Science.gov

Sample records for air mass types

  1. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  2. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  3. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  4. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  5. On the association between daily mortality and air mass types in Athens, Greece during winter and summer

    NASA Astrophysics Data System (ADS)

    Kassomenos, Pavlos A.; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  6. Uncertainties in Modelling Glacier Melt and Mass Balances: the Role of Air Temperature Extrapolation and Type of Melt Models

    NASA Astrophysics Data System (ADS)

    Pellicciotti, F.; Ragettli, S.; Carenzo, M.; Ayala, A.; McPhee, J. P.; Stoffel, M.

    2014-12-01

    While glacier responses to climate are understood in general terms and in their main trends, model based projections are affected by the type of model used and uncertainties in the meteorological input data, among others. Recent works have attempted at improving glacio-hydrological models by including neglected processes and investigating uncertainties in their outputs. In this work, we select two knowledge gaps in current modelling practices and illustrate their importance through modelling with a fully distributed mass balance model that includes some of the state of the art approaches for calculations of glacier ablation, accumulation and glacier geometry changes. We use an advanced mass balance model applied to glaciers in the Andes of Chile, Swiss Alps and Nepalese Himalaya to investigate two issues that seem of importance for a sound assessment of glacier changes: 1) the use of physically-based models of glacier ablation (energy balance) versus more empirical models (enhanced temperature index approaches); 2) the importance of the correct extrapolation of air temperature forcing on glaciers and the large uncertainty in model outputs associated with it. The ablation models are calibrated with a large amount of data from in-situ campaigns, and distributed observations of air temperature used to calculate lapse rates and calibrate a thermodynamic model of temperature distribution. We show that no final assessment can be made of what type of melt model is more appropriate or accurate for simulation of glacier ablation at the glacier scale, not even for relatively well studied glaciers. Both models perform in a similar manner at low elevations, but important differences are evident at high elevations, where lack of data prevents a final statement on which model better represent the actual ablation amounts. Accurate characterization of air temperature is important for correct simulations of glacier mass balance and volume changes. Substantial differences are

  7. Steps Toward an EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2.

  8. Monitoring Air Pollution In and Around the Premises of Industrial Parks Using Two Types of Electronic Nose and Gas Chromatography-Ion Trap Mass Spectrometry

    SciTech Connect

    Liu, Jen Yu; Ling, Yong Chien, Sr.

    2004-03-31

    Two types of electronic nose and GC-MS were used to monitor air pollution in the premises of seven industrial parks. Real-time analysis of air at the sites was performed using portable electronic noses. Air samples were analyzed from the up and down stream direction along the wind flow to investigate the effect or distribution of the pollutants on the surrounding environment. The advantage of multisensors in spatially resolved sensing for direct multicomponent analysis was explored to minimize tedious sample preparation procedure. Electronic nose could give characteristic odor fingerprints, which were correlated with the pollutants analyzed using GC-MS providing detailed diagnostic information such as the presence of hydrocarbons, halocarbons, phenols, nitrogenous benzenes, sulfur compounds, lipid-derived compounds, polysiloxanes, etc. Subsequent principal component analysis helped in identifying the source of pollutants. The applicability of the electronic nose was demonstrated confirming it to be a simple and rapid screening method for identifying the pollutant source.

  9. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  10. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  11. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  12. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  13. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  14. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  15. Changing air mass frequencies in Canada: potential links and implications for human health.

    PubMed

    Vanos, J K; Cakmak, S

    2014-03-01

    Many individual variables have been studied to understand climate change, yet an overall weather situation involves the consideration of many meteorological variables simultaneously at various times diurnally, seasonally, and yearly. The current study identifies a full weather situation as an air mass type using synoptic scale classification, in 30 population centres throughout Canada. Investigative analysis of long-term air mass frequency trends was completed, drawing comparisons between seasons and climate zones. We find that the changing air mass trends are highly dependent on the season and climate zone being studied, with an overall increase of moderate ('warm') air masses and decrease of polar ('cold') air masses. In the summertime, general increased moisture content is present throughout Canada, consistent with the warming air masses. The moist tropical air mass, containing the most hot and humid air, is found to increase in a statistically significant fashion in the summertime in 46% of the areas studied, which encompass six of Canada's ten largest population centres. This emphasises the need for heat adaptation and acclimatisation for a large proportion of the Canadian population. In addition, strong and significant decreases of transition/frontal passage days were found throughout Canada. This result is one of the most remarkable transition frequency results published to date due to its consistency in identifying declining trends, coinciding with research completed in the United States (US). We discuss relative results and implications to similar US air mass trend analyses, and draw upon research studies involving large-scale upper-level air flow and vortex connections to air mass changes, to small-scale meteorological and air pollution interactions. Further research is warranted to better understand such connections, and how these air masses relate to the overall and city-specific health of Canadians.

  16. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Reciprocating-type air compressors. 56.13010... and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  17. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010... and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  18. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  19. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  20. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 56.13010... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Compressed Air and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air...

  1. Air sparging effectiveness: laboratory characterization of air-channel mass transfer zone for VOC volatilization.

    PubMed

    Braida, W J; Ong, S K

    2001-10-12

    Air sparging in conjunction with soil vapor extraction is one of many technologies currently being applied for the remediation of groundwater contaminated with volatile organic compounds (VOCs). Mass transfer at the air-water interface during air sparging is affected by various soil and VOC properties. In this study with a single air-channel apparatus, mass transfer of VOCs was shown to occur within a thin layer of saturated porous media next to the air channel. In this zone, the VOCs were found to rapidly deplete during air sparging resulting in a steep concentration gradient while the VOC concentration outside the zone remained fairly constant. The sizes of the mass transfer zone were found to range from 17 to 41 mm or 70d(50) and 215d(50) (d(50)=mean particle size) for low organic carbon content media (<0.01% OC). The size of the mass transfer zone was found to be proportional to the square root of the aqueous diffusivity of the VOC, and was affected by the mean particle size, and the uniformity coefficient. Effects of the volatility of the VOCs as represented by the Henry's law constants and the airflow rates on the mass transfer zone were found to be negligible but VOC mass transfer from air-water interface to bulk air phase seems to play a role. A general correlation for predicting the size of the mass transfer zone was developed. The model was developed using data from nine different VOCs and verified by two other VOCs. The existence of the mass transfer zone provides an explanation for the tailing effect of the air phase concentration under prolonged air sparging and the rebound in the VOC air phase concentration after the sparging system is turned off.

  2. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  3. Analysis of mass transfer performance in an air stripping tower

    SciTech Connect

    Chung, T.W.; Lai, C.H.; Wu, H.

    1999-10-01

    The carryover of working solution in a traditional stripping tower is of serious concern in real applications. A U-shaped spray tower to prevent carryover has been designed to study the stripping of water vapor from aqueous desiccant solutions of 91.8 to 95.8 wt% triethylene glycol. In this study, water vapor was removed from the diluted desiccant solution by heating the solution and stripping it with the ambient air. Therefore, the solution was concentrated to a desired concentration. This spray tower was capable of handling air flow rates from 3.2 to 5.13 kg/min and liquid flow rates from 1.6 to 2.76 kg/min. Since the literature data on air stripping towers are limited, studies on the mass transfer coefficient and other mass transfer parameters were carried out in this study. Under the operating conditions, the overall mass transfer coefficient calculated from the experimental data varied from 0.053 to 0.169 mol/m{sup 3}{center{underscore}dot}s. These corresponded to heights of a transfer unit of 2.3 to 0.71 m, respectively. The rates of stripping in this spray tower were typically varied from 2.28 to 12.15 kg H{sub 2}O/h. A correlation of the mass transfer coefficient for the air stripping process was also developed in this study.

  4. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  5. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  6. Three types of cavitation caused by air seeding.

    PubMed

    Shen, Fanyi; Wang, Yuansheng; Cheng, Yanxia; Zhang, Li

    2012-11-01

    There are different opinions of the dynamics of an air bubble entering a xylem conduit. In this paper, we present a thorough mechanical analysis and conclude that there are three types of cavitation caused by air seeding. After an air seed enters a conduit at high xylem pressure P'(1), along with the drop of the water potential, it will expand gradually to a long-shaped bubble and extend continually. This is the first type of air seeding, or the type of expanding gradually. When the xylem pressure is moderate, right after an air seed enters a conduit, it will expand first. Then, as soon as the pressure reaches a threshold the bubble will blow up to form a bubble in long shape, accompanied by acoustic (or ultra-acoustic) emission. It will extend further as xylem pressure decreases continually. This is the second type of air seeding, or the type of expanding-exploding, becoming a long-shaped bubble-lengthening by degrees. In the range of P'(1) ≤ - 3P(o) (P(o) is atmospheric pressure), soon after an air seed is sucked into a conduit it will explode immediately and the conduit will be full of the gas of the bubble instantly. This is the third type of air seeding, or the type of sudden exploding and filling conduit instantly. The third type is the frequent event in daily life of plant.

  7. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  8. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  9. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  10. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  11. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    used to provide accurate information about the amount of air entering the engine so that the amount of fuel can be adjusted to give the most efficient combustion. The ideal mass-flow sensor would be a rugged design that minimizes the disturbance to the flow stream and provides an accurate reading of both smooth and turbulent flows; NASA's design satisfies these requirements better than any existing design. Most of the mass-flow sensors used today are the hot wire variety. Hot wires can be fragile and cannot accurately measure a turbulent or reversing flow, which is often encountered in an intake manifold. Other types of mass-flow sensors include pitot tubes, vane anemometers, and thermocouple rakes-all of which suffer from some type of performance problem. Because it solves these performance problems while maintaining a simple design that lends itself to low-cost manufacturing techniques, NASA s thin-film resistance temperature detector air-mass-flow sensor should lead to more widespread use of mass-flow sensors.

  12. Travel Air commercial airplane -- Type 5000

    NASA Technical Reports Server (NTRS)

    1927-01-01

    The 5000 is a semicantilever monoplane, closed cabin type, with pilot about in line with the leading edge of the wing and room for 4 passengers behind him. It is equipped with a Wright Whirlwind engine.

  13. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  14. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  15. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  16. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  17. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  18. Mass Media Types: Three Q-Analyses of Mass Media Exposure.

    ERIC Educational Resources Information Center

    Walker, James R.

    The purpose of a mass media study was to (l) identify mass media types (patterns of exposure to mass media content) among seventh graders, high school juniors, and adults in a given geographic area; (2) show similarities and differences in the mass media types isolated for these three age groups; (3) pinpoint demographic variables most strongly…

  19. Functional forms for approximating the relative optical air mass

    NASA Astrophysics Data System (ADS)

    Rapp-Arrarás, Ígor; Domingo-Santos, Juan M.

    2011-12-01

    This article constitutes a review and systematic comparison of functional forms for approximating the air mass from the zenith to the horizon. Among them, we find the most meaningful forms in atmospheric optics, geophysics, meteorology, and solar energy science, as well as several forms arising from the study of the atmospheric delay of electromagnetic signals, whose relationship with the air mass was recently proved by the authors. In total, we have compared 26 functional forms, and the fits have been done for three atmospheric profiles, an observer at sea level, and the median wavelength of the Sun's spectral irradiance (0.7274 μm). As a result, the best of the uniparametric forms has more than three centuries of history; the best of the biparametric forms was recently introduced by one of the authors; the best of the tri- and tetraparametric forms were originally proposed for modeling the atmospheric delay of radio signals; and the best of the forms with more than four parameters is used here for the first time. On the basis of these, for the 1976 U.S. Standard Atmosphere (USSA-76), we provide one-, two-, three-, four-, and five-parameter formulas whose maximum deviations are 1.70, 2.91 × 10-1, 3.28 × 10-2, 2.49 × 10-3, and 3.24 × 10-4, respectively.

  20. Atmospheric Thickness Variability During Air Mass Conditions and Winter Snow Events at Albany, NY: 2002-2012

    NASA Astrophysics Data System (ADS)

    Dubbs, A. M.; Swift, S.; Godek, M. L.

    2014-12-01

    A winter weather parameter that is underutilized in the prediction of Northeast snowfall events is critical thickness. Knowledge of atmospheric thickness values during snowfall can benefit the accuracy of winter forecasts, especially if thickness layer ranges at times without precipitation are known. This investigation aims to better understand atmospheric thickness variations in the 1000-500, 1000-700, and 1000-850 hPa layers at Albany, New York during snowfall with differing air mass conditions. Since snow can occur alongside a variety of air mass environments, distinctions in layer thickness between air mass types and critical levels will be examined. Pairing air mass information with an improved understanding of thicknesses may allow forecasters to determine normal snowfall conditions of the atmosphere and decipher when anomalous conditions are occurring alongside heavier snows. Daily geopotential height data are examined alongside Spatial Synoptic Classification weather types over the past decade. Air mass frequencies are computed and baseline thicknesses are established for non-snow days, days with snow and liquid precipitation, and days with only snowfall. Thicknesses are compared to those computed for seven air mass types and differences layers are examined for continuity. For the three air masses identified as prevalent during heavy snow, light-to-heavy and early-to-late season snowfall categories are established and thickness variations are evaluated against non-snow days for significant differences. Results indicate that the differences in layer thicknesses are comparable for all precipitation and non-snow days but around 40 geopotential meters less for pure-snow days. For air masses present during snow, layer thicknesses can vary by over 100 gpm with type. Isolating polar varieties, approximately 50 gpm thickness differences are found in pure-snow days. Comparable differences are detected between the moderate and polar types and the continuity between

  1. Measurement of mass attenuation coefficients in air by application of detector linearity tests

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Chantler, C. T.; Paterson, D.; McMahon, P. J.; Irving, T. H.; Lin, J. J.; Nugent, K. A.; Brunton, A. N.; McNulty, I.

    2002-10-01

    Accurate knowledge of x-ray mass attenuation coefficients is essential for studies as diverse as atomic physics, materials science, and radiation safety. However, a significant discrepancy exists between theoretical tabulated results for air at soft x-ray energies. We outline a precision measurement of the mass attenuation coefficients for air at various energies using two types of detectors and a simple test of detector response. We discuss whether sufficient accuracy can be obtained using this data to distinguish between competing theoretical estimates. In the process, we investigate the intensity response of two common synchrotron x-ray detectors: an x ray to optical charge-coupled device camera using a crystal scintillator and an x-ray sensitive photodiode.

  2. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  3. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  4. Air pollution as a risk factor for type 2 diabetes.

    PubMed

    Rao, Xiaoquan; Patel, Priti; Puett, Robin; Rajagopalan, Sanjay

    2015-02-01

    Recent studies in both humans and animals suggest that air pollution is an important risk factor for type 2 diabetes mellitus (T2DM). However, the mechanism by which air pollution mediates propensity to diabetes is not fully understood. While a number of epidemiologic studies have shown a positive association between ambient air pollution exposure and risk for T2DM, some studies have not found such a relationship. Experimental studies in susceptible disease models do support this association and suggest the involvement of tissues involved in the pathogenesis of T2DM such as the immune system, adipose, liver, and central nervous system. This review summarizes the epidemiologic and experimental evidence between ambient outdoor air pollution and T2DM.

  5. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  6. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  7. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  8. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  9. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  10. 42 CFR 84.147 - Type B supplied-air respirator; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type B supplied-air respirator; minimum... DEVICES Supplied-Air Respirators § 84.147 Type B supplied-air respirator; minimum requirements. No Type B supplied-air respirator shall be approved for use with a blower or with connection to an air supply...

  11. 42 CFR 84.147 - Type B supplied-air respirator; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Type B supplied-air respirator; minimum... DEVICES Supplied-Air Respirators § 84.147 Type B supplied-air respirator; minimum requirements. No Type B supplied-air respirator shall be approved for use with a blower or with connection to an air supply...

  12. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  13. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  14. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  15. Development of an Air Transport Type A Fissile Package

    SciTech Connect

    Blanton, P.; Ebert, K.

    2011-07-13

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  16. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  17. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  18. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  19. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  20. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  1. Air Mass Origin as a Diagnostic of Seasonally-Varying Transport into the Arctic

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Waugh, D. W.; Holzer, M. B.; Newman, P. A.; Polvani, L. M.; Oman, L.; Li, F.

    2013-12-01

    While the signatures of the seasonal cycle on basic state variables such as temperature, winds and on chemical composition have been explored in depth, its signature on air mass composition has received relatively little attention. To this end, we present the first analysis of the seasonally varying transport from the northern hemisphere (NH) midlatitudes into the Arctic using rigorously defined air masses. The fractional contribution from each air mass partitions Arctic air according to where it was last in the planetary boundary layer (PBL) at midlatitudes over the Pacific and Atlantic oceans, North America, Europe, and Asia. Air mass fractions are computed using the coupled climate-chemistry model GEOSCCM subject to fixed present-day climate forcings. We find that during DJF 48% of the air in the free troposphere poleward of 60N was last at midlatitudes primarily at the Pacific and Atlantic oceans, at 20% and 10% respectively. During JJA, however, the largest contributions to Arctic air come from Asian and North American source regions, revealing that transport from the industrialized midlatitude regions dominates during boreal summer. Preliminary calculations of future air masses for a model integration subject to A1B greenhouse gases also reveal the model's climate change response in arctic air mass composition. In concert with weakened tropospheric eddy kinetic energy and a weakened Hadley cell, we find that changes in annual mean arctic air mass fractions are of the order 10%, with increased contributions from air that was last in contact with the PBL over North America and over the Atlantic and Pacific oceans. Air-mass fractions, and their changes, thus help to isolate the role of transport to changes in composition, which are not only driven by changes in chemistry and emissions but also crucially by changes in atmospheric flow.

  2. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  3. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  4. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test, Type A and Type...

  5. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test, Type A and Type...

  6. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.153 Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will be... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test, Type A and Type...

  7. Differential control of muscle mass in type 1 and type 2 diabetes mellitus.

    PubMed

    Sala, David; Zorzano, Antonio

    2015-10-01

    Diabetes mellitus--whether driven by insulin deficiency or insulin resistance--causes major alterations in muscle metabolism. These alterations have an impact on nutrient handling, including the metabolism of glucose, lipids, and amino acids, and also on muscle mass and strength. However, the ways in which the distinct forms of diabetes affect muscle mass differ greatly. The most common forms of diabetes mellitus are type 1 and type 2. Thus, whereas type 1 diabetic subjects without insulin treatment display a dramatic loss of muscle, most type 2 diabetic subjects show no changes or even an increase in muscle mass. However, the most commonly used rodent models of type 2 diabetes are characterized by muscle atrophy and do not mimic the features of the disease in humans in terms of muscle mass. In this review, we analyze the processes that are differentially regulated under these forms of diabetes and propose regulatory mechanisms to explain them.

  8. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  9. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  10. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  11. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  12. 42 CFR 84.154 - Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.154 Airflow resistance test; Type B and Type BE supplied-air respirators; minimum requirements. (a) Airflow resistance shall be... diameter. (b) Airflow resistance shall not exceed 38 mm. (1.5 inches) of water-column height to air...

  13. Neutrino masses and leptogenesis in type I and type II seesaw models

    NASA Astrophysics Data System (ADS)

    Borah, Debasish; Das, Mrinal Kumar

    2014-07-01

    The baryon to photon ratio in the present Universe is very accurately measured to be (6.065±0.090)×10-10. We study the possible origin of this baryon asymmetry in the neutrino sector through the generic mechanism of baryogenesis through leptogenesis. We consider both the type I and type II seesaw origin of neutrino masses within the framework of left-right symmetric models (LRSM). Using the latest best-fit global neutrino oscillation data of mass squared differences, mixing angles and Dirac CP phase, we compute the predictions for baryon to photon ratio keeping the Majorana CP phases as free parameters for two different choices of lightest neutrino mass eigenvalue for both normal and inverted hierarchical patterns of neutrino masses. We do our calculation with and without lepton flavor effects being taken into account. We choose different diagonal Dirac neutrino mass matrix for different flavor effects in such a way that the lightest right-handed neutrino mass is in the appropriate range. We also study the predictions for baryon asymmetry when the neutrino masses arise from a combination of both type I and type II seesaw (with dominating type I term) and discriminate between several combinations of Dirac and Majorana CP phases by demanding successful predictions for baryon asymmetry.

  14. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  15. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE... A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  16. 42 CFR 84.153 - Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test, Type A and Type AE supplied-air respirators; minimum requirements. 84.153 Section 84.153 Public Health PUBLIC HEALTH SERVICE... A and Type AE supplied-air respirators; minimum requirements. (a) Airflow resistance will...

  17. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  18. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  19. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  20. Stochastic oscillator with random mass: New type of Brownian motion

    NASA Astrophysics Data System (ADS)

    Gitterman, M.

    2014-02-01

    The model of a stochastic oscillator subject to additive random force, which includes the Brownian motion, is widely used for analysis of different phenomena in physics, chemistry, biology, economics and social science. As a rule, by the appropriate choice of units one assumes that the particle’s mass is equal to unity. However, for the case of an additional multiplicative random force, the situation is more complicated. As we show in this review article, for the cases of random frequency or random damping, the mass cannot be excluded from the equations of motion, and, for example, besides the restriction of the size of Brownian particle, some restrictions exist also of its mass. In addition to these two types of multiplicative forces, we consider the random mass, which describes, among others, the Brownian motion with adhesion. The fluctuations of mass are modeled as a dichotomous noise, and the first two moments of coordinates show non-monotonic dependence on the parameters of oscillator and noise. In the presence of an additional periodic force an oscillator with random mass is characterized by the stochastic resonance phenomenon, when the appearance of noise increases the input signal.

  1. Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds.

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-12-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, New York, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types-background continental, polluted continental, and maritime-that were advected to the sampling site. The results are the following (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds to thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (ii) A significant fraction of anthropogenic sulfur aerosols appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (iii) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (iv) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  2. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  3. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  4. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.148 Type C supplied-air respirator, continuous flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  5. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... produced principally in the Green River section of Kentucky. (g) Type 37. That type of air-cured or sun-cured tobacco commonly known as Virginia Sun-cured, Virginia Sun and Air-cured, or Dark Air-cured...

  6. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... produced principally in the Green River section of Kentucky. (g) Type 37. That type of air-cured or sun-cured tobacco commonly known as Virginia Sun-cured, Virginia Sun and Air-cured, or Dark Air-cured...

  7. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  8. Synoptic patterns and air mass transport during ozone episodes in northwestern Iberia.

    PubMed

    Saavedra, S; Rodríguez, A; Taboada, J J; Souto, J A; Casares, J J

    2012-12-15

    High levels of ozone are frequently measured at the Galicia (NW Iberian Peninsula) air quality monitoring stations from March to October. However, there have been very few studies on surface ozone in the northwestern Iberian Peninsula, most likely because the climate of this region is not favourable to photochemical ozone generation. The occurrence of these episodes may be related to either local-scale photochemical pollution or regional-scale transport from other polluted regions. In addition, high ozone episodes usually are developed under specific synoptic conditions. The main purposes of this study are to characterise the atmospheric conditions that lead to the ozone episodes in this region and to identify possible advection paths of ozone and precursors. A surface hourly ozone dataset (2002-2007) measured at rural sites in Galicia was analysed to identify high ozone episodes together with their associated synoptic patterns using a subjective classification with 23 different synoptic types. The synoptic weather patterns revealed that most of the episodes occur with high surface pressures centred over the British Isles and/or Central Europe while a high-altitude anticyclonic ridge crosses the Peninsula from North Africa, causing easterly or southeasterly winds. This analysis was completed with 3-day backward air mass trajectories obtained with HYSPLIT to assess the contribution of long-range transport, resulting in the following main routes: Mediterranean-Peninsular, South Atlantic-Portuguese, local and French-Cantabric.

  9. New Types of Ionization Sources for Mass Spectrometry

    SciTech Connect

    2008-12-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle (Contractor) and MDS Sciex (Participant) and ESA, Inc. (Participant) is to research, develop and apply new types of ionization sources and sampling/inlet systems for analytical mass spectrometry making use of the Participants state-of-the-art atmospheric sampling mass spectrometry electrochemical cell technology instrumentation and ancillary equipment. The two overriding goals of this research project are: to understand the relationship among the various instrumental components and operational parameters of the various ion sources and inlet systems under study, the chemical nature of the gases, solvents, and analytes in use, and the nature and abundances of the ions ultimately observed in the mass spectrometer; and to develop new and better analytical and fundamental applications of these ion sources and inlet systems or alternative sources and inlets coupled with mass spectrometry on the basis of the fundamental understanding obtained in Goal 1. The end results of this work are expected to be: (1) an expanded utility for the ion sources and inlet systems under study (such as the analysis of new types of analytes) and the control or alteration of the ionic species observed in the gas-phase; (2) enhanced instrument performance as judged by operational figures-of-merit such as dynamic range, detection limits, susceptibility to matrix signal suppression and sensitivity; and (3) novel applications (such as surface sampling with electrospray) in both applied and fundamental studies. The research projects outlined herein build upon work initiated under the previous CRADA between the Contractor and MDS Sciex on ion sources and inlet systems for mass spectrometry. Specific ion source and inlet systems for exploration of the fundamental properties and practical implementation of these principles are given.

  10. All-solid-state cable-type flexible zinc-air battery.

    PubMed

    Park, Joohyuk; Park, Minjoon; Nam, Gyutae; Lee, Jang-soo; Cho, Jaephil

    2015-02-25

    A cable-type flexible Zn-air battery with a spiral zinc anode, gel polymer electrolyte (GPE), and air cathode coated on a nonprecious metal catalyst is designed in order to extend its application area toward wearable electronic devices.

  11. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  12. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  13. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  14. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  15. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  16. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  17. A TYPE II RADIO BURST WITHOUT A CORONAL MASS EJECTION

    SciTech Connect

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q. E-mail: dmd@nju.edu.cn

    2015-05-10

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ∼600 km s{sup −1} during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  18. A Type II Radio Burst without a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q.

    2015-05-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ˜600 km s-1 during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  19. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  20. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  1. Coronas Mass Ejections, Shocks, and Type II Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2010-01-01

    Coronal mass ejections (CMEs) are the most energetic phenomena in the interplanetary medium. Type II radio bursts are the earliest indicators of particle acceleration by CME-driven shocks. There is one-to-one correspondence between large solar energetic particle (SEP) events and long wavelength type II bursts because the same CME-driven shock is supposed to accelerate electrons and ions. However, there are some significant deviations: some CMEs lacking type II bursts (radio-quiet or RQ CMEs) are associated with small SEP events while some radioloud (RL) CMEs are not associated with SEP events, suggesting subtle differences in the acceleration of electrons and protons. Not all CME-driven shocks are radio loud: more than one third of the interplanetary shocks during solar cycle 23 were radio quiet. Some RQ shocks were associated with energetic storm particle (ESP) events, which are detected when the shocks arrive at the observing spacecraft. This paper attempts to explain these contradictory results in terms of the properties of CMEs, shocks, and the ambient medium.

