed ranges provided by recent global analysis of neutrino data oscillation. From {delta}m{sub sol}{sup 2} bounds, neutrino masses are predicted in the range of values m{sub 1}{approx_equal}(1.706-2.494)x10{sup -3} eV, m{sub 2}{approx_equal}(6.675-12.56)x10{sup -3} eV, and m{sub 3}{approx_equal}(1.215-2.188)x10{sup -2} eV, respectively. The above allowed lepton mixing leads to the quark-lepton complementary relations {theta}{sub 12}{sup CKM}+{theta}{sub 12}{sup PMNS}{approx_equal}41.543 deg. -44.066 deg. and {theta}{sub 23}{sup CKM}+{theta}{sub 23}{sup PMNS}{approx_equal}36.835 deg. -38.295 deg. The new exotic scalar particles induce flavor changing neutral currents and contribute to lepton flavor violating processes such as E{yields}e{sub 1}e

  18. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter; Brandenburg, Ronny

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  19. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  20. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  1. Determination of the external mass transfer coefficient and influence of mixing intensity in moving bed biofilm reactors for wastewater treatment.

    PubMed

    Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C

    2015-09-01

    In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies.

  2. Solitary fibrous tumor of the pleura manifesting as an air-containing cystic mass: radiologic and histopathologic correlation.

    PubMed

    Baek, Ji Eun; Ahn, Myeong Im; Lee, Kyo Young

    2013-01-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that typically presents as a well-defined lobular soft tissue mass commonly arising from the pleura. We report an extremely rare case of an SFT containing air arising from the right major fissure in a 58-year-old woman. Chest CT showed an ovoid air-containing cystic mass with an internal, homogeneously enhancing solid nodule. To our knowledge, this is the first case in the literature. The histopathologic findings were correlated with the radiologic findings, and the mechanism of air retention within the tumor is discussed.

  3. Predictions of the Higgs Mass and the Weak Mixing Angle in the 6D Gauge-Higgs Unification

    NASA Astrophysics Data System (ADS)

    Hasegawa, Kouhei; Lim, Chong-Sa; Maru, Nobuhito

    2016-07-01

    In the gauge-Higgs unification with multiple extra spaces, the Higgs self-coupling is on the order of g2 and the Higgs boson is predicted to be light, being consistent with the LHC results. When the gauge group is simple, the weak mixing angle is also predictable. We address a question on whether there exists a model of gauge-Higgs unification in six-dimensional space-time, which successfully predicts the mass ratios of the Higgs boson and weak gauge bosons. First, using a useful formula, we give a general argument on the condition for obtaining a realistic prediction of the weak mixing angle sin2θW = 1/4, and find that triplet and sextet representations of the minimal SU(3) gauge group lead to the realistic prediction. Concerning the Higgs mass, we notice that, in the models with one Higgs doublet, the predicted Higgs mass is always the same: MH = 2MW. However, by extending our discussion to the models with two Higgs doublets, the situation changes: we obtain an interesting prediction MH ≤ 2MW at the leading order of the perturbation. Thus, it is possible to recover the observed Higgs mass, 125 GeV, for a suitable choice of the parameter. The situation is in clear contrast to the case of the minimal supersymmetric standard model, where MH ≤ MZ at the classical level and the predicted Higgs mass cannot recover the observed value.

  4. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  5. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Van Grieken, René

    2008-06-25

    The levels of particulate polycyclic aromatic hydrocarbons (PAHs) were determined with a fast analytical approach to study their seasonal variations at Menen (Belgium) during 2003; they were found to be 5-7 times higher in January, February and December, in comparison to May, June and August. The annual average concentration of the sum of 16 US Environmental Protection Agency (EPA) criteria PAHs was 6.7 ng/m3 and around 63% of it was found to be probably carcinogenic to humans. The application of diagnostic ratio and principal component analysis showed vehicular emission as a major source. An increased ratio of 'combustion PAHs' to 'total EPA-PAHs' during the winter season indicated towards combustion activities. Further, the differences in PAHs concentration were assessed with relation to backward air mass trajectories, which show that the levels of PAHs increase when there is an air mass movement from Central and Western Europe and a fall when the trajectories spend most of their 4-day time over the Atlantic Ocean or in the Arctic region.

  6. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  7. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  8. Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of low-mass Red Giants

    SciTech Connect

    Eggleton, P P; Dearborn, D P; Lattanzio, J C

    2007-03-20

    Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the {sup 3}He({sup 3}He,2p){sup 4}He reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of {sup 3}He overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low mass giants, a problem of more than 3 decades standing. This mixing mechanism operates rapidly once the hydrogen burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Pop I stars between 0.8 and 2.0 M{sub {circle_dot}} develop {sup 12}C/{sup 13}C ratios of 14.5 {+-} 1.5, while Pop II stars process the carbon to ratios of 4.0 {+-} 0.5. In stars less than 1.25 M{sub {circle_dot}}, this mechanism also destroys 90% to 95% of the {sup 3}He produced on the main sequence.

  9. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  10. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  11. Assessment of mass transfer and mixing in rigid lab-scale disposable bioreactors at low power input levels.

    PubMed

    van Eikenhorst, Gerco; Thomassen, Yvonne E; van der Pol, Leo A; Bakker, Wilfried A M

    2014-01-01

    Mass transfer, mixing times and power consumption were measured in rigid disposable stirred tank bioreactors and compared to those of a traditional glass bioreactor. The volumetric mass transfer coefficient and mixing times are usually determined at high agitation speeds in combination with sparged aeration as used for single cell suspension and most bacterial cultures. In contrast, here low agitation speeds combined with headspace aeration were applied. These settings are generally used for cultivation of mammalian cells growing adherent to microcarriers. The rigid disposable vessels showed similar engineering characteristics compared to a traditional glass bioreactor. On the basis of the presented results appropriate settings for adherent cell culture, normally operated at a maximum power input level of 5 W m(-3) , can be selected. Depending on the disposable bioreactor used, a stirrer speed ranging from 38 to 147 rpm will result in such a power input of 5 W m(-3) . This power input will mix the fluid to a degree of 95% in 22 ± 1 s and produce a volumetric mass transfer coefficient of 0.46 ± 0.07 h(-1) .

  12. Assessment of mass transfer and mixing in rigid lab-scale disposable bioreactors at low power input levels.

    PubMed

    van Eikenhorst, Gerco; Thomassen, Yvonne E; van der Pol, Leo A; Bakker, Wilfried A M

    2014-01-01

    Mass transfer, mixing times and power consumption were measured in rigid disposable stirred tank bioreactors and compared to those of a traditional glass bioreactor. The volumetric mass transfer coefficient and mixing times are usually determined at high agitation speeds in combination with sparged aeration as used for single cell suspension and most bacterial cultures. In contrast, here low agitation speeds combined with headspace aeration were applied. These settings are generally used for cultivation of mammalian cells growing adherent to microcarriers. The rigid disposable vessels showed similar engineering characteristics compared to a traditional glass bioreactor. On the basis of the presented results appropriate settings for adherent cell culture, normally operated at a maximum power input level of 5 W m(-3) , can be selected. Depending on the disposable bioreactor used, a stirrer speed ranging from 38 to 147 rpm will result in such a power input of 5 W m(-3) . This power input will mix the fluid to a degree of 95% in 22 ± 1 s and produce a volumetric mass transfer coefficient of 0.46 ± 0.07 h(-1) . PMID:25139070

  13. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the

  14. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  15. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  16. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  17. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  18. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  19. Finite element analysis of an inflatable torus considering air mass structural element

    NASA Astrophysics Data System (ADS)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  20. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  1. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  2. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    PubMed Central

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  3. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  4. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  5. Structural and topographical characteristics of adsorbed WPI and monoglyceride mixed monolayers at the air-water interface.

    PubMed

    Patino, Juan M Rodríguez; Fernández, Marta Cejudo

    2004-05-25

    In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.

  6. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  7. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  8. Experimental study of the operating characteristics of premixing-prevaporizing fuel/air mixing passages

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1983-01-01

    Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.

  9. Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution.

    PubMed

    Allen, Edith B; Temple, Patrick J; Bytnerowicz, Andrzej; Arbaugh, Michael J; Sirulnik, Abby G; Rao, Leela E

    2007-01-01

    The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C) and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient. Tree basal area increased during the 30-year interval in five of the sites. The two westernmost sites had 30-45% cover divided equally between native and exotic understory herbaceous species, while the other sites had only 3-13% cover dominated by native species. The high production is likely related to higher precipitation at the western sites as well as elevated N. The species richness was in the range of 24 to 30 in four of the sites, but one site of intermediate N deposition had 42 species, while the easternmost, least polluted site had 57 species. These were primarily native species, as no site had more than one to three exotic species. In three of six sites, 20-40% of species were lost between 1973 and 2003, including the two westernmost sites. Two sites with intermediate pollution had little change in total species number over 30 years, and the easternmost site had more

  10. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  11. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  12. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  13. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  14. Simultaneous measurement of mass and rotation of trapped absorbing particles in air.

    PubMed

    Bera, Sudipta K; Kumar, Avinash; Sil, Souvik; Saha, Tushar Kanti; Saha, Tanumoy; Banerjee, Ayan

    2016-09-15

    We trap absorbing micro-particles in air by photophoretic forces generated using a single loosely focused Gaussian trapping beam. We measure a component of the radial Brownian motion of a trapped particle cluster and determine the power spectral density, mean squared displacement, and normalized position and velocity autocorrelation functions to characterize the photophoretic body force in a quantitative fashion for the first time. The trapped particles also undergo spontaneous rotation due to the action of this force. This is evident from the spectral density that displays clear peaks at the rotation and the particles' inertial resonance frequencies. We fit the spectral density to the well-known analytical function derived from the Langevin equation, measure the resonance and rotation frequencies, and determine the values for particle mass that we verify at different trapping laser powers with reasonable accuracy. PMID:27628396

  15. Higgs boson mass constraint and the C P even-C P odd Higgs boson mixing in an MSSM extension

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Nath, Pran; Zorik, Anas

    2016-08-01

    One-loop contributions to the C P even-C P odd Higgs boson mixings arising from contributions due to exchange of a vectorlike multiplet are computed under the Higgs boson mass constraint. The vectorlike multiplet consists of a fourth generation of quarks and a mirror generation. This sector brings in new C P phases which can be large consistent with the electric dipole moment constraints. In this work we compute the contributions from the exchange of quarks and mirror quarks t4 L,t4 R,TL,TR, and their scalar partners, the squarks, and the mirror squarks. The effect of their contributions to the Higgs boson masses and mixings are computed and analyzed. The possibility of measuring the effects of mixing of C P even and C P odd Higgs in experiment is discussed. It is shown that the branching ratios of the Higgs bosons into fermion pairs are sensitive to new physics and specifically to C P phases.

  16. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  17. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  18. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  19. Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia.

    PubMed

    Saavedra, S; Rodríguez, A; Taboada, J J; Souto, J A; Casares, J J

    2012-12-15

    High levels of ozone are frequently measured at the Galicia (NW Iberian Peninsula) air quality monitoring stations from March to October. However, there have been very few studies on surface ozone in the northwestern Iberian Peninsula, most likely because the climate of this region is not favourable to photochemical ozone generation. The occurrence of these episodes may be related to either local-scale photochemical pollution or regional-scale transport from other polluted regions. In addition, high ozone episodes usually are developed under specific synoptic conditions. The main purposes of this study are to characterise the atmospheric conditions that lead to the ozone episodes in this region and to identify possible advection paths of ozone and precursors. A surface hourly ozone dataset (2002-2007) measured at rural sites in Galicia was analysed to identify high ozone episodes together with their associated synoptic patterns using a subjective classification with 23 different synoptic types. The synoptic weather patterns revealed that most of the episodes occur with high surface pressures centred over the British Isles and/or Central Europe while a high-altitude anticyclonic ridge crosses the Peninsula from North Africa, causing easterly or southeasterly winds. This analysis was completed with 3-day backward air mass trajectories obtained with HYSPLIT to assess the contribution of long-range transport, resulting in the following main routes: Mediterranean-Peninsular, South Atlantic-Portuguese, local and French-Cantabric.

