Science.gov

Sample records for air mass stagnation

  1. Mass Transfer Cooling Near The Stagnation Point

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    A simplified analysis is made of mass transfer cooling, that is, injection of a foreign gas, near the stagnation point for two-dimensional and axisymmetric bodies. The reduction in heat transfer is given in terms of the properties of the coolant gas and it is shown that the heat transfer may be reduced considerably by the introduction of a gas having appropriate thermal and diffusive properties. The mechanism by which heat transfer is reduced is discussed.

  2. A quantitative study on accumulation of age mass around stagnation points in nested flow systems

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Ge, Shemin; Cao, Guo-Liang; Hou, Guang-Cai; Hu, Fu-Sheng; Wang, Xu-Sheng; Li, Hailong; Liang, Si-Hai

    2012-12-01

    The stagnant zones in nested flow systems have been assumed to be critical to accumulation of transported matter, such as metallic ions and hydrocarbons in drainage basins. However, little quantitative research has been devoted to prove this assumption. In this paper, the transport of age mass is used as an example to demonstrate that transported matter could accumulate around stagnation points. The spatial distribution of model age is analyzed in a series of drainage basins of different depths. We found that groundwater age has a local or regional maximum value around each stagnation point, which proves the accumulation of age mass. In basins where local, intermediate and regional flow systems are all well developed, the regional maximum groundwater age occurs at the regional stagnation point below the basin valley. This can be attributed to the long travel distances of regional flow systems as well as stagnancy of the water. However, when local flow systems dominate, the maximum groundwater age in the basin can be located around the local stagnation points due to stagnancy, which are far away from the basin valley. A case study is presented to illustrate groundwater flow and age in the Ordos Plateau, northwestern China. The accumulation of age mass around stagnation points is confirmed by tracer age determined by 14C dating in two boreholes and simulated age near local stagnation points under different dispersivities. The results will help shed light on the relationship between groundwater flow and distributions of groundwater age, hydrochemistry, mineral resources, and hydrocarbons in drainage basins.

  3. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  4. Effect of thermal radiation on unsteady stagnation-point flow with mass transfer

    NASA Astrophysics Data System (ADS)

    Md Ali, Fadzilah; Nazar, Roslinda; Md Arifin, Norihan

    2013-04-01

    In this paper, the effect of thermal radiation on unsteady stagnation-point flow of an incompressible viscous fluid with mass transfer is studied. The governing system of partial differential equations is first transformed into a system of ordinary differential equations by a similarity transformation and is then solved numerically by the shooting method. It is found that the surface heat transfer rate reduces when the thermal radiation is applied and dual solutions exist only for negative unsteadiness parameter while positive unsteadiness parameter produces a unique solution.

  5. Stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder.

    PubMed

    Najib, Najwa; Bachok, Norfifah; Arifin, Norihan Md; Ishak, Anuar

    2014-02-26

    This paper is about the stagnation point flow and mass transfer with chemical reaction past a stretching/shrinking cylinder. The governing partial differential equations in cylindrical form are transformed into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using a shooting method. Results for the skin friction coefficient, Schmidt number, velocity profiles as well as concentration profiles are presented for different values of the governing parameters. Effects of the curvature parameter, stretching/shrinking parameter and Schmidt number on the flow and mass transfer characteristics are examined. The study indicates that dual solutions exist for the shrinking cylinder but for the stretching cylinder, the solution is unique. It is observed that the surface shear stress and the mass transfer rate at the surface increase as the curvature parameter increases.

  6. Lean-limit extinction of propane/air mixtures in the stagnation-point flow

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Ishizuka, S.; Mizomoto, M.

    1981-01-01

    The extinction limits of lean propane/air mixtures in the stagnation-point flow of a flat surface were mapped as functions of the surface temperature and the mixture concentration, velocity, and temperature. The maximum flame temperatures and the flame locations were also measured. The results show that the extinction limits are extremely insensitive to the nature of the surface, which can be heated to 1000 C. On the other hand preheating the gas mixture increases the flame temperature by an almost equal amount and therefore significantly extends the extinction limits. It is also found that at extinction the maximum flame temperatures and the flame locations, which when scaled with the velocity gradient, assume almost constant values independent of the other system variables investigated.

  7. Ozone production during an urban air stagnation episode over Nashville, Tennessee

    NASA Astrophysics Data System (ADS)

    Valente, R. J.; Imhoff, R. E.; Tanner, R. L.; Meagher, J. F.; Daum, P. H.; Hardesty, R. M.; Banta, R. M.; Alvarez, R. J.; McNider, R. T.; Gillani, N. V.

    1998-09-01

    The highest O3 levels observed during the 1995 Southern Oxidants Study in middle Tennessee occurred during a period of air stagnation from July 11 through July 15. Extensive airborne (two fixed wing and one helicopter) and ground-based measurements of the chemistry and meteorology of this episode near Nashville, Tennessee, are presented. In situ airborne measurements include O3, NOy, NO, NO2, SO2, CO, nitrate, hydrocarbons, and aldehydes. Airborne LIDAR O3 measurements are also utilized to map the vertical and horizontal extent of the urban plume. The use of multiple instrumented research aircraft permitted highly detailed mapping of the plume chemistry in the vertical and horizontal dimensions. Interactions between the urban Nashville plume (primarily a NOx and hydrocarbon source) and the Gallatin coal-fired power plant plume (primarily a NOx and SO2 source) are also documented, and comparisons of ozone formation in the isolated and mixed urban and power plant plume are presented. The data suggest that during this episode the background air and the edges of the urban plume are NOx sensitive and the core of the urban plume is hydrocarbon sensitive. Under these worst case meteorological conditions, ambient O3 levels well over the level of the new National Ambient Air Quality Standard (NAAQS) for ozone (80 ppb) were observed over and just downwind of Nashville. For example, on July 12, the boundary layer air upwind of Nashville showed 60 to 70 ppb O3, while just downwind of the city the urban plume maximum was over 140 ppb O3. With a revised ozone standard set at 80 ppb (8 hour average) and upwind levels already within 10 or 20 ppb of the standard, only a slight increase in ozone from the urban area will cause difficulty in attaining the standard at monitors near the core of the urban plume during this type of episode. The helicopter mapping and LIDAR aircraft data clearly illustrate that high O3 levels can occur during stagnation episodes within a few kilometers of

  8. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    SciTech Connect

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G.

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  9. Physico-chemical state of the air at the stagnation point during the atmospheric reentry of a spacecraft

    NASA Astrophysics Data System (ADS)

    Haoui, Rabah

    2011-06-01

    Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. Our code permits to capture the detached shock wave with exactitude before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10 -8.

  10. Stagnation Temperature Recording

    NASA Technical Reports Server (NTRS)

    Wimmer, W

    1941-01-01

    The present report deals with the development of a thermometer for recording stagnation temperature in compressible mediums in turbulent flow within 1 to 2 percent error of the adiabatic temperature in the stagnation point, depending upon the speed. This was achieved by placing the junction of a thermocouple near the stagnation point of an aerodynamically beneficial body, special care being taken to assure an uninterrupted supply of fresh compressed air on the junction together with the use of metals of low thermal conductivity, thus keeping heat-transfer and heat-dissipation losses to a minimum. In other experiments the use of the plate thermometer was proved unsuitable for practical measurements by reason of its profound influence in the reading by the Reynolds number and by the direction of flow.

  11. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  12. Experimental comparison of two hot-wire techniques for resolution of turbulent mass flux and local stagnation temperature in supersonic flow

    NASA Technical Reports Server (NTRS)

    Walker, D. A.; Ng, W. F.; Walker, M. D.

    1988-01-01

    The performance of two constant-temperature normal hot-wire techniques in a supersonic flow is examined. The first technique uses a single-wire and rapid scanning of multiple overheat ratios. Time averages of the signals at all overheats are used to separate the mean and rms mass flux, stagnation temperature and their cross-correlation. The second technique uses a dual-wire probe with each wire operating at different overheat ratios, giving instantaneous mass flux and stagnation temperature. Preliminary results indicate that the separation distance (0.18 mm) between the two hot wires in the dual-wire probe does not introduce significant error. However, the rms mass flux inferred from the dual-wire technique is a factor of two higher than that from the single-wire technique.

  13. Stagnation Point Heat Transfer with Gas Injection Cooling

    NASA Technical Reports Server (NTRS)

    Vancrayenest, B.; Tran, M. D.; Fletcher, D. G.

    2005-01-01

    The present paper deals with an experimental study of the stagnation-point heat transfer to a cooled copper surface with gas injection under subsonic conditions. Test were made with a probe that combined a steady-state water-cooled calorimeter that allows the capability to study convective blockage and to perform heat transfer measurements in presence of gas injection in the stagnation region. The copper probe was pierced by 52 holes, representing 2.4% of the total probe surface. The 1.2 MW high enthalpy plasma wind tunnel was operated at anode powers between 130 and 230 kW and a static pressures from 35 hPa up to 200 hPa. Air, carbon dioxide and argon were injected in the mass flow range 0-0.4 g/s in the boundary layer developed around the 50 mm diameter probe. The measured stagnation-point heat transfer rates are reported and discussed.

  14. Experimental Investigation of Several Copper and Beryllium Hemispherical Models in Air at Stagnation Temperatures of 2,000 to 3,600 F

    NASA Technical Reports Server (NTRS)

    Trout, Otto F., Jr.

    1959-01-01

    As part of an investigation by the National Aeronautics and Space Administration to determine the resistance to heating of various materials when used as a heat sink for hypersonic airframes, hemispherical nose-shape models of beryllium and copper have been tested in a Mach number 4 hot-air jet at stagnation temperatures of 2,000 F to 3,600 F and Reynolds numbers of 1.88 x 10(exp 6) to 2.93 x 10(exp 6). The experimental results of heating on the nose of the beryllium models agreed reasonably well with theoretical results, whereas heating on the nose of the copper models was almost twice that predicted by theory. Heating of the cylindrical wall behind the hemisphere agreed fairly well with that predicted by theory at lower temperatures. Beryllium produced a thin protective oxide when heated to its melting point with no tendency to ignite before melting. Copper produced a somewhat heavier layer of oxide upon heating, and ignited when heated to near its melting point. These tests indicate that beryllium is superior to copper as a heat-sink material because it absorbs more heat per unit weight, has greater resistance to oxidation in heated air, and does not ignite when heated in air up to its melting temperature.

  15. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions.

    PubMed

    Bakker, Dewi P; Busscher, Henk J; van der Mei, Henny C

    2002-02-01

    Deposition onto glass in a parallel plate (PP) and in a stagnation point (SP) flow chamber of Marinobacter hydrocarbonoclasticus, Psychrobacter sp. and Halomonas pacifica, suspended in artificial seawater, was compared in order to determine the influence of methodology on bacterial adhesion mechanisms. The three strains had different cell surface hydrophobicities, with water contact angles on bacterial lawns ranging from 18 to 85 degrees. Bacterial zeta potentials in artificial seawater were essentially zero. The three strains showed different adhesion kinetics and the hydrophilic bacterium H. pacifica had the greatest affinity for hydrophilic glass. On average, initial deposition rates were two- to threefold higher in the SP than in the PP flow chamber, possibly due to the convective fluid flow toward the substratum surface in the SP flow chamber causing more intimate contact between a substratum and a bacterial cell surface than the gentle collisions in the PP flow chamber. The ratios between the experimental deposition rates and theoretically calculated deposition rates based on mass transport equations not only differed among the strains, but were also different for the two flow chambers, indicating different mechanisms under the two modes of mass transport. The efficiencies of deposition were higher in the SP flow chamber than in the PP flow chamber: 62+/-4 and 114+/-28% respectively. Experiments in the SP flow chamber were more reproducible than those in the PP flow chamber, with standard deviations over triplicate runs of 8% in the SP and 23% in the PP flow chamber. This is probably due to better-controlled convective mass transport in the SP flow chamber, as compared with the diffusion-controlled mass transport in the PP flow chamber. In conclusion, this study shows that bacterial adhesion mechanisms depend on the prevailing mass transport conditions in the experimental set-up used, which makes it essential in the design of experiments that a methodology is

  16. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  17. Stagnation Point Radiative Heating Relations for Venus Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Palmer, Grant E.; Prabhu, Dinesh K.

    2012-01-01

    Improved analytic expressions for calculating the stagnation point radiative heating during entry into the atmosphere of Venus have been developed. These analytic expressions can be incorporated into entry trajectory simulation codes. Together with analytical expressions for convective heating at the stagnation point, the time-integrated total heat load at the stagnation point is used in determining the thickness of protective material required, and hence the mass of the fore body heatshield of uniform thickness.

  18. Oscillating stagnation point flow

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Salwen, H.

    1982-01-01

    A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.

  19. Oscillating stagnation point flow

    NASA Astrophysics Data System (ADS)

    Grosch, C. E.; Salwen, H.

    1982-11-01

    A solution of the Navier-Stokes equations is given for an incompressible stagnation point flow whose magnitude oscillates in time about a constant, non-zero, value (an unsteady Hiemenz flow). Analytic approximations to the solution in the low and high frequency limits are given and compared with the results of numerical integrations. The application of these results to one aspect of the boundary layer receptivity problem is also discussed.

  20. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  1. Evolution of Southern Hemisphere spring air masses observed by HALOE

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  2. A numerical solution of the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders in air

    NASA Technical Reports Server (NTRS)

    Johnston, K. D.; Hendricks, W. L.

    1978-01-01

    Results of solving the Navier-Stokes equations for chemically nonequilibrium, merged stagnation shock layers on spheres and two-dimensional cylinders are presented. The effects of wall catalysis and slip are also examined. The thin shock layer assumption is not made, and the thick viscous shock is allowed to develop within the computational domain. The results show good comparison with existing data. Due to the more pronounced merging of shock layer and boundary layer for the sphere, the heating rates for spheres become higher than those for cylinders as the altitude is increased.

  3. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  4. Stagnation-point heat transfer correlation for ionized gases

    NASA Technical Reports Server (NTRS)

    Bade, W. L.

    1975-01-01

    Based on previous laminar boundary-layer solutions for argon, xenon, nitrogen, and air, it is shown that the effect of gas ionization on stagnation-point heat transfer can be correlated with the variation of the frozen Prandtl number across the boundary layer. A formula is obtained for stagnation-point heat transfer in a noble gas and is shown to be valid from the low-temperature range to the region of strong ionization. It is concluded that the considered effect can be well correlated by the 0.7 power of the Prandtl-number ratio across the boundary layer.

  5. Occurrence and persistence of future atmospheric stagnation events

    PubMed Central

    Horton, Daniel E.; Skinner, Christopher B.; Singh, Deepti; Diffenbaugh, Noah S.

    2014-01-01

    Poor air quality causes an estimated 2.6 to 4.4 million premature deaths per year1–3. Hazardous conditions form when meteorological components allow the accumulation of pollutants in the near-surface atmosphere4–8. Global warming-driven changes to atmospheric circulation and the hydrological cycle9–13 are expected to alter the meteorological components that control pollutant build-up and dispersal5–8,14, but the magnitude, direction, geographic footprint, and public health impact of this alteration remain unclear7,8. We utilize an air stagnation index and an ensemble of bias-corrected climate model simulations to quantify the response of stagnation occurrence and persistence to global warming. Our analysis projects increases in stagnation occurrence that cover 55% of the current global population, with areas of increase affecting 10 times more people than areas of decrease. By the late-21st century, robust increases of up to 40 days per year are projected throughout the majority of the tropics and subtropics, as well as within isolated mid-latitude regions. Potential impacts over India, Mexico, and the western U.S. are particularly acute due to the intersection of large populations and increases in the persistence of stagnation events, including those of extreme duration. These results indicate that anthropogenic climate change is likely to alter the level of pollutant management required to meet future air quality targets. PMID:25309627

  6. Occurrence and persistence of future atmospheric stagnation events

    NASA Astrophysics Data System (ADS)

    Horton, Daniel E.; Skinner, Christopher B.; Singh, Deepti; Diffenbaugh, Noah S.

    2014-08-01

    Poor air quality causes an estimated 2.6-4.4 million premature deaths per year. Hazardous conditions form when meteorological components allow the accumulation of pollutants in the near-surface atmosphere. Global-warming-driven changes to atmospheric circulation and the hydrological cycle are expected to alter the meteorological components that control pollutant build-up and dispersal, but the magnitude, direction, geographic footprint and public health impact of this alteration remain unclear. We used an air stagnation index and an ensemble of bias-corrected climate model simulations to quantify the response of stagnation occurrence and persistence to global warming. Our analysis projects increases in stagnation occurrence that cover 55% of the current global population, with areas of increase affecting ten times more people than areas of decrease. By the late twenty-first century, robust increases of up to 40 days per year are projected throughout the majority of the tropics and subtropics, as well as within isolated mid-latitude regions. Potential impacts over India, Mexico and the western US are particularly acute owing to the intersection of large populations and increases in the persistence of stagnation events, including those of extreme duration. These results indicate that anthropogenic climate change is likely to alter the level of pollutant management required to meet future air quality targets.

  7. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  8. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    NASA Technical Reports Server (NTRS)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  9. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004 2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-10-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  10. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004-2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-06-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration (PM1 and PM10) by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  11. Unified Nusselt- and Sherwood-number correlations in axisymmetric finite-gap stagnation and rotating-disk flows

    DOE PAGES

    Coltrin, Michael E.; Kee, Robert J.

    2016-06-18

    This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objective is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at the stagnation surface. The approach is based on computationally solving the governing conservation equations in similarity form as a boundary-value problem. The formulation considers ideal gases and incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt, and Damkohler numbers. Heterogeneous chemistry at the stagnation surface is represented as a singlemore » first-order reaction. A composite Reynolds number represents the combination of stagnation flows with and without stagnation-surface rotation.« less

  12. Unified Nusselt- and Sherwood-number correlations in axisymmetric finite-gap stagnation and rotating-disk flows

    SciTech Connect

    Coltrin, Michael E.; Kee, Robert J.

    2016-06-18

    This paper develops a unified analysis of stagnation flow heat and mass transport, considering both semi-infinite domains and finite gaps, with and without rotation of the stagnation surface. An important objective is to derive Nusselt- and Sherwood-number correlations that represent heat and mass transport at the stagnation surface. The approach is based on computationally solving the governing conservation equations in similarity form as a boundary-value problem. The formulation considers ideal gases and incompressible fluids. The correlated results depend on fluid properties in terms of Prandtl, Schmidt, and Damkohler numbers. Heterogeneous chemistry at the stagnation surface is represented as a single first-order reaction. A composite Reynolds number represents the combination of stagnation flows with and without stagnation-surface rotation.

  13. Where do the air masses between double tropopauses come from?

    NASA Astrophysics Data System (ADS)

    Parracho, A. C.; Marques, C. A. F.; Castanheira, J. M.

    2014-01-01

    An analysis of the origin of air masses that end up between double tropopauses (DT) in the subtropics and midlatitudes is presented. The double tropopauses were diagnosed in the ERA-Interim reanalysis (1979-2010), and the origin of air masses was analysed using the Lagrangian model FLEXPART. Different processes for the formation of double tropopauses (DT) have been suggested in the literature. Some studies have suggested that double tropopauses may occur as a response to the vertical profile of adiabatic heating, due to the residual meridional circulation, while others have put forward contradicting explanations. Whereas some studies have suggested that double tropopauses result from poleward excursions of the tropical tropopause over the extratropical one, others have argued that DTs develop in baroclinic unstable processes involving transport of air from high latitudes. In some regions, the DT structure has a semipermanent character which cannot be explained by excursions of the tropical tropopause alone. However, the results presented in this paper confirm that processes involving excursions of the tropical tropopause over the extratropical tropopause, which are therefore accompanied by intrusions of air from the tropical troposphere into the lower extratropical stratosphere, make a significant contribution for the occurrence of DTs in the subtropics and midlatitudes. Specifically, it is shown that the air between double tropopauses comes from equatorward regions, and has a higher percentage of tropospheric particles and a lower mean potential vorticity.

  14. On Flow Stagnation in a Tube Radiator

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Chao, David F.; Sankovic, John M.; Zhang, Nengli

    2007-01-01

    An analysis of the physical process for occurrence of flow stagnation in a space tube-radiator is performed and the mechanism and mathematic description for the flow stagnation are presented. Two causes for pressure drop unbalance between tubes of the radiator are identified: non-uniform cooling environment and different local flow resistances between the tubes. This analysis provides a theoretical basis for experimental simulations of the flow stagnation in a ground-based lab as well as two suggested methods to experimentally simulate flow stagnation. Criteria for the flow stagnation, depending on the viscosity data regressive polynomial, are derived from the extreme condition of the pressure drop in colder tubes. A preliminary numerical calculation is conducted for a space tube-radiator model which confirms the physical and mathematical analyses. The prediction by the criteria for flow stagnation in the tube-radiator model coincides with the numerical calculation result.

  15. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  16. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. Evolution of disturbances in stagnation point flow

    NASA Technical Reports Server (NTRS)

    Criminale, William O.; Jackson, Thomas L.; Lasseigne, D. Glenn

    1993-01-01

    The evolution of three-dimensional disturbances in an incompressible three-dimensional stagnation-point flow in an inviscid fluid is investigated. Since it is not possible to apply classical normal mode analysis to the disturbance equations for the fully three-dimensional stagnation-point flow to obtain solutions, an initial-value problem is solved instead. The evolution of the disturbances provide the necessary information to determine stability and indeed the complete transient as well. It is found that when considering the disturbance energy, the planar stagnation-point flow, which is independent of one of the transverse coordinates, represents a neutrally stable flow whereas the fully three-dimensional flow is either stable or unstable, depending on whether the flow is away from or towards the stagnation point in the transverse direction that is neglected in the planar stagnation point.

  18. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  19. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  20. Blood rheology near a stagnation point.

    PubMed

    Niimi, H; Sugihara, M

    1982-01-01

    Blood rheology at a stagnation point is studied in views of microhemorheology. Special emphasis is put on the effect of both non-Newtonian and unhomogeneous properties of blood on the fine structure of blood flow impinging on the wall. It is shown that "non-flow" region exists just at the stagnation point due to the non-Newtonian viscosity when its yield stress is large enough, compared with the viscous stress far from the wall. When the yield stress becomes negligibly small, RBC and plasma behave individually near the stagnation point; RBC is deviated from the plasma streamline and impinges on the wall. Finally, a microhemorheological factor of legional metabolic disorder is discussed on basis of the fine structure near a stagnation point.

  1. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  2. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  3. Air Mass Frequency during Precipitation Events in the United States Northern Plains

    NASA Astrophysics Data System (ADS)

    Loveless, D. M.; Sharr, N. J.; Baum, A.; Contract, J. S.; DePasquale, R.; Godek, M. L.

    2013-12-01

    Since 1980, numerous billion-dollar disasters have affected the Northern Plains of the United States, including nine droughts and four floods. Given the region's large agricultural sector, the ability to accurately forecast the frequency and quantity of precipitation events here is imperative as it has a major impact on the economy of states in the region. The atmospheric environment present during precipitation events can largely be described by the presiding air mass conditions since air masses characterize a multitude of meteorological variables at one time over a large region. Therefore, understanding the relationship between air masses and rainfall episodes can contribute to improved precipitation forecasts. The goal of this research is to add knowledge to current understandings of the factors responsible for precipitation in the Northern Plains through an assessment of synoptic air mass conditions. The Spatial Synoptic Classification is used to categorize 30 years of daily air mass types across the region and daily precipitation is acquired from the United States Historical Climatological Network at stations in close proximity. Air mass frequencies are then analyzed for all regional precipitation events and rainfall categories are developed based on precipitation quantity. Both annual and seasonal air mass frequencies are assessed at the time of precipitation events. Additionally, air mass frequencies are obtained for positive and negative phases of the Pacific/North American Pattern to examine the influence of a teleconnection forcing factor on the air mass types responsible for producing precipitation quantities. Results indicate that the Transitional (TR) air mass, associated with changing air mass conditions commonly related to passing fronts, is not the leading producer of rainfall in the region. The TR is generally responsible for only 10-20% of regional precipitation, which often is classed in a heavy rainfall category. All moist air mass varieties are

  4. A determination of character and frequency changes in air masses using a spatial synoptic classification

    NASA Astrophysics Data System (ADS)

    Kalkstein, Laurence S.; Sheridan, Scott C.; Graybeal, Daniel Y.

    1998-09-01

    Of the numerous climate change studies which have been performed, few of these have analyzed recent trends using an air mass-based approach. The air mass approach is superior to simple trend analysis, as it can identify patterns which may be too subtle to influence the entire climate record. The recently-developed spatial synoptic classification (SSC) is thus used to identify trends over the contiguous United States for summer and winter seasons from 1948 to 1993. Both trends in air mass frequency and character have been assessed.The most noteworthy trend in frequency is a decline in air mass transitional days (TR) during both seasons. In winter, decreases of up to 1% per decade are noted in parts of the central U.S. Other notable trends include a decrease in moist tropical (MT) air in winter, and an increase in MT in summer over the southeastern states.Numerous national and local air mass character changes have been uncovered. A large overall upward trend in cloudiness is noted in summer. All air masses feature an overnight increase, yet afternoon cloudiness increases are generally limited to the three dry air masses. Also in summer, a significant warming and increase in dew point of MT air has occurred at many locales. The most profound winter trend is a large decrease in dew point (up to 1.5°C per decade) in the dry polar (DP) air mass over much of the eastern states.

  5. Approximate Model for Turbulent Stagnation Point Flow.

    SciTech Connect

    Dechant, Lawrence

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  6. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  7. Atmospheric stagnation, recirculation and ventilation potential of several sites in Argentina

    NASA Astrophysics Data System (ADS)

    Venegas, L. E.; Mazzeo, N. A.

    Conditions for stagnation, recirculation and ventilation potential of the atmosphere were studied in five argentine cities: Resistencia, Córdoba, Buenos Aires, Mar del Plata and Comodoro Rivadavia, located in different regions of the country. Wind run and recirculation factors were calculated for a 24-h transport time using 2 years of hourly surface measurements of wind speed and direction. The largest stagnation frequency (45% of the time) was observed in Resistencia, located in the northeastern part of the country, in an area where winds are weak. The least frequency of stagnations (2%) was observed in Comodoro Rivadavia, in the southern region of the country, a region dominated by strong westerly winds. Comodoro Rivadavia and Córdoba registered the largest frequency of recirculations. Comodoro Rivadavia exposed to sea-land breezes and Córdoba, located on a complex terrain area and exposed to local circulations, experienced recirculation events during 10% of the time. Good atmospheric ventilation occurs when a high value of wind run and a low value of the recirculation factor are observed and it can be associated with the atmosphere's capacity to replace polluted air with clean air. Ventilation events occurred 58% of the time at Comodoro Rivadavia, 52% at Mar del Plata, 40% at Buenos Aires, 35% at Córdoba and 18% at Resistencia. In general, stagnation was more frequently observed during autumn and winter, recirculation during spring and summer and good ventilation conditions occurred during spring.

  8. Augmentation of Stagnation Region Heat Transfer Due to Turbulence from a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2001-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NO(x), ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.

  9. Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2000-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

  10. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  11. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  12. An unsteady stagnation-point flow

    NASA Astrophysics Data System (ADS)

    Riley, N.; Vasantha, R.

    1989-11-01

    The oscillatory flow at a two-dimensional stagnation point is studied. It is shown that, following the initiation of the motion, the solution always develops a singularity at a finite time. The implications of this finding for the flow over a cylinder which performs transverse harmonic oscillations are discussed.

  13. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  14. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  15. Species measurements in a hypersonic, hydrogen-air, combustion wake

    SciTech Connect

    Skinner, K.A.; Stalker, R.J.

    1996-09-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water, and nitric oxide at stagnation enthalpies ranging from 5.6 MJ/kg to 12.2 MJ/kg and at a distance of approximately 100s times the thickness of the initial hydrogen jet. The amount of hydrogen mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, despite the fact that the proportion of hydrogen in the wake was increased with stagnation enthalpy. Roughly 50% of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  16. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  17. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  18. Simple microfluidic stagnation point flow geometries.

    PubMed

    Dockx, Greet; Verwijlen, Tom; Sempels, Wouter; Nagel, Mathias; Moldenaers, Paula; Hofkens, Johan; Vermant, Jan

    2016-07-01

    A geometrically simple flow cell is proposed to generate different types of stagnation flows, using a separation flow and small variations of the geometric parameters. Flows with high local deformation rates can be changed from purely rotational, over simple shear flow, to extensional flow in a region surrounding a stagnation point. Computational fluid dynamic calculations are used to analyse how variations of the geometrical parameters affect the flow field. These numerical calculations are compared to the experimentally obtained streamlines of different designs, which have been determined by high speed confocal microscopy. As the flow type is dictated predominantly by the geometrical parameters, such simple separating flow devices may alleviate the requirements for flow control, while offering good stability for a wide variety of flow types.

  19. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  20. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  1. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  2. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  3. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  4. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  5. Erroneous mass transit system and its tended relationship with motor vehicular air pollution (An integrated approach for reduction of urban air pollution in Lahore).

    PubMed

    Aziz, Amer; Bajwa, Ihsan Ullah

    2008-02-01

    Air pollution is threat to the lives of people living in big cities of Pakistan. In Lahore 1,250 people die annually because of air pollution. Mass transit system that can be put forth as solution to urban air pollution is contingent with right choice of system and its affiliation with motorized vehicles and nature of urban air pollution. Existing mass transit system in Lahore due to untrue operation causes surfeit discharge of motor vehicular carbon monoxide. Tended relationships of mass transit system with motorized vehicles and urban air pollution are quite noteworthy. The growing motor vehicles (a consequence of flawed public mass transit system) are potential source of urban air pollution. This paper attempts to highlight correlations and regression curves of existing mass transit system. Further it recommends a two facet approach for reduction of motor vehicular air pollution in Lahore.

  6. Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    NASA Astrophysics Data System (ADS)

    Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; Pérez-Murano, F.; Fraxedas, J.; Esteve, J.; Barniol, N.

    2007-07-01

    Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10-11g/cm2Hz equivalent to 0.9ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10-17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.

  7. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  8. Public health risks of prolonged fine particle events associated with stagnation and air quality index based on fine particle matter with a diameter <2.5 μm in the Kaoping region of Taiwan.

    PubMed

    Lai, Li-Wei

    2016-12-01

    The increasing frequency of droughts in tropical and sub-tropical areas since 1970 due to climate change requires a better understanding of the relationship between public health and long-duration fine particle events (FPE; defined as a day with an average PM2.5 ≥ 35.5 μg/m(3)) associated with rainfall and wind speed. In the Kaoping region of Taiwan, 94.46 % of the daily average PM2.5 in winter exceeds the limit established by 2005 World Health Organization (WHO) guidelines. This study investigated the differences in winter weather characteristics and health effects between non-FPE and FPE days, and the performance of air quality indexes on FPE days. Z-statistics for one-tailed tests, multiplicative decomposition models, logarithmic regression, and product-moment correlations were used for the analysis. The results indicate that mean wind speeds, rainfall hours, and air temperature were significantly decreased on FPE days. Daily mean PM2.5 concentrations were positively correlated to the duration of FPE days. The duration of FPE days was positively related to the length of drought (r = 0.97, P < 0.05). The number of respiratory admissions was positively correlated with the FPE duration (r (2) = 0.60). The age groups >15 years experienced the largest average reduction in asthma admissions on lag-days. Compared to the pollutant standard index (PSI) and revised air quality index (RAQI), the PM2.5 index is more representative and sensitive to changes in PM2.5 concentrations.