  2. Lensed Type Ia supernovae as probes of cluster mass models

    NASA Astrophysics Data System (ADS)

    Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H. K.; Fruchter, A. S.; Goobar, A.; Hook, I.; Hsiao, E. Y.; Huang, X.; Kneib, J.-P.; Lidman, C.; Meyers, J.; Perlmutter, S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Supernova Cosmology Project

    2014-05-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at ˜5σ significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 ± 0.09stat ± 0.05sys mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of σμ = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to σμ = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.

  3. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  4. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  5. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  8. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  9. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  10. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  11. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  12. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  13. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  14. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  15. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  16. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  17. Selection and costing of heat exchangers. Air-cooled type

    NASA Astrophysics Data System (ADS)

    1994-12-01

    ESDU 94043 extends the information in ESDU 92013 which, when an air-cooled exchanger is found appropriate and is costed, provides the results for a datum design 40 ft (12.2 m) long with G-fins and 1 in (25 mm) diameter tube operating at a noise level of 85 dBa. It provides factors derived from an analysis of manufacturer's data to be applied to the cost results from ESDU 92013 to account for variations in those parameters and features. Additional guidance on the configuration and use of air-cooled exchangers is given. The data are incorporated in ESDUpac A9213 which is a Fortran program that implements the selection and costing method of ESDU 92013. It is provided on disc in the software volume compiled to run under DOS with a user-friendly interface that prompts on screen for input data.

  18. Foliage response of young central European oaks to air warming, drought and soil type.

    PubMed

    Günthardt-Goerg, M S; Kuster, T M; Arend, M; Vollenweider, P

    2013-01-01

    Three Central European oak species, with four provenances each, were experimentally tested in 16 large model ecosystem chambers for their response to passive air warming (AW, ambient +1-2 °C), drought (D, -43 to -60% irrigation) and their combination (AWD) for 3 years on two forest soil types of pH 4 or 7. Throughout the entire experiment, the influence of the different ambient and experimental climates on the oak trees was strong. The morphological traits of the Quercus species were affected in opposing ways in AW and D treatments, with a neutral effect in the AWD treatment. Biochemical parameters and LMA showed low relative plasticity compared to the morphological and growth parameters. The high plasticity in physiologically important parameters of the three species, such as number of intercalary veins or leaf size, indicated good drought acclimation properties. The soil type influenced leaf chlorophyll concentration, C/N and area more than drought, whereas foliage mass was more dependent on drought than on soil type. Through comparison of visible symptom development with the water deficits, a drought tolerance threshold of -1.3 MPa was determined. Although Q. pubescens had xeromorphic leaf characteristics (small leaf size, lower leaf water content, high LMA, pilosity, more chlorophyll, higher C/N) and less response to the treatments than Q. petraea and Q. robur, it suffered more leaf drought injury and shedding of leaves than Q. petraea. However, if foliage mass were used as the criterion for sustainable performance under a future climate, Q. robur would be the most appropriate species.

  19. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  20. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  1. Neonatal Presentation of an Air-Filled Neck Mass that Enlarges with Valsalva: A Case Report

    PubMed Central

    Patel, Jasminkumar Bharatbhai; Kilbride, Howard; Paulson, Lorien

    2015-01-01

    Branchial cleft cysts are common causes of congenital neck masses in the pediatric population. However, neonatal presentation of branchial cleft cysts is uncommon, but recognizable secondary to acute respiratory distress from airway compression or complications secondary to infection. We report a 1-day-old infant presenting with an air-filled neck mass that enlarged with Valsalva and was not associated with respiratory distress. The infant was found to have a third branchial cleft cyst with an internal opening into the pyriform sinus. The cyst was conservatively managed with endoscopic surgical decompression and cauterization of the tract and opening. We review the embryology of branchial cleft cysts and current management. PMID:26495186

  2. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Astrophysics Data System (ADS)

    Orbe, C.; Newman, P. A.; Waugh, D. W.; Holzer, M. B.; Oman, L.; Polvani, L. M.; Li, F.

    2014-12-01

    Long-range transport from Northern Hemisphere (NH) midlatitudes plays a key role in setting the distributions of trace species and aerosols in the Arctic. While comprehensive models project a strengthening and poleward shift in the midlatitude tropospheric jets in response to future warming, relatively little attention has been paid to assessing the large-scale transport response in the Arctic. A natural way to quantify transport and its future changes is in terms of rigorously defined air masses that partition air according to where it last contacted the planetary boundary layer (PBL). Here we present climatologies of Arctic air mass origin for NH winter and summer, computed from two integrations of the Goddard Earth Observing System chemistry-climate model (GEOSCCM) subject to present-day and future climate forcings. The modeled transport response to A1B greenhouse-gas induced warming reveals that in the future ~10% more air in the Arctic will originate over NH midlatitudes, with a slighter weaker albeit significant increase in winter compared to summer. Our results indicate that transport changes alone may lead to "cleaner" Arctic winters, as air will be 5-10% more likely to have last contacted the PBL over the East Pacific and the Atlantic Oceans and less likely to have originated over Europe and North America. Conversely, in future summers the air mass fractions originating over Asia and North America increase by ~10%, indicating that Arctic pollutant levels may be enhanced owing solely to changes in transport. In particular, our results suggest that more stringent emissions caps may be needed to combat enhanced transport into the Arctic from Asia, where increases in black carbon emissions have already posed concerns. Future changes in air mass fractions are interpreted in terms of large-scale circulation responses that are consistent with CMIP5 multi-model mean projections - namely, upward and poleward shifted meridional transient eddies in future winters and

  3. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  4. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  5. Impacts of Typhoon and Air-Mass Pathways on Rainwater Chemical Compositions

    NASA Astrophysics Data System (ADS)

    Cheng, M.; You, C.

    2006-12-01

    To assess the importance of chemical fluxes on trace elements by wet precipitation, we have collected time- series rain waters between 06/20/04 and 09/20/05 for ICPMS and IC measurements. The sampling site is located at Tainan city in southwest Taiwan and there were four typhoons, namely Mindulle, Rananim, Aere, and Haima, hit the island during this period. Combining trace element compositions with HYSPLIT model for air-mass transportation designed by NOAA, we were able to understand possible source, flux and migration pathway of pollutants in rainwater. Our results show that seasalt contribution and trace element fluxes were higher during typhoon events. The Na and Pb flux varied largely, between 0.03~1388 and 0.0002~2000 mg/m2/day respectively, depended on the pathways of air mass trajectory and wind strength. It is clear that typhoons carry not only sea spray but also major anthropogenic pollutants from south Asia. Among the four typhoons, the Mindulle carried the largest fluxes of seasalt and trace elements while Rananim was weak in strength and brought the lowest Na and Pb due to less degree of mixing with air mass on land. The calculated enriched factors normalized to seawater (EFsea) were near unity for Na and Mg, but were much larger for K and Ca possibly due to crust source contamination and biomass burning. The EFcrust or EFsea values of various trace metals (e.g., V, Cr, Mn, Co, Ni, Cu, Zn, As, Ba and Pb were all significantly larger than 10 indicating the importance of anthropogenic sources. Interestingly, the PCA results confirm that rain waters with similar chemical characteristics have shared common air mass backward trajectory history.

  6. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  7. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  8. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  9. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature. PMID:11538791

  10. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  11. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  12. All-solid-state cable-type flexible zinc-air battery.

    PubMed

    Park, Joohyuk; Park, Minjoon; Nam, Gyutae; Lee, Jang-soo; Cho, Jaephil

    2015-02-25

    A cable-type flexible Zn-air battery with a spiral zinc anode, gel polymer electrolyte (GPE), and air cathode coated on a nonprecious metal catalyst is designed in order to extend its application area toward wearable electronic devices. PMID:25532853

  13. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  14. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  15. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  16. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  17. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  18. 42 CFR 84.143 - Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Terminal fittings or chambers; Type B supplied-air... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.143 Terminal fittings or chambers; Type B... positive pressures shall not be approved for use on Type B supplied-air respirators. (b) Terminal...

  19. Beta-cell function and mass in type 2 diabetes.

    PubMed

    Larsen, Marianne O

    2009-08-01

    The aim of the work described here was to improve our understanding of beta-cell function (BCF) and beta-cell mass (BCM) and their relationship in vivo using the minipig as a model for some of the aspects of human type 2 diabetes (T2DM). More specifically, the aim was to evaluate the following questions: How is BCF, especially high frequency pulsatile insulin secretion, affected by a primary reduction in BCM or by primary obesity or a combination of the two in the minipig? Can evaluation of BCF in vivo be used as a surrogate measure to predict BCM in minipigs over a range of BCM and body weight? We first developed a minipig model of reduced BCM and mild diabetes using administration of a combination of streptozotocin (STZ) and nicotinamide (NIA) as a tool to study effects of a primary reduction of BCM on BCF. The model was characterized using a mixed-meal oral glucose tolerance test and intravenous stimulation with glucose and arginine as well as by histology of the pancreas after euthanasia. It was shown that stable, moderate diabetes can be induced and that the model is characterized by fasting and postprandial hyperglycemia, reduced insulin secretion and reduced BCM. Several defects in insulin secretion are well documented in human T2DM; however, the role in the pathogenesis and the possible clinical relevance of high frequency (rapid) pulsatile insulin secretion is still debated. We therefore investigated this phenomenon in normal minipigs and found easily detectable pulses in peripheral vein plasma samples that were shown to be correlated with pulses found in portal vein plasma. Furthermore, the rapid kinetics of insulin in the minipig strongly facilitates pulse detection. These characteristics make the minipig particularly suitable for studying the occurrence of disturbed pulsatility in relation to T2DM. Disturbances of rapid pulsatile insulin secretion have been reported to be a very early event in the development of T2DM and include disorderliness of pulses

  20. Beta-cell function and mass in type 2 diabetes.

    PubMed

    Larsen, Marianne O

    2009-08-01

    The aim of the work described here was to improve our understanding of beta-cell function (BCF) and beta-cell mass (BCM) and their relationship in vivo using the minipig as a model for some of the aspects of human type 2 diabetes (T2DM). More specifically, the aim was to evaluate the following questions: How is BCF, especially high frequency pulsatile insulin secretion, affected by a primary reduction in BCM or by primary obesity or a combination of the two in the minipig? Can evaluation of BCF in vivo be used as a surrogate measure to predict BCM in minipigs over a range of BCM and body weight? We first developed a minipig model of reduced BCM and mild diabetes using administration of a combination of streptozotocin (STZ) and nicotinamide (NIA) as a tool to study effects of a primary reduction of BCM on BCF. The model was characterized using a mixed-meal oral glucose tolerance test and intravenous stimulation with glucose and arginine as well as by histology of the pancreas after euthanasia. It was shown that stable, moderate diabetes can be induced and that the model is characterized by fasting and postprandial hyperglycemia, reduced insulin secretion and reduced BCM. Several defects in insulin secretion are well documented in human T2DM; however, the role in the pathogenesis and the possible clinical relevance of high frequency (rapid) pulsatile insulin secretion is still debated. We therefore investigated this phenomenon in normal minipigs and found easily detectable pulses in peripheral vein plasma samples that were shown to be correlated with pulses found in portal vein plasma. Furthermore, the rapid kinetics of insulin in the minipig strongly facilitates pulse detection. These characteristics make the minipig particularly suitable for studying the occurrence of disturbed pulsatility in relation to T2DM. Disturbances of rapid pulsatile insulin secretion have been reported to be a very early event in the development of T2DM and include disorderliness of pulses

  1. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-01

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  2. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-01

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future. PMID:24975009

  3. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  4. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  5. Simulation du fonctionnement de capteurs solaires à air de type tôle et de type absorbeur poreux

    NASA Astrophysics Data System (ADS)

    Fournier, Michel; Maurissen, Yves

    1993-12-01

    The comparison between air-heated insolators, no porous and porous plate, often has been made experimentaly. The behaviour model of these insolators permit generalization of the study in the conditions where each insolator is the most performant. La comparaison des capteurs solaires à air à absorbeur de type tôle et de type poreux a été abordée le plus souvent de façon expérimentale. La modélisation du fonctionnement de ces types de capteur permet de généraliser cette comparaison et de définir les domaines de fonctionnement où un type de capteur se montre plus efficace que l'autre.

  6. Seasonality of new particle formation in Vienna, Austria - Influence of air mass origin and aerosol chemical composition

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Demattio, Anselm; Wagner, Robert; Burkart, Julia; Zíková, Naděžda; Vodička, Petr; Ludwig, Wolfgang; Steiner, Gerhard; Schwarz, Jaroslav; Hitzenberger, Regina

    2015-10-01

    The impact of air mass origin and season on aerosol chemical composition and new particle formation and growth events (NPF events) in Vienna, Austria, is investigated using impactor samples from short-term campaigns and two long-term number size distribution datasets. The results suggest that air mass origin is most important for bulk PM concentrations, chemical composition of the coarse fraction (>1.5 μm) and the mass size distribution, and less important for chemical composition of the fine fraction (<1.5 μm). Continental air masses (crustal elements) were distinguished from air masses of marine origin (traces of sea salt). NPF events were most frequent in summer (22% of measurement days), and least frequent in winter (3% of measurement days). They were associated with above-average solar radiation and ozone concentrations, but were largely independent of PM2.5. Air mass origin was a secondary influence on NPF, largely through its association with meteorological conditions. Neither a strong dependence on the PM2.5 loading of the air masses, nor indications of a source area for NPF precursors outside the city were found.

  7. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-01

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. PMID:22975183

  8. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  9. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  10. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and length of Class 3, Type 31, air-cured tobacco, but which is a low-nicotine strain or variety... which in its cured state is found by an authorized representative of the Department to have a nicotine... be a suitable low-nicotine strain or variety for the production of Type 31-V, by an agency...

  11. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and length of Class 3, Type 31, air-cured tobacco, but which is a low-nicotine strain or variety... which in its cured state is found by an authorized representative of the Department to have a nicotine... be a suitable low-nicotine strain or variety for the production of Type 31-V, by an agency...

  12. 7 CFR 30.38 - Class 3; air-cured types and groups.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and length of Class 3, Type 31, air-cured tobacco, but which is a low-nicotine strain or variety... which in its cured state is found by an authorized representative of the Department to have a nicotine... be a suitable low-nicotine strain or variety for the production of Type 31-V, by an agency...

  13. SU-8 doped and encapsulated n-type graphene nanomesh with high air stability

    SciTech Connect

    Al-Mumen, Haider; Dong, Lixin; Li, Wen

    2013-12-02

    N-type doping of graphene with long-term chemical stability in air represents a significant challenge for practical application of graphene electronics. This paper reports a reversible doping method to achieve highly stable n-type graphene nanomeshes, in which the SU-8 photoresist simultaneously serves as an effective electron dopant and an excellent encapsulating layer. The chemically stable n-type characteristics of the SU-8 doped graphene were evaluated in air using their Raman spectra, electrical transport properties, and electronic band structures. The SU-8 doping does minimum damage to the hexagonal carbon lattice of graphene and is completely reversible by removing the uncrosslinked SU-8 resist.

  14. Mass fusion splicing machine for ribbon-type optical fibers

    NASA Astrophysics Data System (ADS)

    Osaka, K.; Yanagi, T.; Asano, Y.

    1986-11-01

    A mass fusion splicer was designed and manufactured. Using this splicer, mass fusion splicing of optical fiber ribbons was investigated. Ten-fiber ribbon tapes were cut and spliced at an average loss of 0.08 dB for GI and 0.24 dB for SM. They were reinforced by heat-shrinkable tubes with EVA adhesive improved for ribbon tape. An average tensile strength until break was about 3.2 kg soon after splice and about 8.3 kg after reinforcement.

  15. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  16. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  17. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  18. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  19. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  20. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  1. Effect of Vehicle type on the Performance of Second Generation Air Bags for Child Occupants

    PubMed Central

    Arbogast, Kristy B.; Durbin, Dennis R.; Kallan, Michael J.; Winston, Flaura K.

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars – those children exposed to second-generation air bags were half as likely to sustain a serious injury – and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs. PMID:12941218

  2. Effect of vehicle type on the performance of second generation air bags for child occupants.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars - those children exposed to second-generation air bags were half as likely to sustain a serious injury - and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs. PMID:12941218

  3. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  4. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  5. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  6. [Development of new type plastics air turbine handpiece for dental use].

    PubMed

    Kusano, M

    1989-06-01

    The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by

  7. Design verification programme for an air-to-air type rocket motor with CFRP composite case and reduced smoke propellant

    NASA Astrophysics Data System (ADS)

    Fossumstuen, Kai; Raudsandmoen, Geir; Heie, Ingar H.; Wurtinger, Horst

    1993-06-01

    A design verification program was performed for an air-to-air type rocket motor, having a carbon fiber reinforced epoxy motor case and reduced smoke, nitramine containing, composite propellant. Structural design of the motor case is presented, including choice of material and method of attaching metal parts. Structural tests, including environmental and handling damage tests, of the motor case were performed. On the complete motor, design verification work was performed for insulation, bonding, propellant properties, grain design and motor case behavior. Six flight-weight motors were tested, including firing at extreme temperatures, environmental loads, firing with launch bending moment, ageing and pressure pulsing. Two motors were also used for insensitive munition tests, fast cook-off and bullet impact. Some performance data that are classified, have been omitted.

  8. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  9. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  10. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  11. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.156 Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall...

  12. Solitary fibrous tumor of the pleura manifesting as an air-containing cystic mass: radiologic and histopathologic correlation.

    PubMed

    Baek, Ji Eun; Ahn, Myeong Im; Lee, Kyo Young

    2013-01-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that typically presents as a well-defined lobular soft tissue mass commonly arising from the pleura. We report an extremely rare case of an SFT containing air arising from the right major fissure in a 58-year-old woman. Chest CT showed an ovoid air-containing cystic mass with an internal, homogeneously enhancing solid nodule. To our knowledge, this is the first case in the literature. The histopathologic findings were correlated with the radiologic findings, and the mechanism of air retention within the tumor is discussed.

  13. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    PubMed

    Zhang, Junyu; Liu, Hongbin; Liu, Zhiyuan; Liao, Yong; Guo, Luo; Wang, Honglian; He, Lin; Zhang, Xiaodong; Xing, Qinghe

    2013-01-01

    Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE) gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser) in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203) containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  14. Precocious presentation of autoimmune polyglandular syndrome type 2 associated with an AIRE mutation.

    PubMed

    Resende, Eduarda; Gόmez, Gemma Novoa; Nascimento, Marta; Loidi, Lourdes; Saborido Fiaño, Rebeca; Cabanas Rodrίguez, Paloma; Castro-Feijoo, Lidia; Barreiro Conde, Jesús

    2015-01-01

    Autoimmune polyglandular syndrome type 2 (type 2 APS), or Schmidt's syndrome, is defined by the presence of Addison's disease in combination with type 1 diabetes and/or autoimmune thyroid disease. The estimated prevalence of this syndrome is 1.4-4.5 per 100,000 inhabitants and it is more frequent in middle-aged females, whilst it is quite rare in children. Type 2 APS, which shows a pattern of autosomal dominant inheritance with low penetrance, has been associated with HLA specific DR3/DQ2 and DR4/DQ8 haplotypes. However, it has been hypothesized that genetic variability in the AIRE gene, which causing type 1 APS, may play a role in more common organ-specific autoimmune conditions like type 1 diabetes, Hashimoto's disease and type 2 APS, among others. Here we present the case of an 8-year-old girl, with a past medical history of type 1 diabetes diagnosed at the age of 3. She was taken to the Emergency Department because she complained of abdominal pain, nausea and vomiting, and her blood analysis revealed a severe hyponatremia. She also had seizures as a consequence of the hyponatremia and frequent hypoglycemia. She was ultimately found to be suffering from autoimmune primary adrenal insufficiency. The combination of both mentioned conditions, type 1 diabetes and Addison's disease, in the absence of chronic mucocutaneous candidiasis, made a diagnosis of type 2 APS plausible in this girl. The genetic study showed two heterozygous variants: NM_000383.2:C.1411C>T (p. Arg471Cys) in exon 12 and IVS9+6G>A in intron 9 of the AIRE gene. The description of an uncommon case of type 2 APS with precocious presentation associated with an AIRE mutation in a very young girl could help to clarify the role of AIRE in the development of autoimmune diseases.

  15. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  16. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Van Grieken, René

    2008-06-25

    The levels of particulate polycyclic aromatic hydrocarbons (PAHs) were determined with a fast analytical approach to study their seasonal variations at Menen (Belgium) during 2003; they were found to be 5-7 times higher in January, February and December, in comparison to May, June and August. The annual average concentration of the sum of 16 US Environmental Protection Agency (EPA) criteria PAHs was 6.7 ng/m3 and around 63% of it was found to be probably carcinogenic to humans. The application of diagnostic ratio and principal component analysis showed vehicular emission as a major source. An increased ratio of 'combustion PAHs' to 'total EPA-PAHs' during the winter season indicated towards combustion activities. Further, the differences in PAHs concentration were assessed with relation to backward air mass trajectories, which show that the levels of PAHs increase when there is an air mass movement from Central and Western Europe and a fall when the trajectories spend most of their 4-day time over the Atlantic Ocean or in the Arctic region.

  17. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  18. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  19. [Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry].

    PubMed

    Zhao, Bo; Li, Yuqing; Zhang, Sukun; Han, Jinglei; Xu, Zhencheng; Fang, Jiande

    2014-09-01

    A method of gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-MS/MS) has been optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in air samples. In the analysis step, isotope dilution was introduced to the quantification of PAHs. The GC-MS/MS method was applied to the analysis of the real air samples around a big petrochemical power plant in South China. The results were compared with those obtained by gas chromatography coupled to mass spectrometry (GC-MS). The results showed that better selectivity and sensitivity were obtained by GC-MS/MS. It was found that the external standard of deuterated-PAHs and internal standard of hexamethyl benzene were disturbed seriously with GC-MS, and the problems were both solved effectively by GC-MS/MS. Therefore more accurate quantification results of PAHs were obtained with GC-MS/MS. For the analysis of real samples, the RSDs of relative response factors ranged from 2.60% to 15.6% in standard curves; the recoveries of deuterated-PAHs ranged from 55.2% to 82.3%; the recoveries of spiked samples ranged from 98.9% to 111%; the RSDs of parallel specimens ranged from 6.50% to 18.4%; the concentrations of field blank samples ranged from not detected to 44.3 pg/m3; and the concentrations of library blank samples ranged from not detected to 36.5 pg/m3. The study indicated that the application of GC-MS/MS on the analysis of PAHs in air samples was recommended. PMID:25752088

  20. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  1. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  2. Finite element analysis of an inflatable torus considering air mass structural element

    NASA Astrophysics Data System (ADS)

    Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.

    2014-01-01

    Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.

  3. Polyglandular autoimmune syndrome type I – a novel AIRE mutation in a North American patient

    PubMed Central

    Huibregtse, Kelly Egan; Wolfgram, Peter; Winer, Karen K.; Connor, Ellen L.

    2015-01-01

    Autoimmune polyglandular syndrome type 1 (APS-1), also referred to as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a rare autoimmune disease that results from autosomal recessive mutations of the human autoimmune regulatory (AIRE) gene. We present the case of a 17-year-old North American girl of primarily Norwegian descent with a novel AIRE gene mutation causing APS-1. In addition to the classic triad of chronic candidiasis, hypoparathyoidism and autoimmune adrenocortical insufficiency, she also has vitiligo, intestinal malabsorption, autoimmune hepatitis, autoimmune hypothyroidism, myositis, myalgias, chronic fatigue, and failure to thrive. Genetic testing revealed heterozygosity for c.20_115de196 and c.967_979del13 mutations in the AIRE gene. The AIRE gene c.20_115de196 mutation has not been previously reported. PMID:24945421

  4. Polyglandular autoimmune syndrome type I - a novel AIRE mutation in a North American patient.

    PubMed

    Huibregtse, Kelly Egan; Wolfgram, Peter; Winer, Karen K; Connor, Ellen L

    2014-11-01

    Autoimmune polyglandular syndrome type 1 (APS-1), also referred to as autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a rare autoimmune disease that results from autosomal recessive mutations of the human autoimmune regulatory (AIRE) gene. We present the case of a 17-year-old North American girl of primarily Norwegian descent with a novel AIRE gene mutation causing APS-1. In addition to the classic triad of chronic candidiasis, hypoparathyoidism and autoimmune adrenocortical insufficiency, she also has vitiligo, intestinal malabsorption, autoimmune hepatitis, autoimmune hypothyroidism, myositis, myalgias, chronic fatigue, and failure to thrive. Genetic testing revealed heterozygosity for c.20_115de196 and c.967_979del13 mutations in the AIRE gene. The AIRE gene c.20_115de196 mutation has not been previously reported.

  5. Measurements of two types of dilatational waves in an air-filled unconsolidated sand

    SciTech Connect

    Hickey, C.J.; Sabatier, J.M.

    1997-07-01

    This study consists of laboratory measurements of dilatational waves propagating through an air-filled unconsolidated sand. One excitation technique consists of a loudspeaker suspended in the air above the packing of sand. A second excitation technique uses a mechanical shaker in contact with the sand. The transmitted signals are received using microphones and geophones located at various depths within the sand. An interpretation based on measured phase speeds indicates that the transmitted energy from the suspended loudspeaker source is partitioned primarily but not exclusively into the type-II dilatational wave. This wave attenuates rapidly and is only detected at depths of less than about 15 cm for this particular sample. At the deeper depths the detected signal is associated with the type-I dilatational wave. The mechanical shaker produces only a type-I dilatational wave. Both the geophone and microphone sensors can detect both types of dilatational waves. {copyright} {ital 1997 Acoustical Society of America.}

  6. 75 FR 43092 - Airworthiness Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... transport airplanes, including the adequacy of existing regulations, the service history of airplanes... Directives; Viking Air Limited (Type Certificate Previously Held by Bombardier, Inc.) Model DHC-7 Airplanes... may review copies of the referenced service information at the FAA, Transport Airplane...

  7. 76 FR 34011 - Airworthiness Directives; Viking Air Limited (Type Certificate No. A-815 Formerly Held by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-10

    ... 2011-05-02, Amendment 39-16611 (76 FR 10220, February 24, 2011), for certain Viking Air Limited (Type...-05-02, Amendment 39-16611 (76 FR 10220, February 24, 2011), and adding the following new AD: Viking... a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February...

  8. The Evaluation of Unitary & Central Type Air-Conditioning Systems in Selected Florida Schools.

    ERIC Educational Resources Information Center

    Bradley, William B.