  20. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  1. Enantiomeric Signatures of Organochlorine Pesticides in Asian, Trans-Pacific and Western U.S. Air Masses

    PubMed Central

    Genualdi, Susan A.; Massey Simonich, Staci L.; Primbs, Toby K.; Bidleman, Terry F.; Jantunen, Liisa M.; Ryoo, Keon-Sang; Zhu, Tong

    2009-01-01

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 meters above sea level (m.a.s.l); Mary’s Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon’s Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon’s Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed as the enantiomeric fraction (1), defined as (+) enantiomer/(sum of the (+) and (−) enantiomers), where a racemic composition has EF = 0.5. Racemic α-hexachlorocyclohexane (α-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Non-racemic α-HCH (EF = 0.528 ± 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the α-HCH EFs were significantly more racemic (EF = 0.513 ± 0.0003, p < 0.001). Racemic α-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The α-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the α-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  2. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed.

  3. Effect of atmospheric mixing layer depth variations on urban air quality and daily mortality during Saharan dust outbreaks

    PubMed Central

    Pandolfi, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Schwartz, J.; Lorente, J.; Pey, J.; Querol, X.

    2016-01-01

    Several epidemiological studies have shown that the outbreaks of Saharan dust over southern European countries can cause negative health effects. The reasons for the increased toxicity of airborne particles during dust storms remain to be understood although the presence of biogenic factors carried by dust particles or the interaction between dust and man-made air pollution have been hypothesized as possible causes. Intriguingly, recent findings have also demonstrated that during Saharan dust outbreaks the local man-made particulates can have stronger effects on health than during days without outbreaks. We show that the thinning of the mixing layer (ML) during Saharan dust outbreaks, systematically described here for the first time, can trigger the observed higher toxicity of ambient local air. The mixing layer height (MLH) progressively reduced with increasing intensity of dust outbreaks thus causing a progressive accumulation of anthropogenic pollutants and favouring the formation of new fine particles or specific relevant species likely from condensation of accumulated gaseous precursors on dust particles surface. Overall, statistically significant associations of MLH with all-cause daily mortality were observed. Moreover, as the MLH reduced, the risk of mortality associated with the same concentration of particulate matter increased due to the observed pollutants accumulation. The association of MLH with daily mortality and the effect of ML thinning on particle toxicity exacerbated when Saharan dust outbreaks occurred suggesting a synergic effect of atmospheric pollutants on health which was amplified during dust outbreaks. Moreover, the results may reflect higher toxicity of primary particles which predominate on low MLH days. PMID:25051327

  4. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  5. T7 flavor symmetry scheme for understanding neutrino mass and mixing in 3-3-1 model with neutral leptons

    NASA Astrophysics Data System (ADS)

    Vien, V. V.

    2014-09-01

    We construct a new version for the 3-3-1 model based on T7 flavor symmetry where the left-handed leptons under T7 differ from those of our previous work while the SU(3)C ⊗SU(3)L ⊗U(1)X gauge symmetry is retained. The flavor mixing patterns and mass splitting are obtained without perturbation. The realistic lepton mixing can be obtained if both the direction of breakings T7 →Z3 and Z3 →{Identity} are taken place in neutrino sector. Maximal CP violation is predicted and Cabibbo-Kobayashi-Maskawa (CKM) matrix is the identity matrix at the tree-level.

  6. Body mass penalties in the physical fitness tests of the Army, Air Force, and Navy.

    PubMed

    Vanderburgh, Paul M; Crowder, Todd A

    2006-08-01

    Recent research has empirically documented a consistent penalty against heavier service members for events identical or similar to those in the physical fitness tests of the Army, Air Force, and Navy. These penalties, which are not related to body fatness, are based on biological scaling models and have a physiological basis. Using hypothetical cases, we quantified the penalties for men, with body mass of 60 vs. 90 kg, and women, 45 vs. 75 kg, to be 15% to 20% for the fitness tests of these three services. Such penalties alone can adversely affect awards and promotions for heavier service members. To deal equitably with these penalties in a practical manner, we offer two recommendations, i.e., (1) implementation of revised fitness tests with balanced events, in which the penalties of one event for heavier service members are balanced by an equal and opposite bias against lighter service members, or (2) development of correction factors that can be multiplied by raw scores to yield adjusted scores free of body mass bias.

  7. Composition of Meridiani Hematite-rich Spherules: A Mass-Balance Mixing-Model Approach

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.; Athena Science Team

    2005-03-01

    A mass-balance model using APXS data and microscopic images indicates that the composition of spherules ("blueberries"), found at the Meridiani site by the Mars Exploration Rover Opportunity and thought to be concretions, contain ~45-60 wt% hematite.

  8. The Effect of Air Preheat at Atmospheric Pressure on the Formation of NO(x) in the Quick-Mix Sections of an Axially Staged Combustor

    NASA Technical Reports Server (NTRS)

    Vardakas, M. A.; Leong, M. Y.; Brouwer, J.; Samuelsen, G. S.; Holdeman, J. D.

    1999-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of nitrogen oxides (NO(x)) in gas turbine systems. The success of this combustor strategy is dependent upon the efficiency of the mixing section bridging the fuel-rich and fuel-lean stages. Note that although these results were obtained from an experiment designed to study an RQL mixer, the link between mixing and NOx signatures is considerably broader than this application, in that the need to understand this link exists in most advanced combustors. The experiment reported herein was designed to study the effects of inlet air temperature on NO(x) formation in a mixing section. The results indicate that NO(x) emission is increased for all preheated cases compared to non-preheated cases. When comparing the various mixing modules, the affect of jet penetration is important, as this determines where NO(x) concentrations peak, and affects overall NO(x) production. Although jet air comprises 70 percent of the total airflow, the impact that jet air preheat has on overall NO(x) emissions is small compared to preheating both main and jet air flow.

  9. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  10. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer

    SciTech Connect

    Ju, Y.; Niioka, T. . Inst. of Fluid Science)

    1994-11-01

    Transient ignition processes in a two-dimensional spatially evolving supersonic mixing layer consisting of a parallel nonpremixed airstream and a hydrogen stream both with temperatures higher than 1,000 K were investigated numerically by using the full chemistry and its reduced chemistry. A phenomenon different from that examined in previous studies, in which ignition of hydrogen/oxygen mixtures was considered, was found in the nonpremixed case examined here. It was shown that the concentration of O was greater than that of OH before ignition, but became smaller with the development of ignition process. Fourteen important reactions for ignition were obtained and verified using sensitivity analyses of ignition delay time and radical concentrations. Several different four-step and three-step reduced kinetic mechanisms were then deduced by introducing the steady-state approximation to different species. Comparison of these reduced kinetic mechanisms with the full chemistry showed that the steady-state approximation of O used in previous studies caused serious errors in the prediction of ignition delay time in supersonic flow, in which nonpremixed character is predominant and the transport phenomenon is important. Ignition locations predicted with the proper four-step and three-step reduced kinetic mechanisms were within 5% and 20% of those predicted with the full chemistry. Finally, these two reduced mechanisms were used to evaluate the effect of viscous dissipation on ignition in the supersonic shear layer. Good agreements between the results of the present reduced kinetic mechanisms and those of the full chemistry were obtained.

  11. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  12. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  13. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, i.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  14. Mixed O/W emulsions stabilized by solid particles: a model system for controlled mass transfer triggered by surfactant addition.

    PubMed

    Drelich, Audrey; Grossiord, Jean-Louis; Gomez, François; Clausse, Danièle; Pezron, Isabelle

    2012-11-15

    This article deals with a model mixed oil-in-water (O/W) emulsion system developed to study the effect of surfactants on mass transfer between dispersed oil droplets of different composition. In this purpose, our goal was to formulate O/W emulsions without any surface active agents as stabilizer, which was achieved by replacing surfactants by a mixture of hydrophilic/hydrophobic silica particles. Then, to study the specific role of surfactants in the oil transfer process, different types and concentrations of surfactants were added to the mixed emulsion after its preparation. In such a way, the same original emulsion can be used for all experiments and the influence of various surface active molecules on the oil transfer mechanism can be directly studied. The model mixed emulsion used consists of a mixture of hexadecane-in-water and tetradecane-in-water emulsions. The transfer between tetradecane and hexadecane droplets was monitored by using differential scanning calorimetry, which allows the detection of freezing and melting signals characteristic of the composition of the dispersed oil droplets. The results obtained showed that it is possible to trigger the transfer of tetradecane towards hexadecane droplets by adding surfactants at concentrations above their critical micellar concentration, measured in presence of solid particles, through micellar transport mechanism. PMID:22909967

  15. Bench-scale feasibility testing of pulsed-air technology for in-tank mixing of dry cementitious solids with tank liquids and settled solids

    SciTech Connect

    Whyatt, G.A.; Hymas, C.R.

    1997-09-01

    This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the {open_quotes}V{close_quotes} tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consisted of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing.

  16. Contaminants of Emerging Concern: Mass Balance and Comparison of Wastewater Effluent and Upstream Sources in a Mixed-Use Watershed.

    PubMed

    Fairbairn, David J; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth F; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L

    2016-01-01

    Understanding the sources, transport, and spatiotemporal variability of contaminants of emerging concern (CECs) is important for understanding risks and developing monitoring and mitigation strategies. This study used mass balances to compare wastewater treatment plant (WWTP) and upstream sources of 16 CECs to a mixed-use watershed in Minnesota, under different seasonal and hydrological conditions. Three distinct CEC groups emerged with respect to their source proportionality and instream behavior. Agricultural herbicides and daidzein inputs were primarily via upstream routes with the greatest loadings and concentrations during high flows. Trimethoprim, mecoprop, nonprescription pharmaceuticals, and personal care products entered the system via balanced/mixed pathways with peak loadings and concentrations in high flows. Carbaryl, 4-nonylphenol, and the remaining prescription pharmaceuticals entered the system via WWTP effluent with relatively stable loadings across sampling events. Mass balance analysis based on multiple sampling events and sites facilitated CEC source comparisons and may therefore prove to be a powerful tool for apportioning sources and exploring mitigation strategies. PMID:26605430

  17. Seasonal cycle and interannual variability of the total CH4 mixing ratios in West Siberia: Results from AIRS/AMSU and chemistry transport models for 2003-2013

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Mordvin, Egor

    Methane (CH4) is an important greenhouse gas. It has much higher global warming potential comparing to carbon dioxide on per mass emitted basis. Atmospheric methane also plays an important role in atmospheric ozone chemistry and is the main source of water vapor in the stratosphere. The recent increase of CH4 in 2007-2008, after a nearly stable period of about one decade, is attributed to the increased emissions from tropical and Arctic wetlands. However, many uncertainties regarding natural and anthropogenic methane emissions still exist. For example, the total CH4 emissions from wetlands in West Siberia are estimated to be in the range from 1.6 to 20 Tg/year. The main causes leading to such large uncertainties are significant spatial and temporal variation of CH4 emissions and the sparseness of ground observational networks. The purpose of this study is to investigate the seasonal cycle and interannual variability of the total CH4 mixing ratios (CH4-Tot) in West Siberia for 2003-2013 using the AIRS/AMSU-Aqua measurements and the results from chemistry transport models MOZART4 and ACTM-CCSR/NIES/FRCGC. The key feature of the proposed approach is chemistry transport model-based regression equation linking CH4-Tot with mid-upper tropospheric CH4 (in the layer from 50 to 250 hPa below the tropopause), the tropopause height and the surface temperature. The observational information in our approach comes from the AIRS/AMSU measurements. Comparison of the retrieved CH4-Tot with the measurements of CH4 from the Total Carbon Column Observing Network (TCCON) have shown that the model captures observed seasonal cycles and interannual variability at mid-latitude sites. The spatial and temporal distributions of CH4-Tot in West Siberia for 2003-2013 are presented. Analysis of deseasonalized time-series indicates that the total CH4 mixing ratios increases about 4 ppbv/yr from 2007. This work was supported in part by the Russian Foundation for Basic Research (grant No 13

  18. Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Sartelet, Karine; Raut, Jean-Christophe; Chazette, Patrick

    2015-04-01

    Impacts of meteorological modeling in the planetary boundary layer (PBL) and urban canopy model (UCM) on the vertical mixing of pollutants are studied. Concentrations of gaseous chemical species, including ozone (O3) and nitrogen dioxide (NO2), and particulate matter over Paris and the near suburbs are simulated using the 3-dimensional chemistry-transport model Polair3D of the Polyphemus platform. Simulated concentrations of O3, NO2 and PM10/PM2.5 (particulate matter of aerodynamic diameter lower than 10 μm/2.5 μm, respectively) are first evaluated using ground measurements. Higher surface concentrations are obtained for PM10, PM2.5 and NO2 with the MYNN PBL scheme than the YSU PBL scheme because of lower PBL heights in the MYNN scheme. Differences between simulations using different PBL schemes are lower than differences between simulations with and without the UCM and the Corine land-use over urban areas. Regarding the root mean square error, the simulations using the UCM and the Corine land-use tend to perform better than the simulations without it. At urban stations, the PM10 and PM2.5 concentrations are over-estimated and the over-estimation is reduced using the UCM and the Corine land-use. The ability of the model to reproduce vertical mixing is evaluated using NO2 measurement data at the upper air observation station of the Eiffel Tower, and measurement data at a ground station near the Eiffel Tower. Although NO2 is under-estimated in all simulations, vertical mixing is greatly improved when using the UCM and the Corine land-use. Comparisons of the modeled PM10 vertical distributions to distributions deduced from surface and mobile lidar measurements are performed. The use of the UCM and the Corine land-use is crucial to accurately model PM10 concentrations during nighttime in the center of Paris. In the nocturnal stable boundary layer, PM10 is relatively well modeled, although it is over-estimated on 24 May and under-estimated on 25 May. However, PM10 is