  9. Public health risks of prolonged fine particle events associated with stagnation and air quality index based on fine particle matter with a diameter <2.5 μm in the Kaoping region of Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, Li-Wei

    2016-12-01

    The increasing frequency of droughts in tropical and sub-tropical areas since 1970 due to climate change requires a better understanding of the relationship between public health and long-duration fine particle events (FPE; defined as a day with an average PM2.5 ≥ 35.5 μg/m3) associated with rainfall and wind speed. In the Kaoping region of Taiwan, 94.46 % of the daily average PM2.5 in winter exceeds the limit established by 2005 World Health Organization (WHO) guidelines. This study investigated the differences in winter weather characteristics and health effects between non-FPE and FPE days, and the performance of air quality indexes on FPE days. Z-statistics for one-tailed tests, multiplicative decomposition models, logarithmic regression, and product-moment correlations were used for the analysis. The results indicate that mean wind speeds, rainfall hours, and air temperature were significantly decreased on FPE days. Daily mean PM2.5 concentrations were positively correlated to the duration of FPE days. The duration of FPE days was positively related to the length of drought ( r = 0.97, P < 0.05). The number of respiratory admissions was positively correlated with the FPE duration ( r 2 = 0.60). The age groups >15 years experienced the largest average reduction in asthma admissions on lag-days. Compared to the pollutant standard index (PSI) and revised air quality index (RAQI), the PM2.5 index is more representative and sensitive to changes in PM2.5 concentrations.

  10. About stagnation and the emperor's new clothes.

    PubMed

    Crombez, Geert

    2015-12-01

    Innamorati and colleagues (Innamorati et al., J Headache Pain 16:2, 2015) validated the "stagnation scale" and proposed to use it to screen for psychopathology. I have some critical comments to consider about the theoretical and clinical value of the instrument. First, items of the scale are not specific, and may equally well measure worry, self-worth and distress. Second, questionnaires are tools to assess the experiences of patients, but not hypothesized causal processes. The scale can thus not identify patients who repress emotions. Third, the routine use of this instrument will detract clinicians from what really is at stake in patients and what may help them.

  11. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  12. A Synoptic Air Mass Approach to Defining Southwest U.S. Summer Duration and Change

    NASA Astrophysics Data System (ADS)

    Morrill, C.; Wachtel, C. J.; Godek, M. L.

    2015-12-01

    As the past decade was the warmest in the 110-year active record, and future Southwest warming is expected to be most intense in the summer season, it is important to have an updated atmospheric definition of what constitutes a Southwest summer. This is particularly true given the intensity of current drought conditions and that summers may be changing. Using weather-type data from the Spatial Synoptic Classification, this research aims to synoptically define the summer season in the Southwest since 1950. The Southwest is spatially described here by sub-region and 28 air mass stations within are chosen for air mass analysis. Daily air mass frequencies are examined to determine the dominant and less prevalent types annually and seasonally, from May to September. Then, frequencies in the middle of summer are compared to those in the seasonal fringe months to explore the possibility of a synoptic shift in the timing of the region's summer season. Finally, to further scrutinize how regional air mass frequencies have changed with time, the data are subdivided and evaluated for the 'Early record' (years prior to 1975) and 'Modern record' (post 1975). Frequency departures are tested for practical and statistical significance to characterize the strength of summer season variability. Results indicate that Dry Moderate air masses are the most common annually and in summer. Moist and transitional air masses tend to less frequent throughout the Southwest; however, frequencies vary greatly by sub-region. Wet and dry conditions are observed in accordance with the monsoon in some sub-regions, but not throughout the region. Significant changes in sub-regional air mass tendencies are identified that show the Early record experienced cooler air mass conditions (fewer tropical types and more moderate and cool types) than the Modern record. From a long-term synoptic air mass perspective, typical Southwest summers likely last from May to August. However, in the Modern record May

  13. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading- edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (F.4S) cycle per grid. Asymptotic convergence rates of the F.4S cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  14. Textbook Multigrid Efficiency for Leading Edge Stagnation

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Mineck, Raymond E.

    2004-01-01

    A multigrid solver is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in evaluating the discrete residuals. TME in solving the incompressible inviscid fluid equations is demonstrated for leading-edge stagnation flows. The contributions of this paper include (1) a special formulation of the boundary conditions near stagnation allowing convergence of the Newton iterations on coarse grids, (2) the boundary relaxation technique to facilitate relaxation and residual restriction near the boundaries, (3) a modified relaxation scheme to prevent initial error amplification, and (4) new general analysis techniques for multigrid solvers. Convergence of algebraic errors below the level of discretization errors is attained by a full multigrid (FMG) solver with one full approximation scheme (FAS) cycle per grid. Asymptotic convergence rates of the FAS cycles for the full system of flow equations are very fast, approaching those for scalar elliptic equations.

  15. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  16. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  17. Total-reflection X-ray fluorescence — a tool to obtain information about different air masses and air pollution

    NASA Astrophysics Data System (ADS)

    Schmeling, Martina

    2001-11-01

    Atmospheric aerosols are solid particles dissolved in air and change their chemical composition frequently depending on various parameters. In order to identify regional air circulation atmospheric aerosol filter samples were taken at Loyola University Chicago's Lake Shore Campus during the months of July and August 2000 with sampling times ranging between 1 and 2 h. The samples were digested in a microwave oven and analyzed by total-reflection X-ray fluorescence (TXRF) spectrometry. One diurnal variation comprising five consecutive sampling events was selected and discussed as well as 4 days experiencing different meteorology were compared to exemplify the variation in trace elemental concentration according to air mass movements and highlight the capability of total-reflection X-ray fluorescence analysis. It was found that due to changes in meteorological conditions particularly wind direction and wind speed, trace elemental compositions varied rapidly and could be used to distinguish between 'Lake Michigan air' and 'metropolitan Chicago air' on such short-term time scale like one hour. Back trajectory analysis was applied to support and corroborate the results. The outcome of this study clearly shows that total-reflection X-ray fluorescence is an optimal tool for analysis of atmospheric aerosols.

  18. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, S.W.

    1981-01-16

    An active solar collector having increased energy rejection during stagnation is disclosed. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintan lower temperatures when the collector is not in operation.

  19. Solar collector apparatus having increased energy rejection during stagnation

    DOEpatents

    Moore, Stanley W.

    1983-07-12

    The disclosure relates to an active solar collector having increased energy rejection during stagnation. The collector's glazing is brought into substantial contact with absorber during stagnation to increase re-emittance and thereby to maintain lower temperatures when the collector is not in operation.

  20. Stagnation in Mortality Decline among Elders in the Netherlands

    ERIC Educational Resources Information Center

    Janssen, Fanny; Nusselder, Wilma J.; Looman, Caspar W. N.; Mackenbach, Johan P.; Kunst, Anton E.

    2003-01-01

    Purpose: This study assesses whether the stagnation of old-age (80+) mortality decline observed in The Netherlands in the 1980s continued in the 1990s and determines which factors contributed to this stagnation. Emphasis is on the role of smoking. Design and Methods: Poisson regression analysis with linear splines was applied to total and…

  1. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  2. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  3. Thermal instability of stagnation point boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, M. M.; Chen, K.; Sohn, C. W.

    1980-07-01

    An analysis of thermal instability for the two-dimensional stagnation flow with respect to the longitudinal cell mode is presented. This mode represents a three-dimensional buoyancy-drive motion consisting of a row of cells with axes parallel to the direction of the velocity vector near the surface; it is the least stable mode in the presence of shear. The analysis results in an eighth-order eigenvalue problem for the general case, and a sixth-order eigenvalue problem for the limiting case of infinite Prandtl number. The problem was solved by a numerical shooting method for a finite domain and determination of the asymptotic value of the eigenvalue as the limit of the domain approach infinity. It was found that the Grashof number based on the viscous length scale is a more convenient parameter to present the stability results than the Rayleigh number.

  4. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  5. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  6. Toward a better understanding of the impact of mass transit air pollutants on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  7. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  8. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  9. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  10. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  11. Direct measurement of the confinement time in a magnetically driven liner stagnation

    NASA Astrophysics Data System (ADS)

    Martin, Matthew

    2016-10-01

    We report on direct, radiographic measurement of the stagnation phase of a magnetically driven liner implosion. In experiments on the Z machine, a beryllium liner is filled with liquid deuterium and imploded to a minimum radius of 440 microns (radial convergence ratio of 7.7) over 300ns, achieving a density at stagnation of approximately 10 g/cc. The measured confinement time is 12.2 ns, compared to 14 ns from 1D simulations. Comparison of the evolution of the density profiles from the radiographs with the simulation shows a deviation in the reflected shock trajectory and the stagnation of the trailing mass. Additionally, the magneto-Raleigh-Taylor instability modifies the axial liner mass distribution, leading to enhanced compression with shorter confinement in the bubble region compared to the spikes, reducing the overall pressure-confinement time product by 29 percent as compared to the 1D simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. In collaboration with: Patrick Knapp & Daniel Dolan, Sandia National Labs.

  12. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  13. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  14. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  15. Source areas and trajectories of nucleating air masses within and near the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Németh, Z.; Salma, I.

    2014-04-01

    Particle number size distributions were measured by differential mobility particle sizer in the diameter range of 6-1000 nm in the near-city background and city centre of Budapest continuously for two years. The city is situated in the middle part of the Carpathian Basin, which is a topographically discrete unit in the southeast Central Europe. Yearly mean nucleation frequencies and uncertainties for the near-city background and city centre were (28+6/-4) % and (27+9/-4) %, respectively. Total numbers of days with continuous and uninterrupted growth process were 43 and 31, respectively. These events and their properties were utilised to investigate if there are any specific tracks and/or separable source regions for the nucleating air masses within or near the basin. Local wind speed and direction data indicated that there seem to be differences between the nucleation and growth intervals and non-nucleation days. For further analysis, backward trajectories were generated by a simple air parcel trajectory model. Start and end time parameters of the nucleation, and end time parameter of the particle growth were derived by a standardized procedure based on examining the channel contents of the contour plots. These parameters were used to specify a segment on each air mass trajectory that is associated with the track of the nucleating air mass. The results indicated that the nucleation events happened in the continental boundary layer mostly within the Carpathian Basin but the most distant trajectories originated outside of the basin. The tracks of the nucleating air masses were predominantly associated with NW and SE geographical fields, while the source areas that could be separated were frequently situated in the NW and NE quarters. Many of them were within or close to large forested territories. The results also emphasize that the new particle formation and growth phenomenon that occurs in the region influences larger territories than the Carpathian Basin.

  16. Microfluidic extensional rheometry using stagnation point flow

    PubMed Central

    2016-01-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed. PMID:27099647

  17. Microfluidic extensional rheometry using stagnation point flow.

    PubMed

    Haward, S J

    2016-07-01

    Characterization of the extensional rheometry of fluids with complex microstructures is of great relevance to the optimization of a wide range of industrial applications and for understanding various natural processes, biological functions, and diseases. However, quantitative measurement of the extensional properties of complex fluids has proven elusive to researchers, particularly in the case of low viscosity, weakly elastic fluids. For some time, microfluidic platforms have been recognized as having the potential to fill this gap and various approaches have been proposed. This review begins with a general discussion of extensional viscosity and the requirements of an extensional rheometer, before various types of extensional rheometers (particularly those of microfluidic design) are critically discussed. A specific focus is placed on microfluidic stagnation point extensional flows generated by cross-slot type devices, for which some important developments have been reported during the last 10 years. Additional emphasis is placed on measurements made on relevant biological fluids. Finally, the operating limits of the cross-slot extensional rheometer (chiefly imposed by the onset of elastic and inertial flow instabilities) are discussed.

  18. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  19. Improving Hydrological Models by Applying Air Mass Boundary Identification in a Precipitation Phase Determination Scheme

    NASA Astrophysics Data System (ADS)

    Feiccabrino, James; Lundberg, Angela; Sandström, Nils

    2013-04-01

    Many hydrological models determine precipitation phase using surface weather station data. However, there are a declining number of augmented weather stations reporting manually observed precipitation phases, and a large number of automated observing systems (AOS) which do not report precipitation phase. Automated precipitation phase determination suffers from low accuracy in the precipitation phase transition zone (PPTZ), i.e. temperature range -1° C to 5° C where rain, snow and mixed precipitation is possible. Therefore, it is valuable to revisit surface based precipitation phase determination schemes (PPDS) while manual verification is still widely available. Hydrological and meteorological approaches to PPDS are vastly different. Most hydrological models apply surface meteorological data into one of two main PPDS approaches. The first is a single rain/snow threshold temperature (TRS), the second uses a formula to describe how mixed precipitation phase changes between the threshold temperatures TS (below this temperature all precipitation is considered snow) and TR (above this temperature all precipitation is considered rain). However, both approaches ignore the effect of lower tropospheric conditions on surface precipitation phase. An alternative could be to apply a meteorological approach in a hydrological model. Many meteorological approaches rely on weather balloon data to determine initial precipitation phase, and latent heat transfer for the melting or freezing of precipitation falling through the lower troposphere. These approaches can improve hydrological PPDS, but would require additional input data. Therefore, it would be beneficial to link expected lower tropospheric conditions to AOS data already used by the model. In a single air mass, rising air can be assumed to cool at a steady rate due to a decrease in atmospheric pressure. When two air masses meet, warm air is forced to ascend the more dense cold air. This causes a thin sharp warming (frontal

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Mixing of stratospheric and tropospheric air-masses detected with CRISTA-NF during AMMA

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Guenther, G.; Hoffmann, L.; Konopka, P.; Riese, M.

    2009-04-01

    CRISTA-NF (CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - New Frontiers) is an infrared limb sounding instrument installed onbord the high-flying research aircraft M55-Geophysica and took part in the AMMA-SCOUT measurement campaign in Summer 2006. During the test flight on 29th of July 2006, CRISTA-NF detected a sharp boundary between ozone rich air over northernItaly and ozone poor air over southern Italy and the Mediterranean Sea. The structure is also clearly visible in the HNO3 distribution. The air mass boundary extends from about 10km altitude to the thermal tropopause at about 16km altitude with indication for mixing in the lower part of this altitude range. This is supported by enhanced values of PAN and water vapour found. The observed structure is also visible in the CLaMS (Chemical Lagrangian Model of the Stratosphere) ozone distribution but hardly resolved in ECMWF forecast data. Backward trajectories show that the ozone rich air is originated westwards, between 40 and 60oN while the ozone poor air is coming from the south-east, at about 0-20oN and has a younger age of air. In the presentation details of the CRISTA-NF measurements and retrieval procedures as well as the origin of the trace gas structures will be discussed.

  2. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  3. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  4. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  5. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments.

  6. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  7. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  8. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  10. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  11. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  12. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  13. Enhanced copper release from pipes by alternating stagnation and flow events.

    PubMed

    Calle, Gustavo R; Vargas, Ignacio T; Alsina, Marco A; Pasten, Pablo A; Pizarro, Gonzalo E

    2007-11-01

    Traditional studies of copper release in plumbing systems assume that the water extracted from a pipe follows a plug-type flow and that the pipe surface does not interact with the bulk water under flow conditions. We characterized actual stagnation-flushing cycles in a household pipe undergoing corrosion in the presence of a microbial biofilm. The mass of copper released in 10 experiments was on average 8 times the value estimated by using the plug-flow assumption. The experimental copper release pattern was explained by an advection-diffusion model only if a high copper concentration occurs near the pipe surface after stagnation. Microscopic examination of the pipe surface showed a complex assemblage of biotic and abiotic features. X-ray diffraction analyses identified only malachite, while X-ray absorption spectroscopy also revealed cupric hydroxide and cuprite. These results indicate that the surface serves as a storage compartment of labile copper that may be released under flow conditions. Thus, the diffusive transport from the pipe surface to the bulk during stagnation is not the only control of the flux of copper to the tap water when porous reactive microstructures cover the pipe. Our results highlight the need for models that consider the interaction between the hydrodynamics, chemistry, and structure at the solid-water interface to predict the release of corrosion byproducts into drinking water.

  14. Determination of a Setup Correction Function to Obtain Adsorption Kinetic Data at Stagnation Point Flow Conditions

    PubMed Central

    Mora, Maria F.; Nejadnik, M. Reza; Baylon-Cardiel, Javier L.; Giacomelli, Carla E.; Garcia, Carlos D.

    2010-01-01

    This paper is the first report on the characterization of the hydrodynamic conditions in a flow cell designed to study adsorption processes by spectroscopic ellipsometry. The resulting cell enables combining the advantages of in-situ spectroscopic ellipsometry with stagnation point flow conditions. An additional advantage is that the proposed cell features a fixed position of the “inlet tube” with respect to the substrate, thus facilitating the alignment of multiple substrates. Theoretical calculations were performed by computational fluid dynamics and compared with experimental data (adsorption kinetics) obtained for the adsorption of polyethylene glycol to silica under a variety of experimental conditions. Additionally, a simple methodology to correct experimental data for errors associated with the size of the measured spot and for variations of mass transfer in the vicinity of the stagnation point is herein introduced. The proposed correction method would allow researchers to reasonably estimate the adsorption kinetics at the stagnation point and quantitatively compare their results, even when using different experimental setups. The applicability of the proposed correction function was verified by evaluating the kinetics of protein adsorption under different experimental conditions. PMID:20219204

  15. Determination of a setup correction function to obtain adsorption kinetic data at stagnation point flow conditions.

    PubMed

    Mora, Maria F; Nejadnik, M Reza; Baylon-Cardiel, Javier L; Giacomelli, Carla E; Garcia, Carlos D

    2010-06-01

    This paper is the first report on the characterization of the hydrodynamic conditions in a flow cell designed to study adsorption processes by spectroscopic ellipsometry. The resulting cell enables combining the advantages of in situ spectroscopic ellipsometry with stagnation point flow conditions. An additional advantage is that the proposed cell features a fixed position of the "inlet tube" with respect to the substrate, thus facilitating the alignment of multiple substrates. Theoretical calculations were performed by computational fluid dynamics and compared with experimental data (adsorption kinetics) obtained for the adsorption of polyethylene glycol to silica under a variety of experimental conditions. Additionally, a simple methodology to correct experimental data for errors associated with the size of the measured spot and for variations of mass transfer in the vicinity of the stagnation point is herein introduced. The proposed correction method would allow researchers to reasonably estimate the adsorption kinetics at the stagnation point and quantitatively compare their results, even when using different experimental setups. The applicability of the proposed correction function was verified by evaluating the kinetics of protein adsorption under different experimental conditions.

  16. Analysis for the catalytic ignition of methane in a stagnation-point flow

    SciTech Connect

    Trevino, C.

    1999-03-01

    The catalytic ignition of a mixture of methane and air in a planar stagnation-point flow over a platinum foil is studied. The heterogeneous reaction mechanism is modeled with twelve heterogeneous reactions, including the adsorption processes of both reactants, the desorption kinetics of reactants and main products, and a set of surface reactions of the Hinshelwood-Langmuir type. The critical conditions for the catalytic ignition are found using high activation energy asymptotics of the desorption kinetics of the adsorbed reactant O(s). The analytical results are compared with published experimental data. The agreement is good, at least qualitatively.

  17. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  18. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  19. Mass spectrometer measurements of test gas composition in a shock tunnel

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    Shock tunnels afford a means of generating hypersonic flow at high stagnation enthalpies, but they have the disadvantage that thermochemical effects make the composition of the test flow different to that of ambient air. The composition can be predicted by numerical calculations of the nozzle flow expansion, using simplified thermochemical models and, in the absence of experimental measurements, it has been necessary to accept the results given by these calculations. This note reports measurements of test gas composition, at stagnation enthalpies up to 12.5 MJ.kg(exp -1), taken with a time-of-flight mass spectrometer. Limited results have been obtained in previous measurements. These were taken at higher stagnation enthalpies, and used a quadruple mass spectrometer. The time-of-flight method was preferred here because it enabled a number of complete mass spectra to be obtained in each test, and because it gives good mass resolution over the range of interest with air (up to 50 a.m.a.).

  20. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  1. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  2. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  3. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  4. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  5. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-05

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER.

  6. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  7. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  8. Radiation effects on stagnation point flow with melting heat transfer and second order slip

    NASA Astrophysics Data System (ADS)

    Mabood, F.; Shafiq, A.; Hayat, T.; Abelman, S.

    This article examines the effects of melting heat transfer and thermal radiation in stagnation point flow towards a stretching/shrinking surface. Mathematical formulation is made in the presence of mass transfer and second order slip condition. Numerical solutions to the resulting nonlinear problems are obtained by Runge-Kutta fourth fifth order method. Physical quantities like velocity, temperature, concentration, skin friction, Nusselt and Sherwood number are analyzed via sundry parameters for stretching/shrinking, first order slip, second order slip, radiation, melting, Prandtl and Schmidt. A comparative study with the previously published results in limiting sense is made.

  9. Ice mechanics, basal water and the stagnation of Kamb Ice Stream, Antarctica

    NASA Astrophysics Data System (ADS)

    Fried, M.; Hulbe, C. L.; Fahnestock, M. A.

    2012-12-01

    Several of the ice streams that move ice from the interior of the West Antarctic Ice Sheet (WAIS) to the Ross Ice Shelf are documented to stagnate and reactivate on multi-century time scales. Once such event may now be underway on the downstream ice plain of the Whillans Ice Stream (WIS), a stream that stopped and started between about 850 and 450 years ago. Kamb Ice Stream (KIS) ceased its rapid flow about 150 years ago in an event that appears to have initiated in the downstream reach of the ice stream. These switches from fast to slow and back again produce major changes in mass balance of the ice sheet and ice shelf system. Ice stream stagnation must in some way involve changes in the basal water that facilitates fast flow. Here, transients in ice thickness and surface slope, which together steer basal water, are examined in the context of the recent stagnation of KIS. Transients have both regional—changes in WIS flux and in Crary Ice Rise, for example—and local causes. A mechanical analysis of high-resolution surface elevation and ice velocity data sets on the now-active WIS is used as a proxy for past conditions on KIS and an ice flow model is used to place those local conditions in a regional context. We argue that thickness transients associated with stagnation of WIS required the KIS grounding line to retreat far upstream of its present location while reactivation of WIS led to regional thickening, grounding of floating ice, and advance of the KIS grounding line toward its present location. The present work examines the role of lateral margins near the grounding line, in particular the broad, flat, "Duckfoot" on the right lateral side of the KIS outlet and Lake Englehardt, which occupies the same postion at the outlet of WIS. Lake Englehardt diverts water away from the main trunk of the ice stream. In the past, the Duckfoot may have played a similar role and that diversion may have been associated with KIS stagnation. Overall, our aim is to understand

  10. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  11. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  12. Boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid

    NASA Astrophysics Data System (ADS)

    Othman, Noor Adila; Yacob, Nor Azizah; Bachok, Norfifah; Ramli, Nazirah; Ishak, Anuar

    2015-10-01

    A steady mixed convection boundary layer flow near a stagnation point on a permeable vertical surface immersed in a nanofluid is investigated. The velocity of the external flow is assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically using the Keller box method with the help of MATLAB software. The effects of physical parameters such as the suction/injection parameter, Brownian motion parameter, thermophoresis parameter and Lewis number on the heat and mass transfer rate at the surface as well as the temperature and concentration profiles are analyzed and discussed. Both assisting and opposing flows are considered. It is found that, increasing the thermophoresis parameter, Brownian motion parameter and Lewis number are to decrease the heat transfer rate at the surface, but on the other hand increase the mass transfer rate at the surface for both assisting and opposing flows. In addition, increasing suction parameter tends to increase the heat transfer rate at the surface. However, the opposite behavior occurs for the effect of mass transfer rate at the surface.

  13. Magnetohydrodynamics stagnation point flow towards a stretching vertical sheet

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Nazar, R.; Pop, I.

    2006-03-01

    The analysis of steady two-dimensional stagnation point flow of an incompressible viscous and electrically conducting fluid, subject to a transverse uniform magnetic field, over a vertical stretching sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. It is shown that the basic partial differential equations reduce to similarity equations. This is followed by a direct numerical solution of the resulting boundary value problem using a very efficient finite-difference method. Discussions are made to trace among them the physically realistic solution. Tables 5, Figs 13, Refs 17.

  14. OFF-Stagnation point testing in plasma facility

    NASA Astrophysics Data System (ADS)

    Viladegut, A.; Chazot, O.

    2015-06-01

    Reentry space vehicles face extreme conditions of heat flux when interacting with the atmosphere at hypersonic velocities. Stagnation point heat flux is normally used as a reference for Thermal Protection Material (TPS) design; however, many critical phenomena also occur at off-stagnation point. This paper adresses the implementation of an offstagnation point methodology able to duplicate in ground facility the hypersonic boundary layer over a flat plate model. The first analysis using two-dimensional (2D) computational fluid dynamics (CFD) simulations is carried out to understand the limitations of this methodology when applying it in plasma wind tunnel. The results from the testing campaign at VKI Plasmatron are also presented.

  15. Understanding the stagnation and burn of implosions on NIF

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Caggiano, J. A.; Hatarik, R.; Knauer, J. P.; Sayre, D. B.; Spears, B. K.; Weber, S. V.; Yeamans, C. B.; Cerjan, C. J.; Divol, L.; Eckart, M. J.; Glebov, V. Yu; Herrmann, H. W.; Le Pape, S.; Munro, D. H.; Grim, G. P.; Jones, O. S.; Berzak-Hopkins, L.; Gatu-Johnson, M.; Mackinnon, A. J.; Meezan, N. B.; Casey, D. T.; Frenje, J. A.; Mcnaney, J. M.; Petrasso, R.; Rinderknecht, H.; Stoeffl, W.; Zylstra, A. B.

    2016-03-01

    An improved the set of nuclear diagnostics on NIF measures the properties of the stagnation plasma of implosions, including the drift velocity, areal density (ρr) anisotropy and carbon ρr of the compressed core. Two types of deuterium-tritium (DT) gas filled targets are imploded by shaped x-ray pulses, producing stagnated and burning DT cores of radial convergence (Cr) ∼ 5 or ∼20. Comparison with two-dimensional modeling with inner and outer surface mix shows good agreement with nuclear measurements.

  16. Richardson's pair diffusion and the stagnation point structure of turbulence.

    PubMed

    Dávila, J; Vassilicos, J C

    2003-10-03

    DNS and laboratory experiments show that the spatial distribution of straining stagnation points in homogeneous isotropic 3D turbulence has a fractal structure with dimension D(s)=2. In kinematic simulations the exponent gamma in Richardson's law and the fractal dimension D(s) are related by gamma=6/D(s). The Richardson constant is found to be an increasing function of the number density of straining stagnation points in agreement with pair diffusion occurring in bursts when pairs meet such points in the flow.

  17. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  18. Air mass characterization during the DAURE field campaign by PTR-TOF

    NASA Astrophysics Data System (ADS)

    Metzger, Axel; Schallhart, Simon; Müller, Markus; Hansel, Armin

    2010-05-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a wide variety of biogenic and anthropogenic sources. Although some of the sources are well characterized, many uncertainties remain about the fate of these compounds in the atmosphere and their role in organic aerosol formation. Here we present measurements using Proton Transfer Reaction Time-of-Flight (PTR-TOF) Mass Spectrometry during the DAURE field campaign ("Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean") obtained during February and March 2009. Measurements were performed at a rural mountain site located in the Montseny Natural Park 40 km to the NNE of the city of Barcelona, and 25 km from the Mediterranean coast. Volatile organic compounds where identified and quantified using PTR-TOF with 1 minute time resolution. The instruments mass resolving power of 4000 - 5000 and a mass accuracy of 5 ppm allows for the unambiguous sum-formula identification of e.g. hydrocarbons (HCs) or oxygenated VOCs (OVOCs). The high time resolution allows separating out on site pollution events. Air masses impacted by biomass-burning, urban, marine and vegetation emissions are characterized using tracers like acetonitrile, aromatics, dimethyl sulfide or biogenic compounds (terpenoids) and the degree of photochemical processing is inferred from the data.

  19. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  20. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  1. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  2. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  3. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  4. The effect of inlet stagnation supercooling degree on the aerodynamics of the steam flow field around a rotor tip section

    NASA Astrophysics Data System (ADS)

    Beheshti Amiri, H.; Kermani, M. J.

    2015-01-01

    In this paper, the effects of inlet stagnation supercooling degree on the aerodynamics of the flow field around the rotor tip section of a steam turbine are investigated. To do so, non-equilibrium thermodynamics model for simulating the condensing flow is employed. The results show that formation of liquid droplets and their further growth can remarkably change the design parameters like deviation angle, pressure loss coefficient, mass flow rate and shock wave pattern.

  5. Study of atmospheric stagnation, recirculation and ventilation potential at Narora Atomic Power Station NPP site.

    PubMed

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Kumar, Jaivender; Ravi, P M

    2013-04-01

    The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713-721, 1994). Meteorological data measured during the period 2006-2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006-2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase.

  6. Use of stable lead isotopes and trace metals to characterize air mass sources into the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    VéRon, Alain J.; Church, Thomas M.

    1997-12-01

    Stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) and trace metals (Mn, Al, Fe, Ni, Cu, Cd, Zn, Pb) have been analyzed in aerosol collected during the Atlantic Stratocumulus Transition Experiment-Marine Aerosol and Gas Exchange (ASTEX-MAGE) cruise that transited between Miami and the Azores from May to July 1992. Our goal was to define the continental signatures of the air masses encountered between the Azores and the subtropical regions. The combination of air mass trajectories, trace metal concentrations and stable lead isotopes allowed us to characterize the anthropogenic character of encountered air masses. The average 206Pb/207Pb ratio was 1.148±0.021 and corresponded to a mixing between well defined European (such as Great Britain with 1.115<206Pb/207Pb<1.125 and France with 206Pb/207Pb=1.141±0.000) and North American sources (with 206Pb/207Pb=1.184±0.000). On the basis of air mass trajectories and trace metal concentrations, the background isotopic signature associated with the trade winds (206Pb/207Pb=1.161±0.004) is consistent with previous reports by Church et al. [1990] such as 206Pb/207Pb=1.154±0.004 in 1988, (Véron et al., 1993), 206Pb/207Pb=1.155±0.004 in 1989, and Hamelin et al. [1996] (206Pb/207Pb=1.158±0.006) in 1991. Short-term variations of continental air mass sources was particularly investigated by considering the anthropogenic character of aerosols collected during two Lagrangian experiments conducted as part of the ASTEX-MAGE cruise. We demonstrated the utility of stable lead isotopes to assign a "continental source signature" (or mixture thereof) to air masses beyond that normally possible by conventional air mass trajectory analysis in remote oceanic regions.