    The study reported here was conducted in an effort to obtain data for comparing the combined owning and operating costs of two different types of air-conditioning systems in two elementary schools. Both schools were built during 1969-70 in the same geographical area along the southeast coast of Florida and are also served by the same electric…

  9. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  10. Operational performance of a low cost, air mass 2 solar simulator

    NASA Technical Reports Server (NTRS)

    Yass, K.; Curtis, H. B.

    1975-01-01

    Modifications and improvements on a low cost air mass 2 solar simulator are discussed. The performance characteristics of total irradiance, uniformity of irradiance, spectral distribution, and beam subtense angle are presented. The simulator consists of an array of tungsten halogen lamps hexagonally spaced in a plane. A corresponding array of plastic Fresnel lenses shapes the output beam such that the simulator irradiates a 1.2 m by 1.2 m area with uniform collimated irradiance. Details are given concerning individual lamp output measurements and placement of the lamps. Originally, only the direct component of solar irradiance was simulated. Since the diffuse component may affect the performance of some collectors, the capability to simulate it is being added. An approach to this diffuse addition is discussed.

  11. Simultaneous measurement of mass and rotation of trapped absorbing particles in air.

    PubMed

    Bera, Sudipta K; Kumar, Avinash; Sil, Souvik; Saha, Tushar Kanti; Saha, Tanumoy; Banerjee, Ayan

    2016-09-15

    We trap absorbing micro-particles in air by photophoretic forces generated using a single loosely focused Gaussian trapping beam. We measure a component of the radial Brownian motion of a trapped particle cluster and determine the power spectral density, mean squared displacement, and normalized position and velocity autocorrelation functions to characterize the photophoretic body force in a quantitative fashion for the first time. The trapped particles also undergo spontaneous rotation due to the action of this force. This is evident from the spectral density that displays clear peaks at the rotation and the particles' inertial resonance frequencies. We fit the spectral density to the well-known analytical function derived from the Langevin equation, measure the resonance and rotation frequencies, and determine the values for particle mass that we verify at different trapping laser powers with reasonable accuracy. PMID:27628396

  12. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  13. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  14. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  15. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  16. Enantiomeric Signatures of Organochlorine Pesticides in Asian, Trans-Pacific and Western U.S. Air Masses

    PubMed Central

    Genualdi, Susan A.; Massey Simonich, Staci L.; Primbs, Toby K.; Bidleman, Terry F.; Jantunen, Liisa M.; Ryoo, Keon-Sang; Zhu, Tong

    2009-01-01

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 meters above sea level (m.a.s.l); Mary’s Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon’s Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon’s Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed as the enantiomeric fraction (1), defined as (+) enantiomer/(sum of the (+) and (−) enantiomers), where a racemic composition has EF = 0.5. Racemic α-hexachlorocyclohexane (α-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Non-racemic α-HCH (EF = 0.528 ± 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the α-HCH EFs were significantly more racemic (EF = 0.513 ± 0.0003, p < 0.001). Racemic α-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The α-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the α-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  17. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed.

  18. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  19. The mass discrepancy acceleration relation in early-type galaxies: extended mass profiles and the phantom menace to MOND

    NASA Astrophysics Data System (ADS)

    Janz, Joachim; Cappellari, Michele; Romanowsky, Aaron J.; Ciotti, Luca; Alabi, Adebusola; Forbes, Duncan A.

    2016-09-01

    The dark matter (DM) haloes around spiral galaxies appear to conspire with their baryonic content: empirically, significant amounts of DM are inferred only below a universal characteristic acceleration scale. Moreover, the discrepancy between the baryonic and dynamical mass, which is usually interpreted as the presence of DM, follows a very tight mass discrepancy acceleration (MDA) relation. Its universality, and its tightness in spiral galaxies, poses a challenge for the DM interpretation and was used to argue in favour of MOdified Newtonian Dynamics (MOND). Here, we test whether or not this applies to early-type galaxies. We use the dynamical models of fast-rotator early-type galaxies by Cappellari et al. based on ATLAS3D and SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) data, which was the first homogenous study of this kind, reaching ˜4 Re, where DM begins to dominate the total mass budget. We find the early-type galaxies to follow an MDA relation similar to spiral galaxies, but systematically offset. Also, while the slopes of the mass density profiles inferred from galaxy dynamics show consistency with those expected from their stellar content assuming MOND, some profiles of individual galaxies show discrepancies.

  20. Vitamin E alters alveolar type II cell phospholipid synthesis in oxygen and air

    SciTech Connect

    Kennedy, K.A.; Snyder, J.M.; Stenzel, W.; Saito, K.; Warshaw, J.B. )

    1990-11-01

    Newborn rats were injected with vitamin E or placebo daily until 6 days after birth. The effect of vitamin E pretreatment on in vitro surfactant phospholipid synthesis was examined in isolated type II cells exposed to oxygen or air form 24 h in vitro. Type II cells were also isolated from untreated 6-day-old rats and cultured for 24 h in oxygen or air with control medium or vitamin E supplemented medium. These cells were used to examine the effect of vitamin E exposure in vitro on type II cell phospholipid synthesis and ultrastructure. Phosphatidylcholine (PC) synthesis was reduced in cells cultured in oxygen as compared with air. This decrease was not prevented by in vivo pretreatment or in vitro supplementation with vitamin E. Vitamin E pretreatment increased the ratio of disaturated PC to total PC and increased phosphatidylglycerol synthesis. The volume density of lamellar bodies in type II cells was increased in cells maintained in oxygen. Vitamin E did not affect the volume density of lamellar bodies. We conclude that in vitro hyperoxia inhibits alveolar type II cell phosphatidylcholine synthesis without decreasing lamellar body volume density and that supplemental vitamin E does not prevent hyperoxia-induced decrease in phosphatidylcholine synthesis.

  1. 42 CFR 84.143 - Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirators; minimum requirements. 84.143 Section 84.143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.143 Terminal fittings or chambers; Type B supplied-air respirators; minimum requirements. (a) Blowers or connections to air supplies...

  2. Body mass penalties in the physical fitness tests of the Army, Air Force, and Navy.

    PubMed

    Vanderburgh, Paul M; Crowder, Todd A

    2006-08-01

    Recent research has empirically documented a consistent penalty against heavier service members for events identical or similar to those in the physical fitness tests of the Army, Air Force, and Navy. These penalties, which are not related to body fatness, are based on biological scaling models and have a physiological basis. Using hypothetical cases, we quantified the penalties for men, with body mass of 60 vs. 90 kg, and women, 45 vs. 75 kg, to be 15% to 20% for the fitness tests of these three services. Such penalties alone can adversely affect awards and promotions for heavier service members. To deal equitably with these penalties in a practical manner, we offer two recommendations, i.e., (1) implementation of revised fitness tests with balanced events, in which the penalties of one event for heavier service members are balanced by an equal and opposite bias against lighter service members, or (2) development of correction factors that can be multiplied by raw scores to yield adjusted scores free of body mass bias.

  3. Optimal design and selection of magneto-rheological brake types based on braking torque and mass

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Lang, V. T.; Choi, S. B.

    2015-06-01

    In developing magnetorheological brakes (MRBs), it is well known that the braking torque and the mass of the MRBs are important factors that should be considered in the product’s design. This research focuses on the optimal design of different types of MRBs, from which we identify an optimal selection of MRB types, considering braking torque and mass. In the optimization, common types of MRBs such as disc-type, drum-type, hybrid-type, and T-shape types are considered. The optimization problem is to find an optimal MRB structure that can produce the required braking torque while minimizing its mass. After a brief description of the configuration of the MRBs, the MRBs’ braking torque is derived based on the Herschel-Bulkley rheological model of the magnetorheological fluid. Then, the optimal designs of the MRBs are analyzed. The optimization objective is to minimize the mass of the brake while the braking torque is constrained to be greater than a required value. In addition, the power consumption of the MRBs is also considered as a reference parameter in the optimization. A finite element analysis integrated with an optimization tool is used to obtain optimal solutions for the MRBs. Optimal solutions of MRBs with different required braking torque values are obtained based on the proposed optimization procedure. From the results, we discuss the optimal selection of MRB types, considering braking torque and mass.

  4. Is Particle Pollution in Outdoor Air Associated with Metabolic Control in Type 2 Diabetes?

    PubMed Central

    Tamayo, Teresa; Rathmann, Wolfgang; Krämer, Ursula; Sugiri, Dorothea; Grabert, Matthias; Holl, Reinhard W.

    2014-01-01

    Background There is growing evidence that air pollutants are associated with the risk of type 2 diabetes. Subclinical inflammation may be a mechanism linking air pollution with diabetes. Information is lacking whether air pollution also contributes to worse metabolic control in newly diagnosed type 2 diabetes. We examined the hypothesis that residential particulate matter (PM10) is associated with HbA1c concentration in newly diagnosed type 2 diabetes. Methods Nationwide regional levels of particulate matter with a diameter of ≤10 µm (PM10) were obtained in 2009 from background monitoring stations in Germany (Federal Environmental Agency) and assigned to place of residency of 9,102 newly diagnosed diabetes patients registered in the DPV database throughout Germany (age 65.5±13.5 yrs; males: 52.1%). Mean HbA1c (%) levels stratified for air pollution quartiles (PM10 in µg/m3) were estimated using linear regression models adjusting for age, sex, BMI, diabetes duration, geographic region, year of ascertainment, and social indicators. Findings In both men and women, adjusted HbA1c was significantly lower in the lowest quartile of PM10 exposure in comparison to quartiles Q2–Q4. Largest differences in adjusted HbA1c (95% CI) were seen comparing lowest quartiles of exposure with highest quartiles (men %: −0.42 (−0.62; −0.23)/mmol/mol: −28.11 (−30.30; −26.04), women, %: −0.28 (−0.47; −0.09)/mmol/mol: −0.28 (−0.47; −0.09)). Interpretation Air pollution may be associated with higher HbA1c levels in newly diagnosed type 2 diabetes patients. Further studies are warranted to examine this association. PMID:24619127

  5. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  6. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  7. Direct measurement of air kerma rate in air from CDCS J-type caesium-137 therapy sources using a Farmer ionization chamber.

    PubMed

    Poynter, A J

    2000-04-01

    A simple method for directly measuring the reference air kerma rate from J-type 137Cs sources using a Farmer 2571 chamber has been evaluated. The method is useful as an independent means of verifying manufacturers' test data.

  8. A comparison of measured radiances from AIRS and HIRS across different cloud types

    NASA Astrophysics Data System (ADS)

    Schreier, M. M.; Kahn, B. H.; Staten, P.

    2015-12-01

    The observation of Earth's atmosphere with passive remote sensing instruments is ongoing for decades and resulting in a long-term global dataset. Two prominent examples are operational satellite platforms from the National Oceanic and Atmospheric Administration (NOAA) or research platforms like NASA's Earth Observing System (EOS). The observed spectral ranges of these observations are often similar among the different platforms, but have large differences when it comes to resolution, accuracy and quality control. Our approach is to combine different kinds of instruments at the pixel-scale to improve the characterization of infrared radiances. We focus on data from the High-resolution Infrared Radiation Sounder (HIRS) and compare the observations to radiances from the Atmospheric Infrared Sounder (AIRS) on Aqua. The high spectral resolution of AIRS is used to characterize and possibly recalibrate the observed radiances from HIRS. Our approach is unique in that we use additional information from other passive instruments on the same platforms including the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging Spectroradiometer (MODIS). We will present comparisons of radiances from HIRS and AIRS within different types of clouds that are determined from the imagers. In this way, we can analyze and select the most homogeneous conditions for radiance comparisons and a possible re-calibration of HIRS. We hope to achieve a cloud-type-dependent calibration and quality control for HIRS, which can be extrapolated into the past via inter-calibration of the different HIRS instruments beyond the time of AIRS.

  9. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  10. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  11. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  12. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  13. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  14. Long-Term Exposure to Air Pollution and Type 2 Diabetes Mellitus in a Multiethnic Cohort

    PubMed Central

    Park, Sung Kyun; Adar, Sara D.; O'Neill, Marie S.; Auchincloss, Amy H.; Szpiro, Adam; Bertoni, Alain G.; Navas-Acien, Ana; Kaufman, Joel D.; Diez-Roux, Ana V.

    2015-01-01

    Although air pollution has been suggested as a possible risk factor for type 2 diabetes mellitus (DM), results from existing epidemiologic studies have been inconsistent. We investigated the associations of prevalence and incidence of DM with long-term exposure to air pollution as estimated using annual average concentrations of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) and nitrogen oxides at baseline (2000) in the Multi-Ethnic Study of Atherosclerosis. All participants were aged 45–84 years at baseline and were recruited from 6 US sites. There were 5,839 participants included in the study of prevalent DM and 5,135 participants without DM at baseline in whom we studied incident DM. After adjustment for potential confounders, we found significant associations of prevalent DM with PM2.5 (odds ratio (OR) = 1.09, 95% confidence interval (CI): 1.00, 1.17) and nitrogen oxides (OR = 1.18, 95% CI: 1.01, 1.38) per each interquartile-range increase (2.43 µg/m3 and 47.1 ppb, respectively). Larger but nonsignificant associations were observed after further adjustment for study site (for PM2.5, OR = 1.16, 95% CI: 0.94, 1.42; for nitrogen oxides, OR = 1.29, 95% CI: 0.94, 1.76). No air pollution measures were significantly associated with incident DM over the course of the 9-year follow-up period. Results were partly consistent with a link between long-term exposure to air pollution and the risk of type 2 DM. Additional studies with a longer follow-up time and a greater range of air pollution exposures, including high levels, are warranted to evaluate the hypothesized association. PMID:25693777

  15. Effects of suspension of air-conditioning on airtight-type racks.

    PubMed

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  16. Caucasian children's fat mass: routine anthropometry v. air-displacement plethysmography.

    PubMed

    Michels, Nathalie; Huybrechts, Inge; Bammann, Karin; Lissner, Lauren; Moreno, Luis; Peeters, Maarten; Sioen, Isabelle; Vanaelst, Barbara; Vyncke, Krishna; De Henauw, Stefaan

    2013-04-28

    The present paper will use fat mass percentage (FM%) obtained via BOD POD® air-displacement plethysmography (FMADP%) to examine the relative validity of (1) anthropometric measurements/indices and (2) of FM% assessed with equations (FMeq%) based on skinfold thickness and bioelectrical impedance (BIA). In 480 Belgian children (aged 5-11 years) weight, height, skinfold thickness (triceps and subscapular), body circumferences (mid-upper arm, waist and hip), foot-to-foot BIA (Tanita®) and FMADP% were measured. Anthropometric measurements and calculated indices were compared with FMADP%. Next, published equations were used to calculate FMeq% using impedance (equations of Tanita®, Tyrrell, Shaefer and Deurenberg) or skinfold thickness (equations of Slaughter, Goran, Dezenberg and Deurenberg). Both indices and equations performed better in girls than in boys. For both sexes, the sum of skinfold thicknesses resulted in the highest correlation with FMADP%, followed by triceps skinfold, arm fat area and subscapular skinfold. In general, comparing FMeq% with FMADP% indicated mostly an age and sex effect, and an increasing underestimation but less dispersion with increasing FM%. The Tanita® impedance equation and the Deurenberg skinfold equation performed the best, although none of the used equations were interchangeable with FMADP%. In conclusion, the sum of triceps and subscapular skinfold thickness is recommended as marker of FM% in the absence of specialised technologies. Nevertheless, the higher workload, cost and survey management of an immobile device like the BOD POD® remains justified.

  17. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  18. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  19. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  20. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  1. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  2. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  3. Dark matter inside early-type galaxies as function of mass and redshift

    NASA Astrophysics Data System (ADS)

    Nigoche-Netro, A.; Ramos-Larios, G.; Lagos, P.; Ruelas-Mayorga, A.; de la Fuente, E.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.; Hidalgo-Gámez, A. M.

    2016-10-01

    We study the behaviour of the dynamical and stellar mass inside the effective radius (re) of early-type galaxies (ETGs). We use several samples of ETGs - ranging from 19 000 to 98 000 objects - from the ninth data release of the Sloan Digital Sky Survey. We consider Newtonian dynamics, different light profiles and different initial mass functions (IMF) to calculate the dynamical and stellar mass. We assume that any difference between these two masses is due to dark matter and/or a non-universal IMF. The main results for galaxies in the redshift range 0.0024 < z < 0.3500 and in the dynamical mass range 9.5 < log(M) < 12.5 are: (i) a significant part of the intrinsic dispersion of the distribution of dynamical versus stellar mass is due to redshift; (ii) the difference between dynamical and stellar mass increases as a function of dynamical mass and decreases as a function of redshift; (iii) the difference between dynamical and stellar mass goes from approximately 0 to 70 per cent of the dynamical mass depending on mass and redshift; (iv) these differences could be due to dark matter or a non-universal IMF or a combination of both; (v) the amount of dark matter inside ETGs would be equal to or less than the difference between dynamical and stellar mass depending on the impact of the IMF on the stellar mass estimation; (vi) the previous results go in the same direction of some results of the Fundamental Plane (FP) found in the literature in the sense that they could be interpreted as an increase of dark matter along the FP and a dependence of the FP on redshift.

  4. Critical mass flux through short Borda type inlets of various cross sections

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Poolos, N. P.

    1979-01-01

    Mass flux measurements associated with chocked flows through four Borda type inlet geometries: circular, square, triangular and rectangular (two-dimensional) and two sharp edged geometries taken over a very wide range of inlet stagnation conditions. The measurements indicate that: (1) the mass flux is independent of the inlet cross-section geometry and (2) the mass flux is dependent only on the inlet stagnation conditions. Also by using choked flow results found in the literature, the reduced mass flux is independent of working fluid. Two implications are drawn which remain to be verified: (1) since seal leak rates are weakly dependent on geometry but pressure distribution is strongly dependent on geometry, seal design efforts should be directed more toward controlling the dynamics, and (2) high-L/D ducts of arbitrary cross section and Borda type inlets can possess free jets.

  5. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  6. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  7. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-26

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history. PMID:22538610

  8. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  9. Chiral Signatures of Anthropogenic Semi-Volatile Organic Compounds in Asian, trans- Pacific, and Pacific Northwestern Air Masses

    NASA Astrophysics Data System (ADS)

    Genualdi, S.; Primbs, T.; Bidleman, T.; Jantunen, L.; Simonich, S.

    2006-12-01

    The goal of this research is to use the chiral signatures of Semi-Volatile Organic Compounds (SOCs) to distinguish between new and old sources in Asian, trans-Pacific, and regional air masses. During 2004, a six week air sampling campaign was conducted at a remote site in Okinawa, Japan to determine the chemical composition of Eurasian air masses. During 2003 and 2004, high volume air samples were collected at three different locations in the Pacific Northwest of the United States. These sampling locations were; Mary's Peak Observatory (MPO) located at 1250m in the Oregon Coast Range, Mt. Bachelor located at 2800m in Oregon's Cascade Range, and Cheeka Peak Observatory (CPO) located at 500m in the state of Washington. The air samples consisted of both polyurethane foam and XAD-2 resin to collect the gas phase SOCs, and glass fiber filters to collect the particulate phase SOCs. The samples were extracted using accelerated solvent extraction and enantiomer fractions were determined using GCMS-ECNI with the use of a BGB Analytik chiral column. The chiral SOCs, á-Hexachlorocyclohexane, cis and trans chlordane, heptachlor epoxide, and o'p' DDT, were measured, the enantiomer ratios were determined, and potential new and historical sources of these compounds were identified.

  10. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    {sup {minus}7}, 10{sup {minus}5}, and 10{sup {minus}5} respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10{sup {minus}5}, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  11. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Roger, J. C.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2013-05-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Météo-France aircraft ATR-42 performed 22 research flights over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped to study the aerosol physical, chemical, hygroscopic and optical properties, as well as cloud microphysics. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin, allowing for a qualitative evaluation of emission influence on the respective air parcel. This study shows that the extensive aerosol parameters (aerosol mass and number concentrations) show vertical decreasing gradients and in some air masses maximum mass concentrations (mainly organics) in an intermediate layer (1-3 km). The observed mass concentrations (in the boundary layer (BL): between 10 and 30 μg m-3; lower free troposphere (LFT): 0.8 and 14 μg m-3) are high especially in comparison with the 2015 European norms for PM2.5 (25 μg m-3) and with previous airborne studies performed over England (Morgan et al., 2009; McMeeking et al., 2012). Particle number size distributions show a larger fraction of particles in the accumulation size range in the LFT compared to BL. The chemical composition of submicron aerosol particles is dominated by organics in the BL, while ammonium sulphate dominates the submicron aerosols in the LFT, especially in the aerosol particles originated from north-eastern Europe (~ 80%), also experiencing nucleation events along the transport. As a consequence, first the particle CCN acting ability, shown by the CCN/CN ratio, and second the average values of the scattering cross sections of optically active particles (i.e. scattering coefficient divided by the optical active particle concentration) are increased in the LFT compared to BL.

  12. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  13. Identification and design principles of low hole effective mass p-type transparent conducting oxides

    PubMed Central

    Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand; Rignanese, Gian-Marco; Gonze, Xavier

    2013-01-01

    The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides. PMID:23939205

  14. Determination of benzene, toluene, ethylbenzene and xylenes in air by solid phase micro-extraction/gas chromatography/mass spectrometry.

    PubMed

    Tumbiolo, Simonetta; Gal, Jean-François; Maria, Pierre-Charles; Zerbinati, Orfeo

    2004-11-01

    The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 microg/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 microg/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.

  15. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... exceed 50 millimeters (2 inches) of water at an air flow of 115 liters (4 cubic feet) per minute. (b) The exhalation resistance to a flow of air at a rate of 85 liters (3 cubic feet) per minute shall not exceed 25... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C...

  16. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2015-09-01

    We present the characterization and application of a new gas chromatography-time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δ m of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 Th/Th and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found around 5 ppm after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits were as low as a few femtograms as mass traces could be made highly specific for selected molecule fragments with the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. The TOFMS was found to be linear within a concentration range from about 1 pg to 1 ng of analyte per Liter of air. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straight-forward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well-suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, low resolution quadrupole MS and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  17. The effect of various types of cement dust on sulphur dioxide oxidation in the air.

    PubMed

    Vadjić, V; Gentilizza, M; Halle, R

    1988-07-01

    The effect of various types of cement dust on the behaviour of sulphur dioxide in the air was investigated on model systems in different experimental conditions.Experiments were carried out with PC-15z-45s (Portland-blast furnace cement containing 15% blast furnace slag), PC-25p-35s (Portland-pozzolan cement containing 25% pozzolan) and EFD (electrofilter dust).EFD most effectively removed SO2 from the air stream. The next efficacious was PC-15z-45s, whereas PC-25p-35s was the least efficient. The efficacy of cement dusts for SO2 removal from the air stream depended on their chemical and granulometric composition and in particular on the size of specific surface.The rate of reaction was also influenced by experimental conditions-relative humidity, the length of contact, that is, the flow rate of gaseous mixture through the reactor, and the amount of cement dust.The experimental data show that in the contact between SO2 and cement dust catalytic oxidation of SO2 to sulphates takes place. Sulphates remain bound to the surface, from which they cannot be thermally desorbed, but can be released by extraction in the Soxhlet apparatus.

  18. Interdecadal linkages between Pacific decadal oscillation and interhemispheric air mass oscillation and their possible connections with East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Lu, C.

    2015-12-01

    The Pacific decadal oscillation (PDO) recently emerged in the literature as a robust signal in the Northern Hemisphere climate variability. Many studies reported that the relationships between PDO and East Asian monsoon (EAM) and climate variability in China are significant. However, the possible mechanisms are still unclear. The present study investigates the interdecadal relationship between Pacific decadal oscillation (PDO) and interhemispheric air mass imbalance or oscillation (IHO) between the Northern and Southern Hemispheres. The possible connection of PDO and IHO with both East Asian monsoon and climate variability in China are also assessed in this study. It is found that the interdecadal components (11-38 years) of PDO, IHO, and EAM contribute large variance to low frequency variations, and they are well-matched with each other on (inter)decadal timescale. In particular, their negative phases mainly appeared in the 1970s and late 1990s, while positive phase in period from 1980s to mid 1990s. Decadal change of global mean air columnar temperature may be the key factor for the notable difference between PDO and IHO from mid 1970s to mid 1990s. The spatial distributions of PDO and IHO associated surface air temperature and surface pressure anomalies exhibit highly similar and large scale characteristics, indicative of their intimate linkage with air mass redistribution over global domain especially over 300S-500N. The PDO associated columnar integral of velocity potential anomalies that maintain the air mass redistribution, show a dipole pattern with air mass flux emanating mainly from the eastern hemisphere to the Pacific regions in positive PDO phase. This contributes to hemispherical and land-sea mass exchange and redistribution, and also leads to the decadal displacement of both upward and downward branch of Walker circulation. In positive phase of PDO, an anomalous anticyclone is found in the Mongolian region in both boreal summer and winter seasons

  19. Systematic variations of central mass density slopes in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Romanowsky, A. J.; Ferreras, I.; de Carvalho, R. R.

    2014-11-01

    We study the total density distribution in the central regions (≲1 effective radius, Re) of early-type galaxies (ETGs), using data from SPIDER and ATLAS3D. Our analysis extends the range of galaxy stellar mass (M⋆) probed by gravitational lensing, down to ˜ 1010 M⊙. We model each galaxy with two components (dark matter halo + stars), exploring different assumptions for the dark matter halo profile (i.e. NFW, NFW-contracted, and Burkert profiles), and leaving stellar mass-to-light (M⋆/L) ratios as free fitting parameters to the data. For all plausible halo models, the best-fitting M⋆/L, normalized to that for a Chabrier initial mass function, increases systematically with galaxy size and mass. For an NFW profile, the slope of the total mass profile is non-universal, independently of several ingredients in the modelling (e.g. halo contraction, anisotropy, and rotation velocity in ETGs). For the most massive (M⋆ ˜ 1011.5 M⊙) or largest (Re˜ 15 kpc) ETGs, the profile is isothermal in the central regions (˜ Re/2), while for the low-mass (M⋆ ˜ 1010.2 M⊙) or smallest (Re˜ 0.5 kpc) systems, the profile is steeper than isothermal, with slopes similar to those for a constant-M/L profile. For a steeper concentration-mass relation than that expected from simulations, the correlation of density slope with galaxy mass tends to flatten, while correlations with Re and velocity dispersions are more robust. Our results clearly point to a `non-homology' in the total mass distribution of ETGs, which simulations of galaxy formation suggest may be related to a varying role of dissipation with galaxy mass.

  20. Evolved Late-Type Star FUV Spectra: Mass Loss and Fluorescence

    NASA Technical Reports Server (NTRS)

    Harper, Graham M.