  19. On the association between daily mortality and air mass types in Athens, Greece during winter and summer

    NASA Astrophysics Data System (ADS)

    Kassomenos, Pavlos A.; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  20. Applying Chemical Potential and Partial Pressure Concepts to Understand the Spontaneous Mixing of Helium and Air in a Helium-Inflated Balloon

    ERIC Educational Resources Information Center

    Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim

    2005-01-01

    The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…

  1. Development of a nucleotide sugar purification method using a mixed mode column & mass spectrometry detection.

    PubMed

    Eastwood, Heather; Xia, Fang; Lo, Mei-Chu; Zhou, Jing; Jordan, John B; McCarter, John; Barnhart, Wesley W; Gahm, Kyung-Hyun

    2015-11-10

    Analysis of nucleotide sugars, nucleoside di- and triphosphates and sugar-phosphates is an essential step in the process of understanding enzymatic pathways. A facile and rapid separation method was developed to analyze these compounds present in an enzymatic reaction mixture utilized to produce nucleotide sugars. The Primesep SB column explored in this study utilizes hydrophobic interactions as well as electrostatic interactions with the phosphoric portion of the nucleotide sugars. Ammonium formate buffer was selected due to its compatibility with mass spectrometry. Negative ion mode mass spectrometry was adopted for detection of the sugar phosphate (fucose-1-phophate), as the compound is not amenable to UV detection. Various mobile phase conditions such as pH, buffer concentration and organic modifier were explored. The semi-preparative separation method was developed to prepare 30mg of the nucleotide sugar. (19)F NMR was utilized to determine purity of the purified fluorinated nucleotide sugar. The collected nucleotide sugar was found to be 99% pure.

  2. Determination of propofol glucuronide from hair sample by using mixed mode anion exchange cartridge and liquid chromatography tandem mass spectrometry.

    PubMed

    Kwak, Jae-Hwan; Kim, Hye Kyung; Choe, Sanggil; In, Sangwhan; Pyo, Jae Sung

    2016-03-15

    The main objective of this study was to develop and validate a simpler and less time consuming analytical method for determination of propofol glucuronide from hair sample, by using mixed mode anion exchange cartridge and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The study uses propofol glucuronide, a major metabolite of propofol, as a marker for propofol abuse. The hair sample was digested in sodium hydroxide solution and loaded in mixed-mode anion cartridge for solid phase extraction. Water and ethyl acetate were used as washing solvents to remove interfering substances from the hair sample. Consequently, 2% formic acid in ethyl acetate was employed to elute propofol glucuronide from the sorbent of mixed-mode anion cartridge, and analyzed by LC-MS/MS. The method validation parameters such as selectivity, specificity, LOD, LLOQ, accuracy, precision, recovery, and matrix effect were also tested. The linearity of calibration curves showed good correlation, with correlation coefficient 0.998. The LOD and LLOQ of the propofol glucuronide were 0.2 pg/mg and 0.5 pg/mg, respectively. The intra and inter-day precision and accuracy were acceptable within 15%. The mean values of recovery and matrix effect were in the range of 91.7-98.7% and 87.5-90.3%, respectively, signifying that the sample preparation, washing and extraction procedure were efficient, and there was low significant hair matrix effect for the extraction of propofol glucuronide from hair sample on the mixed mode anion cartridge. To evaluate the suitability of method, the hair of propofol administered rat was successfully analyzed with this method.

  3. Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.

    PubMed

    Michels, Nathalie; Huybrechts, Inge; Bammann, Karin; Lissner, Lauren; Moreno, Luis; Peeters, Maarten; Sioen, Isabelle; Vanaelst, Barbara; Vyncke, Krishna; De Henauw, Stefaan

    2013-04-28

    The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5-11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  4. Adsorption of β-casein-surfactant mixed layers at the air-water interface evaluated by interfacial rheology.

    PubMed

    Maestro, Armando; Kotsmar, Csaba; Javadi, Aliyar; Miller, Reinhard; Ortega, Francisco; Rubio, Ramón G

    2012-04-26

    This work presents a detailed study of the dilational viscoelastic moduli of the adsorption layers of the milk protein β-casein (BCS) and a surfactant at the liquid/air interface, over a broad frequency range. Two complementary techniques have been used: a drop profile tensiometry technique and an excited capillary wave method, ECW. Two different surfactants were studied: the nonionic dodecyldimethylphosphine oxide (C12DMPO) and the cationic dodecyltrimethylammonium bromide (DoTAB). The interfacial dilational elasticity and viscosity are very sensitive to the composition of protein-surfactant mixed adsorption layers at the air/water interface. Two different dynamic processes have been observed for the two systems studied, whose characteristic frequencies are close to 0.01 and 100 Hz. In both systems, the surface elasticity was found to show a maximum when plotted versus the surfactant concentration. However, at frequencies above 50 Hz the surface elasticity of BCS + C12DMPO is higher than the one of the aqueous BCS solution over most of the surfactant concentration range, whereas for the BCS + DoTAB it is smaller for high surfactant concentrations and higher at low concentrations. The BCS-surfactant interaction modifies the BCS random coil structure via electrostatic and/or hydrophobic interactions, leading to a competitive adsorption of the BCS-surfactant complexes with the free, unbound surfactant molecules. Increasing the surfactant concentration decreases the adsorbed proteins. However, the BCS molecules are rather strongly bound to the interface due to their large adsorption energy. The results have been fitted to the model proposed by C. Kotsmar et al. ( J. Phys. Chem. B 2009 , 113 , 103 ). Even though the model describes well the concentration dependence of the limiting elasticity, it does not properly describe its frequency dependence.

  5. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  6. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  7. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  8. Mass Commuting and Influenza Vaccination Prevalence in New York City: Protection in a Mixing Environment

    PubMed Central

    Levine, Burton; Wilcosky, Tim; Wagener, Diane; Cooley, Phillip

    2010-01-01

    Objective Assess influenza vaccination among commuters using mass transit in New York City (NYC). Methods We used the 2006 NYC Community Health Survey (CHS) to analyze the prevalence of influenza immunization by commuting behaviors and to understand what socioeconomic and geographic factors may explain any differences found. Results Vaccination prevalence is significantly lower for New Yorkers who commute on public transportation compared to other New Yorkers. This difference is largely attenuated after adjusting for socio-demographic characteristics and neighborhood of residence. Conclusions The analysis identified a low prevalence of immunization among commuters, and given the transmissibility in that setting, targeting commuters for vaccination campaigns may impede influenza spread. PMID:21218159

  9. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  10. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  11. Climatological classification of five sectors in the Iberian Peninsula using columnar (AOD, α) and surface (PM10, PM2.5) aerosol data supported by air mass apportioning

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria; Mateos, David; Toledano, Carlos; Burgos, Maria A.; Bennouna, Yasmine; Torres, Benjamín; Fuertes, David; González, Ramiro; Guirado, Carmen; Román, Roberto; Velasco-Merino, Cristian; Marcos, Alberto; Calle, Abel; de Frutos, Angel M.

    2015-04-01

    The study of atmospheric aerosol over the Iberian Peninsula (IP) under a climatologic perspective is an interesting and meaningful aim due to the wide variety of conditions (geographical position, air masses, topography, among others) which cause a complex role of the distribution of aerosol properties. In the deeply investigation on the annual cycle and time evolution of the particulate matter lower than 10 µm (PM10, surface) and aerosol optical depth (AOD, columnar) in a large number of sites covering the period 2000-2013, five sectors can be distinguished in the IP. Both set of data belong to EMEP and AERONET networks respectively, as representative of aerosol air quality and climate studies, are complementary elements for a global aerosol research. The prevalence of fine-coarse particles is also analyzed over each sector. Seasonal bimodality of the PM10 annual cycle with a strong North-South gradient is observed in most sites, but this is only reported in the AOD climatology for the southern IP. The northern coast is clearly governed by the Atlantic Ocean influence, while the northeastern area is modulated by the Mediterranean Sea. The southern area, very close to the African continent, presents a large influence of desert dust intrusions. However, the southern Atlantic and Mediterranean coast present discrepancies and two sectors have been defined in this area. Finally, the center of the Peninsula is a mix of conditions, with north-south and east-west gradients of different magnitude. Overall, there is a relationship between PM10 and AOD with a proportional factor varying from 20 to 90, depending on the sector. The particular characteristic of PM10-AOD annual cycle of each geographical sector can be understood by the different climatology of the air mass origins observed at 500 and 1500 m (a.s.l.) and its apportioning to PM10 and AOD, respectively.

  12. Development of a nucleotide sugar purification method using a mixed mode column & mass spectrometry detection.

    PubMed

    Eastwood, Heather; Xia, Fang; Lo, Mei-Chu; Zhou, Jing; Jordan, John B; McCarter, John; Barnhart, Wesley W; Gahm, Kyung-Hyun

    2015-11-10

    Analysis of nucleotide sugars, nucleoside di- and triphosphates and sugar-phosphates is an essential step in the process of understanding enzymatic pathways. A facile and rapid separation method was developed to analyze these compounds present in an enzymatic reaction mixture utilized to produce nucleotide sugars. The Primesep SB column explored in this study utilizes hydrophobic interactions as well as electrostatic interactions with the phosphoric portion of the nucleotide sugars. Ammonium formate buffer was selected due to its compatibility with mass spectrometry. Negative ion mode mass spectrometry was adopted for detection of the sugar phosphate (fucose-1-phophate), as the compound is not amenable to UV detection. Various mobile phase conditions such as pH, buffer concentration and organic modifier were explored. The semi-preparative separation method was developed to prepare 30mg of the nucleotide sugar. (19)F NMR was utilized to determine purity of the purified fluorinated nucleotide sugar. The collected nucleotide sugar was found to be 99% pure. PMID:26279371

  13. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface.

    PubMed

    Villa, Federica; Pitts, Betsey; Lauchnor, Ellen; Cappitelli, Francesca; Stewart, Philip S

    2015-01-01

    Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments. PMID:26635736

  14. Development of a Laboratory Model of a Phototroph-Heterotroph Mixed-Species Biofilm at the Stone/Air Interface

    PubMed Central

    Villa, Federica; Pitts, Betsey; Lauchnor, Ellen; Cappitelli, Francesca; Stewart, Philip S.

    2015-01-01

    Recent scientific investigations have shed light on the ecological importance and physiological complexity of subaerial biofilms (SABs) inhabiting lithic surfaces. In the field of sustainable cultural heritage (CH) preservation, mechanistic approaches aimed at investigation of the spatiotemporal patterns of interactions between the biofilm, the stone, and the atmosphere are of outstanding importance. However, these interactions have proven difficult to explore with field experiments due to the inaccessibility of samples, the complexity of the ecosystem under investigation and the temporal resolution of the experiments. To overcome these limitations, we aimed at developing a unifying methodology to reproduce a fast-growing, phototroph-heterotroph mixed species biofilm at the stone/air interface. Our experiments underscore the ability of the dual-species SAB model to capture functional traits characteristic of biofilms inhabiting lithic substrate such as: (i) microcolonies of aggregated bacteria; (ii) network like structure following surface topography; (iii) cooperation between phototrophs and heterotrophs and cross feeding processes; (iv) ability to change the chemical parameters that characterize the microhabitats; (v) survival under desiccation and (vi) biocide tolerance. With its advantages in control, replication, range of different experimental scenarios and matches with the real ecosystem, the developed model system is a powerful tool to advance our mechanistic understanding of the stone-biofilm-atmosphere interplay in different environments. PMID:26635736

  15. Chiral Signatures of Anthropogenic Semi-Volatile Organic Compounds in Asian, trans- Pacific, and Pacific Northwestern Air Masses

    NASA Astrophysics Data System (ADS)

    Genualdi, S.; Primbs, T.; Bidleman, T.; Jantunen, L.; Simonich, S.