  7. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  8. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  9. A Theoretical Study of Stagnation-Point Ablation

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    A simplified analysis is made of ablation cooling near the stagnation point of a two-dimensional or axisymmetric body which occurs as the body vaporizes directly from the solid state. The automatic shielding mechanism Is discussed and the important thermal properties required by a good ablation material are given. The results of the analysis are given in terms of dimensionless parameters.

  10. Stability of stagnation via an expanding accretion shock wave

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.

    2016-05-01

    Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.

  11. Generativity-Stagnation: Development of a Status Model.

    ERIC Educational Resources Information Center

    Bradley, Cheryl L.

    1997-01-01

    Reviews theoretical and empirical developments in Erik Erikson's construct of generativity-stagnation. Presents a five-category model describing styles of resolving the issue using combinations of level of involvement or active concern for the growth of self and others; and level of inclusivity or scope of caregiving concern. Discusses model in…

  12. Stagnation-Point Shielding by Melting and Vaporization

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    An approximate theoretical analysis was made of the shielding mechanism whereby the rate of heat transfer to the forward stagnation point of blunt bodies is reduced by melting and evaporation. General qualitative results are given and a numerical example, the melting and evaporation of ice, is presented and discussed in detail.

  13. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  14. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  15. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  16. Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Mattis, Ina; Tesche, Matthias; Ansmann, Albert; BöSenberg, Jens; Chaikovski, Anatoly; Freudenthaler, Volker; Komguem, Leonce; Linné, Holger; Matthias, Volker; Pelon, Jacques; Sauvage, Laurent; Sobolewski, Piotr; Vaughan, Geraint; Wiegner, Matthias

    2004-12-01

    For the first time, the vertically resolved aerosol optical properties of western and central/eastern European haze are investigated as a function of air mass transport. Special emphasis is put on clean maritime air masses that cross the European continent from the west and become increasingly polluted on their way into the continent. The study is based on observations at seven lidar stations (Aberystwyth, Paris, Hamburg, Munich, Leipzig, Belsk, and Minsk) of the European Aerosol Research Lidar Network (EARLINET) and on backward trajectory analysis. For the first time, a lidar network monitored continent-scale haze air masses for several years (since 2000). Height profiles of the particle backscatter coefficient and the particle optical depth of the planetary boundary layer (PBL) at 355-nm wavelength are analyzed for the period from May 2000 to November 2002. From the observations at Aberystwyth, Wales, the aerosol reference profile for air entering Europe from pristine environments was determined. A mean 355-nm optical depth of 0.05 and a mean PBL height of 1.5 km was found for clean maritime summer conditions. The particle optical depth and PBL height increased with increasing distance from the North Atlantic. Mean summer PBL heights were 1.9-2.8 km at the continental sites of Leipzig, Belsk, and Minsk. Winter mean PBL heights were mostly between 0.7 and 1.3 km over the seven EARLINET sites. Summer mean 355-nm optical depths increased from 0.17 (Hamburg, northwesterly airflow from the North Sea) and 0.21 (Paris, westerly flow from the Atlantic) over 0.33 (Hamburg, westerly flow) and 0.35 (Leipzig, westerly flow) to 0.59 (Belsk, westerly flow), and decreased again to 0.37 (westerly flow) at Minsk. Winter mean optical depths were, on average, 10-30% lower than the respective summer values. PBL-mean extinction coefficients were of the order of 200 Mm-1 at 355 nm at Hamburg and Leipzig, Germany, and close to 600 Mm-1 at Belsk, Poland, in winter for westerly flows

  17. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  18. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  19. Preliminary Investigation of Stagnation Point Liquid Injection Influence on Blunt Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Woods, William C.; Jones, Kenneth M.; Genzel, Noah N.

    2002-01-01

    A preliminary investigation has been performed to determine the influence of stagnation point water injection on the hypersonic aerodynamic forces and moments for two-dimensional blunt bodies. This investigation was performed in the Langley 20-Inch Mach 6 Air Tunnel, and represents the qualitative first phase of a study to examine the potential benefits of water injection to reduce aerodynamic drag and aero-heating. Tests with a 4-inch diameter hemisphere cylinder and a 4-inch diameter cylinder with a span 1.5 times the diameter were performed over a range of free-stream unit Reynolds number from two million to six million per ft and of angle of attack (-5 deg to 5 deg) with water and gaseous nitrogen injection at the geometric stagnation point. The momentum flux ratio, that is, the ratio of the momentum flux of the jet to that of the free-stream flow, was varied from the non-blowing value of zero up to 0.00031 by maintaining the jet momentum fixed and varying the free-stream momentum, hence Reynolds number. The effect of water injection on the aerodynamic drag coefficient for the hemisphere cylinder was observed to be negligible as the momentum flux ratio was increased to 0.00017, but decreased significantly as this ratio increased above 0.00017; a nearly 50 percent reduction in drag occurred for a factor of two increase in momentum flux ratio.

  20. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  1. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  2. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  3. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  4. Synthetic optimization of air turbine for dental handpieces.

    PubMed

    Shi, Z Y; Dong, T

    2014-01-01

    A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.

  5. Vorticity amplification near the stagnation point of landing gear wheels

    NASA Astrophysics Data System (ADS)

    Feltham, G.; Ekmekci, A.

    2014-04-01

    The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non

  6. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  7. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  8. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  9. Numerical Simulation of Air Mass Modification Over the East China Sea during the Winter Season

    NASA Astrophysics Data System (ADS)

    Hsu, Wu-Ron

    Air mass modification over the East China Sea during cold air outbreaks in the winter season was simulated by utilizing a high-resolution numerical model. The model includes most of the major physical processes, such as, surface exchange of heat and moisture between water and air; condensation and evaporation; and vertical turbulent transfer of heat, moisture, and momentum. The simulated convective boundary layer (CBL) consists of a surface layer, a subcloud layer, and a cloud layer. It is capped by an inversion with strong temperature and moisture gradients. Mesoscale cellular convection (MCC) embedded within the convective layer moves along with the mean wind. The average aspect ratio of the cells is 17.5, which agrees with observed aspect ratios for convective cells over the East China Sea. The upward convective motion correlates very well with the appearance of clouds, higher temperature, and higher moisture content in the CBL. The effects of diabatic heating were found to be very important in driving the thermal convection. Without the release of latent heat, the convective layer would be very shallow, and the convective motion would be greatly suppressed. Even though the formulation and dissipation of a cloud is associated with the movement of the resolvable scale MCC, the vertical transport of heat and moisture is achieved mainly by the unresolvable turbulent eddies. The distribution of specific humidity during the passage of the surface front reveals the moisture being pushed upward along the frontal surface as observed. The cold and dry air behind the cold front is quickly modified by strong convection over the warm water surface, especially over the Kuroshio Current. A cloud-free region exists near the coast where the CBL is too shallow for clouds to develop. A layer of stratocumulus forms downstream from the cloud-free region. The depth of the CBL increases toward the Kuroshio Current due to strong heat and moisture fluxes from the water surface. The CBL

  10. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  11. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  12. Magnetohydrodynamic Stagnation Point Flow with a Convective Surface Boundary Condition

    NASA Astrophysics Data System (ADS)

    Jafar, Khamisah; Ishak, Anuar; Nazar, Roslinda

    2011-09-01

    This study analyzes the steady laminar two-dimensional stagnation point flow and heat transfer of an incompressible viscous fluid impinging normal to a horizontal plate, with the bottom surface of the plate heated by convection from a hot fluid. A uniform magnetic field is applied in a direction normal to the flat plate, with a free stream velocity varying linearly with the distance from the stagnation point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically. The analysis includes the effects of the magnetic parameter, the Prandtl number, and the convective parameter on the heat transfer rate at the surface. Results showed that the heat transfer rate at the surface increases with increasing values of these quantities.

  13. Recent patterns of crop yield growth and stagnation.

    PubMed

    Ray, Deepak K; Ramankutty, Navin; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2012-01-01

    In the coming decades, continued population growth, rising meat and dairy consumption and expanding biofuel use will dramatically increase the pressure on global agriculture. Even as we face these future burdens, there have been scattered reports of yield stagnation in the world's major cereal crops, including maize, rice and wheat. Here we study data from ∼2.5 million census observations across the globe extending over the period 1961-2008. We examined the trends in crop yields for four key global crops: maize, rice, wheat and soybeans. Although yields continue to increase in many areas, we find that across 24-39% of maize-, rice-, wheat- and soybean-growing areas, yields either never improve, stagnate or collapse. This result underscores the challenge of meeting increasing global agricultural demands. New investments in underperforming regions, as well as strategies to continue increasing yields in the high-performing areas, are required.

  14. Unsteady conjugated heat transfer near a stagnation point

    NASA Astrophysics Data System (ADS)

    Drake, D. G.

    An analysis is presented for the unsteady thermal processes involved when a plane wall of high thermal conductivity loses heat to a fluid in two-dimensional stagnation point flow against the wall. It is assumed that the rear surface of the wall is insulated and the initial temperature of the wall is greater than that of the fluid. A complete description of the temperature history of the wall is obtained by developing solutions valid for small and large values of the time.

  15. Laser Propagation Experiments - Aerosol and Stagnation Zone Effects

    DTIC Science & Technology

    1977-08-01

    Phys. 46, 402 (1975). 5. D. E. Lencioni and H. Kleiman. Effects of Aerosol Particle Heating on Laser Beam Propagation, Project Report LTP -27 on...1977. 18. J. Herrmann and L. C. Bradley. Numerical Calculations of Light Propagat , MIT/Lincln Laboratory Laser Technology Program Report LTP -10...R77-922578-13 ,/ Laser Propagation Experimets Aerosol and Stagnation "Zone Effects Final Technical Report "June 19, 1977 M.C. Fowe; J.R. Dunphy 3.3 0

  16. Modulated stagnation-point flow and steady streaming

    NASA Technical Reports Server (NTRS)

    Merchant, Gregory J.; Davis, Stephen H.

    1989-01-01

    Plane stagnation-point flow is modulated in the free stream so that the velocity components are proportional to K(H) + K cos omega t. Similarity solutions of the Navier-Stokes equations are examined using high-frequency asymptotics for K and K(H) of unit order. Special attention is focused on the steady streaming generated in this flow with strongly non-parallel streamlines.

  17. On stability of premixed flames in stagnation - Point flow

    NASA Technical Reports Server (NTRS)

    Sivashinsky, G. I.; Law, C. K.; Joulin, G.

    1982-01-01

    A quantitative description of flame stabilization in stagnation-point flow is proposed. Asymptotic and stability analyses are made for a flame model where the density of the gas is assumed to be constant and the reaction zone is assumed to be narrow and concentrated over the flame front. It is shown that, if blowing is sufficiently strong, the corrugations disappear and a plane flame results. The phenomena cannot be fully described by means of classical linear stability analysis.

  18. Investigation of Hypersonic Laminar Heating Augmentation in the Stagnation Region

    NASA Technical Reports Server (NTRS)

    Marineau, Eric C.; Lewis, Daniel R.; Smith, Michael S.; Lafferty, John F.; White, Molly E.; Amar, Adam J.

    2012-01-01

    Laminar stagnation region heating augmentation is investigated in the AEDC Tunnel 9 at Mach 10 by performing high frequency surface pressure and heat transfer measurements on the Orion CEV capsule at zero degree angle-of-attack for unit Reynolds numbers between 0.5 and 15 million per foot. Heating augmentation increases with Reynolds number, but is also model size dependent as it is absent on a 1.25-inch diameter model at Reynolds numbers where it reaches up to 15% on a 7-inch model. Heat transfer space-time correlations on the 7-inch model show that disturbances convect at the boundary layer edge velocity and that the streamwise integral scale increases with distance. Therefore, vorticity amplification due to stretching and piling-up in the stagnation region appears to be responsible for the stagnation point heating augmentation on the larger model. This assumption is reinforced by the f(exp -11/3) dependence of the surface pressure spectrum compared to the f(exp -1) dependence in the free stream. Vorticity amplification does not occur on the 1.25- inch model because the disturbances are too large. Improved free stream fluctuation measurements will be required to determine if significant vorticity is present upstream or mostly generated behind the bow shock.

  19. Stagnation point flow, heat transfer and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

    2016-11-01

    The problem of stagnation-point flow and heat transfer with the effect of the blowing from species transfer over an impermeable shrinking sheet is studied. The governing boundary layer equations are transformed into the ordinary differential equations using the similarity transformations which are then solved numerically using the bvp4c function in Matlab. The focus of this study is the effect of the blowing parameter to the velocity of the flow, the rate of heat transfer and the mass of species transfer over a flat surface of shrinking sheet. From the numerical results, it is found that the blowing parameter substantially affects the flow, heat and mass transfer characteristics.

  20. Premixed hydrocarbon stagnation flames : experiments and simulations to validate combustion chemical-kinetic models

    NASA Astrophysics Data System (ADS)

    Benezech, Laurent Jean-Michel

    A methodology based on the comparison of flame simulations relying on reacting flow models with experiment is applied to C1-C3 stagnation flames. The work reported targets the assessment and validation of the modeled reactions and reaction rates relevant to (C1-C3)-flame propagation in several detailed combustion kinetic models. A concensus does not, as yet, exist on the modeling of the reasonably well-understood oxidation of C1-C2 flames, and a better knowledge of C3 hydrocarbon combustion chemistry is required before attempting to bridge the gap between the oxidation of C1-C2 hydrocarbons and the more complex chemistry of heavier hydrocarbons in a single kinetic model. Simultaneous measurements of velocity and CH-radical profiles were performed in atmospheric propane(C3H8)- and propylene(C3H6)-air laminar premixed stagnation flames stabilized in a jet-wall configuration. These nearly-flat flames can be modeled by one-dimensional simulations, providing a means to validate kinetic models. Experimental data for these C3 flames and similar experimental data for atmospheric methane(CH4)-, ethane(C2H6)-, and ethylene(C2H4)-air flames are compared to numerical simulations performed with a one-dimensional hydrodynamic model, a multi-component transport formulation including thermal diffusion, and different detailed-chemistry models, in order to assess the adequacy of the models employed. A novel continuation technique between kinetic models was developed and applied successfully to obtain solutions with the less-robust models. The 2005/12 and 2005/10 releases of the San Diego mechanism are found to have the best overall performance in C3H8 and C3H6 flames, and in CH4, C2H6, and C2H4 flames, respectively. Flame position provides a good surrogate for flame speed in stagnation-flow stabilized flames. The logarithmic sensitivities of the simulated flame locations to variations in the kinetic rates are calculated via the "brute-force" method for fifteen representative flames

  1. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  2. On the association between daily mortality and air mass types in Athens, Greece during winter and summer.

    PubMed

    Kassomenos, Pavlos A; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  3. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  4. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  5. Northern East Asian Monsoon Precipitation Revealed by Air Mass Variability and Its Prediction

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Seo, K. H.

    2015-12-01

    This work provides a new perspective on the major factors controlling the East Asian summer monsoon (EASM) in July, and a promising physical-statistical forecasting of the EASM ahead of summer. Dominant modes of the EASM are revealed from the variability of large-scale air masses discerned by equivalent potential temperature, and are found to be dynamically connected with the anomalous sea surface temperatures (SSTs) over the three major oceans of the world and their counterparts of prevailing atmospheric oscillation or teleconnection patterns. Precipitation over Northeast Asia (NEA) during July is enhanced by the tropical central Indian Ocean warming and central Pacific El Niño-related SST warming, the northwestern Pacific cooling off the coast of NEA, and the North Atlantic Ocean warming. Using these factors and data from the preceding spring seasons, the authors build a multiple linear regression model for seasonal forecasting. The cross-validated correlation skill predicted for the period 1994 to 2012 is up to 0.84, which far exceeds the skill level of contemporary climate models.

  6. Inverse Estimation of SO2 Emissions over China with Local Air Mass Factor Applied

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, J.; Xu, X.; Henze, D. K.

    2015-12-01

    Sulfur dioxide (SO2) has significant impacts on human health as it forms sulfate aerosols in the atmosphere. Widespread uncertainty in the magnitude of SO2 emissions hinders efforts to address this issue. In this work we use Ozone Monitoring Instrument (OMI) slant column SO2 observations as constraints to conduct inversion of SO2 emissions over China for April 2008. Local air mass factors are formulated as the integral of the relative vertical distribution of SO2 simulated from GEOS-Chem, weighted by scattering weights computed from VLIDORT. They are applied to convert slant column to vertical column GEOS-Chem SO2. After data assimilation SO2 emissions decrease in Sichuan Basin, South China, and most areas of North China. The posterior SO2 emissions are evaluated with in situ SO2 observation. Besides, we apply the posterior SO2 emissions of April 2008 to April 2009, and it leads to improved agreement of modeled SO2 to the OMI observations. This offers potential to update SO2 emissions in real time.

  7. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  8. Melting heat transfer in stagnation point flow of carbon nanotubes towards variable thickness surface

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Muhammad, Khursheed; Farooq, M.; Alsaedi, A.

    2016-01-01

    This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs)] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM) based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of water carbon nanotubes when compared with the kerosene oil carbon nanotubes.

  9. Convective Enhancement of Icing Roughness Elements in Stagnation Region Flows

    NASA Technical Reports Server (NTRS)

    Hughes, Michael T.; McClain, Stephen T.; Vargas, Mario; Broeren, Andy

    2015-01-01

    To improve existing ice accretion simulation codes, more data regarding ice roughness and its effects on convective heat transfer are required. To build on existing research on this topic, this study used the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research to model realistic ice roughness in the stagnation region of a NACA 0012 airfoil. Using the VIST, a test plate representing the leading 2% chord of the airfoil was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test plate was fitted with 3 surfaces, each with a different representation of ice roughness: 1) a control surface with no ice roughness, 2) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 10x, and 3) a surface with ice roughness with element height scaled by 10x and streamwise rough zone width from the stagnation point scaled by 25x. Temperature data from the tests were recorded using an infrared camera and thermocouples imbedded in the test plate. From the temperature data, a convective heat transfer coefficient map was created for each case. Additional testing was also performed to validate the VIST's flow quality. These tests included five-hole probe and hot-wire probe velocity traces to provide flow visualization and to study boundary layer formation on the various test surfaces. The knowledge gained during the experiments will help improve ice accretion codes by providing heat transfer coefficient validation data and by providing flow visualization data helping understand current and future experiments performed in the VIST.

  10. Possible origin of stagnation and variability of earth's biodiversity.

    PubMed

    Stollmeier, Frank; Geisel, Theo; Nagler, Jan

    2014-06-06

    The magnitude and variability of Earth's biodiversity have puzzled scientists ever since paleontologic fossil databases became available. We identify and study a model of interdependent species where both endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework provides an explanation for the qualitative difference of marine and continental biodiversity growth. In particular, the stagnation of marine biodiversity may result from a global transition from an imbalanced to a balanced state of the species dependency network. The predictions of our framework are in agreement with paleontologic databases.

  11. Stagnation and interpenetration of laser-created colliding plasmas

    SciTech Connect

    Pollaine, S.M.; Albritton, J.R.; Kauffman, R.; Keane, C.J. ); Berger, R.L.; Bosch, R.; Delameter, N.D.; Failor, B.H. )

    1990-11-05

    A KMS laser experiment collides Aluminum (A1) and Magnesium (Mg) plasmas. The measurements include electron density, time and space resolved Ly-alpha and He-alpha lines of Al and Mg, and x-ray images. These measurements were analyzed with a hydrodynamic code, LASNEX, and a special two-fluid code OFIS. The results strongly suggest that at early times, the Al interpenetrates the counterstreaming Mg and deposits in the dense Mg region. At late times, the Al plasma stagnates against the Mg plasma.

  12. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    SciTech Connect

    Ames, Forrest; Kingery, Joseph E.

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  13. MHD mixed convection stagnation point flow over a permeable surface

    NASA Astrophysics Data System (ADS)

    Abdul Hamid, Rohana; Abu Bakar, Nor Ashikin; Wan Zaimi, Wan Mohd Khairy Adly; Bidin, Biliana

    2013-04-01

    In this paper, the effects of suction and injection parameters on magnetohydrodynamic (MHD) mixed convection stagnation point flow are studied numerically. Using appropriate similarity transformations, the governing system of partial differential equations is transformed into a system of ordinary differential equations which are then solved using the shooting method. Numerical results are obtained for the velocity, temperature and concentration profiles. The results show that the suction and injection parameters affect the skin friction coefficient as well as the local Nusselt number for both assisting and opposing flows. The suction parameter increases the skin friction coefficient and the local Nusselt number while the opposite behavior is observed for the injection parameter.

  14. Low pressure stagnation flow reactor with a flow barrier

    DOEpatents

    Vosen, Steven R.

    2001-01-01

    A flow barrier disposed at the periphery of a workpiece for achieving uniform reaction across the surface of the workpiece, such as a semiconductor wafer, in a stagnation flow reactor operating under the conditions of a low pressure or low flow rate. The flow barrier is preferably in the shape of annulus and can include within the annular structure passages or flow channels for directing a secondary flow of gas substantially at the surface of a semiconductor workpiece. The flow barrier can be constructed of any material which is chemically inert to reactive gases flowing over the surface of the semiconductor workpiece.

  15. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn Charles

    1999-12-01

    -7, 10-5, and 10-5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10-5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  16. Change of microbial communities in glaciers along a transition of air masses in western China

    NASA Astrophysics Data System (ADS)

    Xiang, Shu-Rong; Chen, Yong; Shang, Tian-Cui; Jing, Ze-Fan; Wu, Guangjian

    2010-12-01

    Microbial community dynamics across glaciers in different climatic zones provide important information about the sources, transportation pathways, and deposition of microorganisms. To better understand the possible driving forces of microbial community shifts in glacier ice at a large spatial scale, 16S rRNA gene amplification was used to establish clone libraries containing 95 bacterial sequences from three different habitats in the Qiangyong Gacier in 2005. The libraries were used in phylogenetic comparison with 149 previously reported sequences from the surface samples collected from the Kuytun 51, and East Rongbuk glaciers in the same year. The results showed the presence of cosmopolitan and endemic species, and displayed a tendency of zonal distribution of bacterial communities at genera and community levels, corresponding to the geographic placement of the three glaciers. Data also showed a significant difference in the proportion of dominant phylogenetic groups in the three glaciers. Comamonadaceae/Polaromonas (Betaproteobacteria) and Flexibacteraceae (Bacteroidetes) were dominant in the Qiangyong Glacier, Cyanobacteria, Comamonadaceae/Polaromonas, and Rhodoferax (Betaproteobacteria) were dominant in the Kuytun 51 Glacier, and Acinetobacteria (Gammaproteobacteria) were dominant in the Rongbuk Glacier. In conclusion, the current study provides evidence of microbial biogeography in glacier ice at both the fine lineage and whole community levels. The biogeographical patterns were generally associated with the hydrological transition over the glaciers in the northern periphery and southern part of the Tibetan plateau. This supports our hypothesis of air mass behavior being one of the main drivers determining the zonal distribution of microbial communities across the mountain glaciers in western China.

  17. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  18. Sequential Stagnation of Kamb Ice Stream Induced by Changes in Subglacial Hydrology

    NASA Astrophysics Data System (ADS)

    Elsworth, C. W.; Suckale, J.

    2015-12-01

    Ice stream dynamics remain an important unknown in quantifying the future mass flux from ice sheets. On the Siple Coast of West Antartica, ice streams lack distinct topographic control and have exhibited large-scale rearrangement on decadal to centennial time scales. The shutdown of Kamb Ice Stream and slowing of Whillans Ice Stream provide an opportunity to study the mechanisms governing ice-stream stability and assess their potential response to climatic perturbations. Here, we aim to evaluate possible mechanisms that lead to continuous and discontinuous margin migration within the context of the Siple Coast. The variable behavior of Siple Coast ice streams depends strongly on the coupling between till rheology, ice rheology, and shear margin position. We capture these feedbacks through a time-dependent 2D thermo-mechanical model that resolves the self-consistent margin position. We assume a plastic till, where yield strength is strongly dependent on pore pressure. This coupling results in spatially variable basal strength that evolves in time based on the presence and development of subglacial water systems. Furthermore, we link melt production in the ice column to pore pressure in the till, to determine how englacial melt production may affect margin position and stability. The model can therefore provide constraints on basal strength distributions that facilitate continuous and discontinuous margin migration. This study focuses on the Duckfoot region of Kamb Ice Stream, a section of ice near the grounding line that is thought to have experienced discontinuous margin migration. Retzlaff and Bentley [1993] suggest that a film to channel collapse may have initiated stagnation, while other studies suggest water piracy, variations in driving stress, and grounding of the ice shelf. We present model results for different migration and stagnation hypotheses and compare our results to radar data from Catania et al. [2006]. We demonstrate that changes in the efficiency

  19. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  20. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Akyüz, Mehmet

    2008-05-01

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006-2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pg m-3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

  1. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  2. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Schneider, J F; Boparai, A S; Reed, L L

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 microg/mL or higher. This method is ideal for screening samples for quick response situations.

  3. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  4. Stagnation region gas film cooling: Effects of dimensionless coolant temperature

    NASA Technical Reports Server (NTRS)

    Bonnice, M. A.; Lecuyer, M. R.

    1983-01-01

    An experimental investigation was conducted to mode the film cooling performance for a turbine vane leading edge using the stagnation region of a cylinder in cross flow. Experiments were conducted with a single row of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio and dimensionless coolant temperature with free stream-to-wall temperature ratio approximately 1.7 and Re sub D = 90000. the cylindrical test surface was instrumented with miniature heat flux gages and wall thermocouples to determine the percentage reduction in the Stanton number as a function of the distance downstream from injection (x/d sub 0) and the location between adjacent holes (z/S). Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, from stagnation using a hole spacing ratio of S/d = 5. The film coolant was injected with T sub c T sub w with a dimensionless coolant temperature in the range 1.18 or equal to theta sub c or equal to 1.56. The data for local Stanton Number Reduction (SNR) showed a significant increase in SNR as theta sub c was increased above 1.0.

  5. Stagnation temperature measurement using thin-film platinum resistance sensors

    NASA Astrophysics Data System (ADS)

    Bonham, C.; Thorpe, S. J.; Erlund, M. N.; Stevenson, R. D.

    2014-01-01

    The measurement of stagnation temperature in high-speed flows is an important aspect of gas turbine engine testing. The ongoing requirement to improve the accuracy of such measurements has led to the development of probe systems that use a thin-film platinum resistance thermometer (PRT) as the sensing element. For certain aspects of engine testing this type of sensing device potentially offers superior measurement performance to the thermocouple, the temperature sensor of choice in most gas turbine applications. This paper considers the measurement performance of prototype PRT-based stagnation temperature probes, up to high-subsonic flow conditions, using passively aspirated probe heads. The relatively poor temperature recovery performance of a simply constructed probe has led to the development of a new design that is intended to reduce the impact of thermal conduction within the probe assembly. The performance of this so-called dual-skin probe has been measured through a series of tests at a range of Mach numbers, incidence angles and Reynolds numbers. The data reveal that a high probe recovery factor has been achieved with this device, and that the application of this design to engine tests would yield the measurement performance benefits of the PRT whilst requiring small levels of temperature recovery compensation.

  6. Oblique two-fluid stagnation-point flow

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.; Tilley, B. S.

    1998-11-01

    Exact similarity solutions for the impingement of two viscous, immiscible oblique stagnation flows forming a flat interface are given. The problem is governed by three parameters: the ratios of density ρ = ρ_1/ρ2 and of viscosity μ = μ_1/μ2 of the two fluids and R = tanθ_1/tanθ2 where θ1 and θ2 are the asymptotic angles of the incident streamlines in each fluid layer. For given values of ρ, μ, and θ_1, the compatible flows in the lower fluid, as measured by the strain rate ratio β = β_1/β2 of the two fluids and the asymptotic angle of incidence θ_1, are found such that the interface remains horizontal in a uniform gravitational field. For ρ = 1, explicit solutions show that a family of co-current and counter-current shears supporting a flat interface exist for all finite, nonzero values of R. For ρ ne 1, the normal stress interfacial boundary conditions restricts the flow to a unique combination of asymptotic far-field shear and Hiemenz stagnation-point flow in each fluid layer. The displacement thicknesses in each layer are always positive when the fluid densities are not equal, but vanish simultaneoulsy as ρ arrow 1. At each value of ρ the interfacial velocities increase with increasing viscosity ratio μ.

  7. Model experiments on platelet adhesion in stagnation point flow.

    PubMed

    Wurzinger, L J; Blasberg, P; van de Loecht, M; Suwelack, W; Schmid-Schönbein, H

    1984-01-01

    Experiments with glass models of arterial branchings and bends, perfused with bovine platelet rich plasma (PRP), revealed platelet deposition being strongly dependent on fluid dynamic factors. Predilection sites of platelet deposits are characterized by flow vectors directed against the wall, so-called stagnation point flow. Thus collision of suspended particles with the wall, an absolute prerequisite for adhesion of platelets to surfaces even as thrombogenic as glass, appears mediated by convective forces. The extent of platelet deposition is correlated to the magnitude of flow components normal to the surface as well as to the state of biological activation of the platelets. The latter could be effective by an increase in hydrodynamically effective volume, invariably associated with the platelet shape change reaction to biochemical stimulants like ADP. The effect of altered rheological properties of platelets upon their deposition and of mechanical properties of surfaces was examined in a stagnation point flow chamber. Roughnesses in the order of 5 microns, probably by creating local flow disturbances, significantly enhance platelet adhesion, as compared to a smooth surface of identical chemical composition.

  8. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  9. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  10. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  11. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  12. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  13. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  14. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  15. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  16. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  17. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  18. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals

    NASA Astrophysics Data System (ADS)

    Lorente, Alba; Folkert Boersma, K.; Yu, Huan; Dörner, Steffen; Hilboll, Andreas; Richter, Andreas; Liu, Mengyao; Lamsal, Lok N.; Barkley, Michael; De Smedt, Isabelle; Van Roozendael, Michel; Wang, Yang; Wagner, Thomas; Beirle, Steffen; Lin, Jin-Tai; Krotkov, Nickolay; Stammes, Piet; Wang, Ping; Eskes, Henk J.; Krol, Maarten

    2017-03-01

    Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude resolved AMFs from different RTMs (to within 3 %), and in the tropospheric AMFs (to within 6 %) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42 % over polluted regions and 31 % over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40 % depending on cloud fraction and cloud pressure, and 11 % on average) even for low

  19. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  20. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  1. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  2. Slab Stagnation in the Lower Mantle: A Multidisciplinary Investigation

    NASA Astrophysics Data System (ADS)

    Waszek, L.; Arredondo, K.; Finkelstein, G. J.; Kellogg, L. H.; Lekic, V.; Li, M.; Lithgow-Bertelloni, C. R.; Romanowicz, B. A.; Schmerr, N. C.; Rudolph, M. L.; Townsend, J. P.; Xing, Z.; Yang, F.