    2005-01-01

    This proposal was for a detailed analysis of the far ultraviolet (FUV) photoionizing radiation that provides crucial input physics for mass loss studies, e.g., observations of the flux below 10448, allow us to constrain the Ca II/Ca III balance and make significant progress beyond previous optical studies on stellar mass loss and circumstellar photochemistry. Our targets selection provided good spectral-type coverage required to help unravel the Ca II/Ca III balance as the mass-loss rates increase by over three orders of magnitude from K5 III to M5 III. We also explored the relationship between the FUV radiation field and other UV diagnostics to allow us to empirically estimate the FUV radiation field for the vast majority of stars which are too faint to be observed with FUSE, and to improve upon their uncertain mass-loss rates.

  1. Observations and theory of mass loss in late-type stars

    NASA Technical Reports Server (NTRS)

    Hartmann, L.

    1981-01-01

    The presented review is mainly concerned with the ubiquitous mass loss which occurs during most of a star's existence as a cool giant or supergiant. Observations of mass loss are considered, taking into account wind components and kinematics, and the temperature structure of cool winds. Theories of mass loss are examined, giving attention to radiation pressure on dust, radiation pressure in Lyman alpha, and magnetic wave-driven winds. It is pointed out that the study of mass loss from late-type stars appears to be entering a promising new phase. In this phase, the behavior of cool giants and supergiants is considered from a solar perspective, a perspective which contains important implications concerning the nature of solar activity.

  2. MK Classification and Dynamical Masses for Late-Type Visual Binaries

    NASA Astrophysics Data System (ADS)

    Tamazian, Vakhtang S.; Docobo, José A.; Melikian, Norair D.; Karapetian, Arthur A.

    2006-06-01

    On the basis of slit spectra obtained with the SCORPIO spectral camera attached to the 2.6 m telescope of the V. Ambartsumian Byurakan Astrophysical Observatory (Armenia), MK classifications for 30 visual binaries comprising mostly late K and M type stars are presented. Comparison with other determinations shows that this configuration provides a reliable MK classification. Dynamical masses for 25 systems are computed. Using standard mass-luminosity calibrations, individual mass sums for 11 pairs consisting of virtually single, nonvariable dwarfs are calculated, showing a good agreement with corresponding dynamical masses. The dynamical parallax of HIP 112354 is closer to the trigonometric parallax given in the Yale General Catalogue of Trigonometric Stellar Parallaxes (van Altena et al.) than to the Hipparcos parallax.

  3. Influence of air mass source region on nanoparticle events and hygroscopicity in central Virginia, U.S.

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Fuentes, J. D.; Collins, D. R.; Cleveland, M. J.; Keene, W. C.

    During autumn, 2006, variation in the frequency of aerosol nucleation events, as inferred from nanoparticle growth events, and associated hygroscopicity were investigated as a function of air mass transport history at a mixed deciduous forest in central Virginia, U.S. Above-canopy size distributions of aerosols between 0.012 and 0.700 μm diameter, size-resolved particle hygroscopicity at eight dry diameters between 0.012 and 0.400 μm, and cloud condensation nuclei (CCN) activity were characterized. Air mass back trajectories were clustered to identify source regions. Growth events were most frequent in fast-moving air masses (mean = 9 m s -1) that originated over the north central U.S. Under these flow regimes, mean values for preexisting sub-μm aerosol number concentrations (4700 cm -3), corresponding surface area (142 μm 2 cm -3), air temperature (6.2 °C), and relative humidity (RH, 49.4%) were relatively low compared to other regimes. Under stagnant flow conditions (mean = 3 m s -1), mean number concentrations were higher (>6000 cm -3) and size fractions <0.1 μm diameter exhibited enhanced hygroscopicity compared to other source regions. These results indicate that precursors emitted into relatively clean, cold, and dry air transported over the southeastern U.S. reacted to form condensable intermediates that subsequently produced new aerosols via nucleation and growth. This pathway was an important source for CCN. During events in October, nanoparticles were produced in greater numbers and grew more rapidly compared to November and December.

  4. SOME CONSTRAINTS ON THE LOWER MASS LIMIT FOR DOUBLE-DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Chen, X.; Han, Z.

    2012-08-10

    Recent theoretical and observational studies both argue that the merging of double carbon-oxygen white dwarfs (WDs) is responsible for at least some Type Ia supernovae (SNe Ia). Previous (standard) studies of the anticipated SN birthrate from this channel have assumed that the merger process is conservative and that the primary criterion for explosion is that the merged mass exceeds the Chandrasekhar mass. Han and Webbink demonstrated that mass transfer and merger in close double WDs will in many cases be non-conservative. Pakmor et al. further suggested that the merger process should be violent in order to initiate an explosion. We have therefore investigated how the SN Ia birthrate from the double-degenerate (DD) channel is affected by these constraints. Using the binary-star population-synthesis method, we have calculated the DD SN Ia birthrate under conservative and non-conservative approximations, and including lower mass and mass-ratio limits indicated by recent smoothed-particle-hydrodynamic calculations. The predicted DD SN Ia rate is significantly reduced by all of these constraints. With dynamical mass loss alone (violent merger) the birthrate is reduced to 56% of the conservative rate. Requiring the mass ratio q > 2/3 further reduces the birthrate to 18% that of the standard assumption. An upper limit of 0.0061 SNuM, or a Galactic rate of 4.6 Multiplication-Sign 10{sup -4} yr{sup -1}, might be realistic.

  5. Systematic Variation of Central Mass Density Slope in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Romanowsky, A. J.; Ferreras, I.; de Carvalho, R. R.

    We study the total density distribution in the central regions (≲ 1 effective radius, R e) of early-type galaxies (ETGs), using data from the SPIDER survey (La Barbera et al., MNRAS 408:1313, 2010). We model each galaxy with two components (dark matter halo + stars), exploring different assumptions for the dark matter (DM) halo profile, and leaving stellar mass-to-light (M ⋆/L) ratios as free fitting parameters to the data. For a Navarro et al. (ApJ 462:563, 1996) profile, the slope of the total mass profile is non-universal. For the most massive and largest ETGs, the profile is isothermal in the central regions (˜ Re/2), while for the low-mass and smallest systems, the profile is steeper than isothermal, with slopes similar to those for a constant-M/L profile. For a concentration-mass relation steeper than that expected from simulations, the correlation of density slope with mass tends to flatten. Our results clearly point to a "non-homology" in the total mass distribution of ETGs, which simulations of galaxy formation suggest may be related to a varying role of dissipation with galaxy mass.

  6. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  7. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  8. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  9. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  10. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  11. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    PubMed

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted.

  12. Investigation into the aerodynamic processes of air treatment using a plate-type biofilter.

    PubMed

    Baltrėnas, Pranas; Kleiza, Jonas; Idzelis, Raimondas Leopoldas

    2016-01-01

    The research conducted has involved a laboratory stand of a plate-type air treatment biofilter with a capillary system for humidifying packing material composed of polymer plates vertically arranged next to each other and producing a capillary effect of humidification. The pattern of arranging the plates has sufficiently large spaces (6 mm), and therefore the use of the plate-type structure decreases the aerodynamic resistance of the device. Slightly pressed slabs attached on both sides of the plates are made of heat-treated wood fibre, to increase the longevity of which, wood waste has been heat-treated in the steam explosion reactor under the pressure of 32 bars and a temperature of 235 °C. This is the method for changing the molecular structure of wood, which stops the decay of wood fibre in a humid environment and thus increases the life span of biofilter plates. The research performed has disclosed that, under the application of the above introduced structure of the biofilter, the aerodynamic resistance of the biofilter reaches 1 ÷ 5 Pa when the rate of the air flow passing through the device makes 0.08 m/s. For evaluating the reliability of the obtained results, the theoretical model has been applied.

  13. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  14. NON-EQUIPARTITION OF ENERGY, MASSES OF NOVA EJECTA, AND TYPE Ia SUPERNOVAE

    SciTech Connect

    Shara, Michael M.; Yaron, Ofer; Prialnik, Dina; Kovetz, Attay

    2010-04-01

    The total masses ejected during classical nova (CN) eruptions are needed to answer two questions with broad astrophysical implications: can accreting white dwarfs be 'pushed over' the Chandrasekhar mass limit to yield type Ia supernovae? Are ultra-luminous red variables a new kind of astrophysical phenomenon, or merely extreme classical novae? We review the methods used to determine nova ejecta masses. Except for the unique case of BT Mon (nova 1939), all nova ejecta mass determinations depend on untested assumptions and multi-parameter modeling. The remarkably simple assumption of equipartition between kinetic and radiated energy (E {sub kin} and E {sub rad}, respectively) in nova ejecta has been invoked as a way around this conundrum for the ultra-luminous red variable in M31. The deduced mass is far larger than that produced by any CN model. Our nova eruption simulations show that radiation and kinetic energy in nova ejecta are very far from being in energy equipartition, with variations of 4 orders of magnitude in the ratio E {sub kin}/E {sub rad} being commonplace. The assumption of equipartition must not be used to deduce nova ejecta masses; any such 'determinations' can be overestimates by a factor of up to 10,000. We data-mined our extensive series of nova simulations to search for correlations that could yield nova ejecta masses. Remarkably, the mass ejected during a nova eruption is dependent only on (and is directly proportional to) E {sub rad}. If we measure the distance to an erupting nova and its bolometric light curve, then E {sub rad} and hence the mass ejected can be directly measured.

  15. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  16. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  17. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  18. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  19. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES...

  20. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  1. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  2. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  3. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  4. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  5. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria.

    PubMed

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to L(den) 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM) 2.5 25.0-66.8 μg/m 3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m 3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). L(den) remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria. PMID:27157686

  6. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria.

    PubMed

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to L(den) 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM) 2.5 25.0-66.8 μg/m 3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m 3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). L(den) remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria.

  7. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria

    PubMed Central

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to Lden 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM)2.5 25.0-66.8 μg/m3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). Lden remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria. PMID:27157686

  8. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  9. New type of capillary for use as ion beam collimator and air-vacuum interface

    NASA Astrophysics Data System (ADS)

    Stoytschew, V.; Schulte-Borchers, M.; Božičević Mihalića, Iva; Perez, R. D.

    2016-08-01

    Glass capillaries offer a unique way to combine small diameter ion beam collimation with an air-vacuum interface for ambient pressure ion beam applications. Usually they have an opening diameter of a few microns, limiting the air inflow sufficiently to maintain stable conditions on the vacuum side. As the glass capillaries generally are quite thin and fragile, handling of the capillary in the experiment becomes difficult. They also introduce an X-ray background produced by the capillary wall material, which has to be shielded or subtracted from the data for Particle Induced X-ray Emission (PIXE) applications. To overcome both drawbacks, a new type of conical glass capillary has been developed. It has a higher wall thickness eliminating the low energy X-ray background produced by common capillaries and leading to a more robust lens. The results obtained in first tests show, that this new capillary is suitable for ion beam collimation and encourage further work on the capillary production process to provide thick wall capillaries with an outlet diameter in the single digit micro- or even nanometre range.

  10. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes.

  11. Long-term Trend of Cold Air Mass Amount below a Designated Potential Temperature in Northern and Southern Hemisphere Winters with 7 Different Reanalysis Datasets

    NASA Astrophysics Data System (ADS)

    Kanno, Y.; Abdillah, M. R.; Iwasaki, T.

    2015-12-01

    This study addresses that the hemispheric total cold air mass amount defined below a threshold potential temperature of 280 K is a good indicator of the long-term trend of climate change in the polar region. We demonstrate quantitative analyses of warming trend in the Northern Hemisphere (NH) and Southern Hemisphere (SH) winters, using 7 different reanalysis datasets (JRA-55, JRA-55C, JRA-55AMIP, ERA-interim, CFSR, JRA-25, NCEP-NCAR). Hemispheric total cold air mass amount in the NH winter exhibit a statistically significant decreasing trend in all reanalysis datasets at a rate about -1.37 to -0.77% per decade over the period 1959-2012 and at a rate about -1.57 to -0.82% per decade over 1980-2012. There is no statistically significant trend in the equatorward cold air mass flux across latitude of 45N, which is an indicator for hemispheric-scale cold air outbreak, over the period 1980-2012 except for NCEP-NCAR reanalysis dataset which shows substantial decreasing trend of about -3.28% per decade. The spatial distribution of the long-term trend of cold air mass amount in the NH winter is almost consistent among reanalysis datasets except for JRA-55AMIP over the period 1980-2012. Cold air mass amount increases over Central Siberia, Kamchatka peninsula, and Bering Sea, while it decreases over Norwegian Sea, Barents Sea, Kara Sea, Greenland, Canada, Northern part of United States, and East Asia. In the SH winter, on the other hand, there is a large discrepancy in hemispheric total cold air mass amount and equatorward cold air mass flux across latitude of 50S over the period 1980-2010 among reanalysis datasets. This result indicate that there is a large uncertainty in the long-term trend of cold air mass amount in the SH winter.

  12. Use of Chiral Signatures of Organochlorine Pesticides in Asian, Trans-Pacific, and Western U.S. Air Masses to Identify Source Regions

    NASA Astrophysics Data System (ADS)

    Simonich, S.; Genualdi, S.; Primbs, T.; Ryoo, K.; Bidleman, T.; Jantunen, L.

    2008-12-01

    Chiral signatures of organochlorine pesticides were measured in air masses on Okinawa Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a coastal site on the Olympic Peninsula of Washington at 500 m; Mary's Peak Observatory (MPO), a site at 1250 m in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2300 m in Oregon's Cascade range. The chiral signature of composite soil samples collected from agricultural areas in China and South Korea were also measured. Racemic alpha-HCH was measured in Asian air masses and soil from China and South Korea. Non-racemic (enantiomer fraction (EF) = 0.528 ± 0.0048) alpha-HCH was measured in regional air masses at CPO, a marine boundary layer site, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the EFs were significantly (p-value <0.001) more racemic (EF = 0.513 ± 0.0003). Racemic alpha-HCH was consistently measured in trans- Pacific air masses at MPO and MBO. The alpha-HCH EFs in CPO, MPO, and MBO air masses were positively correlated (p-value = 0.0017) with the amount of time the air mass spent above the boundary layer along the 10-day back air mass trajectory prior to being sampled. This suggests that the alpha-HCH in the free troposphere is racemic. The racemic signatures of cis and trans chlordane in air masses at all four air sampling sites suggest that Asian and U.S. urban areas continue to be sources of chlordanes that have not yet undergone biotransformation.

  13. The low-mass classic Algol-type binary UU Leo revisited

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Gui

    2013-12-01

    New multi-color photometry of the eclipsing binary UU Leo, acquired from 2010 to 2013, was carried out by using the 60-cm and 85-cm telescopes at the Xinglong station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. With the updated Wilson-Devinney code, the photometric solution was derived from BVR light curves. The results imply that UU Leo is a semi-detached Algol-type binary, with a mass ratio of q = 0.100(±0.002). The change in orbital period was reanalyzed based on all available eclipsing times. The O - C curve could be described by an upward parabola superimposed on a quasi-sinusoidal curve. The period and semi-amplitudes are Pmod = 54.5(±1.1) yr and A = 0.0273d(±0.0015d), which may be attributed to the light-time effect via the presence of an invisible third body. The long-term period increases at a rate of dP/dt = +4.64(±0.14) × 10-7d yr-1, which may be interpreted by the conserved mass being transferred from the secondary to the primary. With mass being transferred, the low-mass Algol-type binary UU Leo may evolve into a binary system with a main sequence star and a helium white dwarf.

  14. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. PMID:26838378

  15. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  16. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  17. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening.

  18. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  19. Relationship Between a Coronal Mass Ejection-Driven Shock and a Coronal Metric Type II Burst

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Luhmann, J. G.; Bale, S. D.; Lin, R. P.

    2009-02-01

    It has been an intense matter of debate whether coronal metric type II bursts are generated by coronal mass ejection (CME)-driven shocks or flare blast waves. Using unprecedented high-cadence observations from STEREO/SECCHI, we investigate the relationship between a metric type II event and a shock driven by the 2007 December 31 CME. The existence of the CME-driven shock is indicated by the remote deflection of coronal structures, which is in good timing with the metric type II burst. The CME speed is about 600 km s-1 when the metric type II burst occurs, much larger than the Alfvén speed of 419-489 km s-1 determined from band splitting of the type II burst. A causal relationship is well established between the metric and decametric-hectometric type II bursts. The shock height-time curve determined from the type II bands is also consistent with the shock propagation obtained from the streamer deflection. These results provide unambiguous evidence that the metric type II burst is caused by the CME-driven shock.

  20. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  1. The role of dust in mass loss from late-type stars

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    It is noted that, in almost all late-type stars with measured mass loss rates, there is sufficient momentum in the radiation to dominate the dynamics. The opacity of the material is sufficiently great to render radiation pressure important; the dust forms close enough to the central star for radiation pressure to account for the observed outflow velocities. Pulsations appear to be important in raising the material far enough above the photosphere for grains to condense.

  2. Rapid Bacterial Identification, Resistance, Virulence and Type Profiling using Selected Reaction Monitoring Mass Spectrometry.

    PubMed

    Charretier, Yannick; Dauwalder, Olivier; Franceschi, Christine; Degout-Charmette, Elodie; Zambardi, Gilles; Cecchini, Tiphaine; Bardet, Chloe; Lacoux, Xavier; Dufour, Philippe; Veron, Laurent; Rostaing, Hervé; Lanet, Veronique; Fortin, Tanguy; Beaulieu, Corinne; Perrot, Nadine; Dechaume, Dominique; Pons, Sylvie; Girard, Victoria; Salvador, Arnaud; Durand, Géraldine; Mallard, Frédéric; Theretz, Alain; Broyer, Patrick; Chatellier, Sonia; Gervasi, Gaspard; Van Nuenen, Marc; Roitsch, Carolyn Ann; Van Belkum, Alex; Lemoine, Jérôme; Vandenesch, François; Charrier, Jean-Philippe

    2015-01-01

    Mass spectrometry (MS) in Selected Reaction Monitoring (SRM) mode is proposed for in-depth characterisation of microorganisms in a multiplexed analysis. Within 60-80 minutes, the SRM method performs microbial identification (I), antibiotic-resistance detection (R), virulence assessment (V) and it provides epidemiological typing information (T). This SRM application is illustrated by the analysis of the human pathogen Staphylococcus aureus, demonstrating its promise for rapid characterisation of bacteria from positive blood cultures of sepsis patients. PMID:26350205

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. A genomics study of type 2 diabetes mellitus in U.S. Air Force personnel.

    PubMed

    Lott, Lisa

    2009-07-01

    The military community is at high risk for type 2 diabetes (T2D), especially as it relates to military beneficiaries, although preventive measures can be implemented to reduce disease onset. This study evaluates the prevalence of risk-associated single nucleotide polymorphisms in patients diagnosed with T2D within active duty, retired military, and military-dependent populations on Lackland Air Force Base compared to nondiabetic controls. Results will be used as a basis of comparison to analyze risk-conferring genotypes in the young, healthy active duty population to generate the prevalence of T2D risk-associated factors in our current and future war fighters. Identifying genetic markers of T2D prior to abnormal glucose control and insulin resistance may ultimately adjust future risk through early detection, healthy lifestyle modifications, and disease management programs.

  5. Cost analysis of new and retrofit hot-air type solar assisted heating systems

    NASA Technical Reports Server (NTRS)

    Stewart, R. D.; Hawkins, B. J.

    1978-01-01

    A detailed cost analysis/cost improvement study was performed on two Department of Energy/National Aeronautics and Space Administration operational test sites to determine actual costs and potential cost improvements of new and retrofit hot air type, solar assisted heating and hot water systems for single family sized structures. This analysis concentrated on the first cost of a system which included procurement, installation, and integration of a solar assisted heating and hot water system on a new or retrofit basis; it also provided several cost projections which can be used as inputs to payback analyses, depending upon the degree of optimism or future improvements assumed. Cost definitions were developed for five categories of cost, and preliminary estimates were developed for each. The costing methodology, approach, and results together with several candidate low cost designs are described.

  6. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  7. THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Gupta, Ravi R.; Sako, Masao; Mannucci, Filippo; Nichol, Robert C.

    2013-02-20

    Type Ia supernova Hubble residuals have been shown to correlate with host galaxy mass, imposing a major obstacle for their use in measuring dark energy properties. Here, we calibrate the fundamental metallicity relation (FMR) of Mannucci et al. for host mass and star formation rates measured from broadband colors alone. We apply the FMR to the large number of hosts from the SDSS-II sample of Gupta et al. and find that the scatter in the Hubble residuals is significantly reduced when compared with using only stellar mass (or the mass-metallicity relation) as a fit parameter. Our calibration of the FMR is restricted to only star-forming galaxies and in the Hubble residual calculation we include only hosts with log(SFR) > - 2. Our results strongly suggest that metallicity is the underlying source of the correlation between Hubble residuals and host galaxy mass. Since the FMR is nearly constant between z = 2 and the present, use of the FMR along with light-curve width and color should provide a robust distance measurement method that minimizes systematic errors.

  8. Evidence for the Rapid Formation of Low-mass Early-type Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Liu, Yiqing; Peng, Eric W.; Blakeslee, John; Côté, Patrick; Ferrarese, Laura; Jordán, Andrés; Puzia, Thomas H.; Toloba, Elisa; Zhang, Hong-Xin

    2016-02-01

    We explore the environmental dependence of star formation timescales in low-mass galaxies using the [α/Fe] abundance ratio as an evolutionary clock. We present integrated [α/Fe] measurements for 11 low-mass ({M}\\star ˜ {10}9 {M}⊙ ) early-type galaxies (ETGs) with a large range of cluster-centric distance in the Virgo Cluster. We find a gradient in [α/Fe], where the galaxies closest to the cluster center (the cD galaxy, M87) have the highest values. This trend is driven by galaxies within a projected radius of 0.4 Mpc (0.26 times the virial radius of Virgo A), all of which have super-solar [α/Fe]. Galaxies in this mass range exhibit a large scatter in the [α/Fe]-σ diagram, and do not obviously lie on an extension of the relation defined by massive ETGs. In addition, we find a correlation between [α/Fe] and globular cluster specific frequency (SN), suggesting that low-mass ETGs that formed their stars over a short period of time were also efficient at forming massive star clusters. The innermost low-mass ETGs in our sample have [α/Fe] values comparable to that of M87, implying that environment is the controlling factor for star formation timescales in dense regions. These low-mass galaxies could be the surviving counterparts of the objects that have already been accreted into the halo of M87, and may be the link between present-day low-mass galaxies and the old, metal-poor, high-[α/Fe], high-SN stellar populations seen in the outer halos of massive ETGs.

  9. COMPARING X-RAY AND DYNAMICAL MASS PROFILES IN THE EARLY-TYPE GALAXY NGC 4636

    SciTech Connect

    Johnson, Ria; Raychaudhury, Somak; Chakrabarty, Dalia; O'Sullivan, Ewan E-mail: D.Chakrabarty@warwick.ac.u

    2009-12-01

    We present the results of an X-ray mass analysis of the early-type galaxy NGC 4636, using Chandra data. We have compared the X-ray mass density profile with that derived from a dynamical analysis of the system's globular clusters (GCs). Given the observed interaction between the central active galactic nucleus and the X-ray emitting gas in NGC 4636, we would expect to see a discrepancy in the masses recovered by the two methods. Such a discrepancy exists within the central approx10 kpc, which we interpret as the result of non-thermal pressure support or a local inflow. However, over the radial range approx10-30 kpc, the mass profiles agree within the 1sigma errors, indicating that even in this highly disturbed system, agreement can be sought at an acceptable level of significance over intermediate radii, with both methods also indicating the need for a dark matter halo. However, at radii larger than 30 kpc, the X-ray mass exceeds the dynamical mass, by a factor of 4-5 at the largest disagreement. A Fully Bayesian Significance Test finds no statistical reason to reject our assumption of velocity isotropy, and an analysis of X-ray mass profiles in different directions from the galaxy center suggests that local disturbances at large radius are not the cause of the discrepancy. We instead attribute the discrepancy to the paucity of GC kinematics at large radius, coupled with not knowing the overall state of the gas at the radius where we are reaching the group regime (>30 kpc), or a combination of the two.

  10. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  11. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  12. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  13. Dynamical mass of the O-type supergiant in ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Hummel, C. A.; Rivinius, Th.; Nieva, M.-F.; Stahl, O.; van Belle, G.; Zavala, R. T.

    2013-06-01

    Aims: A close companion of ζ Orionis A was found in 2000 with the Navy Precision Optical Interferometer (NPOI), and shown to be a physical companion. Because the primary is a supergiant of type O, for which dynamical mass measurements are very rare, the companion was observed with NPOI over the full 7-year orbit. Our aim was to determine the dynamical mass of a supergiant that, due to the physical separation of more than 10 AU between the components, cannot have undergone mass exchange with the companion. Methods: The interferometric observations allow measuring the relative positions of the binary components and their relative brightness. The data collected over the full orbital period allows all seven orbital elements to be determined. In addition to the interferometric observations, we analyzed archival spectra obtained at the Calar Alto, Haute Provence, Cerro Armazones, and La Silla observatories, as well as new spectra obtained at the VLT on Cerro Paranal. In the high-resolution spectra we identified a few lines that can be associated exclusively to one or the other component for the measurement of the radial velocities of both. The combination of astrometry and spectroscopy then yields the stellar masses and the distance to the binary star. Results: The resulting masses for components Aa of 14.0 ± 2.2 M⊙ and Ab of 7.4 ± 1.1 M⊙ are low compared to theoretical expectations, with a distance of 294 ± 21 pc which is smaller than a photometric distance estimate of 387 ± 54 pc based on the spectral type B0III of the B component. If the latter (because it is also consistent with the distance to the Orion OB1 association) is adopted, the mass of the secondary component Ab of 14 ± 3 M⊙ would agree with classifying a star of type B0.5IV. It is fainter than the primary by about 2.2 ± 0.1 magnitudes in the visual. The primary mass is then determined to be 33 ± 10 M⊙. The possible reasons for the distance discrepancy are most likely related to physical

  14. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    SciTech Connect

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-07-10

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J - H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 {mu}m) and W2 (4.6 {mu}m) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < {alpha} < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  15. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  16. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  17. A new type of insect infrared organ of low thermal mass

    NASA Astrophysics Data System (ADS)

    Schmitz, Helmut; Schmitz, Anke; Trenner, Stefan; Bleckmann, Horst

    2002-03-01

    The Australian beetle Acanthocnemus nigricans is attracted by forest fires and has a pair of complex infrared (IR) receptor organs on the first thoracic segment. Each organ consists of a tiny sensory disc (diameter 120-130 µm) which serves as an absorbing structure for IR radiation. The disc is arranged above an air-filled cavity which is located just anteriorly to the coxae of the prothoracic legs. Inside the disc, about 30 multipolar thermoreceptors (warmth receptors) are tightly attached to the cuticle which is directed to the outside. The many dendrites of each multipolar neuron are tightly wrapped around the soma and contain a large number of mitochondria. Absorption of IR radiation by the disc causes an increase in temperature which is measured by the warmth receptors. Therefore, the IR receptors of A. nigricans can be classified as microbolometers with reduced thermal mass and in principle can be compared to the IR organs of pit vipers.