    2006-12-01

    The goal of this research is to use the chiral signatures of Semi-Volatile Organic Compounds (SOCs) to distinguish between new and old sources in Asian, trans-Pacific, and regional air masses. During 2004, a six week air sampling campaign was conducted at a remote site in Okinawa, Japan to determine the chemical composition of Eurasian air masses. During 2003 and 2004, high volume air samples were collected at three different locations in the Pacific Northwest of the United States. These sampling locations were; Mary's Peak Observatory (MPO) located at 1250m in the Oregon Coast Range, Mt. Bachelor located at 2800m in Oregon's Cascade Range, and Cheeka Peak Observatory (CPO) located at 500m in the state of Washington. The air samples consisted of both polyurethane foam and XAD-2 resin to collect the gas phase SOCs, and glass fiber filters to collect the particulate phase SOCs. The samples were extracted using accelerated solvent extraction and enantiomer fractions were determined using GCMS-ECNI with the use of a BGB Analytik chiral column. The chiral SOCs, á-Hexachlorocyclohexane, cis and trans chlordane, heptachlor epoxide, and o'p' DDT, were measured, the enantiomer ratios were determined, and potential new and historical sources of these compounds were identified.

  16. Associations between Prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index

    PubMed Central

    Coull, Brent A.; Just, Allan C.; Maxwell, Sarah L.; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Wright, Rosalind J.; Wright, Robert O.

    2015-01-01

    Background Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. Objectives We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Methods Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Results Median birth weight was 3.3±0.6 kg; 33% of mothers were obese (BMI ≥30 kg/m3). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (−0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: −0.79 to −0.06) ( PM2.5 × sex × obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Conclusions Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. PMID:25601728

  17. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    {sup {minus}7}, 10{sup {minus}5}, and 10{sup {minus}5} respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10{sup {minus}5}, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  18. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  19. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals.

    PubMed

    Liu, Yuan; Illangasekare, Tissa H; Kitanidis, Peter K

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t(2)), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  20. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  1. An argon-nitrogen-hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2014-09-01

    Multivariate optimization of an argon-nitrogen-hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being - 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N2 in the outer plasma gas, and 0.50% v/v H2 to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO+ and Ar2+ as well as oxide levels by over an order of magnitude. On the other hand, the background from NO+ and ArN+ increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization.

  2. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  3. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-07-16

    Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils. PMID:26073811

  4. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  5. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency.

  6. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    PubMed Central

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  7. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw.

    PubMed

    Zhou, Sheng; Zhang, Jining; Zou, Guoyan; Riya, Shohei; Hosomi, Masaaki

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure treatment Oxidation Ditch system was used as the study control. The results suggest that methane yield using the proposed DT-AD system increased with a higher C/N ratio and shorter SRT. Correspondently, for the DT-AD system running with SRT of 80 days, the net energy yields for all treatments were negative, due to low biogas production and high heat loss of digestion tank. However, the biogas yield increased when the SRT was shortened to 40 days, and the generated energy was greater than consumed energy when C/N ratio was 20 : 1 and 30 : 1. The results suggest that with the correct optimization of C/N ratio and SRT, the proposed DT-AD system, followed by using digestate for forage rice production, can attain energy self-sufficiency. PMID:26609436

  8. Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry.

    PubMed

    Tumbiolo, Simonetta; Gal, Jean-François; Maria, Pierre-Charles; Zerbinati, Orfeo

    2004-11-01

    The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 microg/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 microg/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.

  9. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2015-09-01

    We present the characterization and application of a new gas chromatography-time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δ m of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 Th/Th and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found around 5 ppm after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits were as low as a few femtograms as mass traces could be made highly specific for selected molecule fragments with the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. The TOFMS was found to be linear within a concentration range from about 1 pg to 1 ng of analyte per Liter of air. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straight-forward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well-suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, low resolution quadrupole MS and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  10. A computational investigation of fuel mixing in a hypersonic scramjet

    NASA Technical Reports Server (NTRS)

    Fathauer, Brett W.; Rogers, R. C.

    1993-01-01

    A parabolized, Navier-Stokes code, SHIP3D, is used to numerically investigate the mixing between air injection and hydrogen injection from a swept ramp injector configuration into either a mainstream low-enthalpy flow or a hypervelocity test flow. The mixing comparisons between air and hydrogen injection reveal the importance of matching injectant-to-mainstream mass flow ratios. In flows with the same injectant-to-mainstream dynamic pressure ratio, the mixing definition was altered for the air injection cases. Comparisons of the computed results indicate that the air injection cases overestimate the mixing performance associated with hydrogen injection simulation. A lifting length parameter, to account for the time a fluid particle transverses through the mixing region, is defined and used to establish a connection of injectant mixing in hypervelocity flows, based on nonreactive, low-enthalpy flows.

  11. Volatile metabolite production of spoilage micro-organisms on a mixed-lettuce agar during storage at 7 degrees C in air and low oxygen atmosphere.

    PubMed

    Ragaert, P; Devlieghere, F; Devuyst, E; Dewulf, J; Van Langenhove, H; Debevere, J

    2006-11-01

    This paper describes the volatile metabolite production of spoilage bacteria (Pantoea agglomerans and Rahnella aquatilis) and spoilage yeasts (Pichia fermentans and Cryptococcus laurentii), previously isolated from mixed lettuce, on a simulation medium of shredded mixed lettuce (mixed-lettuce agar) both under air conditions and modified atmosphere (MA)-conditions at 7 degrees C. These latter conditions simulated the equilibrium modified atmosphere packaging, which is used to extend the shelf-life of shredded mixed lettuce. Besides volatile metabolites, organic acid metabolites and consumption of sugars were measured. Microbiological growth on the mixed-lettuce agar resulted in metabolite production and consumption of sugars. Bacteria and yeasts produced a range of volatile organic compounds both under air conditions and MA-conditions: ethanol, ethyl acetate, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2,3-butanedione, 3-methyl-1-pentanol, 1-butanol and 1-hexanol. Under MA-conditions, 2-methyl-1-butanol, 3-methyl-1-butanol and ethanol were the first compounds that were detected in the headspace as being produced by the inoculated micro-organisms. In the case of the yeast P. fermentans, production of these compounds was detected from a count of 5.0+/-0.1 log cfu/cm(2) with a fast increase when exceeding 6.0-6.5 log cfu/cm(2). Unlike P. fermentans, the yeast C. laurentii showed a slow metabolism under MA-conditions, compared to air conditions. In the case of the bacteria, production of 2-methyl-1-butanol and 3-methyl-1-butanol was detected starting from a count of 6.7+/-0.1 log cfu/cm(2) in the case of R. aquatilis and from a count of 7.1+/-0.4 log cfu/cm(2) in the case of P. agglomerans with a fast increase when exceeding 8 log cfu/cm(2). No production of ethanol by the bacteria under MA-conditions was detected in contradiction to air conditions. It could be concluded that, if these counts are reached on the cut surfaces of shredded mixed lettuce

  12. Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2015-12-01

    The Pacific decadal oscillation (PDO) recently emerged in the literature as a robust signal in the Northern Hemisphere climate variability. Many studies reported that the relationships between PDO and East Asian monsoon (EAM) and climate variability in China are significant. However, the possible mechanisms are still unclear. The present study investigates the interdecadal relationship between Pacific decadal oscillation (PDO) and interhemispheric air mass imbalance or oscillation (IHO) between the Northern and Southern Hemispheres. The possible connection of PDO and IHO with both East Asian monsoon and climate variability in China are also assessed in this study. It is found that the interdecadal components (11-38 years) of PDO, IHO, and EAM contribute large variance to low frequency variations, and they are well-matched with each other on (inter)decadal timescale. In particular, their negative phases mainly appeared in the 1970s and late 1990s, while positive phase in period from 1980s to mid 1990s. Decadal change of global mean air columnar temperature may be the key factor for the notable difference between PDO and IHO from mid 1970s to mid 1990s. The spatial distributions of PDO and IHO associated surface air temperature and surface pressure anomalies exhibit highly similar and large scale characteristics, indicative of their intimate linkage with air mass redistribution over global domain especially over 300S-500N. The PDO associated columnar integral of velocity potential anomalies that maintain the air mass redistribution, show a dipole pattern with air mass flux emanating mainly from the eastern hemisphere to the Pacific regions in positive PDO phase. This contributes to hemispherical and land-sea mass exchange and redistribution, and also leads to the decadal displacement of both upward and downward branch of Walker circulation. In positive phase of PDO, an anomalous anticyclone is found in the Mongolian region in both boreal summer and winter seasons

  13. New high efficiency mixed cycles with air-blown combustion for CO{sub 2} emission abatement

    SciTech Connect

    Gambini, M.; Guizzi, G.L.; Vellini, M.

    1999-07-01

    In this paper a new advanced mixed cycle (AMC) for CO{sub 2} emission abatement with high conversion efficiency is presented. The AMC plant lay-out consists of a reheat gas turbine with steam injection in the first combustion chamber, a steam turbine for steam expansion before its injection, a heat recovery boiler for superheated and resuperheated steam generation and an atmospheric separator for water recovery from exhaust gas mixture. The steam recirculation in the cycle allows to reduce the excess of air to limit the turbine inlet temperature and then to enrich the exhaust gas by CO{sub 2}, as it occurs in combined cycle provided with exhaust gas recirculation at the compressor inlet. This involves a stack flow rate much lower than in conventional cycle configuration sot that exhaust gas treatment for CO{sub 2} removal may be usefully applied. In this work the chemical absorption technique for CO{sub 2} removal has been considered. The thermodynamic performance of the proposed AMC plant has been investigated in comparison with that attainable by combined cycle power plants (CC). This comparison has been developed pointing out the efficiency decrease involved by the CO{sub 2} removal systems and by the unit for the liquefaction of the removed carbon dioxide. The main result of the performed investigation is that while the two plants attain the same efficiency level without CO{sub 2} removal (about 56% for AMC and 55.8% for CC) the AMC plant achieves a net electric efficiency of about 50% with CO{sub 2} removal and liquefaction units: it's over 2 points higher than the efficiency evaluated for the Cc equipped with the same CO{sub 2} units (about 47.7%). The final carbon dioxide emissions are about 0.04 kg/kWh for AMC and CC, while the emissions of the plants without CO{sub 2} removal systems are about 0.36 kg/kWh.

  14. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  15. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  16. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  17. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  18. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  19. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  20. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface.

  1. Tensiometry and dilational rheology of mixed β-lactoglobulin/ionic surfactant adsorption layers at water/air and water/hexane interfaces.

    PubMed

    Dan, Abhijit; Gochev, Georgi; Miller, Reinhard

    2015-07-01

    Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. PMID:25666640

  2. The effect of incomplete fuel-air mixing on the lean limit and emissions characteristics of a Lean Prevaporized Premixed (LPP) combustor

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Steinberger, R. L.; Gibbons, K. A.; Citeno, J. V.; Mills, S.

    1993-01-01

    Results are presented from an experimental study of the effect of incomplete fuel-air mixing on the lean limit and emissions characteristics of a lean, prevaporized, premixed (LPP), coaxial mixing tube combustor. Two-dimensional exciplex fluorescence was used to characterize the degree of fuel vaporization and mixing at the combustor inlet under non-combusting conditions. These tests were conducted at a pressure of 4 atm., a temperature of 400 C, a mixer tube velocity of 100 m/sec and an equivalence ratio of .8, using a mixture of tetradecane, 1 methyl naphthalene and TMPD as a fuel simulant. Fuel-air mixtures with two distinct spatial distributions were studied. The exciplex measurements showed that there was a significant amount of unvaporized fuel at the combustor entrance in both cases. One case, however, exhibited a very non-uniform distribution of fuel liquid and vapor at the combustor entrance, i.e., with most of the fuel in the upper half of the combustor tube, while in the other case, both the fuel liquid and vapor were much more uniformly distributed across the width of the combustor entrance. The lean limit and emissions measurements were all made at a pressure of 4 atm. and a mixer tube velocity of 100 m/sec, using Jet A fuel and both fuel-air mixture distributions. Contrary to what was expected, the better mixed case was found to have a substantially leaner operating limit. The two mixture distributions also unexpectedly resulted in comparable NO(x) emissions, for a given equivalence ratio and inlet temperature, however, lower NO(x) emissions were possible in the better mixed case due to its leaner operating limit.

  3. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  4. Correlation of chain length compatibility and surface properties of mixed foaming agents with fluid displacement efficiency and effective air mobility in porous media

    SciTech Connect

    Sharma, M.K.; Bringham, W.E.; Shah, D.O.