    2014-12-01

    Recent tomographic models show that while many slabs seem to deflect or stagnate at the 660 km discontinuity, some slabs continue to subduct deeper and pond at 1000 km below the earth's surface (Fukao and Obayashi, 2013). Only one slab is observed to penetrate significantly deeper into the mantle. Furthermore, some mantle upwellings also appear to be deflected at 1000 km in depth. The radial correlation functions for the low-order spherical harmonics of most tomographic inversions show that while seismic wave velocities are correlated for all depths below ~1000 km, velocities at depths between 400-1000 km are uncorrelated with velocities at any other depth. This implies that there are large scale velocity features coherent from 1000 km to the core-mantle boundary, but no large scale features coherent from the top of the transition zone down to 1000 km. Seismic studies using precursors and receiver functions find evidence for numerous reflectors in the mid-mantle, ranging from 900 km in depth beneath the southern Pacific and southeast Asia to 1200 km beneath Europe and Japan. This range of depths could indicate topography along a single laterally continuous discontinuity or result from multiple unconnected features. Some reflectors are geographically near, and therefore may be associated with, subducted slabs, however the origin of the others is unclear. The 1000 km 'discontinuity' could potentially be explained by an increase in viscosity or density, such as a compositional difference in the mantle below this depth. We use an interdisciplinary approach to investigate the diversity in apparent slab stagnation behavior and which geophysical mechanisms prevent subduction into the lower mantle. The controlling factor may be a function of the slab itself, including subduction rate, trench rollback, composition, or temperature. Alternatively, bulk mantle properties may control slab penetration. We perform 2D and 3D numerical simulations to determine the influence of

  3. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  4. Approximate Method of Calculating Heating Rates at General Three-Dimensional Stagnation Points During Atmospheric Entry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II

    1982-01-01

    An approximate method for calculating heating rates at general three dimensional stagnation points is presented. The application of the method for making stagnation point heating calculations during atmospheric entry is described. Comparisons with results from boundary layer calculations indicate that the method should provide an accurate method for engineering type design and analysis applications.

  5. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  6. Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

    DTIC Science & Technology

    2009-10-01

    improved their estimate. In The Art of Wargaming, Peter Perla suggests that adding exercise analysis could help. He recommends a “continuous cycle...Survey, 44. 45. Ibid., 27–28. 46. “Desert Shield Tactical Air Force Combat Losses, Damage, and Muni- tions Consumption.” 47. Ibid. 48. Perla , Art of...Williamson. Strategy for Defeat: The Luftwaffe, 1933– 1945, 1983. Reprint. Maxwell AFB, AL: Air University Press, 2007. Perla , Peter P. The Art of Wargaming

  7. On the freestream matching condition for stagnation point turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, C. G.

    1989-01-01

    The problem of plane stagnation point flow with freestream turbulence is examined from a basic theoretical standpoint. It is argued that the singularity which arises from the standard kappa-epsilon model is not due to a defect in the model but results from the use of an inconsistent freestream boundary condition. The inconsistency lies in the implementation of a production equals dissipation equilibrium hypothesis in conjunction with a freestream mean velocity field that corresponds to homogeneous plane strain - a turbulent flow which does not reach such a simple equilibrium. Consequently, the adjustment that has been made in the constants of the epsilon-transport equation to eliminate this singularity is not self-consistent since it is tantamount to artificially imposing an equilibrium structure on a turbulent flow which is known not to have one.

  8. Mixing dynamics and pattern formation around flow stagnation points

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    We study the mixing of two reactive fluids in the presence of convective instabilities. Such system is characterized by the formation of unique porosity patterns and mixing dynamics linked to the evolution of vortices and stagnation points. Around them, the fluid-fluid interface is stretched and compressed, which enhances mixing and triggers chemical reactions, and the system can be analyzed using fluid deformation model. We consider velocity fields generated by a double gyre synthetic velocity field and Rayleigh-Bénard and Rayleigh-Taylor instabilities. The different flow structures can be visualized by the strain rate and the finite time Lyapunov exponents. We show that the mixing enhancement given by the scalar dissipation rate is controlled by the equilibrium between interface compression and diffusion, which depends on the velocity field configuration. Furthermore, we establish a quantitative relation between the mixing rate and the evolution of the potential energy of the fluid when convection is driven by density instabilities.

  9. Impeding hohlraum plasma stagnation in inertial-confinement fusion.

    PubMed

    Li, C K; Séguin, F H; Frenje, J A; Rosenberg, M J; Rinderknecht, H G; Zylstra, A B; Petrasso, R D; Amendt, P A; Landen, O L; Mackinnon, A J; Town, R P J; Wilks, S C; Betti, R; Meyerhofer, D D; Soures, J M; Hund, J; Kilkenny, J D; Nikroo, A

    2012-01-13

    This Letter reports the first time-gated proton radiography of the spatial structure and temporal evolution of how the fill gas compresses the wall blowoff, inhibits plasma jet formation, and impedes plasma stagnation in the hohlraum interior. The potential roles of spontaneously generated electric and magnetic fields in the hohlraum dynamics and capsule implosion are discussed. It is shown that interpenetration of the two materials could result from the classical Rayleigh-Taylor instability occurring as the lighter, decelerating ionized fill gas pushes against the heavier, expanding gold wall blowoff. This experiment showed new observations of the effects of the fill gas on x-ray driven implosions, and an improved understanding of these results could impact the ongoing ignition experiments at the National Ignition Facility.

  10. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  11. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  12. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  13. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  14. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  15. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase

  16. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  17. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  18. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  19. Numerical study of coupled transfer of heat and mass between air and water inside a geothermal water cooling tower

    NASA Astrophysics Data System (ADS)

    Bassem, Mohamed Mehdi; Bourouni, Karim; Thameur Chaibi, Mohamed

    2006-11-01

    In the south of Tunisia, geothermal water is used to irrigate cultures. Since its temperature is very high (70 C), geothermal water is cooled by cooling towers. These towers are sized empirically and present many operating problems such as excessive energy consumption, big loss of vapour and low cooling efficiency. The aim of our work is modelling the coupled heat and mass transfer between air and water inside the cooling tower. The most important results obtained are that the evaporative potential is dominating the convective one in the cooling process. That's why the cooling is more efficient in summer than in hibernal period when humidity of ambient air reaches high values. In other hand, the negative convective phenomenon is illustrated. In fact, at the bottom of the tower, water temperature reaches the air one; the two fluids begin to cooling simultaneously. Air is cooled by convection and water by evaporation. We demonstrate also that there is no point in putting fans in working during cold weather. We studied also the effect of the variation of heat transfer coefficient on the efficiency of cooling.

  20. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  1. Ambient air analyses using nonspecific flame ionization and electron capture detection compared to specific detection by mass spectroscopy

    SciTech Connect

    Pleil, J.D.; Oliver, K.D.; McClenny, W.A.

    1988-08-01

    Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.

  2. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  3. Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, Scott D.; Zahorowski, Wlodek; Williams, Alastair G.; Crawford, Jagoda; Griffiths, Alan D.

    2013-01-01

    We use 7 years of hourly radon observations at Mauna Loa Observatory (MLO), together with 10-day back trajectories, to identify baseline air masses at the station. The amplitude of the annual MLO radon cycle, based on monthly means, was 98 mBq m-3 (39 -137 mBq m-3), with maximum values in February (90th percentile 330 mBq m-3) and minimum values in August (10th percentile 8.1 mBq m-3). The composite diurnal radon cycle (amplitude 49 mBq m-3) is discussed with reference to the influences of local flow features affecting the site, and a 3-hour diurnal sampling window (0730-1030 HST) is proposed for observing the least terrestrially influenced tropospheric air masses. A set of 763 baseline events is selected, using the proposed sampling window together with trajectory information, and presented along with measured radon concentrations as a supplement. This data set represents a resource for the selection of baseline events at MLO for use with a range of trace species. A reduced set of 196 "deep baseline" events occurring in the July-September window is also presented and discussed. The distribution (10th/50th/90th percentile) of radon in deep-baseline events (8.7/29.2/66.1 mBq m-3) was considerably lower than that for the overall set of 763 baseline events (12.3/40.8/104.1 mBq m-3). Results from a simple budget calculation, using sonde-derived mixing depths and literature-based estimates of oceanic radon flux and radon concentrations in the marine boundary layer, indicate that the main source of residual radon in the lower troposphere under baseline conditions at MLO is downward mixing from aged terrestrial air masses in the upper troposphere.

  4. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  5. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  6. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components.

  7. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-01

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the "adiabat shaping" mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  8. Electrically generated eddies at an eightfold stagnation point within a nanopore.

    PubMed

    Sherwood, J D; Mao, M; Ghosal, S

    2014-11-01

    Electrically generated flows around a thin dielectric plate pierced by a cylindrical hole are computed numerically. The geometry represents that of a single nanopore in a membrane. When the membrane is uncharged, flow is due solely to induced charge electroosmosis, and eddies are generated by the high fields at the corners of the nanopore. These eddies meet at stagnation points. If the geometry is chosen correctly, the stagnation points merge to form a single stagnation point at which four streamlines cross at a point and eight eddies meet.

  9. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  10. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  11. Identification of European Air Masses Using an Interactive Computer Technique for Separating Mixed Normal Distributions.

    DTIC Science & Technology

    1982-01-01

    classifying a maritime surface, he refers to the Pacific, Atlantic, or Gulf of Mexico using the general term "maritime" only when the exact origin is...portions of North Atlantic NPA PA air modified over warm North Atlantic TC Southern U.S. and Northern Mexico TG Gulf of Mexico and Caribbean NTG TG...Bergeron, T., 1928: " Uber Die Dreidimensional Verknupfende Wetteranalyse, Teil I." Geofys. Pub!., Vol. 5, No. 6. Berggren, R., 1953: "On Temperature

  12. Properties of individual aerosol particles and their relation to air mass origins in a south China coastal city

    NASA Astrophysics Data System (ADS)

    Shi, Zongbo; He, Kebin; Xue, Zhigang; Yang, Fumo; Chen, Yanju; Ma, Yongliang; Luo, Jiaojiao

    2009-05-01

    Atmospheric particles in urban and rural areas in Shenzhen city were collected in summer and winter 2004. The particles were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. The fine particles (<1 μm) were categorized into chain-like, elongated, rounded, and others on the basis of their morphology. Chain-like particles were likely soot aggregates. In summer and winter, chain-like particles accounted for 43% and 42% of total particles in the urban area, and 22% and 43% in the rural area, respectively. The elongated particles were mixtures of aged sea salts and ammonium sulfate, suggesting an aqueous phase reaction mechanism, i.e., in-cloud sulfate formation. Such particles occupied 12% of total particles in the urban area in the summer and were rarely observed in the wintertime samples. The rounded particles were mainly composed of sulfate and/or carbon. Their number concentration in the urban area was more than three times higher in the winter. In addition, we found that air masses from northern inland contained much higher concentrations of particles than those from the ocean. This was particularly evident in the rural area, where concentrations of chain-like and rounded particles were eight times higher in the continental air masses. These results suggest the strong influence of regional pollution on the particle number concentrations in the coastal city.

  13. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  14. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  15. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  16. Viscous Heating At Stagnation In Z-Pinches

    SciTech Connect

    Haines, M. G.

    2009-01-21

    The viscous heating associated with m = 0 MHD instabilities in the stagnated Z-pinch is developed further. It would appear that the larger numerical (Neumann) viscosity plus De Bar corrections in simulation codes to yield energy conservation might be another way of representing viscous heating, but in this case the viscosity is inserted to smooth shock discontinuities. However the viscous heating per unit volume appears to be independent of the coefficient of viscosity itself because the fastest growing MHD mode is itself determined by the viscous damping. Therefore it could be argued that, though the correct physics is not in the codes, the resulting heating is not sensitive to the fact that numerical viscosity instead is employed. In addition, by chance, the model of magnetic bubbles first introduced by Lovberg et al. and Riley et al., and later by Rudakov et al. to explain phenomenologically extra heating of the ions leads to the same heating rate as in Haines et al. For the stainless steel array in which T{sub i} was predicted and measured to be >200 KeV while T{sub e} = 3 KeV the ion viscous heating is dominant. However, for the low current experiment by Kroupp et al. in which the ion kinematic viscosity is much smaller than the resistive diffusivity there is resistive damping of MHD modes, and no ions viscous heating should be expected.

  17. Rise, stagnation, and rise of Danish women's life expectancy.

    PubMed

    Lindahl-Jacobsen, Rune; Rau, Roland; Jeune, Bernard; Canudas-Romo, Vladimir; Lenart, Adam; Christensen, Kaare; Vaupel, James W

    2016-04-12

    Health conditions change from year to year, with a general tendency in many countries for improvement. These conditions also change from one birth cohort to another: some generations suffer more adverse events in childhood, smoke more heavily, eat poorer diets, etc., than generations born earlier or later. Because it is difficult to disentangle period effects from cohort effects, demographers, epidemiologists, actuaries, and other population scientists often disagree about cohort effects' relative importance. In particular, some advocate forecasts of life expectancy based on period trends; others favor forecasts that hinge on cohort differences. We use a combination of age decomposition and exchange of survival probabilities between countries to study the remarkable recent history of female life expectancy in Denmark, a saga of rising, stagnating, and now again rising lifespans. The gap between female life expectancy in Denmark vs. Sweden grew to 3.5 y in the period 1975-2000. When we assumed that Danish women born 1915-1945 had the same survival probabilities as Swedish women, the gap remained small and roughly constant. Hence, the lower Danish life expectancy is caused by these cohorts and is not attributable to period effects.

  18. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  19. Obliquely-intersecting Hiemenz stagnation-point flows

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick

    2012-11-01

    The interaction of two obliquely-intersecting Hiemenz stagnation point flows normal to a flat plate is studied. One flow of strain rate a aligned along the x-axis intersects the other of strain rate b at angle Phi from the x-axis. When transformed to principal axes, a similarity reduction of the Navier-Stokes equation yields two ordinary differential equations with coefficients depending on the strain rate ratio Sigma = b/a and Phi. These equations are then tranformed to Howarth's equations via a two-parameter mapping. The large-Sigma asymptotic behavior of solutions for the limiting angles Phi = 0 and 90 deg. are determined. Numerical solutions of the principal axes equations for values of Sigma in the saddle-point and nodal-point regions at Phi = 0, 15, 30, 45, 60, 75 and 90 deg. compare precisely with those obtained from the two-parameter mapping. Plots of the wall shear stress parameters, the normalized displacement thicknesses and sample velocity profiles are presented.

  20. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.

    PubMed

    Tucker, Samuel P; Pretty, Jack R

    2005-10-01

    Solanesol, a 45-carbon, trisesquiterpenoid alcohol found in tobacco leaves and tobacco smoke, has been used as a quantitative marker for tobacco smoke for years. However, solanesol appears to be unreliable as a quantitative marker for tobacco smoke during environmental air sampling because it can be degraded substantially when present as a component of tobacco smoke and by as much as 100% when present as pure solanesol on fortified filters during air sampling. Since there is strong evidence that ozone is the agent responsible for the degradation, solanesol appears to be unreliable as a quantitative marker during indoor air sampling when indoor levels of ozone are greater than about 15 ppb. The degree of loss of pure solanesol is directly proportional to the concentration of ozone and the length of the sampling period and depends on the type of 37 mm membrane filter used for air sampling (PTFE or quartz fiber). While the degree of loss of solanesol is inversely proportional to the relative humidity of the air at a sampling rate of 1.7 L min(-1), the degree of loss is virtually independent of relative humidity at a lower sampling rate; i.e., 0.25 L min(-1). A curve of loss of solanesol on a filter versus concentration of ozone from an ozone generator is virtually identical to a curve segment based on atmospheric ozone under the same conditions of air sampling. Oxidation of solanesol by ozone to approximately 25 to 60% completion produces at least three series of products for a total of at least 26 compounds: (1) isoprenoid acetones, (2)omega-hydroxyisoprenoid acetaldehydes, and (3) isoprenoid oxoaldehydes. All products in each series were tentatively identified as their derivatives with 2-(p-aminophenyl)ethanol (APE) by electrospray mass spectrometry (ES-MS). Ten ozonation products were detected as their 2,4-dinitrophenylhydrazine derivatives by HPLC at 360 nm: 4-oxopentanal and nine isoprenoid acetones (acetone, 6-methyl-5-hepten-2-one, geranylacetone

  1. IMPACT OF STAGNATION TIME ON METAL DISSOLUTION FROM PLUMBING MATERIALS IN DRINKING WATER

    EPA Science Inventory

    Studies were conducted to evaluate the impact of stagnation period on the metal dissolution from plumbing materials including lead, copper and brass. Experimental data showed that metal levels increased exponentially with time, with the sharpest increase occurring over the first ...

  2. Wake-induced unsteady stagnation-region heat-transfer measurements

    NASA Technical Reports Server (NTRS)

    Magari, P. J.; Lagraff, L. E.

    1992-01-01

    Results of an experimental investigation of wake-induced unsteady heat transfer in the stagnation region of a cylinder are presented. A quasi-steady representation of the stator/rotor interaction in a gas turbine using two stationary cylinders in crossflow is created. Time-averaged and time-resolved heat-transfer results are obtained over a wide range of Reynolds numbers at two Mach numbers: one incompressible and one transonic. The augmentation of the heat transfer in the stagnation region due to wake unsteadiness is documented by comparison with isolated cylinder tests. The time-averaged heat-transfer rate at the stagnation line, expressed in terms of the Frossling number, is found to reach a maximum independent of the Reynolds number. The power spectra and cross correlation of the heat-transfer signals in the stagnation region reveal the importance of large vortical structures shed from the upstream wake generator.

  3. A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Miao, Shiguang; Tewari, Mukul; Bao, Jian-Wen; Kusaka, Hiroyuki

    2011-06-01

    High-resolution simulations from the Advanced Research Weather Research and Forecasting (ARW-WRF) model, coupled to an urban canopy model (UCM), are used to investigate impacts of soil moisture, sea surface temperature (SST), and city of Houston itself on the development of a stagnant wind event in the Houston-Galveston (HG) area on 30 August 2000. Surface and wind profiler observations are used to evaluate the performance of WRF-UCM. The model captures the observed nocturnal urban-heat-island intensity, diurnal rotation of surface winds, and the timing and vertical extent of sea breeze and its reversal in the boundary layer remarkably well. Using hourly SST slightly improves the WRF simulation of offshore wind and temperature. Model sensitivity tests demonstrate a delicate balance between the strength of sea breeze and prevailing offshore weak flow in determining the duration of the afternoon-evening stagnation in HG. When the morning offshore flow is weak (3-5 m s-1), variations (1°-3°C) in surface temperature caused by environmental conditions substantially modify the wind fields over HG. The existence of the city itself seems to favor stagnation. Extremely dry soils increase daytime surface temperature by about 2°C, produced more vigorous boundary layer and faster moving sea breeze, favoring stagnation during late afternoon. The simulation with dry soils produces a 3 h shorter duration stagnation in the afternoon and 4 h longer duration in the evening, which may lead to more severe nighttime air pollution. Hourly variations of SST in shallow water in the Galveston Bay substantially affect the low-level wind speed in HG.

  4. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  5. Effect of Coolant Temperature and Mass Flow on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1997-01-01

    A three-dimensional Navier Stokes code has been used to study the effect of coolant temperature, and coolant to mainstream mass flow ratio on the adiabatic effectiveness of a film-cooled turbine blade. The blade chosen is the VKI rotor with six rows of cooling holes including three rows on the shower head. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. Generally, the adiabatic effectiveness is lower for a higher coolant temperature due to nonlinear effects via the compressibility of air. However, over the suction side of shower-head holes, the effectiveness is higher for a higher coolant temperature than that for a lower coolant temperature when the coolant to mainstream mass flow ratio is 5% or more. For a fixed coolant temperature, the effectiveness passes through a minima on the suction side of shower-head holes as the coolant to mainstream mass flow, ratio increases, while on the pressure side of shower-head holes, the effectiveness decreases with increase in coolant mass flow due to coolant jet lift-off. In all cases, the adiabatic effectiveness is highly three-dimensional.

  6. Measurements of the heat release rate integral in turbulent premixed stagnation flames with particle image velocimetry

    SciTech Connect

    Chen, Yung-Cheng; Kim, Munki; Han, Jeongjae; Yun, Sangwook; Yoon, Youngbin

    2008-08-15

    A new definition of turbulent consumption speed is proposed in this work that is based on the heat release rate integral, rather than the mass burning rate integral. Its detailed derivation and the assumptions involved are discussed in a general context that applies to all properly defined reaction progress variables. The major advantage of the proposed definition is that it does not require the thin-flame assumption, in contrast to previous definitions. Experimental determination of the local turbulent displacement speed, S{sub D}, and the local turbulent consumption speed, S{sub C}, is also demonstrated with the particle image velocimetry technique in three turbulent premixed stagnation flames. The turbulence intensity of these flames is of the same order of the laminar burning velocity. Based on the current data, a model equation for the local mean heat release rate is proposed. The relationship between S{sub D} and S{sub C} is discussed along with a possible modeling approach for the turbulent displacement speed. (author)

  7. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  8. Role of Plasma Temperature and Residence Time in Stagnation Plasma Synthesis of c-BN Nanopowders

    DTIC Science & Technology

    2013-01-01

    downstream of the bubbler; (8) Set the RF plasma power to ~500-1400W; (9) Open MFCs simultaneously; (10) Once the flow reaches steady state, spark ...ROLE OF PLASMA TEMPERATURE AND RESIDENCE TIME IN STAGNATION PLASMA SYNTHESIS OF c-BN NANOPOWDERS by JONATHAN M DOYLE A Thesis submitted to the...TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Role of Plasma Temperature And Residence Time In Stagnation Plasma Synthesis

  9. Approximate analytic solutions of stagnation point flow in a porous medium

    NASA Astrophysics Data System (ADS)

    Kumaran, V.; Tamizharasi, R.; Vajravelu, K.

    2009-06-01

    An efficient and new implicit perturbation technique is used to obtain approximate analytical series solution of Brinkmann equation governing the two-dimensional stagnation point flow in a porous medium. Analytical approximate solution of the classical two-dimensional stagnation point flow is obtained as a limiting case. Also, it is shown that the obtained higher order series solutions agree well with the computed numerical solutions.

  10. Radiation Shielding of the Stagnation Region by Transpiration of an Opaque Gas

    NASA Technical Reports Server (NTRS)

    Howe, John Thomas

    1960-01-01

    The laminar compressible boundary layer in the two-dimensional and axisymmetric stagnation regions has been analyzed to show the effects of the injection of a radiation absorbing foreign gas on an incident radiation field, and on the enthalpy profiles across the boundary layer. Total heat transfer to the stagnation region is evaluated for numerous cases and the results are compared with the no shielding case. Required absorption properties of the foreign gas are determined and compared with properties of known gases.

  11. Upper air relaxation in regional climate model improves resolved interannual variability of the surface mass balance of Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke; van Meijgaard, Erik

    2015-04-01

    The surface mass balance (SMB) determines the variability of the mass balance of the Antarctic Ice sheet on sub-decadal timescales. Since continent-wide SMB cannot be measured, it must be modeled and regional climate models (RCMs) generally outperform global reanalyses in the representation of total mass flux and the spatial distribution of SMB. However, if RCMs are only forced with reanalysis on their lateral boundaries, the representation of the interannual variability of SMB deteriorates significantly. In this study we show how to improve the resolved interannual variability in RCM modeled SMB. For this purpose we use annual SMB observations in the Thwaites drainage basin in Antarctica derived from airborne radar reflections and the RCM RACMO2. RACMO2, driven by ERA-Interim, better represents the mean spatial SMB pattern in this basin than ERA-Interim. However, without relaxation in the interior, RACMO2 poorly resolves the observed interannual SMB variability. If we gently relax the temperature and wind field in the upper atmosphere in RACMO2 to ERA-Interim, RACMO2 gets the best of both. Upper air relaxation little changes the mean SMB and spatial pattern compared to the original RACMO2 output, but allows RACMO2 to resolve the observed interannual SMB as good as ERA-Interim.

  12. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany.

  13. U.S. Navy: A History of Stagnation and Innovation

    DTIC Science & Technology

    2014-09-01

    which was devised and guided through Congress by Representative James Hay . The intent of the act was to build up America’s naval forces to the...1963) xi. 64 George C. Herring, “James Hay and the Preparedness Controversy, 1915-1916,” The Journal of Southern History 30, no. 4 (1964): 383...with atomic weapons. Air power fever reawakened a competition between naval aviators and the Army Air Corps, soon to be the Air Force, over who had

  14. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  15. Overnight stagnation of drinking water in household taps induces microbial growth and changes in community composition.

    PubMed

    Lautenschlager, Karin; Boon, Nico; Wang, Yingying; Egli, Thomas; Hammes, Frederik

    2010-09-01

    Drinking water quality is routinely monitored in the distribution network but not inside households at the point of consumption. Fluctuating temperatures, residence times (stagnation), pipe materials and decreasing pipe diameters can promote bacterial growth in buildings. To test the influence of stagnation in households on the bacterial cell concentrations and composition, water was sampled from 10 separate households after overnight stagnation and after flushing the taps. Cell concentrations, measured by flow cytometry, increased (2-3-fold) in all water samples after stagnation. This increase was also observed in adenosine tri-phosphate (ATP) concentrations (2-18-fold) and heterotrophic plate counts (4-580-fold). An observed increase in cell biovolume and ATP-per-cell concentrations furthermore suggests that the increase in cell concentrations was due to microbial growth. After 5 min flushing of the taps, cell concentrations and water temperature decreased to the level generally found in the drinking water network. Denaturing gradient gel electrophoresis also showed a change in the microbial composition after stagnation. This study showed that water stagnation in household pipes results in considerable microbial changes. While hygienic risk was not directly assessed, it emphasizes the need for the development of good material validation methods, recommendations and spot tests for in-house water installations. However, a simple mitigation strategy would be a short flushing of taps prior to use.

  16. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-06-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  17. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-02-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  18. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  19. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  20. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  1. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    PubMed

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools.

  2. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  3. The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry.

    PubMed

    Ouyang, Hui; Larriba-Andaluz, Carlos; Oberreit, Derek R; Hogan, Christopher J

    2013-12-01

    To date, most collision cross section (CCS) predictions have invoked gas molecule impingement-reemission rules in which specular and elastic scattering of spherical gas molecules from rigid polyatomic surfaces are assumed. Although such predictions have been shown to agree well with CCSs measured in helium bath gas, a number of studies reveal that these predictions do not agree with CCSs for ions in diatomic gases, namely, air and molecular nitrogen. To further examine the validity of specular-elastic versus diffuse-inelastic scattering models, we measured the CCSs of positively charged metal iodide cluster ions of the form [MI]n[M(+)]z, where M = Na, K, Rb, or Cs, n = 1 - 25, and z = 1 - 2. Measurements were made in air via differential mobility analysis mass spectrometry (DMA-MS). The CCSs measured are compared with specular-elastic as well as diffuse-inelastic scattering model predictions with candidate ion structures determined from density functional theory. It is found that predictions from diffuse-inelastic collision models agree well (within 5%) with measurements from sodium iodide cluster ions, while specular-elastic collision model predictions are in better agreement with cesium iodide cluster ion measurements. The agreement with diffuse-inelastic and specular-elastic predictions decreases and increases, respectively, with increasing cation mass. However, even when diffuse-inelastic cluster ion predictions disagree with measurements, the disagreement is of a near-constant factor for all ions, indicating that a simple linear rescaling collapses predictions to measurements. Conversely, rescaling cannot be used to collapse specular-elastic predictions to measurements; hence, although the precise impingement reemission rules remain ambiguous, they are not specular-elastic.

  4. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  5. The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ouyang, Hui; Larriba-Andaluz, Carlos; Oberreit, Derek R.; Hogan, Christopher J.

    2013-12-01

    To date, most collision cross section (CCS) predictions have invoked gas molecule impingement-reemission rules in which specular and elastic scattering of spherical gas molecules from rigid polyatomic surfaces are assumed. Although such predictions have been shown to agree well with CCSs measured in helium bath gas, a number of studies reveal that these predictions do not agree with CCSs for ions in diatomic gases, namely, air and molecular nitrogen. To further examine the validity of specular-elastic versus diffuse-inelastic scattering models, we measured the CCSs of positively charged metal iodide cluster ions of the form [MI]n[M+]z, where M = Na, K, Rb, or Cs, n = 1 - 25, and z = 1 - 2. Measurements were made in air via differential mobility analysis mass spectrometry (DMA-MS). The CCSs measured are compared with specular-elastic as well as diffuse-inelastic scattering model predictions with candidate ion structures determined from density functional theory. It is found that predictions from diffuse-inelastic collision models agree well (within 5 %) with measurements from sodium iodide cluster ions, while specular-elastic collision model predictions are in better agreement with cesium iodide cluster ion measurements. The agreement with diffuse-inelastic and specular-elastic predictions decreases and increases, respectively, with increasing cation mass. However, even when diffuse-inelastic cluster ion predictions disagree with measurements, the disagreement is of a near-constant factor for all ions, indicating that a simple linear rescaling collapses predictions to measurements. Conversely, rescaling cannot be used to collapse specular-elastic predictions to measurements; hence, although the precise impingement reemission rules remain ambiguous, they are not specular-elastic.

  6. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  7. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  8. Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air.

    PubMed

    Ramírez, Noelia; Marcé, Rosa Maria; Borrull, Francesc

    2010-06-25

    This study describes the development of a new analytical method for determining 14 personal care products (PCPs) - nine synthetic musks, four parabens and one insect repellent - in air samples. The method is based on active sampling on sorbent tubes and thermal desorption-gas chromatography-mass spectrometry analysis, and is rapid, sensitive and drastically reduces the risk of sample contamination. Three kinds of tubes and traps were tested, those filled with Tenax TA being the most suitable for this study. Method validation showed good repeatability and reproducibility, low detection limits (between 0.03 ng m(-3) for DPMI and 12.5 ng m(-3) for propyl paraben) and good linearity for all compounds. Stability during storage indicated that samples must be kept refrigerated at 4 degrees C and analysed within 1 week of collection. The applicability of the technique to real samples was tested in different indoor and outdoor atmospheres. The total PCP values for indoor air ranged from 135 ng m(-3) in a pharmacy to 2838 ng m(-3) in a hairdresser's, whereas the values for outdoor air ranged from 14 ng m(-3) for a suburban environment to 26 ng m(-3) for an urban environment. In general, the most abundant synthetic musks were galaxolide (5.9-1256 ng m(-3)), musk xylene (1.6-766 ng m(-3)) and tonalide (1.1-138 ng m(-3)). Methyl and ethyl paraben (2.4-313 ng m(-3) and 1.8-117 ng m(-3), respectively) were the most abundant parabens. Although thermal desorption methods have been widely used for determining volatile organic compounds, they are rarely used with semi-volatile compounds. This study thus demonstrates that the thermal desorption method performs well with semi-volatile compounds and, for the first time, that it can be used for determining PCPs.

  9. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  10. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    SciTech Connect

    Pellett, G.L.; Northam, G.B.; Wilson, L.G.; Jarrett, O. Jr.; Antcliff, R.R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF. 42 refs.