  18. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  19. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  20. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  1. IS WX CEN A POSSIBLE TYPE Ia SUPERNOVA PROGENITOR WITH WIND-DRIVEN MASS TRANSFER?

    SciTech Connect

    Qian, S.-B.; Shi, G.; Zhu, L.-Y.; Liu, L.; Zhao, E.-G.; Li, L.-J.; Fernandez Lajus, E.; Di Sisto, R. P.

    2013-08-01

    WX Cen is one of a few compact binary supersoft X-ray sources (CBSS) in the Galaxy that is a possible Type Ia supernova (SN Ia) progenitor. The supersoft X-ray radiation is explained as hydrostatic nuclear burning on the surface of the white dwarf component that is accreting hydrogen from a stellar companion at a high rate. If the mass donor in this system has a low mass, as has been suggested in the literature, one would expect a high wind-driven mass transfer rate. In that case, the orbital period of the system should increase. To test this theoretical prediction, we have monitored the system photometrically since 2010. By using four newly determined eclipse timings together with those collected from the literature, we discovered that the orbital period is decreasing at a rate of dP/dt = -5.15 Multiplication-Sign 10{sup -7} days yr{sup -1}. The long-term decrease in the orbital period is contrary to the prediction that the system is powered by wind-driven accretion. It therefore seems plausible that the mass donor could be more massive than the white dwarf, and that the mass transfer is driven by the thermal instability of the donor star. This finding suggests that WX Cen is a key object to check the physical mechanisms of mass accretion in CBSS. The corresponding timescale of the period change is about P/P-dot {approx} 0.81 x 10{sup 6} yr, indicating that WX Cen may evolve into an SNe Ia within one million years in the Galaxy.

  2. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    NASA Astrophysics Data System (ADS)

    Childress, Michael J.; Hillier, D. John; Seitenzahl, Ivo; Sullivan, Mark; Maguire, Kate; Taubenberger, Stefan; Scalzo, Richard; Ruiter, Ashley; Blagorodnova, Nadejda; Camacho, Yssavo; Castillo, Jayden; Elias-Rosa, Nancy; Fraser, Morgan; Gal-Yam, Avishay; Graham, Melissa; Howell, D. Andrew; Inserra, Cosimo; Jha, Saurabh W.; Kumar, Sahana; Mazzali, Paolo A.; McCully, Curtis; Morales-Garoffolo, Antonia; Pandya, Viraj; Polshaw, Joe; Schmidt, Brian; Smartt, Stephen; Smith, Ken W.; Sollerman, Jesper; Spyromilio, Jason; Tucker, Brad; Valenti, Stefano; Walton, Nicholas; Wolf, Christian; Yaron, Ofer; Young, D. R.; Yuan, Fang; Zhang, Bonnie

    2015-12-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of 56Ni to 56Co at early times, and the decay of 56Co to 56Fe from ˜60 d after explosion. We examine the evolution of the [Co III] λ5893 emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of 56Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in 56Co decay and long-term stability of the ionization state of the nebula. We compile SN Ia nebular spectra from the literature and present 21 new late-phase spectra of 7 SNe Ia, including SN 2014J. From these we measure the flux in the [Co III] λ5893 line and remove its well-behaved time dependence to infer the initial mass of 56Ni (MNi) produced in the explosion. We then examine 56Ni yields for different SN Ia ejected masses (Mej - calculated using the relation between light-curve width and ejected mass) and find that the 56Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s ˜ 0.7-0.9), MNi is clustered near MNi ≈ 0.4 M⊙ and shows a shallow increase as Mej increases from ˜1 to 1.4 M⊙; at high stretch, Mej clusters at the Chandrasekhar mass (1.4 M⊙) while MNi spans a broad range from 0.6 to 1.2 M⊙. This could constitute evidence for two distinct SN Ia explosion mechanisms.

  3. The early gaseous and stellar mass assembly of Milky Way-type galaxy haloes

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard

    2015-08-01

    In cosmological simulations of Cold Dark Matter (CDM) structure formation a vast number of subhalos is expected around massive galaxies like the Milky Way (MW). These DM subhalos are filled with baryons, gas that forms stars very early as observed from the stellar populations in the MW satellite galaxies. Satellite galaxies evolve in the tidal field of their mature galaxy and suffer accretion to the major galaxy and their partly disruption. By this, their mass loss is expected to feed the galaxy halo with stars and gas.From the Via Lactea II simulations we select a massive DM halo with its satellite system which evolves in the simulations to a present-day MW-type galaxy. We follow its evolution from redshift 4.5 to 2.5, i.e. over almost 2 billion years of the most interesting epoch of mass assembly. A high mass resolution allows for even low-mass satellites down to 10^5 Msun, but limits their distance range to the innermost 240 satellites of the system only. The applied chemo-dynamical method includes star formation, stellar energetic and chemical feedback, and gas physical processes.After the onset of the simulation our models demonstrate the action of tidal effects and satellite merging on the star-formation rate of the satellites, their gas loss by means of hot-gas expansion, of ram-pressure and tidal stripping, and the tidal extraction of stars, leading to the formation of the stellar and gaseous galactic halo. We also analyze the evolution of the satellites’ mass function, their baryonic and DM mass distributions, chemical abundances, their compactness, their present-day appearance, etc. with respect to observations and present-day correlations.

  4. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments

    SciTech Connect

    Oswald, W W; Anderson, P M; Brown, T A; Brubaker, L B; Hu, F S; Lozhkin, A V; Tinner, W; Kaltenrieder, P

    2006-05-29

    Dating lake sediments by accelerator mass spectrometry (AMS) {sup 14}C analysis of plant macrofossils overcomes one of the main problems associated with dating bulk sediment samples, the presence of old organic matter. Even so, many AMS dates from arctic and boreal sites appear to misrepresent the age of the sediment. To understand the nature of these apparent dating anomalies better, we conducted a series of {sup 14}C dating experiments using samples from Alaskan and Siberian lake-sediment cores. First, to test whether our analytical procedures introduced a sample-mass bias, we obtained {sup 14}C dates for different-sized pieces of single woody macrofossils. In these sample-mass experiments, sized statistically equivalent ages were found for samples as small as 0.05 mg C. Second, to assess whether macrofossil type influenced dating results, we conducted sample-type experiments in which {sup 14}C dates were obtained for different macrofossil types sieved from the same depth in the sediment. We dated materials from multiple levels in sediment cores from Upper Capsule Lake (North Slope, northern Alaska) and Grizzly Lake (Copper River Basin, southern Alaska), and from single depths in other records from northern Alaska. In several of the experiments there were significant discrepancies between dates for different plant tissues, and in most cases wood and charcoal were older than other macrofossil types, usually by several hundred years. This pattern suggests that {sup 14}C dates for woody macrofossils may misrepresent the age of the sediment by centuries, perhaps due to their longer terrestrial residence time and the potential in-built age of long-lived plants. This study identifies why some {sup 14}C dates appear to be inconsistent with the overall age-depth trend of a lake-sediment record, and it may guide the selection of {sup 14}C samples in future studies.

  5. Numerical investigation of oxygen mass transfer in a helical-type artery bypass graft.

    PubMed

    Zheng, Tinghui; Wen, Jun; Jiang, Wentao; Deng, Xiaoyan; Fan, Yubo

    2014-04-01

    Local oxygen lack in arterial walls (hypoxia) plays a very important role in the initiation, progression and development of intimal hyperplasia (IH) and thrombosis. Aiming to find out whether a helical-type artery bypass graft (ABG) is hypoxia beneficial, a numerical study was carried out to compare oxygen transport between a helical-type ABG and a conventional-type ABG. The dimensionless mass transfer coefficient (Sherwood number) was introduced to evaluate the oxygen mass transfer distribution and detailed oxygen wall flux was computed. The results show that the intrinsic geometry of a helical-type ABG resulted in improved hypoxia and the oxygen-depleted fluid located proximally to the occluded section as compared with that of a conventional-type ABG. However, benefits aside, distinct double low regions (low wall shear stress (WSS) and hypoxia) which might be most prone to IH and more localised and thicker boundary layer of oxygen-depleted fluid were observed at the helical-type ABG. This may explain why the helical flow plays a detrimental role at some locations in the human body. In addition, it was observed that although low WSS region was always accompanied with low oxygen supply, the oxygen transport rate did not adjust simultaneously with flow. The change in oxygen distribution usually lagged behind the flow change. A physiological WSS region may be associated with hypoxia condition. This study captured the qualitative trend of oxygen distribution in ABGs and the effect of helical geometry on reducing hypoxia, which is useful in the structural design of swirling flow vascular devices.

  6. Elbow mass flow meter

    DOEpatents

    McFarland, A.R.; Rodgers, J.C.; Ortiz, C.A.; Nelson, D.C.

    1994-08-16

    The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity. 3 figs.

  7. TZ Lyrae: an Algol-type Eclipsing Binary with Mass Transfer

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Gui; Yin, Xin-Guo

    2007-04-01

    We present a detailed investigation of the Algol-type binary TZ Lyrae, based on 55 light minimum timings spanning 90 years. It is found that the orbital period shows a long-term increase with a cyclic variation superimposed. The rate of the secular increase is dP/dt=+7.18× 10^{-8} d yr^{-1}, indicating that a mass transfer from the less massive component to the more massive one at a rate of dm=+2.21×10^{-8} M_⊙ yr^{-1}. The cyclic component, with a period of P_{3}=45.5 yr and an amplitude of A=0.0040°, may be interpreted as either the light-time effect in the presence of a third body or magnetic activity cycles in the components. Using the latest version Wilson-Devinney code, a revised photometric solution was deduced from B and V observations. The results show that TZ Lyr is an Algol-type eclipsing binary with a mass ratio of q=0.297(±0.003). The semidetached configuration with a lobe-filling secondary suggests a mass transfer from the secondary to the primary, which is in agreement with the long-term period increase of the binary system.

  8. Regulating the beta cell mass as a strategy for type-2 diabetes treatment.

    PubMed

    Song, Imane; Muller, Christo; Louw, Johan; Bouwens, Luc

    2015-01-01

    The incidence of type 2 diabetes (T2D) increases dramatically worldwide and has created an enormous health care burden. Obesity, dyslipidemia and insulin resistance are major risk factors for the development of T2D, but the major factor leading to the disease is failure of the insulin-producing beta cell mass to compensate for increasing insulin demands of the body. Progression of the disease further diminishes the beta cell mass as a result of lipotoxicity and glucotoxicity for which beta cells are particularly sensitive. Hence, treatment aiming to prevent beta cell loss or increase the number of beta cells could inhibit diabetes progression or lead to restoration of normal metabolism. Whereas current and new antidiabetic drugs are mainly targeting insulin secretion and action or glucose uptake, newer interventions must be found that prevent beta cell loss or increase beta cell number. The targets for this are beta cell proliferation, neogenesis and survival. This review examines major evidence from animal experiments suggesting that it is feasible to regulate the beta cell mass by bioactive compounds like growth factors, cytokines, hormones, phytochemicals and small molecules. Often the mode of action remains unclear due to inadequate methods to assess the effects of the compounds on the beta cell dynamics. Furthermore, a major challenge is to identify compounds with sufficient specificity in order to avoid unwanted effects on other cell types. Provided such safety issues can be solved, this may provide a curative approach for diabetes treatment.

  9. Earthquake-induced collapse mechanism of two types of dangerous rock masses

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yuan, Wei; Wang, Qizhi; Xue, Kang

    2016-06-01

    As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially following a strong earthquake, is one of common geological disasters known in rock slope engineering. Therefore, it is important to study the collapse mechanism of dangerous rock masses induced by an earthquake and the analysis approach of its stability. This study provides a simple and convenient method to determine the collapse mechanisms of two types of dangerous rock masses (i.e. cantilever and upright) associated with the definition and calculation of the safety factor, which is based on the flexure theory of a constant-section beam by combining with the maximum tensile-stress criterion to depict the process of crack propagation caused by seismic waves. The calculation results show that there are critical crack depths in each form of the dangerous rock masses. Once the accumulated depth of the crack growth during an earthquake exceeds the critical depth, the collapse will occur. It is also demonstrated that the crack extension amount of each step is not a constant value, and is closely associated with the current accumulated crack depth. The greater the cumulative crack depth, the more easily the crack propagates. Finally, the validity and applicability of the proposed method are verified through two actual engineering examples.

  10. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION

    PubMed Central

    Bauer, Johannes H.; Pickels, Edward G.

    1937-01-01

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2°C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described. PMID:19870619

  11. New Splice Site Acceptor Mutation in AIRE Gene in Autoimmune Polyendocrine Syndrome Type 1

    PubMed Central

    Mora, Mireia; Hanzu, Felicia A.; Pradas-Juni, Marta; Aranda, Gloria B.; Halperin, Irene; Puig-Domingo, Manuel; Aguiló, Sira; Fernández-Rebollo, Eduardo

    2014-01-01

    Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison’s disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases. PMID:24988226

  12. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION.

    PubMed

    Bauer, J H; Pickels, E G

    1937-03-31

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2 degrees C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described.

  13. AN IMPROVED AIR-DRIVEN TYPE OF ULTRACENTRIFUGE FOR MOLECULAR SEDIMENTATION.

    PubMed

    Bauer, J H; Pickels, E G

    1937-03-31

    1. A description is given of the construction details and operation characteristics of an improved type of air-driven ultracentrifuge operating in vacuum and suitable for the determination of sedimentation constants of protein molecules. 2. The rotor of the centrifuge is made of a forged aluminum alloy; it is oval in shape, measures 185 mm. at its greatest diameter, and weighs 3,430 gm. It carries a transparent cell located at a distance of 65 mm. from the axis of rotation and designed to accommodate a fluid column 15 mm. high. 3. The rotor has been run repeatedly over long periods at a speed of 60,000 R.P.M., which corresponds to a centrifugal force of 260,000 times gravity in the center of the cell. At this speed no deformation of the rotor nor leakage of the cell has been observed. 4. The sharp definition of sedimentation photographs taken at high speed serves to indicate the absence of detectable vibrations in the centrifuge. 5. When a vacuum of less than 1 micron of mercury is maintained in the centrifuge chamber, the rise in the rotor temperature amounts to only 1 or 2 degrees C. after several hours' run at high speed. 6. There has been no evidence of convection currents interfering with normal sedimentation of protein molecules in the centrifugal field. 7. A driving air pressure of about 18 pounds per square inch is sufficient to maintain the centrifuge at a steady speed of 60,000 R.P.M. With a driving pressure of 80 pounds per square inch, it can be accelerated to this speed in less than 20 minutes, and also brought to rest in about the same length of time by the application of the braking system. 8. The adaptation of Svedberg's optical systems to this centrifuge for photographically recording the movement of sedimentation boundaries is described. PMID:19870619

  14. Small field in-air output factors: The role of miniphantom design and dosimeter type

    SciTech Connect

    Warrener, Kirbie; Hug, Benjamin; Ebert, Martin A.; Liu, Paul; McKenzie, David R.; Ralston, Anna; Suchowerska, Natalka

    2014-02-15

    Purpose: The commissioning of treatment planning systems and beam modeling requires measured input parameters. The measurement of relative output in-air, S{sub c} is particularly difficult for small fields. The purpose of this study was to investigate the influence of miniphantom design and detector selection on measured S{sub c} values for small fields and to validate the measurements against Monte Carlo simulations. Methods: Measurements were performed using brass caps (with sidewalls) or tops (no sidewalls) of varying heights and widths. The performance of two unshielded diodes (60012 and SFD), EBT2 radiochromic film, and a fiber optic dosimeter (FOD) were compared for fields defined by MLCs (5–100 mm) and SRS cones (4–30 mm) on a Varian Novalis linear accelerator. Monte Carlo simulations were performed to theoretically predict S{sub c} as measured by the FOD. Results: For all detectors, S{sub c} agreed to within 1% for fields larger than 10 mm and to within 2.3% for smaller fields. Monte Carlo simulation matched the FOD measurements for all size of cone defined fields to within 0.5%. Conclusions: Miniphantom design is the most important variable for reproducible and accurate measurements of the in-air output ratio, S{sub c}, in small photon fields (less than 30 mm). Sidewalls are not required for fields ≤ 30 mm and tops are therefore preferred over the larger caps. Unlike output measurements in water, S{sub cp,} the selection of detector type for S{sub c} is not critical, provided the active dosimeter volume is small relative to the field size.

  15. Magnetic fields and star formation in low-mass Magellanic-type and peculiar galaxies

    NASA Astrophysics Data System (ADS)

    Jurusik, W.; Drzazga, R. T.; Jableka, M.; Chyży, K. T.; Beck, R.; Klein, U.; Weżgowiec, M.

    2014-07-01

    Aims: We investigate how magnetic properties of Magellanic-type and perturbed objects are related to star-forming activity, galactic type, and mass. Methods: We present radio and magnetic properties of five Magellanic-type and two peculiar low-mass galaxies observed at 4.85 and/or 8.35 GHz with the Effelsberg 100 m telescope. The sample is extended to 17 objects by including five Magellanic-type galaxies and five dwarf ones. Results: The distribution of the observed radio emission of low-mass galaxies at 4.85/8.35 GHz is closely connected with the galactic optical discs, which are independent for unperturbed galaxies and those which show signs of tidal interactions. The strengths of total magnetic field are within 5-9 μG, while the ordered fields reach 1-2 μG, and both these values are larger than in typical dwarf galaxies and lower than in spirals. The magnetic field strengths in the extended sample of 17 low-mass galaxies are well correlated with the surface density of star formation rate (correlation coefficient of 0.87) and manifest a power-law relation with an exponent of 0.25 ± 0.02 extending a similar relation found for dwarf galaxies. We claim that the production of magnetic energy per supernova event is very similar for all the various galaxies. It constitutes about 3% (1049 erg) of the individual supernovae energy release. We show that the total magnetic field energy in galaxies is almost linearly related to the galactic gas mass, which indicates equipartition of the magnetic energy and the turbulent kinetic energy of the interstellar medium. The Magellanic-type galaxies fit very well with the radio-infrared relation constructed for surface brightness of galaxies of various types, including bright spirals and interacting objects (with a slope of 0.96 ± 0.03 and correlation coefficient of 0.95). We found that the typical far-infrared relation based on luminosity of galaxies is tighter and steeper but more likely to inherit a partial correlation from a

  16. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score.

    PubMed

    Eze, Ikenna C; Imboden, Medea; Kumar, Ashish; von Eckardstein, Arnold; Stolz, Daiana; Gerbase, Margaret W; Künzli, Nino; Pons, Marco; Kronenberg, Florian; Schindler, Christian; Probst-Hensch, Nicole

    2016-09-01

    Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia.

  17. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score.

    PubMed

    Eze, Ikenna C; Imboden, Medea; Kumar, Ashish; von Eckardstein, Arnold; Stolz, Daiana; Gerbase, Margaret W; Künzli, Nino; Pons, Marco; Kronenberg, Florian; Schindler, Christian; Probst-Hensch, Nicole

    2016-09-01

    Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia. PMID:27281273

  18. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  19. Smart tetroons for Lagrangian air-mass tracking during ACE 1

    NASA Astrophysics Data System (ADS)

    Businger, Steven; Johnson, Randy; Katzfey, Jack; Siems, Steven; Wang, Qing

    1999-05-01

    A series of "smart" tetroons was released from shipboard during the recent ACE 1 field experiment designed to monitor changes in the sulfur budget in a remote marine boundary layer (MBL) south of Tasmania, Australia. The smart tetroons were designed at NOAA Air Resources Laboratory Field Research Division to provide air parcel tracking information. The adjective smart here refers here to the fact that the buoyancy of the tetroons automatically adjusts through the action of a pump and valves when the tetroon travels vertically outside a range of pressures set prior to tetroon release. The smart tetroon design provides GPS location, barometric pressure, temperature, relative humidity, and tetroon status data via a transponder to the NCAR C-130 research aircraft flying in the vicinity of the tetroons. In this paper we will describe (1) the design and capability of the smart tetroons and their performance during the two Lagrangian experiments conducted during ACE 1, (2) the synoptic context of the Lagrangians, including the origin of the air parcels being tracked, and (3) the results of trajectory predictions derived from the National Center for Environmental Prediction (NCEP) Global Spectral Model (GSM) and Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Atmospheric Research (DAR) limited-area model.

  20. Mass transfer of volatile organic compounds from drinking water to indoor air: The role of residential dishwashers

    SciTech Connect

    Howard-Reed, C.; Corsi, R.L.; Moya, J.

    1999-07-01

    Contaminated tap water may be a source of volatile organic compounds (VOCs) in residential indoor air. To better understand the extent and impact of chemical emissions from this source, a two-phase mass balance model was developed based on mass transfer kinetics between each phase. Twenty-nine experiments were completed using a residential dishwasher to determine model parameters. During each experiment, inflow water was spiked with a cocktail of chemical tracers with a wide range of physicochemical properties. In each case, the effects of water temperature, detergent, and dish-loading pattern on chemical stripping efficiencies and mass transfer coefficients were determined. Dishwasher headspace ventilation rates were also measured using an isobutylene tracer gas. Chemical stripping efficiencies for a single cycle ranged from 18% to 55% for acetone, from 96% to 98% for toluene, and from 97% to 98% for ethylbenzene and were consistently 100% for cyclohexane. Experimental results indicate that dishwashers have a relatively low but continuous ventilation rate that results in significant chemical storage within the headspace of the dishwasher. In conjunction with relatively high mass transfer coefficients, low ventilation rates generally lead to emissions that are limited by equilibrium conditions after approximately 1--2 min of dishwasher operation.

  1. Leptogenesis in a seesaw model with Fritzsch-type lepton mass matrices

    SciTech Connect

    Ahn, Y. H.; Kim, C. S.; Lee, Jake; Kang, Sin Kyu

    2008-04-01

    We investigate how the baryon asymmetry of our Universe via leptogenesis can be achieved within the framework of the seesaw model with Fritzsch-type lepton mass matrices proposed by Fukugita et al. We study the cases with CP-violating phases in charged-lepton Yukawa matrix, however, with and without Dirac neutrino Yukawa phases. We consider both flavor-independent and flavor-dependent leptogenesis, and demonstrate how they lead to different amounts of lepton asymmetries in detail. In particular, it is shown that flavor-dependent leptogenesis in this model can be achieved only for very tiny or zero values of CP phases in Dirac neutrino Yukawa matrix at the grand unified theory scale. In addition to the CP phases, for successful leptogenesis in the model it is required that the degeneracy of the heavy Majorana neutrino mass spectrum should be broken and we also show that the breakdown of the degeneracy can be radiatively induced.

  2. Constraints on single-degenerate Chandrasekhar mass progenitors of Type Iax supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Moriya, Takashi J.; Stancliffe, Richard J.; Wang, Bo

    2015-02-01

    Context. Type Iax supernovae (SNe Iax) are proposed as one new sub-class of SNe Ia since they present sufficiently distinct observational properties from the bulk of SNe Ia. Observationally, SNe Iax have been estimated to account for ~5%-30% of the total SN Ia rate, and most SNe Iax have been discovered in late-type galaxies. In addition, observations constrain the progenitor systems of some SN Iax progenitors that have ages of <80 Myr. Although the identity of the progenitors of SNe Iax is unclear, the weak deflagration explosions of Chandrasekhar-mass (Ch-mass) carbon/oxygen white dwarfs (C/O WDs) seem to provide a viable physical scenario. Aims: Comparing theoretical predictions from binary population synthesis (BPS) calculations with observations of SNe Iax, we put constraints on the single-degenerate (SD) Ch-mass model as a possible SN Iax progenitor. Methods: Based on the SD Ch-mass model, the SN rates and delay times are predicted by combining binary evolution calculations for the progenitor systems into a BPS model. Moreover, with current X-ray observations of SNe Iax, we constrain the pre-explosion mass-loss rates of stellar progenitor systems by using two analytic models. Results: From our calculations, the long delay times of ≳3 Gyr and low SN rates of ~3 × 10-5 yr-1 are found in the red-gaint donor channel, indicating that this channel is unlikely to produce SNe Iax. With our standard models, we predict that the Galactic SN Iax rate from the main-sequence (helium-star) donor scenario is ~1.5 × 10-3 yr-1 (~3 × 10-4 yr-1). The total rate of these two models is consistent with the observed SN Iax rate. The short delay times in the helium-star donor channel (<100 Myr) support the young host environments of SNe Iax. However, the relatively long delay times in the main-sequence donor channel (~250 Myr-1 Gyr) are less favourable for the observational constraints on the ages of SN Iax progenitors. Finally, with current X-ray observations for SNe Iax, we

  3. Mass and stellar orbit distribution of Early-Type galaxy haloes

    NASA Astrophysics Data System (ADS)

    Napolitano, Nicola R.

    2015-08-01

    We present orbital anisotropy and dark halo parameters of a sample of early-type galaxies (ETGs) for which hundreds of planetary nebulae (PNe) have been observed within the PN.S Elliptical Galaxy Survey. Recent analyses have shown that PNe closely follow the bulk of the stellar population and can be used in combination with long slit and integral field kinematics to constrain the mass and orbital distribution of early-type galaxies out to their outskirts (~6-10Re). Discrete tracers currently represent a powerful tool for the investigation of these otherwise inaccessible regions of galaxies with other standard techniques, where typical dynamical times are longer and we expect to measure the signature or recent evolutionary events. In particular, the possibility to infer the variation of the orbital distribution of stars in the galaxy haloes is a strong observational test for galaxy formation scenarios than can be compared with predictions of hydrodynamical simulations. Finally, we will discuss the dark matter concentration and virial mass results against the predictions of state-of-art cosmological simulation in the LambdaCDM cosmology defined by Planck cosmological parameters. All these evidence together will allow us to gain insight on the baryon and dark matter assembly in the halo regions of early-type galaxies.

  4. THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS

    SciTech Connect

    Conroy, Charlie; Van Dokkum, Pieter G.