    1984-05-01

    The effects of chain length compatibility and surface properties of mixed foaming agents on fluid displacement efficiency and effective air mobility in porous media were investigated. Sodium dodecyl sulfate (C/sub 12/H/sub 25/SO/sub 4/Na) and various alkyl alcohols (e.g., C/sub 8/OH,C/sub 10/OH,C/sub 12/OH,C/sub 14/OH, and C/sub 16/OH) were used as mixed foaming agents. It was observed that the surface properties of surfactant solutions and flow behavior of foams through porous media were influenced by the chain length compatibility of the surfactant molecules. The increase in the length of porous media improved fluid displacement efficiency while breakthrough time per unit length decreased slightly with increase in the length of porous media. For mixed surfactant systems, a minimum in surface tension, a maximum in surface viscosity, a minimum in bubble size, a maximum in breakthrough time, a maximum in fluid displacement efficiency, and a minimum in effective air mobility were observed when the two components of the surfactant system had the same chain length. These results indicate that the surface properties of foaming solutions and molecular packing at interfaces exhibit a striking correlation with breakthrough time, fluid displacement efficiency, and effective air mobility in porous media.

  5. Distortion of thermospheric air masses by horizontal neutral winds over Poker Flat Alaska measured using an all-sky scanning Doppler imager

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.

    2016-01-01

    An air mass transported by a wind field will become distorted over time by any gradients present in the wind field. To study this effect in Earth's thermosphere, we examine the behavior of a simple parameter that we describe here as the "distortion gradient." It incorporates all of the wind field's departures from uniformity and is thus capable of representing all contributions to the distortion or mixing of air masses. The distortion gradient is defined such that it is always positive, so averaging over time and/or space does not suppress small-scale features. Conventional gradients, by contrast, are signed quantities that would often average to zero. To analyze the climatological behavior of this distortion gradient, we used three years (2010, 2011, and 2012) of thermospheric F region wind observations from a high-latitude ground-based all-sky wavelength scanning Doppler Fabry-Perot interferometer located at Poker Flat Alaska. Climatological averaging of the distortion gradient allowed us to investigate its diurnal and seasonal (annual) behaviors at our observing location. Distortion was observed to be higher before local magnetic midnight and to be seasonally dependent. While maximum distortion occurred before local magnetic midnight under all geomagnetic conditions, the peak distortion occurred earlier under moderate geomagnetic conditions as compared to the quiet geomagnetic conditions and even earlier still when geomagnetic conditions were active. Peak distortion was stronger and appeared earlier when interplanetary magnetic field (IMF) was southward compared to northward. By contrast, we could not resolve any time-shift effect due to the IMF component tangential to Earth's orbit.

  6. Determination of fungicides in wine by mixed-mode solid phase extraction and liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Carpinteiro, I; Ramil, M; Rodríguez, I; Cela, R

    2010-11-26

    A novel procedure for the determination of nine selected fungicides (metalaxyl-M, azoxystrobin, myclobutanil, flusilazole, penconazole, tebuconazole, propiconazole, diniconazole and difenoconazole) in wine samples is presented. Sample enrichment and purification is simultaneously performed using mixed-mode, anion exchange and reversed-phase, OASIS MAX solid-phase extraction (SPE) cartridges. Analytes were determined by liquid chromatography coupled to tandem mass spectrometry using atmospheric pressure electrospray ionization (LC-ESI-MS/MS). Parameters affecting the chromatographic determination and the extraction-purification processes were thoroughly investigated. Under optimized conditions, 10 mL of wine were firstly diluted 1:1 with ultrapure water and then passed through the mixed-mode SPE cartridge at a flow of ca. 5 mLmin(-1). After a washing step with 5 mL of an aqueous NH(4)OH solution (5%, w:v), analytes were recovered with just 1 mL of methanol and injected in the LC-MS/MS system without any additional purification. The selective extraction process avoided significant changes in the ionization efficiency for red and white wine extracts in comparison with pure standards in methanol. Performance of the method was good in terms of precision (RSDs<11%) and accuracy (absolute recoveries>72%, determined against pure standards in methanol) reporting method LOQs in the range of 0.01-0.79 ngmL(-1) for target compounds, which are far below the EU maxima residue levels (MRLs) for fungicides in vinification grapes and wine. Several commercial wines from different geographic areas in Spain were analyzed. In most samples, metalaxyl-M and azoxystrobin were found at concentrations up to several ngmL(-1). PMID:20971470

  7. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  8. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  9. Physical and Temporal Controls on Lower Crustal Melting and Mixing: Mass and Enthalpy Transport in Actively Growing Arcs

    NASA Astrophysics Data System (ADS)

    Dufek, J. D.; Bergantz, G. W.

    2004-12-01

    The growth of continental crust in arc settings, as well as the thermal and compositional character of the crust, is ultimately dictated by the flux of basaltic magma from the mantle and the interaction between crustal and basaltic material. We present a quantitative assessment of the thermal and dynamic response of the lower crust to the intrusion of basaltic dike swarms in a two-dimensional, stochastic computational framework. We will examine the physical and temporal controls on crustal melting, mingling, and mixing as well as some of the major element, trace element, and U-series consequences of these lower crustal interactions. Distinct melting and mixing environments are predicted as a result of the crustal thickness, flux of basalt, and age of the arc system. Shallow crustal (approx. 30 km) environments and arc settings with low fluxes of mantle basalt are likely repositories of isolated pods of mantle and crustal melts in the lower crust, both converging on dacitic to rhyodacitic composition. These may be preferentially rejuvenated in subsequent intrusive episodes. Mature arc systems with thicker crust (approx. 50 km) produce higher crustal and residual basaltic melt fractions reaching approx. .4 for geologically reasonable basalt fluxes. The basaltic to basaltic-andesite composition of both crustal and mantle melts will readily mix as the network of dikes collapses and Reynolds numbers reach 10-4 to 1.0 in the interiors of dikes that have been breached by ascending crustal melts. This may provide one mechanism for MASH-like processes. Residual mineral assemblages of the crust thickened by repeated intrusion are predicted to be garnet pyroxenitic, which are denser than mantle peridotite and also generate convective instabilities where some of the crustal material is lost to the mantle. This reconciles the thinner than predicted crust in regions that have undergone flux of mantle basalt for a prolonged period of time, and helps explain the enrichment of

  10. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean.

  11. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Hong, Seong-Joo; Lim, Sang-Min; Lee, Choul-Gyun

    2016-05-01

    Culturing microalgae in the ocean has potentials that may reduce the production cost and provide an option for an economic biofuel production from microalgae. The ocean holds great potentials for mass microalgal cultivation with its high specific heat, mixing energy from waves, and large cultivable area. Suitable photobioreactors (PBRs) that are capable of integrating marine energy into the culture systems need to be developed for the successful ocean cultivation. In this study, prototype floating PBRs were designed and constructed using transparent low-density polyethylene film for microalgal culture in the ocean. To improve the mixing efficiency, various types of internal partitions were introduced within PBRs. Three different types of internal partitions were evaluated for their effects on the mixing efficiency in terms of mass transfer (k(L)a) and mixing time in the PBRs. The partition type with the best mixing efficiency was selected, and the number of partitions was varied from one to three for investigation of its effect on mixing efficiency. When the number of partitions is increased, mass transfer increased in proportion to the number of partitions. However, mixing time was not directly related to the number of partitions. When a green microalga, Tetraselmis sp. was cultivated using PBRs with the selected partition under semi-continuous mode in the ocean, biomass and fatty acid productivities in the PBRs were increased by up to 50 % and 44% at high initial cell density, respectively, compared to non-partitioned ones. The results of internally partitioned PBRs demonstrated potentials for culturing microalgae by efficiently utilizing ocean wave energy into culture mixing in the ocean. PMID:26857371

  12. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  13. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  14. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  15. EFFECTS OF ROTATIONALLY INDUCED MIXING IN COMPACT BINARY SYSTEMS WITH LOW-MASS SECONDARIES AND IN SINGLE SOLAR-TYPE STARS

    SciTech Connect

    Chatzopoulos, E.; Robinson, Edward L.; Wheeler, J. Craig

    2012-08-20

    Many population synthesis and stellar evolution studies have addressed the evolution of close binary systems in which the primary is a compact remnant and the secondary is filling its Roche lobe, thus triggering mass transfer. Although tidal locking is expected in such systems, most studies have neglected the rotationally induced mixing that may occur. Here we study the possible effects of mixing in mass-losing stars for a range of secondary star masses and metallicities. We find that tidal locking can induce rotational mixing prior to contact and thus affect the evolution of the secondary star if the effects of the Spruit-Tayler dynamo are included both for angular momentum and chemical transport. Once contact is made, the effect of mass transfer tends to be more rapid than the evolutionary timescale, so the effects of mixing are no longer directly important, but the mass-transfer strips matter to inner layers that may have been affected by the mixing. These effects are enhanced for secondaries of 1-1.2 M{sub Sun} and for lower metallicities. We discuss the possible implications for the paucity of carbon in the secondaries of the cataclysmic variable SS Cyg and the black hole candidate XTE J1118+480 and for the progenitor evolution of Type Ia supernovae. We also address the issue of the origin of blue straggler stars in globular and open clusters. We find that for models that include rotation consistent with that observed for some blue straggler stars, evolution is chemically homogeneous. This leads to tracks in the H-R diagram that are brighter and bluer than the non-rotating main-sequence turn-off point. Rotational mixing could thus be one of the factors that contribute to the formation of blue stragglers.

  16. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  17. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  18. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  19. Influence of different morphology of three-dimensional Cu(x)O with mixed facets modified air-cathodes on microbial fuel cell.

    PubMed

    Liu, Ziqi; Li, Kexun; Zhang, Xi; Ge, Baochao; Pu, Liangtao

    2015-11-01

    Three kinds of three-dimensional (3D) CuxO catalysts were prepared to modify activated carbon air-cathode using a facile electrochemical method with addition of surfactants. The maximum power density of MFC using SC-Cu air cathode (added sodium citrate into the electrolyte solution in electrodeposition process) was 1550±47 mW m(-2), almost 77% higher than AC cathode. Specifically, the charge transfer resistance significantly decreased by 89% from 9.3980 Ω to 1.0640 Ω compared to the control. Lumphy and mutually embedded filmy sheet structure were observed in SEM, which provided sufficient active sites for oxygen adsorption and diffusion. In XRD and TEM result, CuxO with mixed facets showed special structure which had a better performance. Crystallization condition of electrodeposited materials played a significant role in their nature electrochemical properties, morphology controlled by surfactant of CuxO exhibited high properties on the air-cathode MFC.

  20. Influence of different morphology of three-dimensional Cu(x)O with mixed facets modified air-cathodes on microbial fuel cell.

    PubMed

    Liu, Ziqi; Li, Kexun; Zhang, Xi; Ge, Baochao; Pu, Liangtao

    2015-11-01

    Three kinds of three-dimensional (3D) CuxO catalysts were prepared to modify activated carbon air-cathode using a facile electrochemical method with addition of surfactants. The maximum power density of MFC using SC-Cu air cathode (added sodium citrate into the electrolyte solution in electrodeposition process) was 1550±47 mW m(-2), almost 77% higher than AC cathode. Specifically, the charge transfer resistance significantly decreased by 89% from 9.3980 Ω to 1.0640 Ω compared to the control. Lumphy and mutually embedded filmy sheet structure were observed in SEM, which provided sufficient active sites for oxygen adsorption and diffusion. In XRD and TEM result, CuxO with mixed facets showed special structure which had a better performance. Crystallization condition of electrodeposited materials played a significant role in their nature electrochemical properties, morphology controlled by surfactant of CuxO exhibited high properties on the air-cathode MFC. PMID:26122090

  1. Effect of the air-fuel mixing on the NOx yield in a low-emission gas-turbine plant combustor

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. D.; Bulysova, L. A.; Berne, A. L.

    2016-04-01

    The article deals with construction of a simplified model of inhibition of nitric oxides formed in the combustors of the gas-turbine plants (GTPs) operating on natural gas. A combustor in which premixed, lean air-fuel mixtures are burnt is studied theoretically and experimentally. The research was carried out using a full-scale combustor that had parameters characteristic of modern GTPs. The article presents the results computed by the FlowVision software and the results of the experiments carried out on the test bench of the All-Russia Thermal Engineering Institute. The calculations and the tests were conducted under the following conditions: a flow rate of approximately 4.6 kg/s, a pressure to 450 kPa, an air temperature at the combustor inlet of approximately 400°C, the outlet temperature t 3 ≤ 1200°C, and natural gas as the fuel. The comparison of the simulated parameters with the experimental results underlies the constructed correlation dependence of the experimental NO x emission on the calculated parameter of nonuniform fuel concentration at the premixing zone outlet. The postulate about a weak dependence of the emission of NO x formed upon combustion of a perfectly mixed air-fuel mixture—when the methane concentration in air is constant at any point of the air-fuel mixture, i.e., constant in the mixture bulk—on the pressure in the combustor has been experimentally proven. The correctness and the practicability of the stationary mathematical model of the mixing process used to assess the NO x emission by the calculated amount of the air-fuel mixture generated in the premixing zone has been validated. This eliminates some difficulties that arise in the course of calculation of combustion and formation of NO x .