  11. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  12. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-05

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  13. Simulation of solid oxide iron-air battery: Effects of heat and mass transfer on charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Iwai, Hiroshi

    2015-07-01

    A time-dependent 2-D numerical simulation was performed on a solid oxide iron-air battery (SOIAB) to reveal the fundamental characteristics of this new system. The SOIAB is a rechargeable battery consisting of a solid oxide electrochemical cell (SOEC) and iron as a redox metal. A simple battery configuration was employed assuming a system with a small capacity. A simulation model for a unit element was developed considering heat and mass transfer in the system, taking both electrochemical and redox reactions into account. The numerical results showed the spatial and temporal changes in the temperature field in the charge and discharge operations, which were due to the combined effects of heat generation/absorption by the electrochemical and redox reactions and heat exchange with the air supplied through convective heat transfer. As the reaction rates are functions of the local temperature, the predicted results show the importance of considering the heat transfer phenomena in this system. It was also found that the active reaction region in the redox metal evolves with time. The nonuniform distribution of iron utilization is affected by the effective gas diffusion coefficients in the porous redox metal, and consequently the change in the current density distribution in the SOEC.

  14. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  15. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  16. Measurement error models in chemical mass balance analysis of air quality data

    NASA Astrophysics Data System (ADS)

    Christensen, William F.; Gunst, Richard F.

    The chemical mass balance (CMB) equations have been used to apportion observed pollutant concentrations to their various pollution sources. Typical analyses incorporate estimated pollution source profiles, estimated source profile error variances, and error variances associated with the ambient measurement process. Often the CMB model is fit to the data using an iteratively re-weighted least-squares algorithm to obtain the effective variance solution. We consider the chemical mass balance model within the framework of the statistical measurement error model (e.g., Fuller, W.A., Measurement Error Models, Wiley, NewYork, 1987), and we illustrate that the models assumed by each of the approaches to the CMB equations are in fact special cases of a general measurement error model. We compare alternative source contribution estimators with the commonly used effective variance estimator when standard assumptions are valid and when such assumptions are violated. Four approaches for source contribution estimation and inference are compared using computer simulation: weighted least squares (with standard errors adjusted for source profile error), the effective variance approach of Watson et al. (Atmos, Environ., 18, 1984, 1347), the Britt and Luecke (Technometrics, 15, 1973, 233) approach, and a method of moments approach given in Fuller (1987, p. 193). For the scenarios we consider, the simplistic weighted least-squares approach performs as well as the more widely used effective variance solution in most cases, and is slightly superior to the effective variance solution when source profile variability is large. The four estimation approaches are illustrated using real PM 2.5 data from Fresno and the conclusions drawn from the computer simulation are validated.

  17. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  18. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all

  19. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  20. Stagnation pressure activated fuel release mechanism for hypersonic projectiles

    DOEpatents

    Cartland, Harry E.; Hunter, John W.

    2003-01-01

    A propulsion-assisted projectile has a body, a cowl forming a combustion section and a nozzle section. The body has a fuel reservoir within a central portion of the body, and a fuel activation system located along the central axis of the body and having a portion of the fuel activation system within the fuel reservoir. The fuel activation system has a fuel release piston with a forward sealing member where the fuel release piston is adapted to be moved when the forward sealing member is impacted with an air flow, and an air-flow channel adapted to conduct ambient air during flight to the fuel release piston.

  1. Air mass 1.5 global and direct solar simulation and secondary reference cell calibration using a filtered large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1985-01-01

    Spectral mismatch between a solar simulator and a desired spectrum can result in nearly 20 percent measurement error in the output of photovoltaic devices. This occurs when a crystalline silicon cell monitors the intensity of an unfiltered large area pulsed solar simulator (LAPSS) simulating the ASTM air mass 1.5 direct spectrum and the test device is amorphous silicon. The LAPSS spectral irradiance is modified with readily available glass UV filters to closely match either the ASTM air mass 1.5 direct or global spectrum. Measurement error is reduced to about 1 percent when using either filter if the reference cell and test device are the same general type.

  2. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  3. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Škrdlíková, Lenka

    2010-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study gas-particle partitioning, aerosol mass size distributions and to explore the potential of a higher time resolution (4 h-sampling). In the particulate phase the mass median diameters of the PAHs were found almost exclusively in the accumulation mode (0.1-1.0 μm of size). These were larger for semivolatile PAHs than for non-volatile PAHs. Gas-particle partitioning of semivolatile PAHs was strongly influenced by temperature. The results suggest that the Junge-Pankow model is inadequate to explain the inter-species variation and another process must be significant for phase partitioning which is less temperature sensitive than adsorption. Care should be taken when interpreting slopes m of plots of the type log K p = m log p L0 + b based on 24 h means, as these are found sensitive to the time averaging, i.e. tend to be higher than when based on 12 h-mean samples.

  4. Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Ching, Chang Y.

    1994-01-01

    The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.

  5. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  6. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  7. PMF receptor modelling of fine and coarse PM 10 in air masses governing monsoon conditions in Hanoi, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Hien, P. D.; Bac, V. T.; Thinh, N. T. H.

    Fine and coarse PM 10 samples collected in Hanoi in 1999-2001 were analysed for black carbon (BC) and water soluble ions (WSI) and measured data were disaggregated according to three types of back trajectories, namely (1) northerly, over inland China, (2) northeasterly, over East China Sea and, (3) southwesterly over Indochina peninsula. Trajectories of types 1, 2 and 3 prevail in September/October-December, January-March/April and May-August, respectively. A source-receptor modelling was performed for each type of trajectories individually using the Positive Matrix Factorisation (PMF) technique. Six or seven sources were extracted for each trajectory type, including soil dust, primary and secondary emissions from local burning (LB), vehicle/road dust, sea salt, Cl-depleted marine aerosols and long-range transport (LRT). LRT contributes little to the coarse mass, but accounts for 50%, 34% and 33% of the fine mass in trajectories of types 1, 2 and 3, respectively. More than two-thirds of the fine mode sulphate are attributed to LRT and associated with ammonium. The comparison of LRT and LB source profiles suggests that air masses arriving from north-northeasterly trajectories are more polluted than those coming from the southwest. Therefore the contribution of LRT's aerosols further enhances the seasonal contrast in the particulate concentration with maximum in winter and minimum in summer. Various mechanisms of sulphate formation in LRT and LB were suggested based on the concentration ratios of [SO 42-]/[K +], [SO 42-]/[BC] and [NH 4+]/[SO 42-] for the two sources.

  8. Instabilities in stagnation point flows of polymer solutions

    NASA Astrophysics Data System (ADS)

    Haward, S. J.; McKinley, G. H.

    2013-08-01

    A recently developed microfluidic device, the optimized shape cross-slot extensional rheometer or OSCER [S. J. Haward, M. S. N. Oliveira, M. A. Alves, and G. H. McKinley, "Optimized cross-slot flow geometry for microfluidic extensional rheometry," Phys. Rev. Lett. 109, 128301 (2012), 10.1103/PhysRevLett.109.128301], is used to investigate the stability of viscoelastic polymer solutions in an idealized planar stagnation point flow. Aqueous polymer solutions, consisting of poly(ethylene oxide) and of hyaluronic acid with various molecular weights and concentrations, are formulated in order to provide fluids with a wide range of rheological properties. Semi-dilute solutions of high molecular weight polymers provide highly viscoelastic fluids with long relaxation times, which achieve a high Weissenberg number (Wi) at flow rates for which the Reynolds number (Re) remains low; hence the elasticity number El = Wi/Re is high. Lower concentration solutions of moderate molecular weight polymers provide only weakly viscoelastic fluids in which inertia remains important and El is relatively low. Flow birefringence observations are used to visualize the nature of flow instabilities in the fluids as the volumetric flow rate through the OSCER device is steadily incremented. At low Wi and Re, all of the fluids display a steady, symmetric, and uniform "birefringent strand" of highly oriented polymer molecules aligned along the outflowing symmetry axis of the test geometry, indicating the stability of the flow field under such conditions. In fluids of El > 1, we observe steady elastic flow asymmetries beyond a critical Weissenberg number,Wicrit, that are similar in character to those already reported in standard cross-slot geometries [e.g., P. E. Arratia, C. C. Thomas, J. Diorio, and J. P. Gollub, "Elastic instabilities of polymer solutions in cross-channel flow," Phys. Rev. Lett. 96, 144502 (2006), 10.1103/PhysRevLett.96.144502]. However, in fluids with El < 1 we observe a sequence

  9. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  10. Biomass Burning versus Fossil Fuel Combustion Signatures of Air Masses Transported from Asia to the U.S. West Coast during ITCT2k2

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Cooper, O.; Warneke, C.; Hudson, P.; Brock, C.; Fehsenfeld, F.; Holloway, J.; Huebler, G.; Murphy, D.; Nowak, J.; Parrish, D.; Ryerson, T.; Trainer, M.; Atlas, E.

    2003-12-01

    The goal of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT2k2) was to study the transport of air pollution from Asia across the Pacific Ocean, and the implications for the background atmospheric composition at the surface in North America. During research flights of the NOAA WP-3 research aircraft on May 5 and 17, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia in the free troposphere to North America. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on May 5, 17 and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) versus propane (C3H8), and the percentage of particles measured by the PALMS (particle analysis by laser mass spectrometry) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast at various latitudes and pressures during the entire ITCT2k2 period, showed that air masses from South-East Asia and China were generally transported at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for South-East Asia. Combined with the origin of the air masses versus altitude determined by the back-trajectories, this explains the measured altitude profiles of the biomass burning indicators.

  11. The covariance of air quality conditions in six cities in Southern Germany - The role of meteorology.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-01-01

    This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM10, O3, SO2, NO2 and CO) to the total air stress. As it was deduced from ASI components, PM10 from combustion sources and photochemically produced tropospheric O3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM10. Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis.

  12. Stagnation Region Heat Transfer: The Influence of Turbulence Parameters, Reynolds Number and Body Shape

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.

    1994-01-01

    The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.

  13. Subducting-slab transition-zone interaction: Stagnation, penetration and mode switches

    NASA Astrophysics Data System (ADS)

    Agrusta, Roberto; Goes, Saskia; van Hunen, Jeroen

    2017-04-01

    Seismic tomography shows that subducting slabs can either sink straight into the lower mantle, or lie down in the mantle transition zone. Moreover, some slabs seem to have changed mode from stagnation to penetration or vice versa. We investigate the dynamic controls on these modes and particularly the transition between them using 2D self-consistent thermo-mechanical subduction models. Our models confirm that the ability of the trench to move is key for slab flattening in the transition zone. Over a wide range of plausible Clapeyron slopes and viscosity jumps at the base of the transition zone, hot young slabs (25 Myr in our models) are most likely to penetrate, while cold old slabs (150 Myr) drive more trench motion and tend to stagnate. Several mechanisms are able to induce penetrating slabs to stagnate: ageing of the subducting plate, decreasing upper plate forcing, and increasing Clapeyron slope (e.g. due to the arrival of a more hydrated slab). Getting stagnating slabs to penetrate is more difficult. It can be accomplished by an instantaneous change in the forcing of the upper plate from free to motionless, or a sudden decrease in the Clapeyron slope. A rapid change in plate age at the trench from old to young cannot easily induce penetration. On Earth, ageing of the subducting plate (with accompanying upper plate rifting) may be the most common mechanism for causing slab stagnation, while strong changes in upper plate forcing appear required for triggering slab penetration.

  14. Molecular formation in the stagnation region of colliding laser-produced plasmas

    SciTech Connect

    Al-Shboul, K. F.; Hassan, S. M.; Harilal, S. S.

    2016-10-27

    The laser-produced colliding plasmas have numerous attractive applications and stagnation layer formed during collisions between plasmas is a useful system for understanding particle collisions and molecular formation in a controlled way. In this article, we explore carbon dimer formation and its evolutionary paths in a stagnation layer formed during the interaction of two laser-produced plasmas. Colliding laser produced plasmas are generated by splitting a laser beam into two sub-beams and then focus them into either a single flat (laterally colliding plasmas) or a V-shaped graphite targets (orthogonally colliding plasmas). The C2 formation in the stagnation region of both colliding plasma schemes is investigated using optical spectroscopic means and compared with emission features from single seed plasma. Our results show that the collisions among the plasmas followed by the stagnation layer formation lead to rapid cooling causing enhanced carbon dimer formation. In addition, plasma electron temperature, density and C2 molecular temperature were measured for the stagnation zone and compared with seed plasma.

  15. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  16. Satellite-based identification of tropopause folding signatures along air mass boundaries

    NASA Astrophysics Data System (ADS)

    Wimmers, Anthony James

    Tropopause folding is a significant though frequently underestimated source of mass exchange between the stratosphere and the troposphere. Although tropopause folds are inherently three-dimensional phenomena, empirical evidence shows that certain signature features in two-dimensional satellite products that are sensitive to tropopause height can be used to infer the vertical layering that characterizes tropopause folds. Both Altered Water Vapor (AWV) imagery and Total Ozone Mapping Spectrometer (TOMS) total ozone reveal significant gradients at the "openings" of tropopause folds, and the direction of the gradient indicates the direction of the intrusion. This is demonstrated empirically with a comparison of the satellite imagery to a data set of aircraft-based ozone lidar transects from the Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment. Using the data set to optimize the parameters of this empirical relationship, a statistical model is developed to predict the location of tropopause folds based solely on the properties of AWV imagery, which operates on a hemispheric-scale domain and at the approximately 10-km resolution of the GOES water vapor channel. Validation of this model with evidence of tropopause folding from operational radiosonde data was only partially successful; the validation was not reliable enough to provide precise confirmation of the model parameter values, but it did provide some confirmation that the model was well calibrated. Application of this model over a February to May, 2000 time period provides a four-month "climatology" of tropopause folding activity around North America. During this time period, tropopause folding activity was strongest over the northeast Pacific and northwest Atlantic, and at a minimum in the high latitudes around Hudson Bay. Over the entire domain (25--63° N, 40--165° W), tropopause folding activity was greatest in March. This result does not prove that downward vertical transport from

  17. Recent trends of persistent organic pollutants in air in central Europe - Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Lammel, G.; Holoubek, I.

    We use air mass back trajectory analysis of persistent organic pollutant (POP) levels monitored at a regional background site, Košetice, Czech Republic, as a tool to study the effectiveness of emission reduction measures taken in the last decade in the region. The representativity of the chosen trajectory starting height for air sampling near ground was ensured by excluding trajectories starting at time of inversions lower than their starting height. As the relevant pollutant sources are exclusively located in the atmospheric boundary layer, trajectory segments above this layer were also excluded from the analysis. We used a linear time weight to account for the influence of dispersion and deposition on trace components abundances and to quantify the ground source loading, a continuous measure for the influence of surface emissions. Hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), DDT, and two time periods, the years 1997-1999 and 2004-2006, were studied. The pollutant levels transported to Košetice decreased for all substances except HCB. Except for lindane seasonal emissions were insignificant. Increasing emissions of HCB were at least partly linked to the 2002 floods in the Danube basin. Major emissions of 1997-1999 which decreased significantly were in France (lindane), western Poland, Hungary and northern ex-Yugoslavia (technical HCH), and the Czech Republic (DDT). Emissions remaining in 2004-2006 include HCB and DDT in the northern Czech Republic, HCB and PCBs in Germany. Besides changes in emission strength meteorological factors influence the level of transported pollutant concentrations. The prevailing air flow pattern limits the geographic coverage of this analysis to central Europe and parts of western Europe. However, no POP monitoring stations exist in areas suitable for a possible extension of the study area.

  18. Validation and Application of the Mass Balance Model To Determine the Effectiveness of Portable Air Purifiers in Removing Ultrafine and Submicrometer Particles in an Apartment.

    PubMed

    Lee, Wan-Chen; Catalano, Paul J; Yoo, Jun Young; Park, Chan Jung; Koutrakis, Petros

    2015-08-18

    We validated the use of the mass balance model to determine the effectiveness of portable air purifiers in removing ultrafine (<0.10 μm) and submicrometer particles (0.10-0.53 μm) in an apartment. We evaluated two identical portable air purifiers, equipped with high efficiency particulate air filters, for their performance under three different air flow settings and three target air exchange rates: 0.60, 0.90, and 1.20 h(-1). We subsequently used a mixed effects model to estimate the slope between the measured and modeled effectiveness by particle size. Our study showed that effectiveness was highly particle size-dependent. For example, at the lowest target air exchange rate, it ranged from 0.33 to 0.56, 0.51 to 0.75, and 0.60 to 0.81 for the three air purifier flow settings, respectively. Our findings suggested that filtration was the dominant removal mechanism for submicrometer particles, whereas deposition could play a more important role in ultrafine particle removal. We found reasonable agreement between measured and modeled effectiveness with size-resolved slopes ranging from 1.11 ± 0.06 to 1.25 ± 0.07 (mean ± SE), except for particles <35 nm. Our study design can be applied to investigate the performances of other portable air purifiers as well as the influences of various parameters on effectiveness in different residential settings.

  19. Air mass origin signals in δ 18O of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wernicke, Jakob; Hochreuther, Philipp; Grießinger, Jussi; Zhu, Haifeng; Wang, Lily; Bräuning, Achim

    2016-12-01

    A profound consideration of stable oxygen isotope source water origins is a precondition for an unambiguous palaeoenvironmental interpretation of terrestrial δ 18O archives. To stress the influence of air mass origins on widely used δ 18O tree-ring chronologies, we conducted correlation analyses between six annually resolved δ 18O tree-ring cellulose ( δ ^{18}O_{TC}) chronologies and mean annual air package origins obtained from backward trajectory modeling. This novel approach has been tested for a transect at the southeastern Tibetan plateau (TP), where air masses with different isotopic composition overlap. Detailed examinations of daily precipitation amounts and monthly precipitation δ 18O values ( δ ^{18}OP) were conducted with the ERA Interim and Laboratoire de Météorologie Dynamique General Circulation Model (LMDZiso) data, respectively. Particularly the southernmost study sites are influenced by a distinct amount effect. Here, air package origin δ ^{18}O_{TC} relations are generally weaker in contrast to our northern located study sites. We found that tree-ring isotope signatures at dry sites with less rain days per year tend to be influenced stronger by air mass origin than tree-ring isotope values at semi-humid sites. That implies that the local hydroclimate history inferred from δ ^{18}O_{TC} archives is better recorded at semi-humid sites.

  20. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  1. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  2. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities.

  3. Determination of benzene at trace levels in air by a novel method based on solid-phase microextraction gas chromatography/mass spectrometry.

    PubMed

    Saba, A; Cuzzola, A; Raffaelli, A; Pucci, S; Salvadori, P

    2001-01-01

    A new method for the determination of benzene at trace levels in air is presented. The method consists of the collection of air samples on adsorbent cartridges with simultaneous adsorption of pre-established amounts of D6-labeled internal standard. Desorption from the cartridge is performed by solid-phase microextraction (SPME) with analysis by gas chromatography/mass spectrometry (GC/MS) using an ion trap mass spectrometer. The influence of several parameters (type of SPME fiber, temperature, time, for example) was investigated, and good linearity in the range 10-400 ng of C6D6, with a coefficient of variance (CV) around 3-5%, was obtained. The method was tested by sampling air in a town center in Italy, and a benzene concentration of approximately 50 microg/m(3) was determined. The maximum limit recommended by the European Community is 10 microg/m(3).

  4. Observation and Simulation of Ion Flow Stagnation in the Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Tokar, R. L.; Omidi, N.; Averkamp, T.; Wang, Z.; Gurnett, D. A.; Thomsen, M. F.; Crary, F. J.

    2010-12-01

    The Cassini Plasma Spectrometer (CAPS) detected freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier charged water clusters (HxO2)+ very close to Enceladus within and outside of the south polar plume, see (1). The data were obtained during close flybys of Enceladus in 2008 and 2009 (E3, E5, E7) when CAPS viewing of the ion plasma was favorable. The ions are observed in CAPS detectors looking in the Cassini ram direction and close to the ram kinetic energy, indicative of a nearly stagnant (at rest with respect to Enceladus) plasma flow in the plume. In this study these CAPS observations are compared with 3D hybrid simulations of the Enceladus interaction (2). The primary goal is to simulate the spatial extent of the ion flow stagnation in and near the plume observed by CAPS. The simulations include not only plume water vapor undergoing charge exchange with the ambient ion flow but also heavy plume dust that acquires a negative charge. The neutral dust spatial distribution is modeled using particle impact rates obtained from Radio and Plasma Wave System (RPWS) data while plasma fluid parameters during the encounters are obtained from CAPS. The dust is a second heavy particle component in the simulation that is followed in the same manner as the positive ions. The dust absorption of electrons mass-loads the plasma producing flow deceleration observable by CAPS over the high impact regions measured by RPWS. This deceleration is compared with that due to the charge exchange process. 1.)Tokar,R.L. et al. Geophys. Res. Lett., 36, L13203, doi:10.1029/2009GL038923, 2009. 2.)Omidi,N. et al., J. Geophys. Res., 115, A05212, doi:10.1029/2009JA014391, 2010.

  5. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  6. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    PubMed

    Yang, Mingzhi; Du, Juntao; Li, Zhiwei; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  7. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements

    PubMed Central

    Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441

  8. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    SciTech Connect

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  9. Measurements of the stagnation pressure in the center of a cavitating jet

    NASA Astrophysics Data System (ADS)

    Nobel, A. J.; Talmon, A. M.

    2012-02-01

    The stagnation pressure at a certain distance from the nozzle is important for the erosion/ cutting capacity of a submerged jet in dredging. The decay of the stagnation pressure with jet distance is well known in the case of non-cavitating jets. It is also known that cavitation causes the rate of decay to decrease. Under conditions of cavitation, a cone of bubbles forms around the jet, which decreases the momentum exchange between the jet and the ambient water and the associated entrainment. Despite the amount of research on cavitating jets, the literature does not provide a description for the entrainment in the case of a cavitating jet. Also, a useful description of the stagnation pressure decay of a cavitating jet is missing. To fill this lacuna, we carried out jet tests at various ambient pressures in both fresh and saline water. We present and analyse the results in this paper.

  10. Linear stability of a nonorthogonal axisymmetric stagnation flow on a rotating cylinder

    NASA Astrophysics Data System (ADS)

    Amaouche, Mustapha; Bouda, Faïçal Nait; Sadat, Hamou

    2006-12-01

    The present analysis deals with the onset of instability in an axisymmetric stagnation flow obliquely impinging on a uniformly rotating circular cylinder. The basic flow is described by an exact solution of the Navier-Stokes equations, discovered by Weidmann and Putkaradze [Eur. J. Mech. B/Fluids 22, 123 (2003)]. An eigenvalue problem for the linear stability is formulated, regardless of the free stream obliqueness, and then solved numerically by means of a collocation method using Laguerre's polynomials. It is established that the basic stagnation flow is stable for sufficiently high Reynolds numbers. This is in conformity with the unconditional linear stability of two-dimensional Hiemenz stagnation flow. Instability occurs for Reynolds numbers smaller than some threshold value that increases with the rotation rate of the cylinder. At criticality, the flow undergoes a Hopf bifurcation, leading then to an oscillatory secondary motion.

  11. Kinetics of Particle Adsorption in Stagnation Point Flow Studied by Optical Reflectometry

    PubMed

    Böhmer; van der Zeeuw EA; Koper

    1998-01-15

    The kinetics of adsorption of nano-sized silica particles on a polymer pretreated surface were followed in situ by using optical reflectometry in a stagnation point flow setup. Conversion of the reflectometric signal to the surface coverage could be performed using a homogeneous slab model which was verified by determining the particle density on SEM pictures taken in the stagnation point and by comparison with a model which includes the particulate nature of the layer explicitly. The effects of salt concentration on the plateau adsorbed amounts for all particle sizes can be described with an effective hard sphere concept. Although initial slopes and plateau values are in reasonable agreement with a random sequential adsorption model, this model does not accurately describe the evolution of the surface coverage as a function of time in a stagnation point flow system. Copyright 1998 Academic Press. Copyright 1998Academic Press

  12. Turbulence and surface heat transfer near the stagnation point of a circular cylinder in turbulent flow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.

    1983-01-01

    A turbulent boundary layer flow analysis of the momentum and thermal flow fields near the forward stagnation point due to a circular cylinder in turbulent cross flow is presented. Turbulence modeling length scale, anisotropic turbulence initial profiles and boundary conditions were identified as functions of the cross flow turbulence intensity and the boundary layer flow far field velocity. These parameters were used in a numerical computational procedure to calculate the mean velocity, mean temperature, and turbulence double correlation profiles within the flow field. The effects of the cross flow turbulence on the stagnation region momentum and thermal flow fields were investigated. This analysis predicted the existing measurements of the stagnation region mean velocity and surface heat transfer rate with cross flow Reynolds number and turbulence intensity less than 250,000 and 0.05, respectively.

  13. Unsteady stagnation-point heat transfer during passage of a concentrated vortex

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Rae, William J.

    1989-01-01

    The unsteady boundary layer due to a single rectilinear vortex filament approaching a 2-D stagnation point is investigated. Assuming the vortex remains far from the surface, incompressible potential flow theory is used to determine the time dependent inviscid flow field. The unsteady boundary layer equations are solved by an alternating-direction-implicit finite-difference method. Two mechanisms which cause fluctuations in heat transfer are the unsteady velocity field in the boundary layer and secondly, the unsteady total temperature at the edge of the boundary layer. The relative importance of these mechanisms is dependent upon the total temperature fluctuations relative to the imposed temperature difference. As a vortex approaches a stagnation point it may be forced to one side of the stagnation line or the other, depending on its initial position. Results are presented for both of these cases.

  14. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  15. Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James; Simoneau, Robert J.; Ching, Chan Y.

    1994-01-01

    The purpose of the present work was threefold: (1) to determine if a free-stream turbulence length scale existed that would cause the greatest augmentation in stagnation-region heat transfer over laminar levels; (2) to investigate the effect of velocity gradient on stagnation-region heat transfer augmentation by free-stream turbulence; and (3) to develop a prediction tool for stagnation heat transfer in the presence of free-stream turbulence. Heat transfer was measured in the stagnation region of four models with elliptical leading edges that had ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Five turbulence-generating grids were fabricated; four were square mesh, biplane grids made from square bars. The fifth grid was an array of fine parallel wires that were perpendicular to the model spanwise direction. Heat transfer data were taken at Reynolds numbers ranging from 37 000 to 228 000. Turbulence intensities were in the range of 1.1 to 15.9% while the ratio of integral length scale to leading-edge diameter ranged from 0.05 to 0.30. Stagnation-point velocity gradient was varied by nearly 50%. Stagnation-region heat transfer augmentation was found to increase with decreasing length scale but no optimum length scale was found. Heat transfer augmentation due to turbulence was found to be unaffected by the velocity gradient near the leading edge. A correlation was developed that fit heat transfer data for the square-bar grids to within +/- 4%.

  16. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses

    NASA Astrophysics Data System (ADS)

    Hellack, Bryan; Quass, Ulrich; Beuck, Henning; Wick, Gabriele; Kuttler, Wilhelm; Schins, Roel P. F.; Kuhlbusch, Thomas A. J.

    2015-03-01

    At an urban background station in Mülheim-Styrum, North Rhine Westphalia, Germany, a set of 75 PM10 samples was collected over a one year period, followed by analyses for mass, chemical composition and hydroxyl radical (OHrad) formation potency. Additionally, the origin of air masses for the sampling days was calculated by 48-h backward trajectories, subdivided into the four cardinal sectors. Significant lower PM10 mass concentrations were observed for summertime air masses from the west compared to the other seasons and cardinal sectors. For the OHrad formation potency higher values were detected if air masses originate from east and south, thus predominantly being of continental origin. From the elevated OHrad formation potencies in fall and winter a seasonal trend with low potencies in summers is assumed. Furthermore, source apportionment was performed by a positive matrix factor analysis, separating seven plausible factors which could be attributed to mineral dust, secondary nitrate, industry, non-exhaust traffic, fossil fuel combustion, marine aerosol and secondary aerosol factors. The intrinsic OHrad formation potency was found to be associated mainly with the fossil fuel combustion factor (45%) and industry factor (22%).

  17. Optimization of automated gas sample collection and isotope ratio mass spectrometric analysis of delta(13)C of CO(2) in air.

    PubMed

    Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Siegwolf, Rolf T W; Wehrle, Günther; Mohn, Joachim; Buchmann, Nina

    2008-12-01

    The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.

  18. Hypersonic stagnation line merged layer flow on blunt axisymmetric bodies of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Jain, Amolak S.

    1993-01-01

    The problem of hypersonic stagnation line merged-layer flow of variously shaped blunt asisymmetric bodies is here formulated in such a way as to allow analytical calculations for bodies generated by a conic section. The governing equations encompass, apart from the usual parameters, the eccentricity of the conic section that generates the body-of-revolution for the effect of body shape on the solution obtained. The stagnation-point surface pressure increases as the favorable pressure gradient decreases, in the course of a change of body shape from spherical to hyperboloid.

  19. Laser scattered images observed from carbon plasma stagnation and following molecular formation

    SciTech Connect

    Nishimura, K.; Shibata, R.; Yabuuchi, T.; Tanaka, K. A.; Sunahara, A.

    2014-06-16

    Two carbon targets were irradiated to create plasma plumes to collide at right angle with two UV laser pulses each other at 10 J/cm{sup 2}/pulse. The collision results in carbon plasma stagnation. Laser scattered imaging indicates that the carbon large molecular formation takes place much later in time after the laser irradiation and stagnation. Compared with the temporal history of electron density (n{sub e}), ion density (n{sub i}), and plasma self-emission dominated by carbon Swan band, it is estimated that the carbon large molecular formation has been initiated with the ion collision followed by the C{sub 2} formation.

  20. Mantle compositional layering revealed by slab stagnation in the uppermost lower mantle

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Ritsema, Jeroen; Schmerr, Nicholas; Motoki, Matthew

    2015-04-01

    Seismic tomography reveals three different modes of slab sinking behavior. Some slabs segments (1) descend through the upper mantle to stagnate in the transition zone (e.g., Japan slab), others (2) sink into the deep mantle (e.g., Tethys slab), and yet others (3) sink through the upper mantle and transition zone to stagnate at ~1000 km depth (e.g., Peru, Kermadec, Sunda and Nicaragua slabs) [Fukao and Obayashi, 2013]. Whereas stagnation in the transition zone is well explained by the supporting effect of the spinel-to-perovskite phase transition at ~660 km depth ("the 660"), a scenario for equilibrium stagnation in the uppermost lower mantle, where no endothermic phase transitions occur, remains to be proposed. Here, we explore slab sinking behavior using two-dimensional numerical models. We show that slabs stagnate at 900~1000 km depth if the lower mantle be intrinsically dense, for example due to enrichment in Si and/or Fe relative to Mg. A gradual and moderate compositional contrast across the 660 in a heterogeneous mantle is (at least locally) able to provide sufficient support for long-term slab stagnation. While such a contrast is expected to result from early-Earth processes (e.g., differential crystallization of the magma ocean), its maintenance over 4.5 Gyrs of mantle convection and stirring requires ongoing geodynamic mechanism(s) to sustain it. One such mechanism is stagnant slab disintegration, in which a superplastic slab that stagnates above or below the 660 undergoes convective instability to separate into its (enriched) basaltic and (depleted) harzburgitic components. As dense basaltic material and buoyant harzburgite tend to sink and rise, respectively, this mechanism sets up an efficient compositional filter across the transition zone. Thus, the fate of subducted slabs can sustain (disintegration) - as well as provide evidence for (stagnation at ~1000 km depth) - relative enrichment of the lower compared to the upper mantle. Such an enrichment is

  1. Propagation of microwave beams through the stagnation zone in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Tereshchenko, M. A.