    2012-11-20

    The spectral absorption lines in early-type galaxies contain a wealth of information regarding the detailed abundance pattern, star formation history, and stellar initial mass function (IMF) of the underlying stellar population. Using our new population synthesis model that accounts for the effect of variable abundance ratios of 11 elements, we analyze very high quality absorption line spectra of 38 early-type galaxies and the nuclear bulge of M31. These data extend to 1 {mu}m and they therefore include the IMF-sensitive spectral features Na I, Ca II, and FeH at 0.82 {mu}m, 0.86 {mu}m, and 0.99 {mu}m, respectively. The models fit the data well, with typical rms residuals {approx}< 1%. Strong constraints on the IMF and therefore the stellar mass-to-light ratio, (M/L){sub stars}, are derived for individual galaxies. We find that the IMF becomes increasingly bottom-heavy with increasing velocity dispersion and [Mg/Fe]. At the lowest dispersions and [Mg/Fe] values the derived IMF is consistent with the Milky Way (MW) IMF, while at the highest dispersions and [Mg/Fe] values the derived IMF contains more low-mass stars (is more bottom-heavy) than even a Salpeter IMF. Our best-fit (M/L){sub stars} values do not exceed dynamically based M/L values. We also apply our models to stacked spectra of four metal-rich globular clusters in M31 and find an (M/L){sub stars} that implies fewer low-mass stars than a MW IMF, again agreeing with dynamical constraints. We discuss other possible explanations for the observed trends and conclude that variation in the IMF is the simplest and most plausible.

  5. New mass limit for white dwarfs: super-Chandrasekhar type ia supernova as a new standard candle.

    PubMed

    Das, Upasana; Mukhopadhyay, Banibrata

    2013-02-15

    Type Ia supernovae, sparked off by exploding white dwarfs of mass close to the Chandrasekhar limit, play the key role in understanding the expansion rate of the Universe. However, recent observations of several peculiar type Ia supernovae argue for its progenitor mass to be significantly super-Chandrasekhar. We show that strongly magnetized white dwarfs not only can violate the Chandrasekhar mass limit significantly, but exhibit a different mass limit. We establish from a foundational level that the generic mass limit of white dwarfs is 2.58 solar mass. This explains the origin of overluminous peculiar type Ia supernovae. Our finding further argues for a possible second standard candle, which has many far reaching implications, including a possible reconsideration of the expansion history of the Universe.

  6. A Spherical Chandrasekhar-Mass Delayed-Detonation Model for a Normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Blondin, Stéphane; Dessart, Luc; Hillier, D. John

    2015-06-01

    The most widely-accepted model for Type Ia supernovae (SNe Ia) is the thermonuclear disruption of a White Dwarf (WD) star in a binary system, although there is ongoing discussion about the combustion mode, the progenitor mass, and the nature of the binary companion. Observational evidence for diversity in the SN Ia population seems to require multiple progenitor channels or explosion mechanisms. In the standard single-degenerate (SD) scenario, the WD grows in mass through accretion of H-rich or He-rich material from a non-degenerate donor (e.g., a main-sequence star, a subgiant, a He star, or a red giant). When the WD is sufficiently close to the Chandrasekhar limit (˜1.4 M⊙), a subsonic deflagration front forms near the WD center which eventually transitions to a supersonic detonation (the so-called “delayed-detonation” model) and unbinds the star. The efficiency of the WD growth in mass remains uncertain, as repeated nova outbursts during the accretion process result in mass ejection from the WD surface. Moreover, the lack of observational signatures of the binary companion has cast some doubts on the SD scenario, and recent hydrodynamical simulations have put forward WD-WD mergers and collisions as viable alternatives. However, as shown here, the standard Chandrasekhar-mass delayed-detonation model remains adequate to explain many normal SNe Ia, in particular those displaying broad Si II 6355 Å lines. We present non-local-thermodynamic-equilibrium time-dependent radiative transfer simulations performed with CMFGEN of a spherically-symmetric delayed-detonation model from a Chandrasekhar-mass WD progenitor with 0.51 M⊙ of 56Ni (Fig. 1 and Table 1), and confront our results to the observed light curves and spectra of the normal Type Ia SN 2002bo over the first 100 days of its evolution. With no fine tuning, the model reproduces well the bolometric (Fig. 2) and multi-band light curves, the secondary near-infrared maxima (Fig. 3), and the spectroscopic

  7. SOLAR RADIO TYPE-I NOISE STORM MODULATED BY CORONAL MASS EJECTIONS

    SciTech Connect

    Iwai, K.; Tsuchiya, F.; Morioka, A.; Misawa, H.; Miyoshi, Y.; Masuda, S.; Shimojo, M.; Shiota, D.; Inoue, S.

    2012-01-10

    The first coordinated observations of an active region using ground-based radio telescopes and the Solar Terrestrial Relations Observatory (STEREO) satellites from different heliocentric longitudes were performed to study solar radio type-I noise storms. A type-I noise storm was observed between 100 and 300 MHz during a period from 2010 February 6 to 7. During this period the two STEREO satellites were located approximately 65 Degree-Sign (ahead) and -70 Degree-Sign (behind) from the Sun-Earth line, which is well suited to observe the earthward propagating coronal mass ejections (CMEs). The radio flux of the type-I noise storm was enhanced after the preceding CME and began to decrease before the subsequent CME. This time variation of the type-I noise storm was directly related to the change of the particle acceleration processes around its source region. Potential-field source-surface extrapolation from the Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI) magnetograms suggested that there was a multipolar magnetic system around the active region from which the CMEs occurred around the magnetic neutral line of the system. From our observational results, we suggest that the type-I noise storm was activated at a side-lobe reconnection region that was formed after eruption of the preceding CME. This magnetic structure was deformed by a loop expansion that led to the subsequent CME, which then suppressed the radio burst emission.

  8. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  9. A reddening-free method to estimate the 56Ni mass of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2016-04-01

    The increase in the number of Type Ia supernovae (SNe Ia) has demonstrated that the population shows greater diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We investigated a sample of SNe Ia near-infrared light curves and correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the B light curve maximum) as follows: Lmax(1043 erg s-1) = (0.039 ± 0.004) × t2(J)(days) + (0.013 ± 0.106). 56Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to the instantaneous energy generated by the nickel decay. We checked this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The Lmax vs. t2 relation is applied to a sample of 40 additional SNe Ia with significant reddening (E(B - V) > 0.1 mag), and a reddening-free bolometric luminosity function of SNe Ia is established. The method is tested with the 56Ni mass measurement from the direct observation of γ-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN 2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.

  10. Spontaneous Symmetry Breaking Turing-Type Pattern Formation in a Confined Dictyostelium Cell Mass

    NASA Astrophysics Data System (ADS)

    Sawai, Satoshi; Maeda, Yasuo; Sawada, Yasuji

    2000-09-01

    We have discovered a new type of patterning which occurs in a two-dimensionally confined cell mass of the cellular slime mold Dictyostelium discoideum. Besides the longitudinal structure reported earlier, we observed a spontaneous symmetry breaking spot pattern whose wavelength shows similar strain dependency to that of the longitudinal pattern. We propose that these structures are due to a reaction-diffusion Turing instability similar to the one which has been exemplified by CIMA (chlorite-iodide-malonic acid) reaction. The present finding may exhibit the first biochemical Turing structure in a developmental system with a controllable boundary condition.

  11. Evidence of a blast shock in observations of type II radio burst and coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Eselevich, Victor; Zimovets, Ivan; Eselevich, Maxim; Sadykov, Viacheslav

    We have analysed a coronal mass ejection (CME) that occurred on the Sun during solar flare of 16 February 2011. Observations made by the AIA/SDO, EUVI/STEREO, COR1/STEREO were used. Additionally, we have analysed radio observations made by the Nancay Radioheliograph as well as by some CALLISTO and RSTN spectrometers. It is found that sources of a decimetric-metric type II radio burst, which accompanied the event, propagated much faster than the CME. This gives an evidence that the radio burst was caused by a blast shock wave. The possible causes of this shock are discussed.

  12. MASS AND DENSITY OF THE B-TYPE ASTEROID (702) ALAUDA

    SciTech Connect

    Rojo, P.; Margot, J. L. E-mail: jlm@astro.ucla.edu

    2011-02-01

    Observations with the adaptive optics system on the Very Large Telescope reveal that the outer main belt asteroid (702) Alauda has a small satellite with primary to secondary diameter ratio of {approx}56. The secondary revolves around the primary in 4.9143 {+-} 0.007 days at a distance of 1227 {+-} 24 km, yielding a total system mass of (6.057 {+-} 0.36) x 10{sup 18} kg. Combined with an IRAS size measurement, our data yield a bulk density of 1570 {+-} 500 kg m{sup -3} for this B-type asteroid.

  13. Determination of cooling air mass flow for a horizontally-opposed aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Ghomi, N. A.; Bridges, P. D.

    1979-01-01

    The relationship between the amount of cooling air flow and the corresponding flow pressure difference across an aircraft engine was investigated in flight and on the ground. The flight test results were consistent with theory, but indicated a significant installation leakage problem. A ground test blower system was used to identify and reduce the leakage. The correlation between ground test cell determined engine orifice characteristics and flight measurements showed good agreement if the engine pressure difference was based on total pressure rather than static pressure.

  14. Association of Coronal Mass Ejections and Type II Radio Bursts with Impulsive Solar Energetic Particle Events

    NASA Astrophysics Data System (ADS)

    Yashiro, S.; Gopalswamy, N.; Cliver, E. W.; Reames, D. V.; Kaiser, M. L.; Howard, R. A.

    2004-12-01

    We report the association of impulsive solar energetic particle (SEP) events with coronal mass ejections (CMEs) and metric type II radio bursts. We identified 38 impulsive SEP events using the WIND/EPACT instrument and their CME association was investigated using white light data from SOHO/LASCO. We found that (1) at least ˜ 28--39 % of impulsive SEP events were associated with CMEs, (2) only 8--13 % were associated with metric type II radio bursts. The statistical properties of the associated CMEs were investigated and compared with those of general CMEs and CMEs associated with large gradual SEP events. The CMEs associated with impulsive SEP events were significantly slower (median speed of 613 kmps) and narrower (49 deg) than those of CMEs associated with large gradual SEP events (1336 kmps, 360 deg), but faster than the general CMEs (408 kmps).

  15. The assessment of future extremes of air temperature to design EPR type power plants

    NASA Astrophysics Data System (ADS)

    Parey, S.; Hoang, T. T. H.; Dacunha-Castelle, D.

    2010-09-01

    EDF projects the construction of new EPR type nuclear power plants in Europe. These installations are likely to run until the second half of the century, and thus, it is necessary to think their dimensioning in taking current knowledge of climate change impact into account. This paper will present the study dedicated to the estimation of future extremes of air temperature by using the statistical extreme value theory. The adopted methodology consists firstly in comparing current climate temperature extremes between local observations and models at the nearest grid point. Then, if the extremes of both series are comparable, future extremes are derived from the modelled series for a future period. In parallel, the link between the evolution of the mean, variance and extremes is studied in the observation series. If a strong link is identified, future extremes are derived from the stationary extremes of the centred and normalised series and the changes in mean and variance given by climate models for the desired future period. The approach will be illustrated with an example of such an evaluation for an EPR project in the United Kingdom.

  16. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  17. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  18. Analysis of spanwise temperature distribution in three types of air-cooled turbine blade

    NASA Technical Reports Server (NTRS)

    Livingood, John N B; Brown, W Byron

    1950-01-01

    Methods for computing spanwise blade-temperature distributions are derived for air-cooled hollow blades, air-cooled hollow blades with inserts, and air-cooled blades containing internal cooling fins. Individual and combined effects on spanwise blade-temperature distributions of cooling-air and radial heat conduction are determined. In general, the effects of radiation and radial heat conduction were found to be small and the omission of these variations permitted the construction of nondimensional charts for use in determining spanwise temperature distribution through air-cooled turbine blades. An approximate method for determining the allowable stress-limited blade-temperature distribution is included, with brief accounts of a method for determining the maximum allowable effective gas temperatures and the cooling-air requirements. Numerical examples that illustrate the use of the various temperature-distribution equations and of the nondimensional charts are also included.

  19. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris

    PubMed Central

    Casini, A.; Vaccaro, R.; D'Este, L.; Sakaue, Y.; Bellier, J.P.; Kimura, H.; Renda, T.G.

    2012-01-01

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes. PMID:23027350

  20. Risedronate therapy for neurofibromatosis Type 1-related low bone mass: a stitch in time saves nine.

    PubMed

    Benlidayi, I Coskun; Ortac, E Aygul; Kozanoglu, E

    2015-04-01

    Neurofibromatosis Type 1 (NF1) is a common hereditary disease characterized by disorders regarding the skin, neural, and skeletal systems. Osteoporosis is one of the skeletal manifestations of NF1, which is associated with increased fracture risk. The management of NF1-related low bone mass has been less studied in the literature. We present a 19-year-old patient with severe low bone mass complicating NF1. The patient received 1-year course of 35 mg risedronate sodium once per week along with a daily regimen of 1200 mg calcium and 800 IU vitamin D. Significant improvement with regard to the Z-scores and bone mineral density values was achieved. Besides, rapid favourable biochemical response was obtained. The patient experienced 24·4 and 15·0% improvements in bone mineral density at the lumbar site and hip, respectively, at the first year of therapy. No adverse effect was observed. Since increased bone turnover is the primary contributor of osteoporosis in NF1, antiresorptive agents such as bisphosphonates can be considered for treatment. Despite the lack of consensus on the treatment of osteoporosis in NF1, risedronate may hold a promise as a potential therapy for osteoporosis complicating NF1. This is the first report of risedronate therapy in a case with NF1-associated low bone mass in the literature.

  1. Immunolocalization of choline acetyltransferase of common type in the central brain mass of Octopus vulgaris.

    PubMed

    Casini, A; Vaccaro, R; D'Este, L; Sakaue, Y; Bellier, J P; Kimura, H; Renda, T G

    2012-07-19

    Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.

  2. Spreading out Muscle Mass within a Hill-Type Model: A Computer Simulation Study

    PubMed Central

    Günther, Michael; Röhrle, Oliver; Haeufle, Daniel F. B.; Schmitt, Syn

    2012-01-01

    It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses. We found that in a typical small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing bigger mammals' muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles. PMID:23227110

  3. Long-tailed macaques select mass of stone tools according to food type

    PubMed Central

    Gumert, Michael D.; Malaivijitnond, Suchinda

    2013-01-01

    Tool selection can affect the success of a tool-based feeding task, and thus tool-using animals should select appropriate tools when processing foods. We performed a field experiment on Piak Nam Yai Island in Laem Son National Park, Thailand, to test whether Burmese long-tailed macaques (Macaca fascicularis aurea) selected stone tools according to food type. We baited the island's shores with stone sets (‘tool tests’) in an effort to attract macaques to use stones presented in a quasi-experimental design. Tool tests were placed at 344 locations for 126 days over a 2 year period, with each set containing four stones of different mass (categories: X, 40–60 g; S, 90–100 g; M, 150–200 g; and L, 400–1000 g). Tool tests were checked when we could access them. The number of times each tool test was checked varied (1–32), for a total of 1950 checks. We also studied 375 non-experimental stone tools that were found at naturally occurring tool-use sites. Our data were not collected by direct observation, but by inspecting stones after use. We found an association between stone mass and food type. In the tool tests, we found S-stones were chosen most often for attached oysters, and L-stones were chosen most often for unattached foods. L-stones were almost always chosen for larger unattached foods (greater than 3 cm length), while for smaller unattached foods (less than or equal to 3 cm length) selection was less skewed to L-stones and more evenly distributed between the M- and L-stone categories. In the non-experimental study, we found that mass varied significantly across five food categories (range: 16–5166 g). We reveal more detail on macaque stone tool mass than previous studies, showing that macaques select differing stone masses across a variety of tool-processed foods. Our study is the first step in investigating the behavioural and cognitive mechanisms that macaques are using during tool selection. PMID:24101623

  4. Long-tailed macaques select mass of stone tools according to food type.

    PubMed

    Gumert, Michael D; Malaivijitnond, Suchinda

    2013-11-19

    Tool selection can affect the success of a tool-based feeding task, and thus tool-using animals should select appropriate tools when processing foods. We performed a field experiment on Piak Nam Yai Island in Laem Son National Park, Thailand, to test whether Burmese long-tailed macaques (Macaca fascicularis aurea) selected stone tools according to food type. We baited the island's shores with stone sets ('tool tests') in an effort to attract macaques to use stones presented in a quasi-experimental design. Tool tests were placed at 344 locations for 126 days over a 2 year period, with each set containing four stones of different mass (categories: X, 40-60 g; S, 90-100 g; M, 150-200 g; and L, 400-1000 g). Tool tests were checked when we could access them. The number of times each tool test was checked varied (1-32), for a total of 1950 checks. We also studied 375 non-experimental stone tools that were found at naturally occurring tool-use sites. Our data were not collected by direct observation, but by inspecting stones after use. We found an association between stone mass and food type. In the tool tests, we found S-stones were chosen most often for attached oysters, and L-stones were chosen most often for unattached foods. L-stones were almost always chosen for larger unattached foods (greater than 3 cm length), while for smaller unattached foods (less than or equal to 3 cm length) selection was less skewed to L-stones and more evenly distributed between the M- and L-stone categories. In the non-experimental study, we found that mass varied significantly across five food categories (range: 16-5166 g). We reveal more detail on macaque stone tool mass than previous studies, showing that macaques select differing stone masses across a variety of tool-processed foods. Our study is the first step in investigating the behavioural and cognitive mechanisms that macaques are using during tool selection.

  5. Easily doped p-type, low hole effective mass, transparent oxides

    PubMed Central

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-01-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe. PMID:26854336

  6. HD 53975: An O-type spectroscopic binary with a large mass ratio

    NASA Technical Reports Server (NTRS)

    Gies, D. R.; Fullerton, A. W.; Bolton, C. T.; Bagnuolo, W. G., Jr.; Hahula, M. E.; Wiemker, R.

    1994-01-01

    We present radial velocities and line profiles of the O-type star HD 53975, which we find to be a spectroscopic binary with a period of 6.0173 days. Although there are no obvious signatures of the secondary in the line profiles, we have used the merit function of Shafter et al. (1980) to show that a secondary component is present in lines found in B-type spectra. We have compared the observed merit functions with merit functions for model profiles constructed assuming a main-sequence secondary, and this comparison consistently indicates a companion with a mass ratio of q = M(sub 2)/M(sub 1) = 0.23 +/- 0.04 and a magnitude difference Delta m = 3.3 +/- 0.4. We present a tomographic reconstruction of the spectrum of the secondary for these parameters. We suggest that other large mass ratio binaries may be found among the O stars when observed with high-resolution and high signal-to-noise ratio spectroscopy.

  7. Imaging of β-cell mass and insulitis in insulin-dependent (Type 1) diabetes mellitus.

    PubMed

    Di Gialleonardo, Valentina; de Vries, Erik F J; Di Girolamo, Marco; Quintero, Ana M; Dierckx, Rudi A J O; Signore, Alberto

    2012-12-01

    Insulin-dependent (type 1) diabetes mellitus is a metabolic disease with a complex multifactorial etiology and a poorly understood pathogenesis. Genetic and environmental factors cause an autoimmune reaction against pancreatic β-cells, called insulitis, confirmed in pancreatic samples obtained at autopsy. The possibility to noninvasively quantify β-cell mass in vivo would provide important biological insights and facilitate aspects of diagnosis and therapy, including follow-up of islet cell transplantation. Moreover, the availability of a noninvasive tool to quantify the extent and severity of pancreatic insulitis could be useful for understanding the natural history of human insulin-dependent (type 1) diabetes mellitus, to early diagnose children at risk to develop overt diabetes, and to select patients to be treated with immunotherapies aimed at blocking the insulitis and monitoring the efficacy of these therapies. In this review, we outline the imaging techniques currently available for in vivo, noninvasive detection of β-cell mass and insulitis. These imaging techniques include magnetic resonance imaging, ultrasound, computed tomography, bioluminescence and fluorescence imaging, and the nuclear medicine techniques positron emission tomography and single-photon emission computed tomography. Several approaches and radiopharmaceuticals for imaging β-cells and lymphocytic insulitis are reviewed in detail.

  8. The Relationship between Body Mass Index and Periodontitis in Arab Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Awad, Manal; Rahman, Betul; Hasan, Haidar; Ali, Houssam

    2015-01-01

    Objective Our study sought to evaluate the association between periodontitis and body mass index (BMI) among patients with type 2 diabetes mellitus.  Methods In this cross-sectional case control study analysis of 186 diabetic patients, 112 patients had a body mass index ≥30kg/m2 and 74 control patients had BMI <30kg/m2. All participants underwent oral examinations including a full mouth recording of clinical attachment level (CAL). Information regarding HbA1c levels and high-sensitivity C-reactive protein (hs-CRP) were also gathered.  Results Over half (61%) of patients had a BMI ≥30. Of these 52% had CAL less than 2mm. Multivariate logistic regression analysis showed that there was no association between BMI and CAL. In addition, hs-CRP levels were significantly and positively associated with CAL (OR:1.06, 95% CI: 1.01, 1.12; p=0.007).  Conclusion Among patients with type 2 diabetes mellitus, there was no association between periodontitis and BMI. More studies are needed to further explore this relationship taking into consideration additional lifestyle factors. PMID:25829999

  9. Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass.

    PubMed

    Portha, Bernard; Chavey, Audrey; Movassat, Jamileh

    2011-01-01

    A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.

  10. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static pressure in the facepiece shall not exceed 38 mm. (1.5 inches) of water-column height. (b) The pressure...

  11. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  12. The mass and angular momentum distribution of simulated massive early-type galaxies to large radii

    NASA Astrophysics Data System (ADS)

    Wu, Xufen; Gerhard, Ortwin; Naab, Thorsten; Oser, Ludwig; Martinez-Valpuesta, Inma; Hilz, Michael; Churazov, Eugene; Lyskova, Natalya

    2014-03-01

    We study the dark and luminous mass distributions, circular velocity curves (CVCs), line-of-sight kinematics and angular momenta for a sample of 42 cosmological zoom simulations of galaxies with stellar masses from 2.0 × 1010 to 3.4 × 1011 M⊙ h-1. Using a temporal smoothing technique, we are able to reach large radii. We find the following. type="roman-lower" id="lst1"> The dark matter halo density profiles outside a few kpc follow simple power-law models, with flat dark matter CVCs for lower mass systems, and rising CVCs for high-mass haloes. The projected stellar density distributions at large radii can be fitted by Sérsic functions with n ≳ 10, larger than for typical early-type galaxies (ETGs). The massive systems have nearly flat total (luminous plus dark matter) CVCs at large radii, while the less massive systems have mildly decreasing CVCs. The slope of the circular velocity at large radii correlates with circular velocity itself. The dark matter fractions within the projected stellar half-mass radius Re are in the range 15-30 per cent and increase to 40-65 per cent at 5Re. Larger and more massive galaxies have higher dark matter fractions. The fractions and trends with mass and size are in agreement with observational estimates, even though the stellar-to-total mass ratio is ˜2-3 times higher than estimated for ETGs. The short axes of simulated galaxies and their host dark matter haloes are well aligned and their short-to-long axis ratios are correlated. The stellar root mean square velocity vrms(R) profiles are slowly declining, in agreement with planetary nebulae observations in the outer haloes of most ETGs. The line-of-sight velocity fields {bar{v}} show that rotation properties at small and large radii are correlated. Most radial profiles for the cumulative specific angular momentum parameter λ(R) are nearly

  13. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal.

  14. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes

  15. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  16. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients.

    PubMed

    Zhao, Ang; Chen, Renjie; Wang, Cuicui; Zhao, Zhuohui; Yang, Changyuan; Lu, Jianxiong; Chen, Xuan; Kan, Haidong

    2015-07-01

    Little is known regarding how the size distribution of particulate matter (PM) air pollution influences its effect on blood pressure (BP), especially among patients with diabetes. The objective of this study was to explore the short-term associations between size-fractionated PM and BP among diabetes patients. We scheduled 6 repeated BP examinations every 2 weeks from 13 April 2013 to 30 June 2013 in a panel of 35 type 2 diabetes mellitus patients recruited from an urban community in Shanghai, China. We measured real-time PM concentrations in the size range of 0.25 to 10 μm. We used linear mixed-effect models to examine the short-term association of size-fractionated PM and BP after controlling for individual characteristics, mean temperature, relative humidity, day of the week, years with diabetes and use of antihypertensive medication. The association with systolic BP and pulse pressure strengthened with decreasing diameter. The size fractions with the strongest associations were 0.25 to 0.40 μm for number concentrations and ≤ 2.5 μm for mass concentrations. Furthermore, these effects occurred immediately even after 0-2h and lasted for up to 48 h following exposure. An interquartile range increase in 24-h average number concentrations of PM0.25-0.40 was associated with increases of 3.61 mmHg in systolic BP and 2.96 mmHg in pulse pressure. Females, patients younger than 65 years of age and patients without antihypertensive treatment were more susceptible to these effects. Our results revealed important size and temporal patterns of PM in elevating BP among diabetes patients in China.

  17. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  18. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  19. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  20. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  1. Determination of fragrance allergens in indoor air by active sampling followed by ultrasound-assisted solvent extraction and gas chromatography-mass spectrometry.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2010-03-19

    Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC-MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m(-3) air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 microg m(-3)), obtaining quantitative recoveries, and good precision (RSD<10%). Method detection limits were < or =0.6 microg m(-3). Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined.

  2. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  3. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  4. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke

    2016-03-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  5. Does body mass index matter while selecting the flap type for pharyngeal reconstructions?

    PubMed

    Calli, Caglar; Teknos, Theodoros N; Agrawal, Amit; Schuller, David E; Ozer, Enver; Songu, Murat

    2014-05-01

    The aim of our study was to investigate the effect of patient-related factors, such as the body mass index (BMI) and tumor size, in selecting the flap type for the reconstruction of pharyngeal defects. This retrospective review included 182 patients with pharyngeal defect reconstructions with free and pedicled flaps at the Ohio State University from January 2005 to December 2008. We conducted a retrospective comparison of variety of different flap reconstruction techniques. We compared different flap reconstruction with BMI and tumor size without functional outcome such as swallowing and speech data. Although there was no statistically significant correlation (P > 0.05) when comparing the free flaps with pedicled flaps according to the BMI and tumor size, there was an obvious tendency to prefer radial forearm free flap over anterolateral thigh free flap in patients who are overweight and those with obesity with a ratio of 32:3. In the same group of patients, a similar tendency was observed to prefer fibular free flap over iliac crest free flap with a ratio of 14:5, whereas the ratio was becoming 3:5 in favor of iliac crest free flap over fibular free flap in patients with BMI of 24 or lower. Despite the fact that surgeons' experience with a certain flap type is one of the most important factors while determining which flap to reconstruct, BMI might have a significant impact while selecting the free flap types for the reconstruction of pharyngeal defects.

  6. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  7. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  8. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  9. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  10. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  11. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  12. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  13. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  14. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  15. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  16. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  17. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  18. How similar is the stellar structure of low-mass late-type galaxies to that of early-type dwarfs?