  2. Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study.

    PubMed

    Papayannis, A; Nicolae, D; Kokkalis, P; Binietoglou, I; Talianu, C; Belegante, L; Tsaknakis, G; Cazacu, M M; Vetres, I; Ilic, L

    2014-12-01

    A coordinated experimental campaign aiming to study the aerosol optical, size and mass properties was organized in September 2012, in selected sites in Greece and Romania. It was based on the synergy of lidar and sunphotometers. In this paper we focus on a specific campaign period (23-24 September), where mixed type aerosols (Saharan dust, biomass burning and continental) were confined from the Planetary Boundary Layer (PBL) up to 4-4.5 km height. Hourly mean linear depolarization and lidar ratio values were measured inside the dust layers, ranging from 13 to 29 and from 44 to 65sr, respectively, depending on their mixing status and the corresponding air mass pathways over Greece and Romania. During this event the columnar Aerosol Optical Depth (AOD) values ranged from 0.13 to 0.26 at 532 nm. The Lidar/Radiometer Inversion Code (LIRIC) and the Polarization Lidar Photometer Networking (POLIPHON) codes were used and inter-compared with regards to the retrieved aerosol (fine and coarse spherical/spheroid) mass concentrations, showing that LIRIC generally overestimates the aerosol mass concentrations, in the case of spherical particles. For non-spherical particles the difference in the retrieved mass concentration profiles from these two codes remained smaller than ±20%. POLIPHON retrievals showed that the non-spherical particles reached concentrations of the order of 100-140 μg/m(3) over Romania compared to 50-75 μg/m(3) over Greece. Finally, the Dust Regional Atmospheric Model (DREAM) model was used to simulate the dust concentrations over the South-Eastern Europe.

  3. Long-term Trend of Cold Air Mass Amount below a Designated Potential Temperature in Northern and Southern Hemisphere Winters with 7 Different Reanalysis Datasets

    NASA Astrophysics Data System (ADS)

    Kanno, Y.; Abdillah, M. R.; Iwasaki, T.

    2015-12-01

    This study addresses that the hemispheric total cold air mass amount defined below a threshold potential temperature of 280 K is a good indicator of the long-term trend of climate change in the polar region. We demonstrate quantitative analyses of warming trend in the Northern Hemisphere (NH) and Southern Hemisphere (SH) winters, using 7 different reanalysis datasets (JRA-55, JRA-55C, JRA-55AMIP, ERA-interim, CFSR, JRA-25, NCEP-NCAR). Hemispheric total cold air mass amount in the NH winter exhibit a statistically significant decreasing trend in all reanalysis datasets at a rate about -1.37 to -0.77% per decade over the period 1959-2012 and at a rate about -1.57 to -0.82% per decade over 1980-2012. There is no statistically significant trend in the equatorward cold air mass flux across latitude of 45N, which is an indicator for hemispheric-scale cold air outbreak, over the period 1980-2012 except for NCEP-NCAR reanalysis dataset which shows substantial decreasing trend of about -3.28% per decade. The spatial distribution of the long-term trend of cold air mass amount in the NH winter is almost consistent among reanalysis datasets except for JRA-55AMIP over the period 1980-2012. Cold air mass amount increases over Central Siberia, Kamchatka peninsula, and Bering Sea, while it decreases over Norwegian Sea, Barents Sea, Kara Sea, Greenland, Canada, Northern part of United States, and East Asia. In the SH winter, on the other hand, there is a large discrepancy in hemispheric total cold air mass amount and equatorward cold air mass flux across latitude of 50S over the period 1980-2010 among reanalysis datasets. This result indicate that there is a large uncertainty in the long-term trend of cold air mass amount in the SH winter.

  4. Use of Chiral Signatures of Organochlorine Pesticides in Asian, Trans-Pacific, and Western U.S. Air Masses to Identify Source Regions

    NASA Astrophysics Data System (ADS)

    Simonich, S.; Genualdi, S.; Primbs, T.; Ryoo, K.; Bidleman, T.; Jantunen, L.

    2008-12-01

    Chiral signatures of organochlorine pesticides were measured in air masses on Okinawa Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a coastal site on the Olympic Peninsula of Washington at 500 m; Mary's Peak Observatory (MPO), a site at 1250 m in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2300 m in Oregon's Cascade range. The chiral signature of composite soil samples collected from agricultural areas in China and South Korea were also measured. Racemic alpha-HCH was measured in Asian air masses and soil from China and South Korea. Non-racemic (enantiomer fraction (EF) = 0.528 ± 0.0048) alpha-HCH was measured in regional air masses at CPO, a marine boundary layer site, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the EFs were significantly (p-value <0.001) more racemic (EF = 0.513 ± 0.0003). Racemic alpha-HCH was consistently measured in trans- Pacific air masses at MPO and MBO. The alpha-HCH EFs in CPO, MPO, and MBO air masses were positively correlated (p-value = 0.0017) with the amount of time the air mass spent above the boundary layer along the 10-day back air mass trajectory prior to being sampled. This suggests that the alpha-HCH in the free troposphere is racemic. The racemic signatures of cis and trans chlordane in air masses at all four air sampling sites suggest that Asian and U.S. urban areas continue to be sources of chlordanes that have not yet undergone biotransformation.

  5. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. PMID:26838378

  6. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  7. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  8. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening.

  9. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  10. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  11. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  12. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  13. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  14. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  15. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  16. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  17. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  18. Coral Radiocarbon Records of Indian Ocean Water Mass Mixing and Wind-Induced Upwelling Along the Coast of Sumatra, Indonesia

    SciTech Connect

    Guilderson, T P; Grumet, N S; Abram, N J; Beck, J W; Dunbar, R B; Gagan, M K; Hantoro, W S; Suwargadi, B W

    2004-02-06

    Radiocarbon ({sup 14}C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess {sup 14}C in the atmosphere has increased the contrast between surface and deep ocean {sup 14}C concentrations. We present accelerator mass spectrometric (AMS) measurements of radiocarbon isotope ({Delta}{sup 14}C) in Porites corals from the Mentawai Islands, Sumatra (0 S, 98 E) and Watamu, Kenya (3 S, 39 E) to document the temporal and spatial evolution of the {sup 14}C gradient in the tropical Indian Ocean. The rise in {Delta}{sup 14}C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral {Delta}{sup 14}C from the coast of Kenya. Kenya coral {Delta}{sup 14}C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains {sup 14}C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-laden {sup 14}C by the surface-ocean. Bimonthly AMS {Delta}{sup 14}C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. The interannual signal may be a response to changes in the Walker circulation, the development of easterly wind anomalies, shoaling of the eastern thermocline, and upwelling of {sup 14}C-depleted water along the coast of Sumatra. Singular spectrum analysis of the Sumatra coral {Delta}{sup 14}C record reveals a significant 3-year periodicity. The results lend support to the concept that ocean atmosphere interactions between the Pacific and Indian Oceans operate in concert with the El Ni{tilde n}o-Southern Oscillation (ENSO).

  19. Coral radiocarbon records of Indian Ocean water mass mixing and wind-induced upwelling along the coast of Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Grumet, N. S.; Abram, N. J.; Beck, J. W.; Dunbar, R. B.; Gagan, M. K.; Guilderson, T. P.; Hantoro, W. S.; Suwargadi, B. W.

    2004-05-01

    Radiocarbon (14C) in the skeletal aragonite of annually banded corals track radiocarbon concentrations in dissolved inorganic carbon (DIC) in surface seawater. As a result of nuclear weapons testing in the 1950s, oceanic uptake of excess 14C in the atmosphere has increased the contrast between surface and deep ocean 14C concentrations. We present accelerator mass spectrometric (AMS) measurements of 14C/12C ratios (Δ14C) in Porites corals from the Mentawai Islands, Sumatra (0°S, 98°E) and Watamu, Kenya (3°S, 39°E) to document the temporal and spatial evolution of the 14C zonal gradient in the tropical Indian Ocean. The rise in Δ14C in the Sumatra coral, in response to the maximum in nuclear weapons testing, is delayed by 2-3 years relative to the rise in coral Δ14C from the coast of Kenya. Kenya coral Δ14C values rise quickly because surface waters are in prolonged contact with the atmosphere. In contrast, wind-induced upwelling and rapid mixing along the coast of Sumatra entrains 14C-depleted water from the subsurface, which dilutes the effect of the uptake of bomb-produced 14C by the surface ocean. Bimonthly AMS Δ14C measurements on the Mentawai coral reveal mainly interannual variability with minor seasonal variability. Singular spectrum analysis of the Sumatra coral Δ14C record reveals a significant 3-year periodicity. These results lend support to the concept that interannual variability in Indian Ocean upwelling and sea surface temperatures is related to ENSO-like teleconnections over the Indo-Pacific basin.

  20. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  1. Smart tetroons for Lagrangian air-mass tracking during ACE 1

    NASA Astrophysics Data System (ADS)

    Businger, Steven; Johnson, Randy; Katzfey, Jack; Siems, Steven; Wang, Qing

    1999-05-01

    A series of "smart" tetroons was released from shipboard during the recent ACE 1 field experiment designed to monitor changes in the sulfur budget in a remote marine boundary layer (MBL) south of Tasmania, Australia. The smart tetroons were designed at NOAA Air Resources Laboratory Field Research Division to provide air parcel tracking information. The adjective smart here refers here to the fact that the buoyancy of the tetroons automatically adjusts through the action of a pump and valves when the tetroon travels vertically outside a range of pressures set prior to tetroon release. The smart tetroon design provides GPS location, barometric pressure, temperature, relative humidity, and tetroon status data via a transponder to the NCAR C-130 research aircraft flying in the vicinity of the tetroons. In this paper we will describe (1) the design and capability of the smart tetroons and their performance during the two Lagrangian experiments conducted during ACE 1, (2) the synoptic context of the Lagrangians, including the origin of the air parcels being tracked, and (3) the results of trajectory predictions derived from the National Center for Environmental Prediction (NCEP) Global Spectral Model (GSM) and Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Atmospheric Research (DAR) limited-area model.

  2. Detection of internally mixed Asian dust with air pollution aerosols using a polarization optical particle counter and a polarization-sensitive two-wavelength lidar

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro; Kobayashi, Hiroshi

    2015-01-01

    East Asia is a unique region where mineral dust (Asian dust) sources are located near urban and industrial areas. Asian dust is often mixed with air pollution aerosols during transportation. It is important to understand the mixing states of Asian dust and other aerosols, because the effects on the environment and human health differ depending on the mixing state. We studied the mixing states of Asian dust using a polarization particle counter (POPC) that measures the forward scattering and the two polarization components of backscattering for single particles and a polarization-sensitive (532 nm) two-wavelength (1064 nm and 532 nm) lidar. We conducted the simultaneous observations using the POPC and the lidar in Seoul from March to December 2013 and captured the characteristics of pure Asian dust and internally mixed polluted Asian dust. POPC measurements indicated that the density of large particles was lower in polluted Asian dust that transported slowly over the polluted areas than in pure Asian dust that transported quickly from the dust source region. Moreover, the backscattering depolarization ratio was smaller for all particle sizes in polluted dust. The optical characteristics measured using the lidar were consistent with the POPC measurements. The backscattering color ratio of polluted dust was comparable to that of pure dust, but the depolarization ratio was lower for polluted dust. In addition, coarse non-spherical particles (Asian dust) almost always existed in the background, and the depolarization ratio had seasonal variation with a lower depolarization ratio in the summer. These results suggest background Asian dust particles are internally mixed in the summer.