    2017-01-01

    A study is made of the microwave beam evolution due to passing through the stagnation zone, where the group velocity vanishes, thus making the paraxial approximation for the wavefield inappropriate. An extension to the standard beam tracing technique is suggested that allows one to calculate the microwave beam parameters on either branch of its path apart from the stagnation zone, omitting the calculation of the wavefield inside it. Application examples of the extended technique are presented for the case of microwave reflection from the upper hybrid resonance layer in a tokamak plasma.

  2. Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin Charles

    Problem-solving strategies in the physical sciences have been characterized by a dependence on algorithmic techniques often devoid of any reasoning skills. The purpose of this study was to examine student responses to a task relating to Boyle's Law for gases, which did not demand the use of a mathematical equation for its solution. Students (17- to 18-year-olds) in lower sixth form from two colleges in the Leeds district of Yorkshire in England were asked to respond to a task relating to pressure and volume measurements of air within a sealed syringe in different states of compression. Both qualitative and quantitative tasks for the sealed syringe system were examined. It was found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under such circumstances. Performance on an inverse ratio (2:1) task was shown to depend on gender and those students who performed well on the 2:1 inverse ratio task did not necessarily perform well on a different inverse ratio task when an arithmetic averaging principle was present. Tasks which draw upon qualitative knowledge as well as quantitative knowledge have the potential to reduce dependence on algorithms, particularly equation substitution and solution. The implications for instructional design are discussed.Received: 14 April 1993; Revised: 29 June 1994;

  3. The Effect of Isotopic Composition on the Uncertainty of Routine Metal Mass Concentration Measurements in Ambient Air

    PubMed Central

    Brown, Richard J. C.; Goddard, Sharon L.; Brown, Andrew S.; Yardley, Rachel E.

    2008-01-01

    The main sources of uncertainty encountered during the analysis of the mass concentration of metals in ambient air as part of the operation of the UK Heavy Metals Monitoring Network are presented. It is observed that the uncertainty contribution from possible variation in the isotopic composition of the sample depends on the element in question, but can be significant (e.g., for Pb, Cd, and Hg). The working curve method for the ICP-MS analysis of metals in solution, with a low resolution, high throughput instrument measuring at one m/z ratio per element, relies on the relative abundance of the isotopes under consideration being the same in both the sample and the calibration solution. Calculation of the uncertainty in this analysis assumes that the isotopic composition variation within the sample and calibration solution is limited to a defined range. Therefore, in order to confirm the validity of this quantification methodology and its uncertainty budget, the isotopic composition of the calibration standards used for quantification has been determined. The results of this analysis are presented here. PMID:19223968

  4. Total ozone seasonal and interannual variations in the principal air masses of the Northern Hemisphere in 1975-1990

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Klyagina, L. P.; Shalamyansky, A. M.; Jagovkina, S. V.

    1994-01-01

    The diurnally mean total ozone X from the Northern Hemisphere ground based 90 stations for 1975-1990 are averaged over the Arctic (bar X (sub A)) Intermediate (bar X (sub I)) and Tropical (bar X (sub T)) air mass areas, divided by the jet stream axes on the isobaric surfaces 300 and 200 mb. The mean square variations of the so averaged X are considerably smaller than of the X, averaged over the corresponding zonal belts. This property allows one to improve considerably the statistical significance of X trends and changes over various time periods, taking into account the time correlation of data for adjacent time intervals. Bar X (sub A), bar X (sub I), and bar X (sub T) trends are estimated over the periods of solar activity rise and fall in its 21st and rise in its 22nd 11 year cycles and over the periods of west and east phases of the known over the periods of west and east phases of the known quasibiennial oscillation (QBO). Solar activity variations affect mostly bar X (sub T), bar X (sub I) trends in summer months, while QBO phases influence the X changes mostly during the cold half year. X are lower in the west QBO phase and their trend is negative during almost all periods considered. The anthropogenic effects on the X is also estimated.

  5. Critical Review of Stagnation Point Heat Transfer Theory

    DTIC Science & Technology

    1975-07-01

    concentration cm 3 (Ref. 8-5) Ref. (8-3) Hilsenrath, J., and M. Klein, "Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial ...made to simplify the equation by replacing the coefficient in front of the second term of Eq. (A-14) by unity. *, This approximation implies the...i.e., theories treating the heat transfer from a dissocia- ted gas to blunt bodies in a supersonic stream (e.g., Fay and Riddell). The second group

  6. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  7. Measurements of δ13C in CH4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass

    NASA Astrophysics Data System (ADS)

    France, J. L.; Cain, M.; Fisher, R. E.; Lowry, D.; Allen, G.; O'Shea, S. J.; Illingworth, S.; Pyle, J.; Warwick, N.; Jones, B. T.; Gallagher, M. W.; Bower, K.; Le Breton, M.; Percival, C.; Muller, J.; Welpott, A.; Bauguitte, S.; George, C.; Hayman, G. D.; Manning, A. J.; Myhre, C. Lund; Lanoisellé, M.; Nisbet, E. G.

    2016-12-01

    A stratified air mass enriched in methane (CH4) was sampled at 600 m to 2000 m altitude, between the north coast of Norway and Svalbard as part of the Methane in the Arctic: Measurements and Modelling campaign on board the UK's BAe-146-301 Atmospheric Research Aircraft. The approach used here, which combines interpretation of multiple tracers with transport modeling, enables better understanding of the emission sources that contribute to the background mixing ratios of CH4 in the Arctic. Importantly, it allows constraints to be placed on the location and isotopic bulk signature of the emission source(s). Measurements of δ13C in CH4 in whole air samples taken while traversing the air mass identified that the source(s) had a strongly depleted bulk δ13C CH4 isotopic signature of -70 (±2.1)‰. Combined Numerical Atmospheric-dispersion Modeling Environment and inventory analysis indicates that the air mass was recently in the planetary boundary layer over northwest Russia and the Barents Sea, with the likely dominant source of methane being from wetlands in that region.

  8. {alpha} Heating in a Stagnated Z-pinch

    SciTech Connect

    Appelbe, Brian; Chittenden, Jeremy

    2009-01-21

    A computational investigation of a scheme for magneto-inertial confinement fusion in a Z-pinch is carried out. In the scheme implosion of a deuterium-tritium fuel mass is preceded by formation of a hotspot containing warm, dense plasma on axis. The presence of the hotspot increases energy yield. Compression of the hotspot by the main fuel mass initiates thermonuclear burn. There is significant heating of the plasma by thermonuclear {alpha} particles which are confined by the strong magnetic field of the Z-pinch.

  9. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  10. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  11. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  12. Cl2 Measurements in Polluted Coastal Air Using a Br- Addition CIMS Technique

    NASA Astrophysics Data System (ADS)

    Lawler, M. J.; Saltzman, E. S.

    2008-12-01

    Molecular chlorine (Cl2) was measured in ambient air using chemical ionization mass spectrometry (CIMS) with Br- as a reagent ion. Ionization was carried out by adding CHBr3 to ambient air and flowing the gas mixture through a 63Ni ion source maintained at 300 Torr. The resulting Cl2Br- adduct was collisionally dissociated in a triple quadrupole mass spectrometer and detected as Cl-. Ambient Cl2 measurements were made at Irvine, CA, from August 1-8, 2008. Air was drawn to the instrument from outside via a ~4m long laminar flow inlet. Inlet and instrument blanks were assessed by passing ambient air through carbonate-coated glass wool, and the instrument was calibrated with a Cl2 permeation tube. During this study, the mean detection limit for Cl2 was estimated at approximately 2 ppt. Cl2 showed a diel cycle on the days it was detectable, with nighttime mixing ratios up to about 15 ppt and daytime values of a few ppt or less. A rapid decrease in Cl2 in surface air was observed overnight in association with stagnation of the nocturnal surface layer.

  13. Micropolar boundary layer flow at a stagnation point on a moving wall with suction and injection

    NASA Astrophysics Data System (ADS)

    Hassanien, I. A.; Hady, F. M.

    1988-10-01

    The flow of a micropolar fluid at a two-dimensional stagnation point on a moving wall with suction and injection is studied. Numerical computations were carried out on a VME-2955 computer. The effects of the suction/injection parameter and dimensionless material parameters are discussed.

  14. On Hispanic Education--Progress and Stagnation: 25 Years of Hispanic Achievement

    ERIC Educational Resources Information Center

    Gandara, Patricia

    2009-01-01

    The author reports both the progress and stagnation of Hispanic education on its 25th year of Hispanic achievement. The focus is on the need to understand and address the gap in Hispanic male achievement. For the past 25 years, Chicanas consistently out-perform Chicanos at every level of schooling. Most recent statistics (2006) show that 73…

  15. WASTAGE AND STAGNATION IN PRIMARY AND MIDDLE SCHOOLS IN INDIA. PROJECT REPORT.

    ERIC Educational Resources Information Center

    SAPRA, C.L.; SHARMA, R.C.

    THE EXTENT OF WASTAGE (DROPOUTS) AND STAGNATION (GRADE REPETITION) AT THE PRIMARY AND MIDDLE STAGES OF EDUCATION, THE CAUSES OF WASTAGE, AND THE RELATIVE IMPORTANCE OF EACH CAUSE WERE INVESTIGATED IN INDIA. THE STUDY IS AN OUTCOME OF COLLABORATION BETWEEN INDIA'S NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING, AND THE U.S. OFFICE OF…

  16. THE SIGNIFICANCE OF "STAGNATION CURVES" FOR LEAD AND COPPER, AND WATER QUALITY FACTORS AFFECTING THEM

    EPA Science Inventory

    "Stagnation curves" are the response of metal levels, particularly lead and copper, to time under conditions of no water flow. Research on lead pipe in the early 1980's in the United States, Germany, and in the United Kingdom suggested that they were characterized by rapid incre...

  17. An approach to versatile highly-uniform MOVPE growth: the flow controlled stagnation point flow reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Makoto; Kuramata, Akito; Fujii, Takuya; Anayama, Chikashi; Okazaki, Jiro; Sekiguchi, Hiroshi; Tanahashi, Toshiyuki; Yamazaki, Susumu; Nakajima, Kazuo

    1992-11-01

    We present an approach to versatile highly-uniform MOVPE growth using the controlled stagnation point flow reactor. Our approach for uniform growth involves two concepts: (1) realizing the stagnation point flow condition in a vertical reactor configuration and (2) introducing a method for versatile flow-field control using the flow-controlled multiple gas-injector technique. The versatility of the flow-control technique was investigated by evaluating how radial deposition rate uniformity is affected by variation in several hydrodynamic and reactor configuration factors: the inlet flow rate, operating pressure, susceptor temperature, susceptor rotation speed, and the inlet and susceptor separation. We confirmed that a spatially uniform deposition rate can be obtained over a wide range of hydrodynamic and configuration parameters, demonstrating that the flow-control technique can provide a stable stagnation point flow field. Even when the ideal stagnation point flow-field is disturbed, for example, by high temperature susceptor heating, it could be completely compensated by adjusting the flow rate ratio for multiple injectors, showing our technique's ability to control flow-fields. By using this technique, we obtained excellent uniformities in both layer thickness and alloy composition for two important materials - GaInAsP and AlGaInP - in the same reactor.

  18. Platelet deposition in stagnation point flow: an analytical and computational simulation.

    PubMed

    David, T; Thomas, S; Walker, P G

    2001-06-01

    A mathematical and numerical model is developed for the adhesion of platelets in stagnation point flow. The model provides for a correct representation of the axi-symmetric flow and explicitly uses shear rate to characterise not only the convective transport but also the simple surface reaction mechanism used to model platelet adhesion at the wall surface. Excellent agreement exists between the analytical solution and that obtained by the numerical integration of the full Navier--Stokes equations and decoupled conservation of species equations. It has been shown that for a constant wall reaction rate modelling platelet adhesion the maximum platelet flux occurs at the stagnation point streamline. This is in direct contrast to that found in experiment where the maximum platelet deposition occurs at some distance downstream of the stagnation point. However, if the wall reaction rate is chosen to be dependent on the wall shear stress then the analysis shows that the maximum platelet flux occurs downstream of the stagnation point, providing a more realistic model of experimental evidence. The analytical formulation is applicable to a large number of two-dimensional and axi-symmetrical surface reaction flows where the wall shear stress is known a priori.

  19. Program computes equilibrium normal shock and stagnation point solutions for arbitrary gas mixtures

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Kemper, J. T.

    1967-01-01

    Program computes solutions for flow parameters in arbitrary gas mixtures behind a normal and a reflected normal shock, for in-flight and shock-tube stagnation conditions. Equilibrium flow calculations are made by a free-energy minimization technique coupled with the steady-flow conservation equations and a modified Newton-Raphson iterative scheme.

  20. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  1. Interlaboratory evaluation of trace element determination in workplace air filter samples by inductively coupled plasma mass spectrometry†‡

    PubMed Central

    Shulman, Stanley A.; Brisson, Michael J.; Howe, Alan M.

    2015-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory precision estimates were acceptable for medium- and high

  2. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis

    NASA Astrophysics Data System (ADS)

    Lee, Chulkyu; Martin, Randall V.; van Donkelaar, Aaron; O'Byrne, Gray; Krotkov, Nickolay; Richter, Andreas; Huey, L. Gregory; Holloway, John S.

    2009-11-01

    We develop an improved retrieval of sulfur dioxide (SO2) vertical columns from two satellite instruments (SCIAMACHY and OMI) that measure ultraviolet solar backscatter. For each SCIAMACHY and OMI observation, a local air mass factor (AMF) algorithm converts line-of-sight "slant" columns to vertical columns using altitude-dependent scattering weights computed with a radiative transfer model (LIDORT), weighted by relative vertical SO2 profile (shape factor) determined locally with a global atmospheric chemistry model (GEOS-Chem). The scattering weights account for viewing geometry, surface albedo, cloud scattering, absorption by ozone, and scattering and absorption by aerosols. Absorption of radiation by mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean SO2 shape factors simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated with coincident airborne in situ measurements (INTEX-A, INTEX-B, and a campaign over east China). The annual mean AMF errors are estimated to be 35-70% in polluted regions (e.g., East Asia and the eastern United States) and less than 10% over clear ocean regions. The overall SO2 error assessment is 45-80% for yearly averages over polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the United States (r = 0.85 for SCIAMACHY and 0.82 for OMI). A sensitivity study confirms the sensitivity of SCIAMACHY and OMI to anthropogenic SO2 emissions.

  3. sup 222 Rn, sup 222 Rn progeny and sup 220 Rn progeny as atmospheric tracers of air masses at the Mauno Loa Observatory

    SciTech Connect

    Hutter, A.R.; George, A.C.; Maiello, M.L.; Fisenne, I.M.; Larsen, R.J.; Beck, H.L.; Wilson, F.C.

    1990-03-01

    {sup 222}Rn, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations in air were measured at the Mauna Loa Observatory (MLO) in Hawaii during March 1989 in order to investigate the feasibility of using them as atmospheric tracers to help determine local air mass flow patterns. Charcoal traps, cooled to dry ice temperatures, were used to collect {sup 222}Rn, which was subsequently measured in pulse ionization chambers at the Environmental Measurements Laboratory (EML). {sup 222}Rn progeny and {sup 220}Rn progeny for 37 samples were measured at the Observatory by sampling high volumes of air through filters, which were counted for up to 11 h in alpha scintillation counters. Individual progeny concentrations were calculated using both least squares and maximum likelihood techniques. In general, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations were low when free tropospheric air was present (downslope and tradewind conditions), and consistently higher when surface air from the island broke through the trade wind inversion layer (upslope conditions). The data suggest that {sup 222}Rn, {sup 222}Rn progeny, or {sup 220}Rn progeny monitoring may provide new and useful information to help indicate the different air flow patterns present at MLO. 17 refs., 5 figs., 2 tabs.

  4. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  5. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  6. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  7. Stagnating crop yields: An overlooked risk for the carbon balance of agricultural soils?

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Kögel-Knabner, Ingrid

    2015-12-01

    The carbon (C) balance of agricultural soils may be largely affected by climate change. Increasing temperatures are discussed to cause a loss of soil organic carbon (SOC) due to enhanced decomposition of soil organic matter, which has a high intrinsic temperature sensitivity. On the other hand, several modeling studies assumed that potential SOC losses would be compensated or even outperformed by an increased C input by crop residues into agricultural soils. This assumption was based on a predicted general increase of net primary productivity (NPP) as a result of the CO2 fertilization effect and prolonged growing seasons. However, it is questionable if the crop C input into agricultural soils can be derived from NPP predictions of vegetation models. The C input in European croplands is largely controlled by the agricultural management and was strongly related to the development of crop yields in the last decades. Thus, a glance at past yield development will probably be more instructive for future estimations of the C input than previous modeling approaches based on NPP predictions. An analysis of European yield statistics indicated that yields of wheat, barley and maize are stagnating in Central and Northern Europe since the 1990s. The stagnation of crop yields can probably be related to a fundamental change of the agricultural management and to climate change effects. It is assumed that the soil C input is concurrently stagnating which would necessarily lead to a decrease of agricultural SOC stocks in the long-term given a constant temperature increase. Remarkably, for almost all European countries that are faced with yield stagnation indications for agricultural SOC decreases were already found. Potentially adverse effects of yield stagnation on the C balance of croplands call for an interdisciplinary investigation of its causes and a comprehensive monitoring of SOC stocks in agricultural soils of Europe.

  8. Characterizing the chemical evolution of air masses via multi-platform measurements of volatile organic compounds (VOCs) during CalNEX: Composition, OH reactivity, and potential SOA formation

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Kuster, W. C.; Bon, D.; Warneke, C.; Lerner, B. M.; Williams, E. J.; Holloway, J. S.; Pollack, I. B.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Herndon, S. C.; Zahniser, M. S.; Vlasenko, A. L.; Li, S.; Alvarez, S. L.; Rappenglueck, B.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; De Gouw, J. A.

    2011-12-01

    Volatile organic compounds (VOCs) are critical components in the photochemical production of ozone (O3) and secondary organic aerosol (SOA). During the CalNex 2010 field campaign, an extensive set of VOCs were measured at the Pasadena ground site, and aboard the NOAA WP-3D aircraft and the WHOI Research Vessel Atlantis. The measurements from each platform provide a unique perspective into the emissions, transport, and atmospheric processing of VOCs within the South Coast Air Basin (SoCAB). The observed enhancement ratios of the hydrocarbons measured on all three platforms are in good agreement and are generally well correlated with carbon monoxide (CO), indicating the prevalence of on-road VOC emission sources throughout the SoCAB. Offshore measurements aboard the ship and aircraft are used to characterize the air mass composition as a function of the land/sea-breeze effect. VOC ratios and other trace gases are used to identify air masses containing relatively fresh emissions that were often associated with offshore flow and re-circulated continental air associated with onshore flow conditions. With the prevailing southwesterly airflow pattern in the LAB throughout the daytime, the Pasadena ground site effectively functions as a receptor site and is used to characterize primary VOC emissions from downtown Los Angeles and to identify the corresponding secondary oxidation products. The chemical evolution of air masses as a function of the time of day is investigated in order to determine the relative impacts of primary emissions vs. secondary VOC products on OH reactivity and potential SOA formation. The reactivity of VOCs with the hydroxyl radical (OH) at the Pasadena site was dominated by the light hydrocarbons, isoprene, and oxygenated VOCs including aldehydes (secondary products) and alcohols (primary anthropogenic emissions). Toluene and benzaldehyde, both of which are associated with primary anthropogenic emissions, are the predominant VOC precursors to the

  9. Nonequilibrium Stagnation-Line Radiative Heating for Fire II

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    This paper presents a detailed analysis of the shock-layer radiative heating to the Fire II vehicle using a new air radiation model and a viscous shock-layer flowfield model. This new air radiation model contains the most up-to-date properties for modeling the atomic-line, atomic photoionization, molecular band, and non-Boltzmann processes. The applied viscous shock-layer flowfield analysis contains the same thermophysical properties and nonequilibrium models as the LAURA Navier-Stokes code. Radiation-flowfield coupling, or radiation cooling, is accounted for in detail in this study. It is shown to reduce the radiative heating by about 30% for the peak radiative heating points, while reducing the convective heating only slightly. A detailed review of past Fire II radiative heating studies is presented. It is observed that the scatter in the radiation predicted by these past studies is mostly a result of the different flowfield chemistry models and the treatment of the electronic state populations. The present predictions provide, on average throughout the trajectory, a better comparison with Fire II flight data than any previous study. The magnitude of the vacuum ultraviolet (VUV) contribution to the radiative flux is estimated from the calorimeter measurements. This is achieved using the radiometer measurements and the predicted convective heating. The VUV radiation predicted by the present model agrees well with the VUV contribution inferred from the Fire II calorimeter measurement, although only when radiation-flowfield coupling is accounted for. This agreement provides evidence that the present model accurately models the VUV radiation, which is shown to contribute significantly to the Fire II radiative heating.

  10. Unsteady three-dimensional stagnation-point flow and heat transfer of a nanofluid with thermophoresis and Brownian motion effects

    NASA Astrophysics Data System (ADS)

    Dinarvand, S.; Hosseini, R.; Tamim, H.; Damangir, E.; Pop, I.

    2015-07-01

    An unsteady three-dimensional stagnation-point flow of a nanofluid past a circular cylinder with sinusoidal radius variation is investigated numerically. By introducing new similarity transformations for the velocity, temperature, and nanoparticle volume fraction, the basic equations governing the flow and heat and mass transfer are reduced to highly nonlinear ordinary differential equations. The resulting nonlinear system is solved numerically by the fourth-order Runge-Kutta method with the shooting technique. The thermophoresis and Brownian motion effects occur in the transport equations. The velocity, temperature, and nanoparticle concentration profiles are analyzed with respect to the involved parameters of interest, namely, unsteadiness parameter, Brownian motion parameter, thermophoresis parameter, Prandtl number, and Lewis number. Numerical values of the friction coefficient, diffusion mass flux, and heat flux are computed. It is found that the friction coefficient and heat transfer rate increase with increasing unsteadiness parameter (the highest heat transfer rate at the surface occurs if the thermophoresis and Brownian motion effects are absent) and decrease with increasing both thermophoresis and Brownian motion parameters. The present results are found to be in good agreement with previously published results.

  11. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  12. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  13. Experimental Studies on Hypersonic Stagnation Point Chemical Environment

    DTIC Science & Technology

    2006-02-01

    emission spectroscopy and atomic absorbtion spectroscopy , Appl. Spectrosc. vol. 31, 1977, pp 237-239 [27] Allemand C. D., Barnes R.M., A study of...ii se ie se e zh h c Le Lelffl h glgf µ (3) Atom mass conservation: 02 1 =⎟ ⎠ ⎞ ⎜ ⎝ ⎛− ′ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ′+′ − is ie cdx duz... spectroscopy , material processing, spray coating, powder synthesis, chemical vapor deposition and in many, generally called Thermal Plasma

  14. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  15. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  16. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  17. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  18. Improved boundary layer heat transfer calculations near a stagnation point

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung Hwan

    1990-01-01

    to heat supply from the air during the shade time, minimum temperature has been increased, while maximum temperature has been reduced due to convection loss to air. Consequently, cyclic temperature fluctuation has been reduced 29% for working gas and 16% for thermal energy storage containment. On the other hand, despite the presence of the natural convection the time-averaged temperatures for receiver components were found to be similar for two cases with/without natural convection (maximum difference was 1.8%).

  19. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.

    PubMed

    Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

    2006-10-21

    For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.

  20. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  1. Retrieval of Vertical Columns of Sulfur Dioxide From SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation

    NASA Astrophysics Data System (ADS)

    Lee, C.; Martin, R. V.; Donkelaar, A. V.; O'Byrne, G.; Krotkov, N.; Richter, A.; Huey, G.; Holloway, J. S.

    2009-05-01

    Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Outstanding questions exist about SO2 emissions and its atmospheric chemistry. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of its atmospheric chemistry. Here, we present an improved retrieval of sulfur dioxide (SO2) vertical columns from satellite instruments (SCIAMACHY and OMI) that measure solar backscattered UV radiance. Particular attention is devoted to development of a local air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each SCIAMACHY and OMI observation, we calculate an AMF from the relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem), weighted by altitude-dependent scattering weights computed with a radiative transfer model (LIDORT). Seasonal mean instrument sensitivity to SO2 (AMF) is generally twice as high over ocean than land. Mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean relative vertical profiles of SO2 simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated (r = 0.9) with coincident airborne in-situ measurements (INTEX-A, INTEX-B, and a campaign over East China). A global uniform AMF would reduce the correlation with aircraft measurements by 0.1 - 0.2. The overall error assessment leads to 45 - 80% errors for yearly averages over the polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the

  2. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  3. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  4. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. A numerical study of hypersonic stagnation heat transfer predictions at a coordinate singularity

    NASA Technical Reports Server (NTRS)

    Grasso, Francesco; Gnoffo, Peter A.

    1990-01-01

    The problem of grid induced errors associated with a coordinate singularity on heating predictions in the stagnation region of a three-dimensional body in hypersonic flow is examined. The test problem is for Mach 10 flow over an Aeroassist Flight Experiment configuration. This configuration is composed of an elliptic nose, a raked elliptic cone, and a circular shoulder. Irregularities in the heating predictions in the vicinity of the coordinate singularity, located at the axis of the elliptic nose near the stagnation point, are examined with respect to grid refinement and grid restructuring. The algorithm is derived using a finite-volume formulation. An upwind-biased total-variation diminishing scheme is employed for the inviscid flux contribution, and central differences are used for the viscous terms.

  6. Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited

    NASA Astrophysics Data System (ADS)

    Pop, Ioan; Ishak, Anuar; Aman, Fazlina

    2011-10-01

    This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.

  7. The slow recirculating flow near the rear stagnation point of a wake

    NASA Technical Reports Server (NTRS)

    Abarbanel, S.

    1975-01-01

    A model is suggested in which some of the important features of the circulating flow inside the two-dimensional near wake are derived by assuming a slow viscous flow. The theory considers the flow away from the body base. It is found that there is a region of constant speed merging, as we go downstream, into a region of stagnation-apex flow. The velocity returning from the rear stagnation point along the center streamline is shown to be a slowly varying function of the 'wedge-angle,' of the wake and to be roughly one half the velocity at the edge of the shear layers driving the wake-cavity flow. These results seem to be in agreement with experimental data.

  8. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid

    PubMed Central

    2011-01-01

    An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The similarity equations are solved numerically for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid with Prandtl number Pr = 6.2. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique. PMID:22151965

  9. The effect of a turbulent wake on the stagnation point. I - Skin friction results

    NASA Technical Reports Server (NTRS)

    Wilson, Dennis E.; Hanford, Anthony J.

    1990-01-01

    The response of a boundary layer in the stagnation region of a two-dimensional body to fluctuations in the freestream is examined. The analysis is restricted to laminar incompressible flow. The assumed form of the velocity distribution at the edge of the boundary layer represents both a pulsation of the incoming flow, and an oscillation of the stagnation point streamline. Both features are essential in accurately representing the effect which freestream spatial and temporal nonuniformities have upon the unsteady boundary layer. Finally, a simple model is proposed which relates the characteristic parameters in a turbulent wake to the unsteady boundary-layer edge velocity. Numerical results are presented for both an arbitrary two-dimensional geometry and a circular cylinder.

  10. Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Nazar, R.; Pop, I.

    2007-03-01

    The analysis of steady two-dimensional stagnation point flow of an incompressible micropolar and electrically conducting fluid subject to a transverse uniform magnetic field towards a stretching vertical sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. The governing system of partial differential equations is transformed to ordinary differential equations, which then are solved numerically using a finite difference scheme known as the Keller-box method. The velocity, microrotation and temperature distributions as well as the skin friction coefficient and the local Nusselt number are obtained for various parameters. Both the assisting and the opposing buoyant flows are considered. It is found that dual solutions exist for the opposing flow, for some regions of the buoyancy parameter, while for the assisting flow the solution is unique. Tables 3, Figs 14, Refs 26.

  11. A visual investigation of turbulence in stagnation flow about a circular cylinder

    NASA Technical Reports Server (NTRS)

    Sadeh, W. Z.; Brauer, H. J.

    1978-01-01

    A visual investigation of turbulence in stagnation flow around a circular cylinder was carried out in order to gain a physical insight into the model advocated by the corticity-amplification theory. Motion pictures were taken from three different viewpoints, and a frame by frame examination of selected movie strips was conducted. Qualitative and quantitative analyses of the flow events focused on tracing the temporal and spatial evolution of a cross-vortex tube outlined by the entrained smoke filaments. The visualization supplied evidence verifying: (1) the selective stretching of cross-vortex tubes which is responsible for the amplification of cross vorticity and, hence, of streamwise turbulence; (2) the streamwise tilting of stretched cross-vortex tubes; (3) the existence of a coherent array of vortices near the stagnation zone; (4) the interaction of the amplified vorticity with the body laminar boundary layer; and, (5) the growth of a turbulent boundary layer.

  12. Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Chen, Zongzheng; Xiang, Cheng; Liu, Bo; Xie, Handi; Qin, Kairong

    2016-06-01

    Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

  13. Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.

    2017-02-01

    This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.

  14. Stagnation-point flow over a stretching/shrinking sheet in a nanofluid.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2011-12-08

    An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The similarity equations are solved numerically for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid with Prandtl number Pr = 6.2. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.

  15. Unsteady heat transfer in non-axisymmetric Homann stagnation-point flows

    NASA Astrophysics Data System (ADS)

    Mahapatra, T. R.; Sidui, S.

    2017-04-01

    An analysis is carried out to study the unsteady non-axisymmetric Homann's stagnation-point flow and heat transfer of an incompressible viscous fluid over a rigid plate in the presence of time-dependent free stream. The temperature of the plate is assumed to be higher than the ambient fluid temperature. Using similarity variables, the governing partial differential equations are transformed into nonlinear ordinary differential equations. These equations are then solved numerically using fourth-order Runge-Kutta method with shooting technique. The effects of the shear-to-strain rate ratio parameter γ (γ =b/a where a and b are the strain rate and shear rate of the stagnation-point flow, respectively) and the unsteadiness parameter λ on wall shear stress parameters, dimensionless velocities, rate of heat transfer at the wall and dimensionless temperature are analysed. It is found that the large-γ asymptotes do not depend on the parameter λ.