    NASA Astrophysics Data System (ADS)

    Janz, J.; Laurikainen, E.; Laine, J.; Salo, H.; Lisker, T.

    2016-09-01

    We analyse structural decompositions of 500 late-type galaxies (Hubble T-type ≥6) from the Spitzer Survey of Stellar Structure in Galaxies (S4G; Salo et al.), spanning stellar mass range of about 107 to a few times 1010 M⊙. Their decomposition parameters are compared with those of the early-type dwarfs in the Virgo cluster from Janz et al. They have morphological similarities, including the fact that the fraction of simple one-component galaxies in both samples increases towards lower galaxy masses. We find that in the late-type two-component galaxies both the inner and outer structures are by a factor of 2 larger than in the early-type dwarfs, for the same stellar mass of the component. While dividing the late-type galaxies to low- and high-density environmental bins, it is noticeable that both the inner and outer components of late types in the high local density galaxies are smaller, and lie closer in size to those of the early-type dwarfs. This suggests that, although structural differences between the late- and early-type dwarfs are observed, environmental processes can plausibly transform their sizes sufficiently, thus linking them evolutionarily.

  19. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  20. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-01

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  1. Development of analysis of volatile polyfluorinated alkyl substances in indoor air using thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Wu, Yaoxing; Chang, Victor W-C

    2012-05-18

    The study attempts to utilize thermal desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS) for determination of indoor airborne volatile polyfluorinated alkyl substances (PFASs), including four fluorinated alcohols (FTOHs), two fluorooctane sulfonamides (FOSAs), and two fluorooctane sulfonamidoethanols (FOSEs). Standard stainless steel tubes of Tenax/Carbograph 1 TD were employed for low-volume sampling and exhibited minimal breakthrough of target analytes in sample collection. The method recoveries were in the range of 88-119% for FTOHs, 86-138% for FOSAs, exhibiting significant improvement compared with other existing air sampling methods. However, the widely reported high method recoveries of FOSEs were also observed (139-210%), which was probably due to the structural differences between FOSEs and internal standards. Method detection limit, repeatability, linearity, and accuracy were reported as well. The approach has been successfully applied to routine quantification of targeted PFASs in indoor environment of Singapore. The significantly shorter sampling time enabled the observation of variations of concentrations of targeted PFASs within different periods of a day, with higher concentration levels at night while ventilation systems were shut off. This indicated the existence of indoor sources and the importance of building ventilation and air conditioning system.

  2. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  3. Neutrino masses and heavy triplet leptons at the LHC: Testability of the type III seesaw mechanism

    NASA Astrophysics Data System (ADS)

    Li, Tong; He, Xiao-Gang

    2009-11-01

    We study LHC signatures of the type III seesaw mechanism in which SU(2)L triplet leptons are introduced to supply the heavy seesaw masses. To detect the signals of these heavy triplet leptons, one needs to understand their decays to standard model particles which depend on how light and heavy leptons mix with each other. We concentrate on the usual solutions with small light and heavy lepton mixing of the order of the square root of the ratio of light and heavy masses, (mν/MνR)1/2. This class of solutions can lead to a visible displaced vertex detectable at the LHC which can be used to distinguish small mixing and large mixing between light and heavy leptons. We show that, in this case, the couplings of light and heavy triplet leptons to gauge and Higgs bosons, which determine the decay widths and branching ratios, can be expressed in terms of light neutrino masses and their mixing. Using these relations, we study heavy triplet lepton decay patterns and production cross section at the LHC. If these heavy triplet leptons are below a TeV or so, they can be easily produced at the LHC due to their gauge interactions from being nontrivial representations of SU(2)L. We consider two ideal production channels, (1) E+E-→ℓ+ℓ+ℓ-ℓ-jj (ℓ=e, μ, τ) and (2) E±N→ℓ±ℓ±jjjj in detail. For case 1, we find that with one or two of the light leptons being τ it can also be effectively studied. With judicious cuts at the LHC, the discovery of the heavy triplet leptons as high as a TeV can be achieved with 100fb-1 integrated luminosity.

  4. AN INVENTORY OF THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES

    SciTech Connect

    Tortora, C.; Romanowsky, A. J.; Napolitano, N. R.

    2013-03-01

    Given a flurry of recent claims for systematic variations in the stellar initial mass function (IMF), we carry out the first inventory of the observational evidence using different approaches. This includes literature results, as well as our own new findings from combined stellar population synthesis (SPS) and Jeans dynamical analyses of data on {approx}4500 early-type galaxies (ETGs) from the SPIDER project. We focus on the mass-to-light ratio mismatch relative to the Milky Way IMF, {delta}{sub IMF}, correlated against the central stellar velocity dispersion, {sigma}{sub *}. We find a strong correlation between {delta}{sub IMF} and {sigma}{sub *}, for a wide set of dark matter (DM) model profiles. These results are robust if a uniform halo response to baryons is adopted across the sample. The overall normalization of {delta}{sub IMF} and the detailed DM profile are less certain, but the data are consistent with standard cold DM halos and a central DM fraction that is roughly constant with {sigma}{sub *}. For a variety of related studies in the literature, using SPS, dynamics, and gravitational lensing, similar results are found. Studies based solely on spectroscopic line diagnostics agree on a Salpeter-like IMF at high {sigma}{sub *} but differ at low {sigma}{sub *}. Overall, we find that multiple independent lines of evidence appear to be converging on a systematic variation in the IMF, such that high-{sigma}{sub *} ETGs have an excess of low-mass stars relative to spirals and low-{sigma}{sub *} ETGs. Robust verification of super-Salpeter IMFs in the highest-{sigma}{sub *} galaxies will require additional scrutiny of scatter and systematic uncertainties. The implications for the distribution of DM are still inconclusive.

  5. An Inventory of the Stellar Initial Mass Function in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Romanowsky, A. J.; Napolitano, N. R.

    2013-03-01

    Given a flurry of recent claims for systematic variations in the stellar initial mass function (IMF), we carry out the first inventory of the observational evidence using different approaches. This includes literature results, as well as our own new findings from combined stellar population synthesis (SPS) and Jeans dynamical analyses of data on ~4500 early-type galaxies (ETGs) from the SPIDER project. We focus on the mass-to-light ratio mismatch relative to the Milky Way IMF, δIMF, correlated against the central stellar velocity dispersion, σsstarf. We find a strong correlation between δIMF and σsstarf, for a wide set of dark matter (DM) model profiles. These results are robust if a uniform halo response to baryons is adopted across the sample. The overall normalization of δIMF and the detailed DM profile are less certain, but the data are consistent with standard cold DM halos and a central DM fraction that is roughly constant with σsstarf. For a variety of related studies in the literature, using SPS, dynamics, and gravitational lensing, similar results are found. Studies based solely on spectroscopic line diagnostics agree on a Salpeter-like IMF at high σsstarf but differ at low σsstarf. Overall, we find that multiple independent lines of evidence appear to be converging on a systematic variation in the IMF, such that high-σsstarf ETGs have an excess of low-mass stars relative to spirals and low-σsstarf ETGs. Robust verification of super-Salpeter IMFs in the highest-σsstarf galaxies will require additional scrutiny of scatter and systematic uncertainties. The implications for the distribution of DM are still inconclusive.

  6. Electroweak breaking and neutrino mass: ‘invisible’ Higgs decays at the LHC (type II seesaw)

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Romão, Jorge C.; Valle, José W. F.

    2016-03-01

    Neutrino mass generation through the Higgs mechanism not only suggests the need to reconsider the physics of electroweak symmetry breaking from a new perspective, but also provides a new theoretically consistent and experimentally viable paradigm. We illustrate this by describing the main features of the electroweak symmetry breaking sector of the simplest type-II seesaw model with spontaneous breaking of lepton number. After reviewing the relevant ‘theoretical’ and astrophysical restrictions on the Higgs sector, we perform an analysis of the sensitivities of Higgs Boson searches at the ongoing ATLAS and CMS experiments at the LHC, including not only the new contributions to the decay channels present in the standard model (SM) but also genuinely non-SM Higgs Boson decays, such as ‘invisible’ Higgs Boson decays to majorons. We find sensitivities that are likely to be reached at the upcoming run of the experiments.

  7. The early gaseous and stellar mass assembly of Milky Way-type galaxy halos

    NASA Astrophysics Data System (ADS)

    Hensler, Gerhard; Petrov, Mykola

    2016-08-01

    How the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in isolation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.

  8. Membrane-type resonator as an effective miniaturized tuned vibration mass damper

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min; Tang, Suet To; Yang, Zhiyu; Sheng, Ping

    2016-08-01

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factor to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.

  9. False sugar sequence ions in electrospray tandem mass spectrometry of underivatized sialyl-Lewis-type oligosaccharides

    NASA Astrophysics Data System (ADS)

    Ernst, Beat; Müller, Dieter R.; Richter, Wilhelm J.

    1997-01-01

    Formation of "false" sugar sequence ions from branched tetrasaccharides of the sialyl-Lewis-type by migration of fucose towards sialic acid residues is shown to occur in [M + H]+ and [M + NH4]+ ions produced by electrospray ionization and subjected to low energy collision induced dissociation (CID). For the verification of their composition and sequence, such irregular ions were produced in the orifice region of the ion source, mass selected in Q1, and subjected to a second CID step in Q2 of a triple quadrupole analyser. When produced and analysed in the same "double CID" fashion, the branched B3 ions still containing all four sugar subunits show such migration to only a minor extent. The analysis of Bn fragment ions with high numbers for n may thus have advantages over the analysis of M-like species

  10. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities.

    PubMed

    Hebbern, Christopher; Cakmak, Sabit

    2015-09-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types.

  11. DYNAMICAL VERSUS STELLAR MASSES IN COMPACT EARLY-TYPE GALAXIES: FURTHER EVIDENCE FOR SYSTEMATIC VARIATION IN THE STELLAR INITIAL MASS FUNCTION

    SciTech Connect

    Conroy, Charlie; Dutton, Aaron A.; Graves, Genevieve J.; Mendel, J. Trevor; Van Dokkum, Pieter G.

    2013-10-20

    Several independent lines of evidence suggest that the stellar initial mass function (IMF) in early-type galaxies becomes increasingly 'bottom-heavy' with increasing galaxy mass and/or velocity dispersion, σ. Here we consider evidence for IMF variation in a sample of relatively compact early-type galaxies drawn from the Sloan Digital Sky Survey. These galaxies are of sufficiently high stellar density that a dark halo likely makes a minor contribution to the total dynamical mass, M {sub dyn}, within one effective radius. We fit our detailed stellar population synthesis models to the stacked absorption line spectra of these galaxies in bins of σ and find evidence from IMF-sensitive spectral features for a bottom-heavy IMF at high σ. We also apply simple 'mass-follows-light' dynamical models to the same data and find that M {sub dyn} is significantly higher than what would be expected if these galaxies were stellar dominated and had a universal Milky Way IMF. Adopting M {sub dyn} ≈ M {sub *} therefore implies that the IMF is 'heavier' at high σ. Most importantly, the quantitative amount of inferred IMF variation is very similar between the two techniques, agreeing to within ∼< 0.1 dex in mass. The agreement between two independent techniques, when applied to the same data, provides compelling evidence for systematic variation in the IMF as a function of early-type galaxy velocity dispersion. Any alternative explanations must reproduce both the results from dynamical and stellar population-based techniques.

  12. Detection of glutaric acidemia type 1 in infants through tandem mass spectrometry.

    PubMed

    Babu, Ruby P; Bishnupriya, G; Thushara, P K; Alap, Christy; Cariappa, Rohit; Annapoorani; Viswanathan, Kasi

    2015-06-01

    Glutaric acidemia type 1 (GA1) is a rare inherited metabolic disorder which goes underdiagnosed due to its latency period and subtle presentation. A pilot clinical study was conducted to assess the usefulness, specificity and sensitivity of the tandem mass (MS/MS) spectrometer, specifically the Abbott (AB) Sciex 3200, in the screening for GA1 using dried blood spots. A total of 17,100 specimens, comprising pediatric patients and healthy newborns, were screened from June 2012 to June 2014. A selection criterion was applied to increase the range of samples tested. 14 of the total specimens tested presumptive positive for GA1, of whom all were symptomatic. The diagnosis was confirmed in 4 of the 14 cases and they were started on treatment. 4 cases expired before confirmation. The remaining cases were empirically started on treatment. Most of the patients responded favorably to the dietary management. One important observation was that the older symptomatic children diagnosed with GA1 had poorer outcomes in terms of recovery of delayed milestones and mental deterioration, further emphasizing the need for early diagnosis of organic acidemias along with the other biochemical defects. Tandem mass spectrometry was found to be more than 93.33% sensitive and more than 99.42% specific. The screening test proved to be very simple and economical. PMID:26937400

  13. The Deflagration Stage of Chandrasekhar Mass Models for Type Ia Supernovae. I. Early Evolution

    NASA Astrophysics Data System (ADS)

    Malone, C. M.; Nonaka, A.; Woosley, S. E.; Almgren, A. S.; Bell, J. B.; Dong, S.; Zingale, M.

    2014-02-01

    We present high-resolution, full-star simulations of the post-ignition phase of Type Ia supernovae using the compressible hydrodynamics code Castro. Initial conditions, including the turbulent velocity field and ignition site, are imported directly from a simulation of the last few hours of presupernova convection using a low Mach number code, Maestro. Adaptive mesh refinement allows the initial burning front to be modeled with an effective resolution of 36,8643 zones (136 m zone-1). The initial rise and expansion of the deflagration front are tracked until burning reaches the star's edge and the role of the background turbulence on the flame is investigated. The effect of artificially moving the ignition location closer to the star's center is explored. The degree to which turbulence affects the burning front decreases with increasing ignition radius since the buoyancy force is stronger at larger radii. Even central ignition—in the presence of a background convective flow field—is rapidly carried off-center as the flame is carried by the flow field. We compare our results to analytic models for burning thermals, and find that they reproduce the general trends of the bubble's size and mass, but underpredict the amount of buoyant acceleration due to simplifying assumptions of the bubble's properties. Overall, we find that the amount of mass that burns prior to flame break out is small, consistent with a "gravitationally confined detonation" occurring at a later epoch, but additional burning will occur following breakout that may modify this conclusion.

  14. Binary Stars with Components of Solar Type: 25 Orbits and System Masses

    NASA Astrophysics Data System (ADS)

    Docobo, J. A.; Ling, J. F.

    2009-10-01

    Revised orbits and system masses are presented for the following 25 visual double stars: WDS 00593-0040 (A 1902), WDS 00596-0111 (A 1903 AB), WDS 01023+0552 (A 2003), WDS 01049+3649 (A 1515), WDS 01234+5809 (STF 115 AB), WDS 02399+0009 (A 1928), WDS 03310+2937 (A 983), WDS 06573-3530 (I 65), WDS 07043-0303 (A 519), WDS 08267+2432 (A 1746 BC), WDS 10585+1711 (A 2375), WDS 11308+4117 (STT 234), WDS 15370+6426 (HU 1168), WDS 16044-1122 (STF 1998 AB), WDS 16283-1613 (RST 3950), WDS 17324+2848 (A 352), WDS 18466+3821 (HU 1191), WDS 19039+2642 (A 2992), WDS 19055+3352(HU 940), WDS 19282-1209 (SCJ 22), WDS 19487+1504 (A 1658), WDS 22400+0113 (A 2099), WDS 23506-5142 (SLR 14), WDS 23518-0637 (A 2700), and WDS 23529-0309 (FIN 359). In all of these systems, at least one component is of solar type. Total system masses were calculated in each case from the orbital period and semiaxis major together with the Hipparcos parallax, except in the cases for which there are no Hipparcos data or when these values are not precise. Other orbital and physical properties of these stars are also discussed. This paper is the second of three collating the revised double star orbits we have calculated in the past 15 yr.

  15. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  16. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-02-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with the mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons of the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air mass from south direction are always associated with pollution events during the summertime of Beijing. In August 2008, the frequency of air mass arriving from south has been twice higher compared to the average of the previous years, these southerly air masses did however not result in elevated particle volume concentrations in Beijing. This result implied that the air mass history was not the key factor, explaining reduced particle number and volume concentrations during the Beijing 2008 Olympic Games. Four factors were found influencing particle concentrations using a Positive matrix factorization (PMF) model. They were identified to local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  17. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  18. An evaluation of the impact of urban air pollution on paint dosimeters by tracking changes in the lipid MALDI-TOF mass spectra profile.

    PubMed

    Herrera, A; Navas, N; Cardell, C

    2016-08-01

    We evaluated the impact of urban air pollution on egg yolk tempera paint dosimeters (binary mixture samples made with historic artist´s blue, red and white pigments) by tracking changes over time in their lipid matrix-assisted laser desorption ionization time-of-flight mass spectra (MALDI-TOF-MS) profiles. We studied triacylglycerols (TGs), phospholipids (PLs) and their oxidation by-products from paint dosimeters that had been exposed outdoors for six months to the polluted atmosphere in the city center of Granada (Spain). Four types of chickens' eggs were also analyzed to find out whether their lipid mass spectra (lipid fingerprints) varied significantly. The ultimate goal of this research is to provide a precise analytical protocol to show whether the changes in the egg yolk identified in paint dosimeters are due to pigment-binder interactions. The Bligh-Dyer (BD) method was optimized for the extraction of the lipids. This innovative procedure included a washing-step prior to the mass spectrometric analysis, which proved crucial for obtaining higher quality lipid fingerprints. A novel interpretation of the results is proposed by applying the BD method, which suggests that transesterification processes occurred in the lipid fractions that were catalyzed by the pigments in the paint dosimeters. In blank dosimeters specific ions produced by oxidative cleavage of PLs and/or TGs may be used as markers of the presence of egg yolk binders. The composition and structure of the specific lipid compounds are also tentatively proposed. In aged dosimeters the intact content of the TGs and PLs decreased; however, we propose that short-chain oxidative products arising from TGs and PLs are present in all the samples, except for the white lead based dosimeter. We end with a new explanation as to why this dosimeter behaves differently from the others.

  19. An evaluation of the impact of urban air pollution on paint dosimeters by tracking changes in the lipid MALDI-TOF mass spectra profile.

    PubMed

    Herrera, A; Navas, N; Cardell, C

    2016-08-01

    We evaluated the impact of urban air pollution on egg yolk tempera paint dosimeters (binary mixture samples made with historic artist´s blue, red and white pigments) by tracking changes over time in their lipid matrix-assisted laser desorption ionization time-of-flight mass spectra (MALDI-TOF-MS) profiles. We studied triacylglycerols (TGs), phospholipids (PLs) and their oxidation by-products from paint dosimeters that had been exposed outdoors for six months to the polluted atmosphere in the city center of Granada (Spain). Four types of chickens' eggs were also analyzed to find out whether their lipid mass spectra (lipid fingerprints) varied significantly. The ultimate goal of this research is to provide a precise analytical protocol to show whether the changes in the egg yolk identified in paint dosimeters are due to pigment-binder interactions. The Bligh-Dyer (BD) method was optimized for the extraction of the lipids. This innovative procedure included a washing-step prior to the mass spectrometric analysis, which proved crucial for obtaining higher quality lipid fingerprints. A novel interpretation of the results is proposed by applying the BD method, which suggests that transesterification processes occurred in the lipid fractions that were catalyzed by the pigments in the paint dosimeters. In blank dosimeters specific ions produced by oxidative cleavage of PLs and/or TGs may be used as markers of the presence of egg yolk binders. The composition and structure of the specific lipid compounds are also tentatively proposed. In aged dosimeters the intact content of the TGs and PLs decreased; however, we propose that short-chain oxidative products arising from TGs and PLs are present in all the samples, except for the white lead based dosimeter. We end with a new explanation as to why this dosimeter behaves differently from the others. PMID:27216656

  20. Link between Mass-loss and Variability Type for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Ivezić, Ž.; Knapp, G. R.

    We find that AGB stars separate in the 25-12 vs. 12-K color-color diagram according to their chemistry (O, S vs. C) and variability type (Miras vs. SRb/Lb). While discrimination according to the chemical composition is not surprising, the separation of Miras from SRb/Lb variables is unexpected. We show that ``standard'' steady-state radiatively driven models provide excellent fits to the color distribution of Miras of all chemical types. However, these models are incapable of explaining the dust emission from O-rich SRb/Lb stars. The models can be altered to fit the data by postulating different optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300-400 K) than typical condensation temperatures (800-1,000 K), a possibility which is also supported by the detailed characteristics of LRS data. While such lower temperatures are required only for O- and S-rich SRb/Lb stars, they are also consistent with the colors of C-rich SRb/Lb stars. The absence of hot dust for SRb/Lb stars can be interpreted as a recent (order of 100 yr) decrease in the mass-loss rate. The distribution of O-rich SRb/Lb stars in the 25-12 vs. K-12 color-color diagram shows that the mass-loss rate probably resumes again, on similar time scales. It cannot be ruled out that the mass-loss rate is changing periodically on such time scales, implying that the stars might oscillate between the Mira and SRb/Lb phases during their AGB evolution as proposed by Kerschbaum et al. (1996). Such a possibility appears to be supported by recent HST images of the Egg Nebula obtained by Sahai et al. (1997), the discovery of multiple CO winds reported by Knapp et al. (1998), and long-term visual light-curve changes detected for some stars by Mattei (1998).

  1. Link between Mass-loss and Variability Type for AGB Stars?

    NASA Astrophysics Data System (ADS)

    Ivezic, Z.; Knapp, G. R.

    1998-12-01

    We find that AGB stars separate in the 25-12 vs. 12-K color-color diagram according to their chemistry (O, S vs. C) and variability type (Miras vs. SRb/Lb). While discrimination according to the chemical composition is not surprising, the separation of Miras from SRb/Lb variables is unexpected. We show that ``standard'' steady-state radiatively driven models provide excellent fits to the color distribution of Miras of all chemical types. However, these models are incapable of explaining the dust emission from O-rich SRb/Lb stars. The models can be altered to fit the data by postulating different optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300-400 K) than typical condensation temperatures (800-1000 K), a possibility which is also supported by the detailed characteristics of LRS data. While such lower temperatures are required only for O- and S-rich SRb/Lb stars, they are also consistent with the colors of C-rich SRb/Lb stars. The absence of hot dust for SRb/Lb stars can be interpreted as a recent (order of 100 yr) decrease in the mass-loss rate. The distribution of O-rich SRb/Lb stars in the 25-12 vs. K-12 color-color diagram shows that the mass-loss rate probably resumes again, on similar time scales. It cannot be ruled out that the mass-loss rate is changing periodically on such time scales, implying that the stars might oscillate between the Mira and SRb/Lb phases during their AGB evolution as proposed by Kerschbaum et al. (1996). Such a possibility appears to be supported by recent HST images of the Egg Nebula obtained by Sahai et al. (1997), the discovery of multiple CO winds reported by Knapp et al. (1998), and long-term visual light-curve changes detected for some stars by Mattei (1998).

  2. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  3. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  4. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  5. On-line analysis of volatile chlorinated hydrocarbons in air by gas chromatography-mass spectrometry Improvements in preconcentration and injection steps.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Insogna, Susanna; Pastorini, Elisabetta

    2010-06-11

    An analytical system composed of a cryofocusing trap injector device coupled to a gas chromatograph with mass spectrometric detection (CTI-GC-MS) specific for the on-line analysis in air of volatile chlorinated hydrocarbons (VCHCs) (dichloromethane; chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) was developed. The cryofocusing trap injector was the result of appropriate low cost modifications to an original purge-and-trap device to make it suitable for direct air analysis even in the case of only slightly contaminated air samples, such as those from remote zones. The CTI device can rapidly and easily be rearranged into the purge-and-trap allowing water and air analysis with the same apparatus. Air samples, collected in stainless steel canisters, were introduced directly into the CTI-GC-MS system to realize cryo-concentration (at -120 degrees C), thermal desorption (at 200 degrees C) and for the subsequent analysis of volatiles. The operating phases and conditions were customised and optimized. Recovery efficiency was optimized in terms of moisture removal, cold trap temperature and sampling mass flow. The injection of entrapped volatiles was realized through a direct transfer with high chromatographic reliability (capillary column-capillary column). These improvements allowed obtaining limits of detection (LODs) at least one order of magnitude lower than current LODs for the investigated substances. The method was successfully employed on real samples: air from urban and rural areas and air from remote zones such as Antarctica.

  6. Body Mass Index and Heart Failure Among Patients with Type 2 Diabetes

    PubMed Central

    Li, Weiqin; Katzmarzyk, Peter T.; Horswell, Ronald; Zhang, Yonggang; Wang, Yujie; Johnson, Jolene; Hu, Gang

    2015-01-01

    Background Epidemiologic data on the association between body mass index (BMI) and heart failure (HF) risk among diabetic patients are rare. Methods and Results We performed a prospective cohort study of risk for HF among 31,155 patients with type 2 diabetes (11,468 men and 19,687 women). Cox proportional hazards regression models were used to estimate the association of different levels of BMI with HF risk. During a mean follow-up of 7.8 years, 5,834 subjects developed HF (2,379 men and 3,455 women). The multivariable-adjusted (age, race, smoking, income and type of insurance) hazard ratios of HF associated with BMI levels (18.5–22.9, 23–24.9, 25–29.9 [reference group], 30–34.9, 35–39.9, and ≥40 kg/m2) at baseline were 0.95, 1.00, 1.00, 1.16, 1.64, and 2.02 (Ptrend <0.001) for men, and 1.16, 1.16, 1.00, 1.23, 1.55, and 2.01 (Pnon-linear <0.001) for women, respectively. When we used an updated mean value of BMI, the association of HF risk with BMI did not change. When stratified by age, race, smoking status and use of anti-diabetic drugs, the positive associations among men and the J-shaped associations among women were still present. Conclusions Our study suggests a positive association between BMI and HF risk among men, and a J-shaped association between BMI and HF risk among women with type 2 diabetes. PMID:25681435

  7. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  8. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  9. CO2 Fixation, Lipid Production, and Power Generation by a Novel Air-Lift-Type Microbial Carbon Capture Cell System.

    PubMed

    Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei

    2015-09-01

    An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.

  10. The deflagration stage of Chandrasekhar mass models for type Ia supernovae. I. Early evolution

    SciTech Connect

    Malone, C. M.; Woosley, S. E.; Dong, S.; Nonaka, A.; Almgren, A. S.; Bell, J. B.; Zingale, M.