  3. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  4. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the

  5. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    PubMed

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication. PMID:26836558

  6. Improved multiple-wavelength Brillouin-Raman fiber laser assisted by four-wave mixing with a micro-air cavity.

    PubMed

    Li, Xuejiao; Ren, Liyong; Lin, Xiao; Ju, Haijuan; Chen, Nana; Liang, Jian; Ren, Kaili; Xu, Yiping

    2015-11-20

    In this paper, a multiple-wavelength Brillouin-Raman fiber laser (MBRFL) with enhanced performance is presented. This is attributed to the improved Fresnel reflection, thus strengthening four-wave mixing in the fiber laser cavity due to the insertion of a micro-air cavity. As a result, compared with the conventional MBRFL without a micro-air cavity, the thresholds of Brillouin Stokes (BS) lines are observed to be reduced, and more BS lines can be generated. In the experiment, a MBRFL having 40 BS lines is achieved with good stability on laser wavelengths and output power. In view of the fact that more BS lines can be established with a simple scheme and low pump power, our MBRFL promises to be employed as a multiwavelength source for optical communication.

  7. The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Shih, W.-P.; Lee, J. G.; Santavicca, D. A.

    1994-01-01

    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.

  8. Diurnal and seasonal variation of mixing ratio and δ¹³C of air CO₂ observed at an urban station Bangalore, India.

    PubMed

    Guha, Tania; Ghosh, Prosenjit

    2015-02-01

    We present here observations on diurnal and seasonal variation of mixing ratio and δ(13)C of air CO2, from an urban station-Bangalore (BLR), India, monitored between October 2008 and December 2011. On a diurnal scale, higher mixing ratio with depleted δ(13)C of air CO2 was found for the samples collected during early morning compared to the samples collected during late afternoon. On a seasonal scale, mixing ratio was found to be higher for dry summer months (April-May) and lower for southwest monsoon months (June-July). The maximum enrichment in δ(13)C of air CO2 (-8.04 ± 0.02‰) was seen in October, then δ(13)C started depleting and maximum depletion (-9.31 ± 0.07‰) was observed during dry summer months. Immediately after that an increasing trend in δ(13)C was monitored coincidental with the advancement of southwest monsoon months and maximum enrichment was seen again in October. Although a similar pattern in seasonal variation was observed for the three consecutive years, the dry summer months of 2011 captured distinctly lower amplitude in both the mixing ratio and δ(13)C of air CO2 compared to the dry summer months of 2009 and 2010. This was explained with reduced biomass burning and increased productivity associated with prominent La Nina condition. While compared with the observations from the nearest coastal and open ocean stations-Cabo de Rama (CRI) and Seychelles (SEY), BLR being located within an urban region captured higher amplitude of seasonal variation. The average δ(13)C value of the end member source CO2 was identified based on both diurnal and seasonal scale variation. The δ(13)C value of source CO2 (-24.9 ± 3‰) determined based on diurnal variation was found to differ drastically from the source value (-14.6 ± 0.7‰) identified based on seasonal scale variation. The source CO2 identified based on diurnal variation incorporated both early morning and late afternoon sample; whereas, the source CO2 identified based

  9. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  10. Determination of cooling air mass flow for a horizontally-opposed aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Ghomi, N. A.; Bridges, P. D.

    1979-01-01

    The relationship between the amount of cooling air flow and the corresponding flow pressure difference across an aircraft engine was investigated in flight and on the ground. The flight test results were consistent with theory, but indicated a significant installation leakage problem. A ground test blower system was used to identify and reduce the leakage. The correlation between ground test cell determined engine orifice characteristics and flight measurements showed good agreement if the engine pressure difference was based on total pressure rather than static pressure.

  11. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  12. The effect of transpiration on coupled heat and mass transfer in mixed convection over a vertical plate embedded in a saturated porous medium

    SciTech Connect

    Yih, K.A.

    1997-03-01

    Effect of transpiration velocity on the heat and mass transfer characteristics of mixed convection about a permeable vertical plate embedded in a saturated porous medium under the coupled effects of thermal and mass diffusion is numerically analyzed. The plate is maintained at a uniform temperature and species concentration with constant transpiration velocity. The transformed governing equations are solved by Keller box method. Numerical results for the local Nusselt number and local Sherwood number are presented. In general, it has been found for thermally assisted flow that the local surface heat and mass transfer rates increase owing to suction of fluid. This trend reversed for blowing of fluid. It is apparent that the Lewis number has a pronounced effect on the local Sherwood number than it does on the local Nusselt number. Increasing the Lewis number decreases (increases) the local heat (mass) transfer rate.

  13. Effect of the Discharge Water which Mixed Sewage Disposal Water with Seawater Desalting Treated Sewage for Bottom Sediment and Hypoxic Water Mass

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori

    For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.

  14. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  15. In-Situ Remediation of Mixed Radioactive Tank Waste, Via Air Sparging and Poly-Acrylate Solidification

    SciTech Connect

    Farnsworth, R.K.; Edgett, S.M.; Eaton, D.L.

    2007-07-01

    This paper describes remediation activities performed in accordance with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) on an underground storage tank (UST) from the Idaho National Laboratory's Test Area North (TAN) complex. The UST had been used to collect radioactive liquid wastes from and for the TAN evaporator. Recent analyses had found that the residual waste in Tank V-14 had contained quantities of tetrachloroethylene (PCE) in excess of F001 treatment standards. In addition, the residual waste in Tank V-14 was not completely solidified. As a result, further remediation and solidification of the waste was required before the tank could be properly disposed of at the Idaho CERCLA Disposal Facility (ICDF). Remediation of the PCE-contaminated waste in Tank V-14 was performed by first adding sufficient water to fluidize the residual waste in the tank. This was followed by high-volume, in-situ air sparging of the fluidized waste, using air lances that were inserted to the bottom of V-14. The high-volume air sparging removed residual PCE from the fluidized waste, collecting it on granular activated carbon filters within the off-gas system. The sparged waste was then solidified by educting large-diameter crystals of an acrylic acrylate resin manufactured by WaterWorks America{sup TM} into the fluidized waste, via the air-sparging lances. To improve solidification, the air-sparging lances were rotated during the eduction step, while continuing to provide high-volume air flow into the waste. Eduction was continued until the waste had solidified sufficiently to not allow for further eduction of WaterWorks{sup TM} crystals into the waste. The tank was then disposed of at the ICDF, with the residual void volume in the tank filled with cement. (authors)

  16. Analysis of mixing zone length using methane as fuel

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    The distributions of pressure, temperature and velocity, and correlation between radial and axial gradients of fuel mass fraction in an axisymmetric combustor are examined. A model for methane-air mixing in non-flammable mixtures, based on the ideal gas law and the equation of continuity, is described. High axial gradients of fuel mass fraction are required to produce a short mixing zone. Results show that high pressures and temperatures reduce the axial gradients of fuel, while high gradients of pressure and temperature can reduce the length of the mixing zone. High radial gradients of fuel mass fraction in conjunction with a large ratio of radial and axial velocity also shorten the mixing. Mixing is enhanced most by velocity divergence and temperature gradients. Analysis of the length of the mixing zone provides guidelines for the development of compact, high intensity, high efficiency and low emission combustors.

  17. Lepton mixing under the lepton charge nonconservation, neutrino masses and oscillations and the 'forbidden' decay Micro-Sign {sup -} {yields} e{sup -} + {gamma}

    SciTech Connect

    Lyuboshitz, V. L.; Lyuboshitz, V. V.

    2013-08-15

    The lepton-charge (L{sub e}, L{sub {mu}}, L{sub {tau}}) nonconserving interaction leads to the mixing of the electron, muon, and tau neutrinos, which manifests itself in spatial oscillations of a neutrino beam, and also to the mixing of the electron, negative muon, and tau lepton, which, in particular, may be the cause of the 'forbidden' radiative decay of the negative muon into the electron and {gamma} quantum. Under the assumption that the nondiagonal elements of the mass matrices for neutrinos and ordinary leptons, connected with the lepton charge nonconservation, are the same, and by performing the joint analysis of the experimental data on neutrino oscillations and experimental restriction for the probability of the decay Micro-Sign {sup -} {yields} e{sup -} + {gamma} per unit time, the following estimate for the lower bound of neutrino mass has been obtained: m{sup ({nu})} > 1.5 eV/c{sup 2}.

  18. [Spatiotempaoral distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xi-ao Xing' an Mountains].

    PubMed

    Li, Meng; Duan, Wen-biao; Chen, Li-xin

    2009-12-01

    A continuous measurement of photosynthetic photon flux density (PPFD), air temperature, and relative air humidity was made in the forest gap in primary Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing' an Mountains to compare the spatiotemporal distribution patterns of the parameters. The diurnal maximum PPFD in the forest gap appeared between 11:00 and 13:00 on sunny and overcast days. On sunny days, the maximum PPFD during various time periods did not locate in fixed locations, the diurnal maximum PPFD occurred in the canopy edge of northern part of the gap; while on overcast days, it always occurred in the center of the gap. The mean monthly PPFD in the gap was the highest in June and the lowest in September, with the largest range observed in July. The maximum air temperature happened between 9:00 and 15:00 on sunny days, between 15:00 and 19:00 on overcast days, the locations were 8 m in the southern part of gap center both on sunny and overcast days. From 5:00 to 9:00, the air temperature at measured positions in the gap was higher on overcast days than on sunny days; but from 9:00 to 19:00, it was opposite. The mean monthly air temperature was the highest in June, and the lowest in September. The maximum relative humidity appeared between 5:00 and 9:00 on sunny and overcast days, and occurred in the canopy border of western part of the gap, with the relative air humidity on overcast days being always higher than that on sunny days. The mean monthly relative humidity was the highest in July, and the lowest in June. The heterogeneity of PPFD was higher on sunny days than on overcast days, but the heterogeneities of air temperature and relative humidity were not obvious. The maximum PPFD, air temperature, and relative humidity were not located in the same positions among different months during growing season. For mean monthly PPFD and air temperature, their variation gradient was higher in and around the center of gap; while for mean monthly

  19. Numerical study of high frequency oscillatory air flow and convective mixing in a CT-based human airway model

    PubMed Central

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    High frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this work, the high frequency oscillatory flow is studied using a computational fluid dynamics (CFD) analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed-tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re case, and the HFOV case. The counter-flow structure is more evident in the high-frequency-normal-Re case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  20. Numerical study of high-frequency oscillatory air flow and convective mixing in a CT-based human airway model.

    PubMed

    Choi, Jiwoong; Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-12-01

    High-frequency oscillatory ventilation (HFOV) is considered an efficient and safe respiratory technique to ventilate neonates and patients with acute respiratory distress syndrome. HFOV has very different characteristics from normal breathing physiology, with a much smaller tidal volume and a higher breathing frequency. In this study, the high-frequency oscillatory flow is studied using a computational fluid dynamics analysis in three different geometrical models with increasing complexity: a straight tube, a single-bifurcation tube model, and a computed tomography (CT)-based human airway model of up to seven generations. We aim to understand the counter-flow phenomenon at flow reversal and its role in convective mixing in these models using sinusoidal waveforms of different frequencies and Reynolds (Re) numbers. Mixing is quantified by the stretch rate analysis. In the straight-tube model, coaxial counter flow with opposing fluid streams is formed around flow reversal, agreeing with an analytical Womersley solution. However, counter flow yields no net convective mixing at end cycle. In the single-bifurcation model, counter flow at high Re is intervened with secondary vortices in the parent (child) branch at end expiration (inspiration), resulting in an irreversible mixing process. For the CT-based airway model three cases are considered, consisting of the normal breathing case, the high-frequency-normal-Re (HFNR) case, and the HFOV case. The counter-flow structure is more evident in the HFNR case than the HFOV case. The instantaneous and time-averaged stretch rates at the end of two breathing cycles and in the vicinity of flow reversal are computed. It is found that counter flow contributes about 20% to mixing in HFOV. PMID:20614248

  1. Spread mixed monolayers of deoxycholic and dehydrocholic acids at the air-water interface, effect of subphase pH. Characterization by axisymmetric drop shape analysis.

    PubMed

    Messina, Paula V; Fernández-Leyes, Marcos D; Prieto, Gerardo; Ruso, Juan M; Sarmiento, Félix; Schulz, Pablo C

    2008-01-01

    Bile acids (deoxycholic and dehydrocholic acids) spread mixed monolayers behavior at the air/water interface were studied as a function of subphase pH using a constant surface pressure penetration Langmuir balance based on the Axisymmetric Drop Shape Analysis (ADSA). We examined the influence of electrostatic, hydrophobic and hydration forces on the interaction between amphiphilic molecules at the interface by the collapse area values, the thermodynamic parameters and equation of state virial coefficients analysis. The obtained results showed that at neutral (pH=6.7) or basic (pH=10) subphase conditions the collapse areas values are similar to that of cholanoic acid and consistent with the cross-sectional area of the steroid nucleus (approximately 40 A(2)). The Gibbs energy of mixing values (DeltaG(mix)<0) and the first virial coefficients of the equation of state (b(0)<1) indicated that a miscible monolayer with laterally structured microdomains existed. The aggregation number (1/b(0)) was estimated within the order of 6 (pH=6.7) and 3 (pH=10). At pH=3.2, acidic subphase conditions, no phase separation occurs (DeltaG(mix)<0) but a high expanded effect of the monolayer could be noted. The mixed monolayer behavior was no ideal and no aggregates were formed (b(0)> or =1). Such behavior indicates that the polar groups of the molecules interacts each other more strongly by repulsive electrostatic forces than with the more hydrophobic part of the molecule.