  16. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  17. Alteration of mean wall shear stress near an oscillating stagnation point.

    PubMed

    Hazel, A L; Pedley, T J

    1998-04-01

    The site opposite an end-to-side anastomosis, resulting from femoral bypass surgery, and the carotid sinus are two regions well known to be prone to fibrous intimal hyperplasia or atherogenesis, respectively. The blood flow at these two sites features a stagnation point, which oscillates in strength and position. Mathematical models are used to determine some of the features of such a flow; in particular, the mean wall shear stress is calculated. The positional oscillations cause a significant change in the distribution and magnitude of the mean wall shear stress from that of the well-studied case of a stagnation point that oscillates only in strength. It is therefore proposed that the recorded effect of time dependence in the flow upon atherogenesis could still be a result of the distribution of the mean and not the time-varying components of the wall shear stress.

  18. Extinction Limits of Nonadiabatic, Catalyst-Assisted Flames in Stagnation-Point Flow

    SciTech Connect

    Stephen B. Margolis; Timothy J. Gardner

    2001-02-01

    An idealized geometry corresponding to a premixed flame in stagnation-point flow is used to investigate the effects of catalysis on extending the extinction limits of on adiabatic stretched flames. Specifically, a surface catalytic reaction is assumed to occur on the stagnation plane, thereby augmenting combustion in the bulk gas with a exothermic surface reaction characterized by a reduced activation energy. Assuming the activation energies remain large, an asymptotic analysis of the resulting flame structure yields a formula for the extinction limit as a function of various parameters. In particular, it is demonstrated that the presence of a surface catalyst can extend the burning regime, thus counterbalancing the effects of heat loss and flame stretch that tend to shrink it. The analysis is relevant to small-volume combustors, where the increased surface-to-volume ratio can lead to extinction of the nonadiabatic flame in the absence of a catalyst.

  19. A comparative analysis on different nanofluid models for the oscillatory stagnation point flow

    NASA Astrophysics Data System (ADS)

    Nadeem, S.; Khan, A. U.; Saleem, S.

    2016-08-01

    In this study we have presented the comparative analysis of the oscillatory stagnation point flow of nanofluids. Both the phase flow model and Buongiorno model are discussed for oscillatory stagnation point flows and a comparison between experimental model and theoretical model is presented. The resulting partial differential equations for oscillatory two-dimensional flows are simplified in a fixed frame and a moving frame of reference subject to the assumed form of solutions. The homotopy analysis method is used to solve the reduced system of coupled nonlinear ordinary differential equations. The consequences are examined through graphs and tables. It is also found that comparatively both the Boungiorno nanofluid model and phase flow model are of compatible order for a special set of parameters but generally such results do not hold.

  20. A note on the location of the stagnation point in the magnetosheath flow

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Zhuang, H.-C.; Walker, R. J.

    1981-01-01

    While observational and theoretical investigations have clearly indicated that the shape of the magnetosphere is very nearly symmetric about the plane determined by the aberrated solar wind flow direction and the earth's magnetic dipole, many processes such as magnetic pulsations and geomagnetic activity which should be shape dependent do not exhibit symmetry about this plane. The present paper proposes a solution to this apparent paradox in terms of the shifting of the stagnation point in the magnetosheath flow. It is shown that the interplanetary magnetic field can act to shift the stagnation point on the order of 15 deg from the nose towards dawn during periods of low Alfven Mach number without an appreciable aberration of the magnetopause, accounting for the observations of pulsation demarcation and magnetic reconnection.

  1. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  2. Unsteady separated stagnation-point flow with suction towards a stretching sheet

    NASA Astrophysics Data System (ADS)

    Yian, Lok Yian; Ahmad, Syakila; Pop, Ioan

    2014-06-01

    The problem of unsteady boundary layer separated stagnation-point flow towards a porous stretching sheet is considered. By using a similarity transformation, the governing equations are reduced to a system of ordinary differential equations which are then solved numerically. The effects of suction and stretching parameters on the flow characteristics are studied. It is observed that the solutions admit two types of solutions, one is the attached flow solution and the other is reverse flow solution.

  3. Sealable stagnation flow geometries for the uniform deposition of materials and heat

    DOEpatents

    McCarty, Kevin F.; Kee, Robert J.; Lutz, Andrew E.; Meeks, Ellen

    2001-01-01

    The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.

  4. Dynamics of an unsteady stagnation vortical flow via dynamic mode decomposition analysis

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Jianjie; Wang, Jinjun; Sun, Mao

    2017-03-01

    The dynamics of a large-scale stagnation vortex pair in an axisymmetric stagnation flow subject to a laminar wake disturbance is measured by time-resolved two-dimensional particle image velocimetry, and then quantitatively characterized by both the Eulerian velocity/vorticity fields and the Lagrangian finite-time Lyapunov exponents fields. This vortex pair is found to be the result of the forced response of the stagnation flow to the upstream shearing disturbances, and presents a dynamical evolution of quasi-periodic shedding due to short-wave elliptical instability. Dynamic mode decomposition analysis of both the Eulerian measure and the Lagrangian measure is taken for a quantitative description of this process. The sparsity-promoting scheme (Jovanović et al. Phys Fluids 26(2):024,103, 2014), which integrates the mode identification and truncation as a whole, is used to distinguish those modes with dynamical significance from irrelevant ones with transient behavior. The superiority of this scheme is evidenced by the facts that it avoids the eigenvalue contamination problem, and credits higher priority to the sub-dominant modes directly associated with the system dynamics. It is found that the energetic mode with a frequency of 0.177 Hz, or about 10% of the maximum shear rate of the upstream wake, determines the quasi-periodical vortex formation process. Its half-order harmonic represents the vortex shedding event along one fixed direction. High-order even-quarter harmonics jointly contribute to the circular pattern of the vortex tube. In addition, a set of low-frequency odd-quarter harmonics are highlighted as the elliptical instability and the following vortex deformation process. Based on this finding, a reduce-order representation with 8 Eulerian modes or 56 Lagrangian modes is proposed to characterize the dominant dynamics of this unsteady vortical stagnation flow. In addition, the Eulerian measure seems to be more efficient than the Lagrangian measure in

  5. Deposit formation characteristics of gasoline spray in a stagnation-point flame

    SciTech Connect

    Hsieh, Wei-Dong; Lu, Jian-Han; Lin, Ta-Hui; Chen, Rong-Horng

    2009-10-15

    Combustion chamber deposit has adverse effects on the performance and operation of various combustion devices, such as boilers, furnaces and engines. To study deposits by actually running combustion device for a long time to gather the deposit is very time and money consuming. In this investigation, we developed a deposit-forming technique by using a spray burner with water-cooled stagnation plate. The deposit could form on the stagnation plate readily and thus enabled us to investigate the formation of deposit under different operating conditions. We focused on the effect of the cooling water temperature and F/A ratio on the formation of deposit. In this paper, the temperature profile of the stagnation flow was measured for different F/A ratios to provide basic understanding of the thermal characteristics of two-phase flow burners. Then, the weight, formation area and H/C ratio of deposits were analyzed. It was found that the growth of deposit was faster for a lower cooling water temperature, i.e. lower surface temperature. The weight of deposit basically increased with time. H/C ratio showed a tendency to decline with the increase of F/A ratio. We also performed deposit formation tests on a CFR engine with 4 different fuel compositions. There was a qualitative correlation on weight of deposit between stagnation plate and CFR engine test. This study presents a simple experimental modeling on deposit formation. However, there are still some parameters relative to real engine conditions, such as pressure, turbulence to be considered in near future. (author)

  6. Stability analysis of stagnation-point flow over a stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Awaludin, I. S.; Weidman, P. D.; Ishak, Anuar

    2016-04-01

    The stagnation point flow over a linearly stretching or shrinking sheet is considered in the present study. The transformed ordinary differential equations are solved numerically. Dual solutions are possible for the shrinking case, while the solution is unique for the stretching case. For the shrinking case, a linear temporal stability analysis is performed to determine which one of the solution is stable and thus physically reliable.

  7. Seasonal origins of air masses transported to Mount Wrangell, Alaska, and comparison with the past atmospheric dust and tritium variations in its ice core

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2006-12-01

    The North Pacific region is subject to various climatic phenomena such as the Pacific Decadal Oscillation (PDO), the El Niño-Southern Oscillation (ENSO), and the Arctic Oscillation (AO), significantly affecting the ocean and the atmosphere. Additionally, material circulation is also very active in this region such as spring dust storms in the desert and arid regions of East Asia and forest fires in Siberia and Alaska. Understanding the complex connections among the climatic phenomena and the material circulation would help in attempts to predict future climate changes. For this subject, we drilled a 50-m ice core at the summit of Mount Wrangell, which is located near the coast of Alaska (62°162'170"162°171'N, 144°162'170"162;°171'W, and 4100-m). We analyzed dust particle number density, tritium concentration, and 171 171 171 171 170 162 171 D in the core. The ice core spanned the years from 1992 to 2002 and we finally divided the years into five parts (early-spring; late-spring; summer; fall; winter). Dust and tritium amounts varied annually and intra-annually. For further understanding of the factors on those variations, we should know the origins of the seasonal dust and tritium. Hence, we examined their origins by the calculation of everyday 10-days backward trajectory analysis from January 1992 to August 2002 with 3-D wind data of the European Center for Medium-Range Weather Forecast (ECMWF). In early spring, the air mass from East Asia increased and it also explained dust increases in springtime, although the air contribution in winter increased too. In late spring, the air mass from the stratosphere increased, and it also corresponded to the stratospheric tritium increase in the ice core. The air masses from Siberia and the North Pacific in the mid-latitude always significantly contributed to Mount Wrangell, although those maximum contributions were fall and summer, respectively. The air mass originating in the interior of Alaska and North America did

  8. Observation of the transport of polluted air masses from the northeastern United States to Cape Sable Island, Nova Scotia, Canada, during the 1993 NARE summer intensive

    NASA Astrophysics Data System (ADS)

    Knapp, K. G.; Balsley, B. B.; Jensen, M. L.; Hanson, H. P.; Birks, J. W.

    1998-06-01

    Vertical profiles of ozone, temperature, pressure, and water vapor mass mixing ratio obtained using a parafoil kite platform during the North Atlantic Regional Experiment (NARE) 1993 summer intensive at Cape Sable Island, Nova Scotia, Canada, demonstrate the of use of kite platforms for the collection of vertically and temporally resolved data over a fixed location. During the period August 8-28, 1993, 39 profiles of the lower atmosphere were collected. Data collected as part of this field campaign illustrate the complex vertical stratification and temporal variability of pollutants transported into the Maritime Provinces of Canada. Transport phenomena resulted in pollution events in which ozone at the ground level remained in the 20-40 parts per billion by volume (ppbv) range, while mixing ratios of 90-130 ppbv were observed above ˜300 m. Back trajectories indicate that these highly elevated levels of ozone are attributable to source regions in the heavily industrialized northeastern United States. Vertical stratification of the lower atmosphere was also present during transport of Canadian air to the sampling site, with layers of both elevated and diminished ozone observed, while marine air did not exhibit layering characteristic of air masses originating from continental source regions.

  9. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    PubMed

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities.

  10. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  11. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  12. Effect of nose shape on three-dimensional stagnation region streamlines and heating rates

    NASA Technical Reports Server (NTRS)

    Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.

    1991-01-01

    A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.

  13. Experimental Characterization of the Stagnation Layer between Two Obliquely Merging Supersonic Plasma Jets

    NASA Astrophysics Data System (ADS)

    Merritt, Elizabeth C.

    2013-10-01

    Experiments on the oblique merging of two supersonic argon plasma jets have been conducted at LANL in order to assess the use of such jets to form imploding spherical plasma liners for high energy density physics applications. The plasma jets are formed and launched by pulsed-power-driven railguns and have initial jet parameters of n ~ 2 ×1016 cm-3, Te ~ 1 . 4 eV, ionization fraction ~ 0 . 96 , velocity ~ 30 km/s, diameter = 5 cm, and length ~ 20 cm. We have experimentally identified density increases that are consistent with shock formation, and a few-cm thick stagnation layer structure observed both in CCD camera images and interferometer density profiles. Although the jets are each individually collisional, the mean free path between counter-streaming ions is on the same order as the stagnation layer thickness, placing the jet merging in a semi-collisional regime. It was not known a priori whether the observations corresponded to hydrodynamic oblique shocks and whether two-fluid or kinetic effects played a role. Through careful analysis of the stagnation layer density and emission profiles, and comparisons between the data and both analytic hydrodynamic shock theory and multi-fluid plasma simulations, we demonstrate that our observations are consistent with collisional shocks. Work performed in collaboration with colleagues from LANL, Univ. of New Mexico, HyperV Technologies, Univ. of Alabama in Huntsville, Voss Scientific, Prism Computational Sciences, and Tech-X; supported by DOE-OFES.

  14. Adhesion of leukocytes under oscillating stagnation point conditions: a numerical study.

    PubMed

    Walker, P G; Alshorman, A A; Westwood, S; David, T

    2002-01-01

    Leukocyte recruitment from blood to the endothelium plays an important role in atherosclerotic plaque formation. Cells show a primary and secondary adhesive process with primary bonds responsible for capture and rolling and secondary bonds for arrest. Our objective was to investigate the role played by this process on the adhesion of leukocytes in complex flow. Cells were modelled as rigid spheres with spring like adhesion molecules which formed bonds with endothelial receptors. Models of bond kinetics and Newton's laws of motion were solved numerically to determine cell motion. Fluid force was obtained from the local shear rate obtained from a CFD simulation of the flow over a backward facing step.In stagnation point flow the shear rate near the stagnation point has a large gradient such that adherent cells in this region roll to a high shear region preventing permanent adhesion. This is enhanced if a small time dependent perturbation is imposed upon the stagnation point. For lower shear rates the cell rolling velocity may be such that secondary bonds have time to form. These bonds resist the lower fluid forces and consequently there is a relatively large permanent adhesion region.

  15. Effects of Surface Roughness on Stagnation Heat Transfer of Impinging Liquid Jet on Metal Surface

    NASA Astrophysics Data System (ADS)

    Lee, Jungho

    The liquid jet impingement with phase change heat transfer has long been an attractive method of cooling especially in steelmaking process and heat treatment in metals. The current study focuses on making detailed measurements of the stagnation-point heat transfer as a jet impinges on the rough metal surfaces at high temperature nominally up to 900°C. The local heat flux measurements are introduced by a novel experimental technique in which test block assemblies with cartridge heaters and thermocouples are used to measure the heat flux distribution on the surface of hot steel plate as a function of heat flux gauge. The effects of surface roughness on the stagnation-point heat transfer were investigated for well-characterized four rough surfaces with root-mean-square average roughness heights ranging from 40 to 80 µm. The results show that surface protrusions on rough surface can penetrate the thermal sublayer in the stagnation point and thus increase the heat transfer. The heat transfer enhancement mechanism on roughened surface can be investigated by the different boiling regimes.

  16. Design, fabrication and analysis of stagnation flow microreactors used to study hypergolic reactions.

    PubMed

    Saksena, Pulkit; Tadigadapa, Srinivas; Yetter, Richard A

    2015-05-21

    A novel method to study the condensed phase reactions that occur during the ignition of hypergolic propellants (very fast liquid reactions) using microreactors is presented. Planar counterflow microreactors are used to isolate liquid-phase reactions and diffusion from secondary gas-phase chemical and transport processes that often occur concurrently during the overall ignition process. The counterflow microreactor has made it possible to achieve valuable insight into the preignition mechanisms of hypergolic propellants hitherto not possible using conventional drop or impinging jet tests. In the present paper, the microreactor fabrication, flow field characterization, and reactivity of 2-dimethylaminoethylazide and nitric acid as hypergols are presented. Particle image velocimetry and numerical simulations were conducted to characterize the laminar velocity flow-field from which stagnation point strain rates and contact residence times along the centerline of the microreactor were evaluated. Temperature measurements at the exit of the reactor (as well as at the stagnation point) were used as a measure for the extent of the reaction or the heat released from the reaction. For the hypergols, an increase in reactant flow (or equivalently strain rate at the stagnation point) was found to initially increase reactivity, but eventually resulted in a decrease in temperature, revealing a maxima in temperature and reactivity. The trends indicated a reaction that was initially diffusion or heat loss controlled, which transitioned towards kinetic control at higher strain (flow) rates. This paper details the first comprehensive measurements and analysis of the effects of diffusion based mixing on the interfacial reactions occurring between hypergols.

  17. Modification of stagnation conditions in Magnetized Liner Inertial Fusion via thick dielectric coating

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Harding, E. C.; Peterson, K. J.; Awe, T. J.; Ampleford, D. J.; Hansen, S. B.; Jennings, C. A.; Weis, M. R.; Chandler, G. A.; Hahn, K. D.; Knapp, P. F.; Martin, M. R.; McBride, R. D.; Rochau, G. A.; Sefkow, A. B.; Sinars, D. B.; Yu, E. P.

    2016-10-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z facility at Sandia National Laboratories use approximately 20 MA of current to implode a metal cylinder, which contains axially-magnetized, laser-heated deuterium fuel. MagLIF experiments have demonstrated primary DD neutron yields up to 3e12 with burn averaged ion temperatures of 2.5 keV. X-ray emission at stagnation, recorded with a spherically-bent crystal imager, shows a weakly-helical structure with axial variations in intensity. Previously, the application of a thick dielectric coating to the exterior of an imploding cylinder has shown improved stability of the cylinder throughout the implosion. We recently demonstrated that adding a dielectric coating to a MagLIF target produces a cylindrical, rather than helical, stagnation column with reduced axial variations in intensity. There are also indications of decreased late-time mix in the x-ray spectra. This is consistent with a more uniform, stable stagnation column. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  18. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  19. One- and two-dimensional density and temperature measurements of an argon-neon Z-pinch plasma at stagnation

    SciTech Connect

    Wong, K.L.; Springer, P.T.; Hammer, J.H.; Iglesias, C.A.; Osterheld, A.L.; Foord, M.E.; Bruns, H.C.; Emig, J.A.; Deeney, C.

    1996-10-01

    In order to benchmark and improve current 2D radiation magnetohydrodynamic (MHD) models of Z-pinch plasmas, we have performed experiments which characterize the plasma -conditions at stagnation. In the experiments the SATURN pulsed power facility at Sandia National Laboratory was used to create an imploding -Ar-Ne plasma. An absolutely calibrated, high resolution space- and time- resolving Johann crystal spectrometer was used to infer the electron temperature Te from the slope of the hydrogenlike Ne free-bound continuum, and the ion density ni from the Stark broadening of the Ar heliunlike Rydberg series. 2D electron temperature profiles of the plasma are obtained from a set of imaging crystals also focused on the Ne free-bound continuum. We shot two types of gas nozzles in the experiment, annular and uniform fill which varies the amount of mass in the plasma. 2D local thermodynamic equilibrium (LTE) and non-LTE MM models predict a radiating region denser and cooler than measured.

  20. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  1. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS).

    PubMed

    Cotte-Rodríguez, Ismael; Handberg, Eric; Noll, Robert J; Kilgour, David P A; Cooks, R Graham

    2005-05-01

    The use of two methods in tandem, single-sided membrane introduction mass spectrometry (SS-MIMS) and fiber introduction mass spectrometry (FIMS), is presented as a technique for field analysis. The combined SS-MIMS-FIMS technique was employed in both a modified commercial mass spectrometer and a miniature mass spectrometer for the selective preconcentration of the explosive simulant o-nitrotoluene (ONT) and the chemical warfare agent simulant, methyl salicylate (MeS), in air. A home-built FIMS inlet was fabricated to allow introduction of the solid-phase microextraction (SPME) fiber into the mass spectrometer chamber and subsequent desorption of the trapped compounds using resistive heating. The SS-MIMS preconcentration system was also home-built from commercial vacuum parts. Optimization experiments were done separately for each preconcentration system to achieve the best extraction conditions prior to use of the two techniques in combination. Improved limits of detection, in the low ppb range, were observed for the combination compared to FIMS alone, using several SS-MIMS preconcentration cycles. The SS-MIMS-FIMS response for both instruments was found to be linear over the range 50 to 800 ppb. Other parameters studied were absorption time profiles, effects of sample flow rate, desorption temperature, fiber background, memory effects, and membrane fatigue. This simple, sensitive, accurate, robust, selective, and rapid sample preconcentration and introduction technique shows promise for field analysis of low vapor pressure compounds, where analyte concentrations will be extremely low and the compounds are difficult to extract from a matrix like air.

  2. Influence of climate change on the frequency of daytime temperature inversions and stagnation events in the Po Valley: historical trend and future projections

    NASA Astrophysics Data System (ADS)

    Caserini, Stefano; Giani, Paolo; Cacciamani, Carlo; Ozgen, Senem; Lonati, Giovanni

    2017-02-01

    This work analyzes the frequency of days characterized by daytime temperature inversion and air stagnation events in the Po valley area. The analysis is focused on both historical series and future projections under climate change. Historical sounding data from two different Italian stations are used as well as future projections data, provided by CMCC-CCLM 4-8-19 regional climate model (MED-CORDEX initiative). A new method to detect layers of temperature inversion is also presented. The developed method computes the occurrence of a temperature inversion layer for a given day at 12 UTC without a detailed knowledge of temperature vertical profile. This method was validated using sounding data and applied to the model projections, under two different emissions scenarios (RCP4.5 and RCP8.5). Under RCP4.5 intermediate emissions scenario, the occurrence of temperature inversions is projected to increase by 12 days/year (around + 10%) in the last decade of 21st century compared to 1986-2005 average. However, the increase in temperature inversions seems to be especially concentrated in the warm period. Under RCP8.5 extreme scenario, temperature inversions are still projected to increase, though to a lesser extent compared to RCP4.5 scenario (+ 6 days/year in the last decade of 21st century). A similar trend was found also for air stagnation events, which take into account the variation of precipitation pattern and wind strength. The expected increases are equal to + 13 days/year and + 11 days/year in the last decade of 21st century compared to 1986-2005 average, under RCP4.5 and RCP8.5 scenarios respectively.

  3. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  4. Changes of the corrosion potential of iron in stagnation and flow conditions and their relationship with metal release.

    PubMed

    Fabbricino, Massimiliano; Korshin, Gregory V

    2014-10-01

    This study examined the behavior of corrosion potential (Ecorr) of iron exposed to drinking water during episodes of stagnation and flow. These measurements showed that during stagnation episodes, Ecorr values decrease prominently and consistently. This decrease is initially rapid but it becomes slower as the stagnation time increases. During flow episodes, the Ecorr values increase and reach a quasi-steady state. Experiments with varying concentrations of dissolved oxygen showed that the decrease of Ecorr values characteristic for stagnation is likely to be associated with the consumption of dissolved oxygen by the exposed metal. The corrosion potential of iron and its changes during stagnation were sensitive to the concentrations of sulfate and chloride ions. Measurements of iron release showed that both the absolute values of Ecorr measured prior to or after stagnation episodes were well correlated with the logarithms of concentrations of total iron. The slope of this dependence showed that the observed correlations between Ecorr values and Fe concentrations corresponded to the coupling between the oxidant consumption and changes of Fe redox status. These results demonstrate that in situ Ecorr measurements can be a sensitive method with which to ascertain effects of hydrodynamic conditions and short-term variations of water chemistry on metal release and corrosion in drinking water. This approach is valuable practically because Ecorr measurements are precise, can be carried out in situ with any desired time resolution, do not affect the state of exposed surface in any extent and can be carried out with readily available equipment.

  5. Thermal performance of a hot-air solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Report contains procedures and results of thermal-performance tests on double-glazed air solar collector. Four types of tests were carried out including thermal-efficiency and stagnation tests, collector time-constant tests to assess effects of transients, and incident-angle modifier tests. Data are presented in tables and as graphs and are discussed and analyzed.

  6. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  7. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  8. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air.

  9. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  10. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  11. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  12. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  13. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  14. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  15. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California

    NASA Technical Reports Server (NTRS)

    Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A.

    1992-01-01

    Measurements were made of a suite of photochemically active trace species (including light hydrocarbons, ozone, peroxyacetyl nitrate, HNO3, NO3(-), NO(x), and NO(y)) in marine air collected during a 10-day period in April and May 1985 at Point Arena (California), a coastal inflow site. It was found that the mixing ratios of the alkanes, ozone, peroxyacetyl nitrate, and HNO3 correlated with variations in the origins of calculated air parcel trajectories and with variations in the ratios of the light alkanes. The highest levels of alkanes and the photochemical products were found in parcels that had been rapidly transported across the North Pacific Ocean from near the 600-mbar level above the east Asian coast. It is suggested that production over the continents, transport to the marine areas, and parallel removal processes account for much of the observed correlation.

  16. Slip Effect on an Unsteady MHD Stagnation-Point Flow of a Micropolar Fluid towards a Shrinking Sheet with Thermophoresis Effect

    NASA Astrophysics Data System (ADS)

    Zaib, Aurang; Shafie, Sharidan

    2015-09-01

    The effect of slip and thermophoresis on an unsteady magnetohydrodynamic stagnation-point-flow micropolar fluid with heat and mass transfer towards a shrinking sheet has been investigated. The governing equations are reduced to a system of non-dimensional partial differential equations by using similarity transformation, before being solved numerically using the Keller-box method. The effects of various physical parameters on the velocity, microrotation, temperature, and concentration profiles as well as the reduced skin friction, the reduced Nusselt number, and the reduced Sherwood number are analyzed and discussed graphically. It is found that the concentration boundary layer thickness decreases with increasing values of the thermophoresis. Comparison with previously published results under the limiting cases is made and found to be in excellent agreement.

  17. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  18. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area.

    PubMed

    Klasson, Maria; Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-07-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose-response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m(-3), range <0.023-3.0mg m(-3)) and below the present Swedish occupational exposure limit (OEL) of 10mg m(-3) The cobalt levels were low as well (AM 0.0030mg m(-3), range 0.000028-0.056mg m(-3)) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m(-3) For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m(-3) by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm(-3)) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm(2)·cm(-3)) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number

  19. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2009-02-01

    ABSTRACT Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05-0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  20. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  1. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  2. Determination of volatile organic compounds in urban and industrial air from Tarragona by thermal desorption and gas chromatography-mass spectrometry.

    PubMed

    Ras-Mallorquí, Maria Rosa; Marcé-Recasens, Rosa Maria; Borrull-Ballarín, Francesc

    2007-05-15

    This study describes the optimisation of an analytical method to determine 54 volatile organic compounds (VOCs) in air samples by active collection on multisorbent tubes, followed by thermal desorption and gas chromatography-mass spectrometry. Two multisorbent beds, Carbograph 1/Carboxen 1000 and Tenax/Carbograph 1TD, were tested. The latter gave better results, mainly in terms of the peaks that appeared in blank chromatograms. Temperatures, times and flow desorption were optimised. Recoveries were higher than 98.9%, except methylene dichloride, for which the recovery was 74.9%. The method's detection limits were between 0.01 and 1.25mugm(-3) for a volume sample of 1200ml, and the repeatability on analysis of 100ng of VOCs, expressed as relative standard deviation for n=3, was lower than 4% for all compounds. Urban and industrial air samples from the Tarragona region were analysed. Benzene, toluene, ethylbenzene and xylenes (BTEX) were found to be the most abundant VOCs in urban air. Total VOCs in urban samples ranged between 18 and 307mugm(-3). Methylene chloride, 1,4-dichlorobenzene, chloroform and styrene were the most abundant VOCs in industrial samples, and total VOCs ranged between 19 and 85mugm(-3).

  3. Quantification of VX vapor in ambient air by liquid chromatography isotope dilution tandem mass spectrometric analysis of glass bead filled sampling tubes.

    PubMed

    Evans, Ronald A; Smith, Wendy L; Nguyen, Nam-Phuong; Crouse, Kathy L; Crouse, Charles L; Norman, Steven D; Jakubowski, E Michael

    2011-02-15

    An analysis method has been developed for determining low parts-per-quadrillion by volume (ppqv) concentrations of nerve agent VX vapor actively sampled from ambient air. The method utilizes glass bead filled depot area air monitoring system (DAAMS) sampling tubes with isopropyl alcohol extraction and isotope dilution using liquid chromatography coupled with a triple-quadrupole mass spectrometer (LC/MS/MS) with positive ion electrospray ionization for quantitation. The dynamic range was from one-tenth of the worker population limit (WPL) to the short-term exposure limit (STEL) for a 24 L air sample taken over a 1 h period. The precision and accuracy of the method were evaluated using liquid-spiked tubes, and the collection characteristics of the DAAMS tubes were assessed by collecting trace level vapor generated in a 1000 L continuous flow chamber. The method described here has significant improvements over currently employed thermal desorption techniques that utilize a silver fluoride pad during sampling to convert VX to a higher volatility G-analogue for gas chromatographic analysis. The benefits of this method are the ability to directly analyze VX with improved selectivity and sensitivity, the injection of a fraction of the extract, quantitation using an isotopically labeled internal standard, and a short instrument cycle time.

  4. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  5. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  6. Quantification of the sources and composition of particulate matter by field-deployable mass spectrometry: implications for air quality and public health.

    PubMed

    Hayes, Patrick L

    2017-02-27

    Airborne particulate matter less than 2.5 μm in diameter (PM2.5) negatively impacts air quality in cities throughout the world where it has been linked to increased cardiac and respiratory morbidity and mortality. For this reason PM2.5 standards have been established by many countries and the World Health Organization. However, these guidelines are regularly exceeded in North America, Europe and East Asia. While PM2.5 is often reported as a single atmospheric species, it is actually a mixture of organic and inorganic compounds. The organic fraction, termed organic aerosol (OA), contributes approximately 20-70% of the PM2.5 mass globally, and OA itself is a complex mixture of thousands of compounds. Characterizing the chemical properties of OA represents a major analytical challenge that has motivated the development of a range of new instruments. The focus of this perspective is the use of field-deployable mass spectrometers and in particular the Aerodyne Aerosol Mass Spectrometer (AMS) for chemically characterizing submicron particles. Field measurements of the composition of PM2.5 are directly relevant to evaluating its health impact because reductions in life expectancy due to PM2.5 vary according to composition. In addition, AMS measurements are especially useful for characterizing OA. The sources of OA are not well understood as evidenced by the performance of many air quality models, including those run by government agencies, which lack accurate and well constrained parameterizations for simulating secondary OA concentrations in urban regions. Given that OA is an important component of the total PM2.5 mass, this uncertainty makes accurate evaluation of the impact of PM2.5 on public health difficult, especially when evaluating future mitigation strategies. The development of the AMS has been a critical step towards addressing this public health challenge in that it provides quantitative data regarding particulate matter and OA concentration and composition

  7. Compositional mantle layering revealed by slab stagnation at ~1,000 km depth

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Nakagawa, T.; Schmerr, N. C.; Ritsema, J.; Motoki, M.