  2. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  3. Rare earth elements and Nd isotopes tracing water mass mixing and particle-seawater interactions in the SE Atlantic

    NASA Astrophysics Data System (ADS)

    Garcia-Solsona, E.; Jeandel, C.; Labatut, M.; Lacan, F.; Vance, D.; Chavagnac, V.; Pradoux, C.

    2014-01-01

    Distributions of dissolved and particulate rare earth elements (REEs) and seawater neodymium isotopic composition (εNd) were established in samples from the BONUS GoodHope (BGH) IPY-GEOTRACES cruise in the SE Atlantic sector of the Southern Ocean (36°S-13°E to 57°S-0°, Feb.-Mar. 2008). Close to the South African continent in the subtropical domain, particulate REEs show the highest concentrations and flat PAAS-normalized patterns, clearly tracing their lithogenic origin. Active cerium oxidation onto suspended particles is evidenced by the mirror-image relationship of the cerium anomaly between dissolved and particulate phases. Unradiogenic dissolved neodymium in surface waters (εNd = -17.1) traces the influence of old sedimentary material brought by the Agulhas current and rings to the Cape Basin area. A mass balance calculation suggests that the release of Nd from dissolution of lithogenic material corresponds to a remobilization of 154 × 106 T of sediment per year, i.e., 5% of the total sediment delivered to the southeast African coast annually. At open ocean stations, both dissolved and particulate REEs present negative cerium anomalies, indicating that particles have acquired a marine signature. The increasing REE concentrations with depth, and the strong linear correlations of dissolved REE with silica, indicate that surface removal and deep re-mineralisation of REEs are partially related to the biogeochemical cycle of silicate, which involves biogenic silica (diatoms). Combined with marine carbonates, these authigenic phases could explain the observed REE patterns in suspended particles, except for La. We suggest that the positive La anomalies in both phases are linked to the oceanic barium cycle and the partial dissolution of barite crystals, especially in the Polar Frontal Zone. The εNd composition behaves conservatively in intermediate and deep waters, while input processes affect the isotopic signal of subtropical surface waters and Weddell Gyre

  4. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  5. Uncertainties in Modelling Glacier Melt and Mass Balances: the Role of Air Temperature Extrapolation and Type of Melt Models

    NASA Astrophysics Data System (ADS)

    Pellicciotti, F.; Ragettli, S.; Carenzo, M.; Ayala, A.; McPhee, J. P.; Stoffel, M.

    2014-12-01

    While glacier responses to climate are understood in general terms and in their main trends, model based projections are affected by the type of model used and uncertainties in the meteorological input data, among others. Recent works have attempted at improving glacio-hydrological models by including neglected processes and investigating uncertainties in their outputs. In this work, we select two knowledge gaps in current modelling practices and illustrate their importance through modelling with a fully distributed mass balance model that includes some of the state of the art approaches for calculations of glacier ablation, accumulation and glacier geometry changes. We use an advanced mass balance model applied to glaciers in the Andes of Chile, Swiss Alps and Nepalese Himalaya to investigate two issues that seem of importance for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and the large uncertainty in model outputs associated with it. The ablation models are calibrated with a large amount of data from in-situ campaigns, and distributed observations of air temperature used to calculate lapse rates and calibrate a thermodynamic model of temperature distribution. We show that no final assessment can be made of what type of melt model is more appropriate or accurate for simulation of glacier ablation at the glacier scale, not even for relatively well studied glaciers. Both models perform in a similar manner at low elevations, but important differences are evident at high elevations, where lack of data prevents a final statement on which model better represent the actual ablation amounts. Accurate characterization of air temperature is important for correct simulations of glacier mass balance and volume changes. Substantial differences are

  6. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  7. Model for particle masses, flavor mixing, and {ital CP} violation, based on spontaneously broken discrete chiral symmetry as the origin of families

    SciTech Connect

    Adler, S.L.

    1999-01-01

    We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z{sub 6} chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S{sub 3} cyclic permutation symmetry the three-Higgs-doublet model gives a {open_quotes}democratic{close_quotes} mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates {ital CP}, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. {copyright} {ital 1998} {ital The American Physical Society}

  8. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  9. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  10. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke

    2016-03-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  11. Multispectrum Analysis of 12CH4 in the v4 Band: I. Air-Broadened Half Widths, Pressure-Induced Shifts, Temperature Dependences and Line Mixing

    NASA Technical Reports Server (NTRS)

    Smith, MaryAnn H.; Benner, D. Chris; Predoi-Cross, Adriana; Venkataraman, Malathy Devi

    2009-01-01

    Lorentz air-broadened half widths, pressure-induced shifts and their temperature dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band of (CH4)-12 over the temperature range 210 to 314 K. A multispectrum non linear least squares fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01/cm) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The measured parameters are compared to air- and N2-broadened values reported in the literature for the v4 and other bands. The dependence of the various spectral line parameters upon the tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All data used in the present work were recorded using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak.

  12. The stabilization of a methane-air edge flame within a mixing layer in a narrow channel

    SciTech Connect

    Lee, Min Jung; Kim, Nam Il

    2010-01-15

    The flame stabilization mechanism of a methane-air edge flame formulated in a narrow channel was experimentally investigated and compared with a simple analytical model. Non-premixed flames were classified into premixed flame modes and edge flame modes. The correlation between the propagation velocity and the fuel concentration gradient in a narrow channel was investigated and the applicability of ordinary edge-flame theory was appraised. (author)

  13. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  14. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  15. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  16. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  17. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  18. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  19. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  20. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  1. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  2. Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

    PubMed Central

    Zhou, Hanying; Homer, Margie L.; Shevade, Abhijit V.; Ryan, Margaret A.

    2006-01-01

    The Jet Propulsion Laboratory has recently developed and built an electronic nose (ENose) using a polymer-carbon composite sensing array. This ENose is designed to be used for air quality monitoring in an enclosed space, and is designed to detect, identify and quantify common contaminants at concentrations in the parts-per-million range. Its capabilities were demonstrated in an experiment aboard the National Aeronautics and Space Administration's Space Shuttle Flight STS-95. This paper describes a modified nonlinear least-squares based algorithm developed to analyze data taken by the ENose, and its performance for the identification and quantification of single gases and binary mixtures of twelve target analytes in clean air. Results from laboratory-controlled events demonstrate the effectiveness of the algorithm to identify and quantify a gas event if concentration exceeds the ENose detection threshold. Results from the flight test demonstrate that the algorithm correctly identifies and quantifies all registered events (planned or unplanned, as singles or mixtures) with no false positives and no inconsistencies with the logged events and the independent analysis of air samples.

  3. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  4. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  5. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system.

  6. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  7. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  8. Volcanic mixed avalanches: a distinct eruption-triggered mass-flow process at snow-clad volcanoes

    USGS Publications Warehouse

    Pierson, T.C.; Janda, R.J.

    1994-01-01

    A generally unrecognized type of pyroclastic deposit was produced by rapid avalanches of intimately mixed snow and hot pyroclastic debris during eruptions at Mount St. Helens, Nevado del Ruiz, and Redoubt Volcano between 1982 and 1989. These "mixed avalanches' traveled as far as 14 km at velocities up to ~27 m/s, involved as much as 107 m3 of rock and ice, and left unmelted deposits of single flow units as thick as 5 m. During flow downslope, heat transfer from hot rocks to snow produced meltwater that partially saturated the mixtures, apparently giving these mixed avalanches mobilities equal to or greater than those of "dry' debris avalanches of similar volume. After melting and desiccation, the deposits are highly susceptible to erosion and unlikely to be well preserved in the stratigraphic record. -Authors

  9. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  10. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-02-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with the mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons of the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air mass from south direction are always associated with pollution events during the summertime of Beijing. In August 2008, the frequency of air mass arriving from south has been twice higher compared to the average of the previous years, these southerly air masses did however not result in elevated particle volume concentrations in Beijing. This result implied that the air mass history was not the key factor, explaining reduced particle number and volume concentrations during the Beijing 2008 Olympic Games. Four factors were found influencing particle concentrations using a Positive matrix factorization (PMF) model. They were identified to local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  11. Effect of {sup 12}C+{sup 12}C reaction and convective mixing on the progenitor mass of ONe white dwarfs

    SciTech Connect

    Halabi, Ghina M. El Eid, Mounib

    2015-02-24

    Stars in the mass range ∼8 - 12 M{sub ⊙} are the most numerous massive stars. This mass range is critical because it may lead to supernova (SN) explosion, so it is important for the production of heavy elements and the chemical evolution of the galaxy. We investigate the critical transition mass (M{sub up}), which is the minimum initial stellar mass that attains the conditions for hydrostatic carbon burning. Stars of masses < M{sub up} evolve to the Asymptotic Giant Branch and then develop CO White Dwarfs, while stars of masses ≥ M{sub up} ignite carbon in a partially degenerate CO core and form electron degenerate ONe cores. These stars evolve to the Super AGB (SAGB) phase and either become progenitors of ONe White Dwarfs or eventually explode as electron-capture SN (EC-SN). We study the sensitivity of M{sub up} to the C-burning reaction rate and to the treatment of convective mixing. In particular, we show the effect of a recent determination of the {sup 12}C+{sup 12}C fusion rate, as well as the extension of the convective core during hydrogen and helium burning on M{sub up} in solar metallicity stars. We choose the 9 M{sub ⊙} model to show the detailed characteristics of the evolution with the new C-burning rate.

  12. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  13. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  14. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  15. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  16. Motivated to walk but nowhere to walk to: Differential effect of a mass media campaign by mix of local destinations

    PubMed Central

    Barnes, Rosanne; Bauman, Adrian E.; Giles-Corti, Billie; Knuiman, Matthew W.; Rosenberg, Michael; Leyden, Kevin M.; Abildso, Christiaan G.; Reger-Nash, Bill

    2015-01-01

    Objective Built environment attributes are associated with walking but little is known about how the impact of walking campaigns varies across different environments. The objective of this study was to compare the impact of a campaign on changes in walking between respondents with a high versus low mix of local destinations. Methods Pre- and post-campaign data from a quasi-experimental study were used to compare changes in walking for residents aged 40–65 with high and low destination mix in a West Virginia community campaign (March–May 2005). Results Overall samples consisted of 777 intervention community respondents and 388 comparison community respondents with pre- and post-campaign data. Among insufficiently active intervention respondents, those with high destination mix increased their walking by 0.64 days more than those with low mix (p < 0.05). No significant differences were observed among the comparison community. Conclusion The walking response to campaigns in those insufficiently active may be influenced by neighborhood attributes. PMID:26844097

  17. On-line analysis of volatile chlorinated hydrocarbons in air by gas chromatography-mass spectrometry Improvements in preconcentration and injection steps.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna; Pastorini, Elisabetta

    2010-06-11

    An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC-MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC-MS system to realize cryo-concentration (at -120 degrees C), thermal desorption (at 200 degrees C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column-capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica.

  18. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  19. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation. PMID:25479434

  20. Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry.

    PubMed

    Suzuki, Daisuke; Esaka, Fumitaka; Miyamoto, Yutaka; Magara, Masaaki

    2015-02-01

    Uranium and plutonium isotope ratios in individual uranium-plutonium (U-Pu) mixed particles with various U/Pu atomic ratios were analyzed without prior chemical separation by thermal ionization mass spectrometry (TIMS). Prior to measurement, micron-sized particles with U/Pu ratios of 1, 5, 10, 18, and 70 were produced from uranium and plutonium certified reference materials. In the TIMS analysis, the peaks of americium, plutonium, and uranium ion signals were successfully separated by continuously increasing the evaporation filament current. Consequently, the uranium and plutonium isotope ratios, except the (238)Pu/(239)Pu ratio, were successfully determined for the particles at all U/Pu ratios. This indicates that TIMS direct analysis allows for the measurement of individual U-Pu mixed particles without prior chemical separation.

  1. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  2. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-09-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m-3 and 1.2 μg m-3, respectively.