    2015-12-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation and thermochemical evolution of our planet. Whereas cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, seismic tomography images suggest whole-mantle convection and efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1,000 km depth as the key observation. Whereas slab stagnation at ~660 km depth is well explained by the effects of the spinel-perovskite endothermic phase transition, flattening of slabs in the uppermost lower mantle remains poorly understood. Through numerical modeling of subduction, we show that enrichment of the lower mantle in intrinsically dense basaltic heterogeneity can render slabs neutrally buoyant at ~1,000 km depth. Slab stagnation (at ~660 and ~1,000 km depth) as well as unimpeded slab sinking to great depths can only coexist as three different modes of slab sinking behavior on Earth if the basalt fraction is ~8% higher in the lower than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Geodynamic models demonstrate that such a moderate compositional gradient can be sustained by compositional filtering of both slabs and plumes as they cross the transition zone, and thus persist over billions of years of whole-mantle convection. Whereas basaltic heterogeneity tends to get trapped in the transition zone and ultimately sink into the lower mantle, harzburgitic heterogeneity tends to rise into the uppermost mantle.

  8. Student Understanding of the Volume, Mass, and Pressure of Air within a Sealed Syringe in Different States of Compression.

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    1995-01-01

    Investigation of (n=101) 17- to 18-year-old students' responses to a task relating to Boyle's Law for gases found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under the given circumstances. (Author/MKR)

  9. Thermal instability of two-dimensional stagnation-point boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, M. M.; Sohn, C. W.

    1983-07-01

    A study of thermal instability for the two-dimensional stagnation flow for Prandtl numbers ranging from 0.7 to infinity is presented. The analysis represents an exact solution since neither the boundary-layer approximation nor the parallel-flow assumption was invoked. Of particular interest is that the critical Rayleigh number and the critical wavenumber, when defined on the basis of the thermal boundary-layer lengthscale, are found to be relatively insensitive to the Prandtl number for the range of Prandtl numbers studied.

  10. Unsteady stagnation-point heat transfer during passage of a concentrated vortex

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Rae, William J.

    1989-01-01

    The unsteady boundary layer due to a single rectilinear vortex filament approaching a two-dimensional stagnation point is investigated. The unsteady boundary-layer equations are solved by an alternating-direction-implicit finite-difference method. Two mechanisms which cause fluctuations in heat transfer are the unsteady velocity field in the boundary layer and secondly, the unsteady total temperature at the edge of the boundary layer. The relative importance of these mechanisms is dependent upon the total temperature fluctuations relative to the imposed temperature difference.

  11. Unsteady stagnation-point heat transfer during passage of a concentrated vortex

    NASA Astrophysics Data System (ADS)

    Rigby, David L.; Rae, William J.

    1989-06-01

    The unsteady boundary layer due to a single rectilinear vortex filament approaching a two-dimensional stagnation point is investigated. The unsteady boundary-layer equations are solved by an alternating-direction-implicit finite-difference method. Two mechanisms which cause fluctuations in heat transfer are the unsteady velocity field in the boundary layer and secondly, the unsteady total temperature at the edge of the boundary layer. The relative importance of these mechanisms is dependent upon the total temperature fluctuations relative to the imposed temperature difference.

  12. Laminar flow at a three-dimensional stagnation point with large rates of injection

    NASA Technical Reports Server (NTRS)

    Libby, P. A.

    1976-01-01

    Exact calculations of the titled flow are presented and compared to the predictions of an asymptotic analysis for large rates of injection. The inner layer of the boundary layer is found to involve outflow in both orthogonal directions whether the external flow along the y axis is inward or outward. As a result, the flow at a nearly two-dimensional stagnation point involves drastic changes as a weak outflow changes to a weak inflow. It is also found that the velocity profiles in the two directions in the inner layer are quite different.

  13. Estimate of Shock Standoff Distance Ahead of a General Stagnation Point

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1961-01-01

    The shock standoff distance ahead of a general rounded stagnation point has been estimated under the assumption of a constant-density-shock layer. It is found that, with the exception of almost-two-dimensional bodies with very strong shock waves, the present theoretical calculations and the experimental data of Zakkay and Visich for toroids are well represented by the relation Delta-3D/R(s) = ((Delta-ax sym)/(R(s))/(2/(K+1))) where Delta is the shock standoff distance, R(s),x is the smaller principal shock radius, and K is the ratio of the smaller to the larger of the principal shock radii.

  14. MHD stagnation point flow over a stretching cylinder with variable thermal conductivity and joule heating

    NASA Astrophysics Data System (ADS)

    Jahan, Shah; Sakidin, Hamzah; Nazar, Roslinda Mohd

    2016-11-01

    The behavior of magnetohydrodynamics (MHD) flow of viscous fluid near the stagnation point over a stretching cylinder with variable thermal conductivity is analyzed. Thermal conductivity is assumed to be linearly related with temperature. The joule heating effects due to magnetic field is also encountered here. Analytical solutions are developed for both momentum and energy equations by using the homotopy analysis method (HAM). The variations of different parameters on the velocity and temperature distributions along with the skin friction coefficient and local Nusselt number are displayed graphically. Numerical values for the skin friction coefficient are calculated and discussed

  15. Impact of Entropy Generation on Stagnation-Point Flow of Sutterby Nanofluid: A Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Azhar, Ehtsham; Iqbal, Z.; Maraj, E. N.

    2016-09-01

    The present article dicusses the computational analysis of entropy generation for the stagnation-point flow of Sutterby nanofluid over a linear stretching plate. The Sutterby fluid is chosen to study the effect for three major classes of non-Newtonian fluids, i.e. pseudoplastic, Newtonian, and dilatant. The effects of pertinent physical parameters are examined under the approximation of boundary layer. The system of coupled nonlinear partial differential equations is simplified by incorporating suitable similarity transformation into a system of non-linear-coupled ordinary differential equations. Entropy generation analysis is conducted numerically, and the results are displayed through graphs and tables. Significant findings are listed in the closing remarks.

  16. Unsteady boundary layer separated stagnation-point flow towards a permeable shrinking sheet

    NASA Astrophysics Data System (ADS)

    Yian, Lok Yian; Ahmad, Syakila

    2014-07-01

    A study of the unsteady separated stagnation-point flow with constant suction towards a shrinking sheet is presented. A similarity transformation reduces the governing partial differential equation to the third order nonlinear ordinary differential equation which the terms of unsteady effect are clearly shown. The problem is solved numerically where the influences of shrinking and suction parameters on flow are studied. It is found that two solutions exist, one representing an attached flow while the other a reverse flow. It is found that adequate suction is necessary for the solutions to exist.

  17. Effect of variable surface catalysis on heating near the stagnation point of a blunt body

    NASA Technical Reports Server (NTRS)

    Stewart, D. A.; Leiser, D. B.; Kolodziej, P.

    1985-01-01

    This paper describes arc-jet data obtained on the performance of glass coated thermal protection systems in a convectively heated environment. These data confirm earlier flight and arc-jet data that show an increased surface catalysis with salt contamination and a decreased surface catalysis near the softening point temperature of the glass. In addition, surface temperature distributions along sphere-cones with abruptly changing surface catalysis were measured near the stagnation point and compared well with computations using a reacting boundary layer code.

  18. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOEpatents

    Hahn, D.W.; Edwards, C.F.

    1998-11-24

    A method is described for stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability. 5 figs.

  19. Method of growing films by flame synthesis using a stagnation-flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1998-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  20. The linear stability of plane stagnation-point flow against general disturbances

    NASA Astrophysics Data System (ADS)

    Brattkus, K.; Davis, S. H.

    1991-02-01

    The linear-stability theory of plane stagnation-point flow against an infinite flat plate is re-examined. Disturbances are generalized from those of Goertler type to include other types of variations along the plate. It is shown that Hiemenz flow is linearly stable and that the Goertler-type modes are those that decay slowest. This work then rationalizes the use of such self-similar disturbances on Hiemenz flow and shows how questions of disturbance structure can be approached on other self-similar flows.

  1. The linear stability of plane stagnation-point flow against general disturbances

    NASA Technical Reports Server (NTRS)

    Brattkus, K.; Davis, S. H.

    1991-01-01

    The linear-stability theory of plane stagnation-point flow against an infinite flat plate is re-examined. Disturbances are generalized from those of Goertler type to include other types of variations along the plate. It is shown that Hiemenz flow is linearly stable and that the Goertler-type modes are those that decay slowest. This work then rationalizes the use of such self-similar disturbances on Hiemenz flow and shows how questions of disturbance structure can be approached on other self-similar flows.

  2. Melting heat transfer in an axisymmetric stagnation-point flow of the Jeffrey fluid

    NASA Astrophysics Data System (ADS)

    Nawaz, M.; Hayat, T.; Zeeshan, A.

    2016-03-01

    This investigation explores the characteristics of melting heat transfer in a boundary layer flow of the Jeffrey fluid near the stagnation point on a stretching sheet subject to an applied magnetic field. The governing boundary layer equations are transformed to ordinary differential equations by similarity transformations. Resulting nonlinear problems are solved analytically by the homotopy analysis method. It is noticed that an increase in the melting parameter decreases the dimensionless velocity and temperature, while an increase in the Deborah number increases the velocity and momentum boundary layer thickness.

  3. Stagnation-point flow and heat transfer over an exponentially shrinking sheet: A stability analysis

    NASA Astrophysics Data System (ADS)

    Ismail, Nurul Syuhada; Arifin, Norihan Md.; Bachok, Norfifah; Mahiddin, Norhasimah

    2016-06-01

    Numerical solutions for the stagnation-point flow and heat transfer over an exponentially shrinking sheet have been investigated. The governing boundary layer equations are transformed into an ordinary differential equation using a non-similar transformation. By using the bvp4c solver in MATLAB, the results of the equations can be solved numerically. Numerical results indicate that in certain parameter, the non-unique solutions for the velocity and the temperature do exist. A linear stability analysis shows that only one solution is linearly stable otherwise is unstable. Then, the stability analysis is performed to identify which solution is stable between the two non-unique solutions.

  4. Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.

    2016-10-01

    Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.

  5. Computational analysis of platelet adhesion and aggregation under stagnation point flow conditions.

    PubMed

    Reininger, C B; Lasser, R; Rumitz, M; Böger, C; Schweiberer, L

    1999-01-01

    The clinical relevance of platelet function assessment with stagnation point flow adhesio-aggregometry (SPAA) has been verified. Quantitative analysis of platelet adhesion and aggregation is possible by means of mathematical analysis of the dark-field, light intensity curves (growth curves) obtained during the SPAA experiment. We present a computational procedure for evaluating these curves, which was necessitated by, and is based on, actual clinical application. A qualitative growth curve classification, corresponding to a basic and distinct pattern of platelet deposition and characteristic of a regularly occurring clinical state is also presented.

  6. Off-centered stagnation point flow of a couple stress fluid towards a rotating disk.

    PubMed

    Khan, Najeeb Alam; Riaz, Fatima

    2014-01-01

    An investigation has been made to study the off-centered stagnation flow of a couple stress fluid over a rotating disk. The model developed for the governing problem in the form of partial differential equations has been converted to ordinary differential equations with the use of suitable similarity transformation. The analytical approximation has been made with the most promising analytical approach, homotopy analysis method (HAM). The convergence region of the obtained solution is determined and plotted. The effects of couple stress and nondimensional parameters have been observed on the flows of couple stress fluid. Also comparison has been made with the Newtonian fluid as the special case of considered problem.

  7. Fluid mechanics of the stagnation point flow chamber and its platelet deposition.

    PubMed

    Affeld, K; Reininger, A J; Gadischke, J; Grunert, K; Schmidt, S; Thiele, F

    1995-07-01

    The interaction of flow and thrombus generation often is a crucial question for the engineer working in the field of artificial organs. However, this interaction is only incompletely known, and quantitative data under well-defined experimental conditions are especially rare. These can be attained with the stagnation point flow chamber. This flow model applies platelet-rich plasma (PRP) as fluid. Its flow conditions are assessed with the help of computational fluid mechanics. In addition, the concept of the boundary layer is introduced, which permits assessment of the platelet flow along the wall. The results of the experiment indicate that platelets are deposited at a defined shear rate.

  8. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  9. Relationship between maternal pre‐pregnancy body mass index, gestational weight gain and childhood fatness at 6–7 years by air displacement plethysmography

    PubMed Central

    Santos, Iná S.; Matijasevich, Alicia

    2015-01-01

    Abstract This study aims to investigate the effect of maternal pre‐pregnancy body mass index (BMI) and gestational weight gain (GWG) on offspring body composition. In this prospective cohort study, offspring body composition at 6 years of age was obtained through air displacement plethysmography. Linear regression was used to obtain crude and adjusted coefficients. Information regarding offspring body composition and maternal pre‐pregnancy BMI was available for 3156 children and on offspring body composition and GWG for 3129 children. There was a direct association of maternal pre‐pregnancy BMI and GWG with offspring's fat mass (FM), fat‐free mass (FFM), fat mass index (FMI), fat‐free mass index (FFMI) and body fat percent (BF%) in crude and adjusted analyses. After adjustment for co‐variables, for each kg m−2 of maternal pre‐pregnancy BMI increase, there was a mean increment of 0.13 kg in the offspring FFM, 0.06 kg m−2 in FFMI, 0.11 kg in FM, 0.07 kg m−2 in FMI and 0.18% in BF%. For each kilogram of maternal GWG increase, there was a mean increment of 0.08 kg in offspring's FM, 0.05 kg m−2 in FMI, 0.04 kg in FFM, 0.01 kg m−2 in FFMI and 0.18 % in BF%. Mothers with a higher pre‐pregnancy BMI or GWG tend to have children with greater adiposity at age 6 years. Fetal overnutrition is more likely among mothers with greater BMI during pregnancy; as a consequence, it can accelerate the childhood obesity epidemic. PMID:25850519

  10. Investigations of the Deterioration of 22 Refractory Materials in a Mach Number 2 Jet at a Stagnation Temperature of 3,800 F

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.

    1961-01-01

    A limited investigation of the deterioration characteristics of 22 refractory materials was conducted by exposing them to a stagnation temperature of 3,800 F in a Mach number 2 ceramic-heated jet at the Langley Research Center. The materials tested were six materials whose major constituent was silicon carbide, five cermets whose major constituent was titanium carbide, six materials whose major constituents were metal borides, four cermets containing alumina, and one silicon nitride model. Tests consisted of obtaining weight change and appearance changes for 1/2-inch-diameter hemispherical-nose cylindrical models exposed to the air jet for 30 seconds at a time for a total of four runs or 2 minutes exposure. Curves of weight changes plotted against the number of 30-second tests in the jet were obtained. Estimates of average surface temperature near the stagnation point of the model were obtained by use of a special temperature-measuring camera. The models were examined before and after the completion of the tests for possible changes in microstructure; no significant changes were found. The data obtained were analyzed with the view that the oxidation characteristics of the materials were the main factor in deterioration of the materials under the conditions of the tests. It was concluded that only those materials which changed in weight the least could be recommended for further extensive application-oriented evaluations. The following materials fell in this category: silicon carbide - silicon, chromium - 28-percent alumina cermet, titanium boride - 5-percent boron carbide. The remainder of the materials tested had oxidation characteristics which appeared to be too severely limiting of their general applications to flight vehicles.

  11. Preliminary results of a study of the relationship between free stream turbulence and stagnation region heat transfer

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.; Simoneau, R. J.

    1985-01-01

    The mechanism that causes free stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades was studied. The work is being conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size is scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurement with high and low turbulence were made with rough and smooth surface stagnation regions. Results of these measurements show that the boundary layer remains laminar in character even in the presence of free stream turbulence at the Reynolds numbers tested. If roughness is added the boundary layer becomes transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot wire measurements near the stagnation region downstream of an array of parallel wires have shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region.

  12. Preliminary results of a study of the relationship between free stream turbulence and stagnation region heat transfer

    NASA Technical Reports Server (NTRS)

    Vaanfossen, G. J., Jr.; Simoneau, R. J.

    1984-01-01

    The mechanism that causes free stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades was studied. The work is being conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size is scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurement with high and low turbulence were made with rough and smooth surface stagnation regions. Results of these measurements show that the boundary layer remains laminar in character even in the presence of free stream turbulence at the Reynolds numbers tested. If roughness is added the boundary layer becomes transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region.

  13. Dynamic Leading-Edge Stagnation Point Determination Utilizing an Array of Hot-Film Sensors with Unknown Calibration

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2017-01-01

    During flight-testing of the National Aeronautics and Space Administration (NASA) Gulfstream III (G-III) airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) SubsoniC Research Aircraft Testbed (SCRAT) between March 2013 and April 2015 it became evident that the sensor array used for stagnation point detection was not functioning as expected. The stagnation point detection system is a self calibrating hot-film array; the calibration was unknown and varied between flights, however, the channel with the lowest power consumption was expected to correspond with the point of least surface shear. While individual channels showed the expected behavior for the hot-film sensors, more often than not the lowest power consumption occurred at a single sensor (despite in-flight maneuvering) in the array located far from the expected stagnation point. An algorithm was developed to process the available system output and determine the stagnation point location. After multiple updates and refinements, the final algorithm was not sensitive to the failure of a single sensor in the array, but adjacent failures beneath the stagnation point crippled the algorithm.

  14. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  15. Assessment of the Losses Due to Self Absorption by Mass Loading on Radioactive Particulate Air Stack Sample Filters

    SciTech Connect

    Smith, Brian M.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2011-01-18

    This report discusses the effect of mass loading of a membrane filter on the self absorption of radioactive particles. A relationship between mass loading and percent loss of activity is presented. Sample filters were collected from Pacific Northwest National Laboratory (PNNL) facilities in order to analyze the current self absorption correction factor of 0.85 that is being used for both alpha and beta particles. Over an eighteen month period from February 2009 to July 2010, 116 samples were collected and analyzed from eight different building stacks in an effort coordinated by the Effluent Management group. Eleven unused filters were also randomly chosen to be analyzed in order to determine background radiation. All of these samples were collected and analyzed in order to evaluate the current correction factor being used.

  16. Proton transfer reaction mass spectrometry for the sensitive and rapid real-time detection of solid high explosives in air and water.

    PubMed

    Jürschik, S; Sulzer, P; Petersson, F; Mayhew, C A; Jordan, A; Agarwal, B; Haidacher, S; Seehauser, H; Becker, K; Märk, T D

    2010-12-01

    Relying on recent developments in proton transfer reaction mass spectrometry (PTR-MS), we demonstrate here the capability of detecting solid explosives in air and in water in real time. Two different proton transfer reaction mass spectrometers have been used in this study. One is the PTR-TOF 8000, which has an enhanced mass resolution (m/Δm up to 8,000) and high sensitivity (~50 cps/ppbv). The second is the high-sensitivity PTR-MS, which has an improved limit of detection of about several hundreds of parts per quadrillion by volume and is coupled with a direct aqueous injection device. These instruments have been successfully used to identify and monitor the solid explosive 2,4,6-trinitrotoluene (TNT) by analysing on the one hand the headspace above small quantities of samples at room temperature and from trace quantities not visible to the naked eye placed on surfaces (also demonstrating the usefulness of a simple pre-concentration and thermal desorption technique) and by analysing on the other hand trace compounds in water down to a level of about 100 pptw. The ability to identify even minute amounts of threat compounds, such as explosives, particularly within a complex chemical environment, is vital to the fight against crime and terrorism and is of paramount importance for the appraisal of the fate and harmful effects of TNT at marine ammunition dumping sites and the detection of buried antipersonnel and antitank landmines.

  17. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    PubMed

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind.

  18. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  19. Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control

    NASA Astrophysics Data System (ADS)

    Orlowski, Christopher T.

    The flight dynamics, stability, and control of a model flapping wing micro air vehicle are analyzed with a focus on the inertial and mass effects of the wings on the position and Orientation of the body. A multi-body, flight dynamics model is derived from first principles. The multi-body model predicts significant differences in the position and orientation of the flapping wing micro air vehicle, when compared to a flight dynamics model based on the standard aircraft, or six degree of freedom, equations of motion. The strongly coupled, multi-body equations of motion are transformed into first order form using an approximate inverse and appropriate assumptions. Local (naive) averaging of the first order system does not produce an accurate result and a new approximation technique named 'quarter-cycle' averaging is proposed. The technique is effective in reducing the error by at least an order of magnitude for three reference flight conditions. A stability analysis of the local averaged equations of motions, in the vicinity of a hover condition, produces a modal structure consist with the most common vertical takeoff or landing structure and independent stability analyses of the linearized flight dynamics of insect models. The inclusion of the wing effects produces a non-negligible change in the linear stability of a hawkmoth-sized model. The hovering solution is shown, under proper control, to produce a limit cycle. The control input to achieve a limit cycle is different if the flight dynamics model includes the wing effects or does not include the wing effects. Improper control input application will not produce the desired limit cycle effects. A scaling analysis is used to analyze the relative importance of the mass of the wings, based on the quarter-cycle approximation. The conclusion of the scaling analysis is that the linear momentum effects of the wings are always important in terms of the inertial position of the flapping wing micro air vehicle. Above a

  20. Evidence from catch-up growth and hoarding behavior of rats that exposure to hypobaric air lowers the body-mass set point.

    PubMed

    Bozzini, Carlos E; Lezón, Christian E; Norese, María F; Conti, María I; Martínez, María P; Olivera, María I; Alippi, Rosa M

    2005-01-01

    The depression of body growth rate and the reduction of body mass for chronological age and gender in growing experimental animals exposed to hypobaric air (simulated high altitude = SHA) have been associated with hypophagia because of reduced appetite. Catch-up growth during protein recovery after a short period of protein restriction only occurs if food intake becomes super-normal, which should not be possible under hypoxic conditions if the set-point for appetite is adjusted by the level of SHA. The present investigation was designed to test the hypothesis that growth retardation during exposure to SHA is due to an alteration of the neural mechanism for setting body mass size rather than a primary alteration of the central set-point for appetite. One group of female rats aged 35 d were exposed to SHA (5460m) in a SHA chamber for 27 d (HX rats). Other group was maintained under local barometric pressure conditions (NX rats). One half of both NX and HX rats were fed a protein-free diet for the initial 9 d of the experimental period. From this time on, they were fed a diet containing 20% protein, as were the remaining rats of both groups during the entire experimental period. The growth rates of both mass and length of the body were significantly depressed in well-nourished rats exposed to SHA during the entire observation period when compared to normoxic ones. At its end, body mass and body length were 24% and 21% less in HX than in NX rats. Growth rates were negatively affected by protein restriction in both NX and HX rats. During protein recovery, they reached supernormal values in response to supernormal levels of energy intake that allowed a complete catch-up of both body mass and length. The finding that energy intake during the period of protein rehabilitation in HX rats previously stunted by protein restriction was markedly higher than in HX control ones at equal levels of hypoxia demonstrates that the degree of hypoxia does not determine directly the

  1. Amplification of Vorticity Near the Stagnation Point of Landing Gear Wheels

    NASA Astrophysics Data System (ADS)

    Feltham, Graham; Ekmekci, Alis

    2013-11-01

    In this experimental investigation, a stream of steady weak vorticity impinging near the stagnation point of a landing gear wheel is shown to grow and amplify into large-scale vortices that coherently shed from the point of generation. To produce the upstream vorticity, a platinum wire of 100 micron diameter, similar to that used in hydrogen bubble visualization technique, is placed upstream of the wheel model. Experiments are conducted in a recirculating water channel. The wheel diameter is D = 152 mm. The Reynolds number based on the wire diameter is 21 and based on the wheel diameter is 32,500. Qualitative understanding of the vorticity amplification and eventual vortex shedding near the stagnation region of the wheel is achieved by employing the hydrogen bubble visualization technique while quantitative insight is collected using Particle Image Velocimetry (PIV). The size and frequency of the shed vortices are found to depend on the wheel geometry as well as the magnitude and impingement point of the inbound vorticity.

  2. Study of magnetic fields and current in the Z pinch at stagnation

    SciTech Connect

    Ivanov, V. V.; Anderson, A. A.; Astanovitskiy, A. L.; Nalajala, V.; Dmitriev, O.; Papp, D.

    2015-09-15

    The structure of magnetic fields in wire-array Z pinches at stagnation was studied using a Faraday rotation diagnostic at the wavelength of 266 nm. The electron plasma density and the Faraday rotation angle in plasma were calculated from images of the three-channel polarimeter. The magnetic field was reconstructed with Abel transform, and the current was estimated using a simple model. Several shots with wire-array Z pinches at 0.5–1.5 MA were analyzed. The strength of the magnetic field measured in plasma of the stagnated pinch was in the range of 1–2 MG. The magnetic field and current profile in plasma near the neck on the pinch were reconstructed, and the size of the current-carrying plasma was estimated. It was found that current flowed in the large-size trailing plasma near the dense neck. Measurements of the magnetic field near the bulge on the pinch also showed current in trailing plasma. A distribution of current in the large-size trailing plasma can prevent the formation of multi-MG fields in the Z pinch.

  3. Stagnation region gas film cooling: Spanwise angled injection from multiple rows of holes. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Luckey, D. W.; Lecuyer, M. R.

    1981-01-01

    The stagnation region of a cylinder in a cross flow was used in experiments conducted with both a single row and multiple rows of spanwise angled (25 deg) coolant holes for a range of the coolant blowing ratio with a freestream to wall temperature ratio approximately equal to 1.7 and R(eD) = 90,000. Data from local heat flux measurements are presented for injection from a single row located at 5 deg, 22.9 deg, 40.8 deg, 58.7 deg from stagnation using a hole spacing ratio of S/d(o) = 5 and 10. Three multiple row configurations were also investigated. Data are presented for a uniform blowing distribution and for a nonuniform blowing distribution simulating a plenum supply. The data for local Stanton Number reduction demonstrated a lack of lateral spreading by the coolant jets. Heat flux levels larger than those without film cooling were observed directly behind the coolant holes as the blowing ratio exceeded a particular value. The data were spanwise averaged to illustrate the influence of injection location, blowing ratio and hole spacing. The large values of blowing ratio for the blowing distribution simulating a plenum supply resulted in heat flux levels behind the holes in excess of the values without film cooling. An increase in freestream turbulence intensity from 4.4 to 9.5 percent had a negligible effect on the film cooling performance.

  4. Detection of flow separation and stagnation points using artificial hair sensors

    NASA Astrophysics Data System (ADS)

    Phillips, D. M.; Ray, C. W.; Hagen, B. J.; Su, W.; Baur, J. W.; Reich, G. W.

    2015-11-01

    Recent interest in fly-by-feel approaches for aircraft control has motivated the development of novel sensors for use in aerial systems. Artificial hair sensors (AHSs) are one type of device that promise to fill a unique niche in the sensory suite for aerial systems. In this work, we investigate the capability of an AHS based on structural glass fibers to directly identify flow stagnation and separation points on a cylindrical domain in a steady flow. The glass fibers are functionalized with a radially aligned carbon nanotube (CNT) forest and elicit a piezoresistive response as the CNT forest impinges on electrodes in a micropore when the hair is deflected due to viscous drag forces. Particle image velocimetry is used to measure the flow field allowing for the resulting moment and force acting on the hair to be correlated with the electrical response. It is demonstrated that the AHS provides estimates for the locations of both the stagnation and separation in steady flow. From this, a simulation of a heading estimation is presented to demonstrate a potential application for hair sensors. These results motivate the construction of large arrays of hair sensors for imaging and resolving flow structures in real time.

  5. On the helical instability and efficient stagnation pressure production in thermonuclear magnetized inertial fusion

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.

    2016-10-01

    Magneto-inertial fusion experiments produce thermonuclear neutrons from plasma compressed to high convergence via z-pinch. Fusion fuel contained within a cylindrical metal liner is premagnetized with an axial field and laser-preheated prior to the liner's implosion by the JxB force. Convergence greater than 40 is inferred from x-ray self-emission spectroscopy and backlit x-ray radiography. The unprecedented stability is enabled by helical modes induced in the magnetized liner, the cause of which will be discussed, because of the suppression of the ubiquitous m=0 modes of the magneto-Rayleigh-Taylor instability found in many z-pinch implosions. The plasma temperature and flux are compressed to several keV and 100 MG at stagnation, enough to magnetically trap alpha particles and provide ``bootstrap'' self-heating when scaled to larger fusion yields with DT fuel. We present quantitative comparison between experimental observables and 3D modeling in support of the interpretation that this approach to laboratory fusion can scale to larger thermonuclear yields. Namely, the implosions efficiently convert liner kinetic energy to stagnated fuel internal energy with the expected pressures of 1 Gbar and burn durations of 2 ns, in agreement with both 2D and 3D modeling. Therefore, the analysis indicates the magnetized hot-spot dynamics are not dominated by implosion instability or residual kinetic energy in our best-performing experiments, wherein laser-induced non-fuel mix into the forming hot spot is low.

  6. Role of stagnation and obstruction of water flow in isolation of Legionella pneumophila from hospital plumbing.

    PubMed Central

    Ciesielski, C A; Blaser, M J; Wang, W L

    1984-01-01

    The stagnation of water in two of four hospital hot-water storage tanks found to contain Legionella pneumophila was reduced by keeping the two tanks continually on-line for 1 year. L. pneumophila colony counts in these two tanks fell quickly to low levels, whereas the organisms persisted in the two tanks that were not in use. L. pneumophila continued to be isolated from 50 to 100% of the hospital showerheads which were sampled during this period. We also examined aerators and other hospital faucet fixtures which obstruct water flow. L. pneumophila was isolated from 22 of 30 faucet aerators and 2 of 16 vacuum breakers but not from 26 nonobstructed faucets or 6 backflow preventers. Over a 7-month period, after nine faucet aerators were sterilized, 10 of 60 surveillance cultures revealed L. pneumophila, despite the inability to isolate the organism from the potable-water tanks in use. These data suggest that prevention of stagnation in hot-water tanks may be effective in reducing L. pneumophila concentrations in potable-water systems serving high-risk populations. We have also shown that faucet aerators, by providing a surface for L. pneumophila to colonize, can become secondary reservoirs for the organism in hospital plumbing. PMID:6508313

  7. Compositional mantle layering revealed by slab stagnation at ~1000-km depth

    PubMed Central

    Ballmer, Maxim D.; Schmerr, Nicholas C.; Nakagawa, Takashi; Ritsema, Jeroen

    2015-01-01

    Improved constraints on lower-mantle composition are fundamental to understand the accretion, differentiation, and thermochemical evolution of our planet. Cosmochemical arguments indicate that lower-mantle rocks may be enriched in Si relative to upper-mantle pyrolite, whereas seismic tomography images suggest whole-mantle convection and hence appear to imply efficient mantle mixing. This study reconciles cosmochemical and geophysical constraints using the stagnation of some slab segments at ~1000-km depth as the key observation. Through numerical modeling of subduction, we show that lower-mantle enrichment in intrinsically dense basaltic lithologies can render slabs neutrally buoyant in the uppermost lower mantle. Slab stagnation (at depths of ~660 and ~1000 km) and unimpeded slab sinking to great depths can coexist if the basalt fraction is ~8% higher in the lower mantle than in the upper mantle, equivalent to a lower-mantle Mg/Si of ~1.18. Global-scale geodynamic models demonstrate that such a moderate compositional gradient across the mantle can persist can in the presence of whole-mantle convection. PMID:26824060

  8. St