    2014-02-10

    We present high-resolution, full-star simulations of the post-ignition phase of Type Ia supernovae using the compressible hydrodynamics code Castro. Initial conditions, including the turbulent velocity field and ignition site, are imported directly from a simulation of the last few hours of presupernova convection using a low Mach number code, Maestro. Adaptive mesh refinement allows the initial burning front to be modeled with an effective resolution of 36,864{sup 3} zones (136 m zone{sup –1}). The initial rise and expansion of the deflagration front are tracked until burning reaches the star's edge and the role of the background turbulence on the flame is investigated. The effect of artificially moving the ignition location closer to the star's center is explored. The degree to which turbulence affects the burning front decreases with increasing ignition radius since the buoyancy force is stronger at larger radii. Even central ignition—in the presence of a background convective flow field—is rapidly carried off-center as the flame is carried by the flow field. We compare our results to analytic models for burning thermals, and find that they reproduce the general trends of the bubble's size and mass, but underpredict the amount of buoyant acceleration due to simplifying assumptions of the bubble's properties. Overall, we find that the amount of mass that burns prior to flame break out is small, consistent with a gravitationally confined detonation' occurring at a later epoch, but additional burning will occur following breakout that may modify this conclusion.

  11. Evidence for Clonal Expansion After Antibiotic Selection Pressure: Pneumococcal Multilocus Sequence Types Before and After Mass Azithromycin Treatments

    PubMed Central

    Keenan, Jeremy D.; Klugman, Keith P.; McGee, Lesley; Vidal, Jorge E.; Chochua, Sopio; Hawkins, Paulina; Cevallos, Vicky; Gebre, Teshome; Tadesse, Zerihun; Emerson, Paul M.; Jorgensen, James H.; Gaynor, Bruce D.; Lietman, Thomas M.

    2015-01-01

    Background. A clinical trial of mass azithromycin distributions for trachoma created a convenient experiment to test the hypothesis that antibiotic use selects for clonal expansion of preexisting resistant bacterial strains. Methods. Twelve communities in Ethiopia received mass azithromycin distributions every 3 months for 1 year. A random sample of 10 children aged 0–9 years from each community was monitored by means of nasopharyngeal swab sampling before mass azithromycin distribution and after 4 mass treatments. Swab specimens were tested for Streptococcus pneumoniae, and isolates underwent multilocus sequence typing. Results. Of 82 pneumococcal isolates identified before treatment, 4 (5%) exhibited azithromycin resistance, representing 3 different sequence types (STs): 177, 6449, and 6494. The proportion of isolates that were classified as one of these 3 STs and were resistant to azithromycin increased after 4 mass azithromycin treatments (14 of 96 isolates [15%]; P = .04). Using a classification index, we found evidence for a relationship between ST and macrolide resistance after mass treatments (P < .0001). The diversity of STs—as calculated by the unbiased Simpson index—decreased significantly after mass azithromycin treatment (P = .045). Conclusions. Resistant clones present before mass azithromycin treatments increased in frequency after treatment, consistent with the theory that antibiotic selection pressure results in clonal expansion of existing resistant strains. PMID:25293366

  12. Radio Observations Reveal the Mass Loss History of Type Ibc Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Soderberg, A. M.

    2011-01-01

    We present extensive radio observations of the nearby Type Ibc supernovae 2004cc, 2004gq, and 2004dk spanning Δ t≈ 8-1800 days after explosion. Using a dynamical model developed for synchrotron emission from a slightly decelerated blastwave, we estimate the velocity and energy of the fastest ejecta and the density profile of the circumstellar medium. The blastwaves for all three supernovae are characterized by non-relativistic velocities of v≈ (0.1-25)c and associated energies of E≈ (2-10)× 1047 erg, in line with the expectations for a typical homologous explosion. Smooth, stellar wind density profiles are indicated by the early radio data and we estimate the progenitor mass loss rates to be ∘ M≈ (8-40)× 10-6 M⊙ yr-1 (wind velocity, vw=103 km s-1). These properties are consistent with those of Wolf-Rayet stars, the favored progenitors of SNe Ibc including those associated with long-duration gamma-ray bursts. However, at late time, each of these SNe show evidence for abrupt radio variability which we attribute to significant circumstellar density modulations (factor of 5-100) at radii of R≈ (1-50)× 1016 cm. For SN 2004gq, the density modulations are marginally consistent with the expectations for a variable and/or clumpy Wolf-Rayet line-driven wind. However, in the case of SNe 2004cc and 2004dk, the density modulations are more intense, ∘ M>/ 10-4M⊙ yr-1, and possibly attributed to continuum-driven winds or hydrodynamic eruptions. We compare the circumstellar environments for these three SNe with those of other Type Ibc supernovae and nearby gamma-ray bursts and find that they are characterized by a more violent progenitor mass loss history in the decades leading up to explosion. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568 and by the Smithsonian Institution.

  13. Evidence for a constant initial mass function in early-type galaxies based on their X-ray binary populations

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  14. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry.

    PubMed

    Wondimu, Taddese; Wang, Rui; Ross, Brian

    2014-09-01

    The discovery that hydrogen sulphide (H2S) acts as a gasotransmitter when present at very low concentrations (sub-parts per billion (ppbv)) has resulted in the need to quickly quantify trace amounts of the gas in complex biological samples. Selected ion flow tube mass spectrometry (SIFT-MS) is capable of real-time quantification of H2S but many SIFT-MS instruments lack sufficient sensitivity for this application. In this study we investigate the utility of combining thermal desorption with SIFT-MS for quantifying H2S in the 0.1-1 ppbv concentration range. Human orally or nasally derived breath, and background ambient air, were collected in sampling bags and dried by passing through CaCl2 and H2S pre-concentrated using a sorbent trap optimised for the capture of this gas. The absorbed H2S was then thermally desorbed and quantified by SIFT-MS. H2S concentrations in ambient air, nasal breath and oral breath collected from 10 healthy volunteers were 0.12  ±  0.02 (mean ± SD), 0.40  ±  0.11 and 3.1  ±  2.5 ppbv respectively, and in the oral cavity H2S, quantified by SIFT-MS without pre-concentration, was present at 13.5  ±  8.6 ppbv. The oral cavity H2S correlates well with oral breath H2S but not with nasal breath H2S, suggesting that oral breath H2S derives mainly from the oral cavity but nasal breath is likely pulmonary in origin. The successful quantification of such low concentrations of H2S in nasal air using a rapid analytical procedure paves the way for the straightforward analysis of H2S in breath and may assist in elucidating the role that H2S plays in biological systems.

  15. 76 FR 10220 - Airworthiness Directives; Viking Air Limited (Type Certificate No. A-815 Formerly Held by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... ] December 7, 2010 (75 FR 75932). That NPRM proposed to require repetitively inspecting the elevator control... Order 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034...-020-AD; Amendment 39-16611; AD 2011-05-02] RIN 2120-AA64 Airworthiness Directives; Viking Air...

  16. 75 FR 75932 - Airworthiness Directives; Viking Air Limited (Type Certificate No. A-815 Formerly Held by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ..., contact Viking Air Ltd., 9574 Hampden Road, Sidney, BC Canada V8L 5V5; telephone: (800) 663-8444; Internet... edge of the servo tab). Collecting this information will help us better understand the service history... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979), (3)...

  17. Automated high-speed analysis of selected organic compounds in urban air by on-line isotopic dilution cryofocusing gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Maggi, M; Fanelli, R

    1994-11-01

    An automated environmental air monitor has been developed to measure selected organic compounds in urban air. The instrument is based on a cryofocusing-thermal desorption gas chromatographic mass spectrometry technique where the mass spectrometer is a slightly modified residual gas analyzer (RGA). The RGA was chosen as a detector because the whole system must be robust for long periods, with 24-h continuous air monitoring. RCA are extremely simple and seemed the most reliable mass spectrometers for this purpose. Moreover, because they have no physically limited ion source, contamination is considerably reduced, so maintenance intervals are longer.The gas chromatograph is equipped with a computer-controlled six-way sampling valve, with a 100-mL sampling loop and thermal desorption cold trap injector. Environmental air is enriched with an isotopically labeled internal standard in the sampling line. This internal standard is added with a validated, custom-made, permeation tube device. The "on-line" internal standard provides for high quality quantitative data because all variations in instrument sensitivity in cryofocusing or in thermal desorption efficiency are taken into account. High repetition rates (down to 5 min for a full analytical cycle) are obtained with the use of an isothermal gas chromatography program, microbore capillary column, and environmental air sampling during the gas chromatography run.

  18. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China

    NASA Astrophysics Data System (ADS)

    Shen, Xiangjin; Liu, Binhui; Li, Guangdi; Yu, Pujia; Zhou, Daowei

    2016-10-01

    The sensitivity of surface air temperature response to different grassland types and vegetation cover changes in the regions of temperate grassland of China was analyzed by observation minus reanalysis (OMR) method. The basis of the OMR approach is that reanalysis data are insensitive to local surface properties, so the temperature differences between surface observations and reanalysis can be attributed to land effects. Results showed that growing-season air temperature increased by 0.592 °C/decade in the regions of temperate grassland of China, with about 31 % of observed warming associated with the effects of grassland types and vegetation cover changes. For different grassland types, the growing-season OMR trend was the strongest for temperate desert steppe (0.259 °C/decade) and the weakest for temperate meadow (0.114 °C/decade). Our results suggest that the stronger intraseasonal changes of grassland vegetation are present, the more sensitive the OMR trend responds to the intraseasonal vegetation cover changes. In August and September, the OMR of temperate meadow showed a weak cooling trend. For temperate meadow, about 72.2 and 72.6 % of surface cooling were explained by both grassland type and increase of vegetation cover for August and September, respectively. For temperate steppe and temperate desert steppe, due to the limited soil moisture and little evaporative cooling feedback, the vegetation changes have no significant effect on the surface air temperature. These results indicate that the impact of grassland types and vegetation cover changes should be considered when projecting further climate change in the temperate grassland region of China.

  19. Validation of keratan sulfate level in mucopolysaccharidosis type IVA by liquid chromatography-tandem mass spectrometry.

    PubMed

    Tomatsu, Shunji; Montaño, Adriana M; Oguma, Toshihiro; Dung, Vu Chi; Oikawa, Hirotaka; de Carvalho, Talita Giacomet; Gutiérrez, María L; Yamaguchi, Seiji; Suzuki, Yasuyuki; Fukushi, Masaru; Kida, Kazuhiro; Kubota, Mitsuru; Barrera, Luis; Orii, Tadao

    2010-12-01

    Mucopolysaccharidosis type IVA (MPS IVA, Morquio A disease), a progressive lysosomal storage disease, causes skeletal chondrodysplasia through excessive storage of keratan sulfate (KS). KS is synthesized mainly in cartilage and released to the circulation. The excess storage of KS disrupts cartilage, consequently releasing more KS into circulation, which is a critical biomarker for MPS IVA. Thus, assessment of KS level provides a potential screening strategy and determines clinical course and efficacy of therapies. We have recently developed a tandem mass spectrometry liquid chromatography [LC/MS/MS] method to assay KS levels in blood. Forty-nine blood specimens from patients with MPS IVA [severe (n = 33), attenuated (n = 11) and undefined (n = 5)] were analyzed for comparison of blood KS concentration with that of healthy subjects and for correlation with clinical severity. Plasma samples were digested by keratanase II to obtain disaccharides of KS. Digested samples were assayed by LC/MS/MS. We found that blood KS levels (0.4-26 µg/ml) in MPS IVA patients were significantly higher than those in age-matched controls (0.67-4.6 µg/ml; P < 0.0001). It was found that blood KS level varied with age and clinical severity in the patients. Blood KS levels in MPS IVA peaked between 2 years and 5 years of age (mean 11.4 µg/ml). Blood KS levels in severe MPS IVA (mean 7.3 µg/ml) were higher than in the attenuated form (mean 2.1 µg/ml) (P = 0.012). We also found elevated blood KS levels in other types of MPS. These findings indicate that the new KS assay for blood is suitable for early diagnosis and longitudinal assessment of disease severity in MPS IVA.

  20. Foam-based mass emergency depopulation of floor-reared meat-type poultry operations.

    PubMed

    Benson, E; Malone, G W; Alphin, R L; Dawson, M D; Pope, C R; Van Wicklen, G L

    2007-02-01

    Current control strategies for avian influenza and other highly contagious poultry diseases often include quarantine, depopulation, and disposal of infected birds. For biosecurity reasons, on-farm depopulation and disposal methods are preferred. The options for mass depopulation are limited, as reported by the "2000 Report of the AVMA Panel on Euthanasia." Current depopulation techniques may have excessive labor requirements, are not appropriate for all house types, and may not be suitable for large-scale emergency implementation. A procedure has been developed that uses foam to rapidly form a blanket over the birds. The procedure requires relatively few people, can be performed in a variety of house types, and is compatible with in-house composting. Results from 2 experiments using foam for depopulation are presented in this paper. These studies have shown that foams are comparable to the CO(2) polyethylene tent procedure in time to death in small groups and that the foam is faster as group size increases. Adding CO(2) to the foam does not enhance its efficacy. Based on corticosterone levels, the study also showed that the foams are no more stressful than the CO(2) depopulation method. Necropsy and histological examination of birds indicated that blood was present to some degree in the trachea, syrinx, and bronchial tree in broilers subjected to foam with CO(2), foam without CO(2), and CO(2) polyethylene tent methods of depopulation. Foam caused a rapid onset of airway occlusion. In both foam- and CO(2)-euthanized broilers, lesions are consistent with anoxia or hypoxia. This suggests that foam acts by physically induced hypoxia, whereas CO(2) causes chemically induced hypoxia.

  1. Influence of air mass origin on the wet deposition of nitrogen to Tampa Bay, Florida—An eight-year study

    NASA Astrophysics Data System (ADS)

    Strayer, Hillary; Smith, Ronald; Mizak, Connie; Poor, Noreen

    Rainfall delivers on the average ˜10% of the total annual nitrogen load directly to Tampa Bay, based on precipitation monitoring at a National Atmospheric Deposition Program (NADP) Atmospheric Integrated Research Monitoring Network (AIRMoN) site located adjacent to Tampa Bay in urban Tampa. We coupled the chemical analyses for 606 daily precipitation samples collected from 1996 to 2004 with corresponding air mass trajectory information to investigate if wet-deposited nitrogen originated from near versus removed source regions. Air mass trajectories were obtained using the National Oceanic and Atmospheric Administration (NOAA) HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, and were classified into six trajectory categories by the direction of their approach to Tampa Bay. Rainfall nitrate and ammonium concentrations were significantly lower for over-water air mass trajectories than for over-land trajectories as expected, but contributed to 40% of the total wet-deposited nitrogen, a likely consequence of the higher frequency of rain events for these trajectories. Average rainfall nitrate concentrations were significantly higher for air masses that stagnated over the urbanized bay region. We estimated that local sources contributed 1kgNha-1yr-1 or 25% of the total inorganic nitrogen wet-deposited to Tampa Bay.

  2. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  3. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  4. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  5. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-01

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities.

  6. Metallicity and the Nucleosynthesis of the Intermediate Mass Elements in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Chamulak, David; Brown, E. F.; Calder, A. C.; Jackson, A. P.; Krueger, B. K.; Timmes, F. X.; Townsley, D. M.

    2011-01-01

    Type Ia supernovae (SNe Ia) are the premier standard candle for measuring the expansion history of the universe. SNe Ia make good standard candles only because their light curves can be calibrated. However, observations indicate even after calibration SNe Ia light curves have some dependence on properties of the host galaxy. Numerical models are steadily becoming more refined and can begin to probe the connection between the properties of the progenitor white dwarf and the outcome of the explosion. We perform numerical calculations to examine the effect of metallicity on the nucleosynthesis taking place in SNe Ia. Detailed yields resulting from explosive burning of the carbon/oxygen plasma in our models are examined using post-processing through a 532-nuclide reaction network. We explore how the production of elements from silicon to titanium varies with metallicity of the progenitor star. Our calculations suggest systematic trends in the silicon-group elements that may be observable. There is a clear trend with increasing metallicity of increasing silicon production while all other intermediate mass elements are produced in smaller abundances. We find, for example, that calcium follows a nearly linear trend of decreasing production with increasing metallicity. This work was supported by the US Department of Energy, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

  7. FLARE-GENERATED TYPE II BURST WITHOUT ASSOCIATED CORONAL MASS EJECTION

    SciTech Connect

    Magdalenic, J.; Marque, C.; Zhukov, A. N.; Vrsnak, B.; Veronig, A.

    2012-02-20

    We present a study of the solar coronal shock wave on 2005 November 14 associated with the GOES M3.9 flare that occurred close to the east limb (S06 Degree-Sign E60 Degree-Sign ). The shock signature, a type II radio burst, had an unusually high starting frequency of about 800 MHz, indicating that the shock was formed at a rather low height. The position of the radio source, the direction of the shock wave propagation, and the coronal electron density were estimated using Nancay Radioheliograph observations and the dynamic spectrum of the Green Bank Solar Radio Burst Spectrometer. The soft X-ray, H{alpha}, and Reuven Ramaty High Energy Solar Spectroscopic Imager observations show that the flare was compact, very impulsive, and of a rather high density and temperature, indicating a strong and impulsive increase of pressure in a small flare loop. The close association of the shock wave initiation with the impulsive energy release suggests that the impulsive increase of the pressure in the flare was the source of the shock wave. This is supported by the fact that, contrary to the majority of events studied previously, no coronal mass ejection was detected in association with the shock wave, although the corresponding flare occurred close to the limb.

  8. Quantitation of the Noncovalent Cellular Retinol-Binding Protein, Type 1 Complex Through Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Yu, Jianshi; Kane, Maureen A.

    2016-10-01

    Native mass spectrometry (MS) has become a valuable tool in probing noncovalent protein-ligand interactions in a sample-efficient way, yet the quantitative application potential of native MS has not been fully explored. Cellular retinol binding protein, type I (CrbpI) chaperones retinol and retinal in the cell, protecting them from nonspecific oxidation and delivering them to biosynthesis enzymes where the bound (holo-) and unbound (apo-) forms of CrbpI exert distinct biological functions. Using nanoelectrospray, we developed a native MS assay for probing apo- and holo-CrbpI abundance to facilitate exploring their biological functions in retinoid metabolism and signaling. The methods were developed on two platforms, an Orbitrap-based Thermo Exactive and a Q-IMS-TOF-based Waters Synapt G2S, where similar ion behaviors under optimized conditions were observed. Overall, our results suggested that within the working range (~1-10 μM), gas-phase ions in the native state linearly correspond to solution concentration and relative ion intensities of the apo- and holo-protein ions can linearly respond to the solution ratios, suggesting native MS is a viable tool for relative quantitation in this system.

  9. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  10. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events. PMID:16988705

  11. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

  12. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass approximately 0.9M[symbol: see text].

    PubMed

    Pakmor, Rüdiger; Kromer, Markus; Röpke, Friedrich K; Sim, Stuart A; Ruiter, Ashley J; Hillebrandt, Wolfgang

    2010-01-01

    Type Ia supernovae are thought to result from thermonuclear explosions of carbon-oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of approximately 0.9M[symbol: see text]. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M[symbol: see text] to 0.9M[symbol: see text]. PMID:20054390

  13. Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass approximately 0.9M[symbol: see text].

    PubMed

    Pakmor, Rüdiger; Kromer, Markus; Röpke, Friedrich K; Sim, Stuart A; Ruiter, Ashley J; Hillebrandt, Wolfgang

    2010-01-01

    Type Ia supernovae are thought to result from thermonuclear explosions of carbon-oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of approximately 0.9M[symbol: see text]. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M[symbol: see text] to 0.9M[symbol: see text].

  14. Off-center explosions of Chandrasekhar-mass white dwarfs: an explanation of super-bright type Ia supernovae?

    NASA Astrophysics Data System (ADS)

    Hillebrandt, W.; Sim, S. A.; Röpke, F. K.

    2007-04-01

    Context: The recent discovery of a very bright type Ia supernova, SNLS-03D3bb (≡SN 2003fg), in the Supernova Legacy Survey (SNLS) has raised the question of whether super-Chandrasekhar-mass white-dwarf stars are needed to explain such bright explosions. Progenitors of this sort could form by mergers of pairs of rather massive white dwarfs. Binary systems of two white dwarfs in close orbit, where their total mass significantly exceeds the Chandrasekhar mass, have not yet been found. Therefore SNLS-03D3bb could establish the first clear case of a double-degenerate progenitor of a (peculiar) type Ia supernovae. Moreover, if this interpretation is correct, it casts some doubt on the universality of the calibration relations used to make SNe Ia distance indicators for cosmology. Aims: We aim to evaluate the case for a super-Chandrasekhar-mass progenitor for SNLS-03D3bb in light of previous theoretical work on super-Chandrasekhar-mass explosions. Furthermore, we propose an alternative scenario involving only a Chandrasekhar-mass progenitor. Methods: We present a theoretically motivated critical discussion of the expected observational fingerprints of super-Chandrasekhar-mass explosions. As an alternative, we describe a simple class of aspherical Chandrasekhar-mass models in which the products of nuclear burning are displaced from the center. We then perform simple radiative transfer calculations to predict synthetic lightcurves for one such off-center explosion model. Results: In important respects, the expected observational consequences of super-Chandrasekhar-mass explosions are not consistent with the observations of SNLS-03D3bb. We demonstrate that the lopsided explosion of a Chandrasekhar-mass white dwarf could provide a better explanation.

  15. Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Barkley, M. P.; Gonzalez Abad, G.; Bösch, H.; Kurosu, T.; Spurr, R.

    2015-01-01

    Space-borne observations of formaldehyde (HCHO) are frequently used to derive surface emissions of isoprene, an important biogenic volatile organic compound. The conversion of retrieved HCHO slant column concentrations from satellite line of sight measurements to vertical columns is determined through application of an air mass factor (AMF), accounting for instrument viewing geometry, radiative transfer, and vertical profile of the absorber in the atmosphere. This step in the trace gas retrieval is subject to large errors. This work presents the AMF algorithm in use at the University of Leicester (UoL), which introduces scene specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument specific scattering weight calculation, and inclusion of an ozone vertical profile climatology. Application of these updates to HCHO slant columns from the GOME-2 instrument is shown to typically adjust the AMF by ±10%, compared to a~reference algorithm without these advanced parameterisations. Furthermore, the new UoL algorithm also incorporates a full radiative transfer error calculation for each scene to help characterise AMF uncertainties. Global median AMF errors are typically 50-60%, and are dominated by uncertainties in the HCHO profile shape and its corresponding seasonal variation.

  16. Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin Charles

    Problem-solving strategies in the physical sciences have been characterized by a dependence on algorithmic techniques often devoid of any reasoning skills. The purpose of this study was to examine student responses to a task relating to Boyle's Law for gases, which did not demand the use of a mathematical equation for its solution. Students (17- to 18-year-olds) in lower sixth form from two colleges in the Leeds district of Yorkshire in England were asked to respond to a task relating to pressure and volume measurements of air within a sealed syringe in different states of compression. Both qualitative and quantitative tasks for the sealed syringe system were examined. It was found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under such circumstances. Performance on an inverse ratio (2:1) task was shown to depend on gender and those students who performed well on the 2:1 inverse ratio task did not necessarily perform well on a different inverse ratio task when an arithmetic averaging principle was present. Tasks which draw upon qualitative knowledge as well as quantitative knowledge have the potential to reduce dependence on algorithms, particularly equation substitution and solution. The implications for instructional design are discussed.Received: 14 April 1993; Revised: 29 June 1994;

  17. Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry.

    PubMed

    Laakso, I; Seppänen-Laakso, T; Hiltunen, R; Müller, B; Jansen, H; Knobloch, K

    1989-06-01

    Combined headspace gas chromatography-mass spectrometry (HSGC-MS) was used in the analysis of garlic volatile compounds. Twenty major components were identified in the gas phases enriched by fresh, sliced garlic cloves ( ALLIUM SATIVUM L, Allioceae, Liliidae). Suspended dry garlic powder and crushed garlic, incubated in vegetable oil, revealed a different pattern since mainly the amounts of di- and trisulfides were decreased. The considerable compositional differences found in the analyses for the gas phase of garlic cloves, kept in oil, are likely associated with the poor stability of allicin in a lipophilic environment; a marked increase in the amounts of 2-propene-1-thiol, acetic acid, and ethanol was observed in the gas phase, whereas trisulfides were present in traces only. The occurrence of 2-propene-1-thiol and diallyl disulfide, the two principal sulfur components in exhaled air, also may indicate a rapid degradation of most garlic volatile components probably caused by the enzymatically active human salivary or digestive system. PMID:17262412

  18. Development of Cockcroft-Walton Type High-Voltage DC Generator with RF Air-Core Transformer

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoshio; Onishi, Kazuhiko; Muraoka, Takashi; Sugita, Michinobu; Kurisawa, Hideaki; Akita, Keizo; Hamano, Masaru; Nakazato, Hiroshi

    A Cockcroft-Walton (CW) type high-voltage DC generator is widely used for the electron processing system (EPS) which is applied for industrial purposes, such as radiation modification of polymers, medical product sterilization, and so on. The DC generator composes of the capacitors and diodes connected as cascade, and a step-up transformer. A new type high-voltage DC generator with RF air-core transformer used as the step-up transformer has been developed. The design concept of this air-core transformer, which is operated on the resonance condition between the inductance of the secondary coil and the stray capacitance of CW circuit, has been shown and the optimum coil structure has been proposed. Adapting the RF air-core transformer to DC300kV 100mA small CW circuit, the excellent performances have been successfully demonstrated. In this new CW circuit, it results in downsizing of the capacitors to operated at the higher frequency than the conventional one, and the approximately 40% reduction of the volume has been shown in the typically DC1MV 100mA generator.

  19. Complete genome sequencing of dengue virus type 1 isolated in Buenos Aires, Argentina.

    PubMed

    Barrero, Paola R; Mistchenko, Alicia S

    2004-05-01

    Dengue (DEN) constitutes a major viral arthropod-borne human illness. South America was last considered free of dengue two decades ago when a dramatic increase in the number of dengue fever and hemorrhagic dengue cases had been reported. Five viruses were isolated in Buenos Aires City from the 1999-2000 Paraguay outbreak. RT-PCRs obtained directly from plasma were cloned into pGemT vectors and sequences of the structural genes and NS1 were analyzed. Three viruses were full-length sequenced from RT-PCR obtained from cell-culture isolates. Excess of synonymous over non-synonymous mutations suggested that the structural proteins were under strong functional constraints while a weak purifying selection was operating in the whole polyprotein. Sequence diversity and selective pressures varied among patients but results were significantly above the procedure threshold. One sample showed small-plaque phenotype and impaired growth coupled to 3'untranslated region mutations. Phylogenetic analysis of full-length sequences split Buenos Aires isolates into two clusters within American DEN-1 genotype V: Clade I was phylogenetically linked to Brazilian samples and Clade II with samples from Paraguay and Northeastern Argentina. In Buenos Aires City, only dengue virus serotype 1 imported from Paraguay has been detected, though without evidence of local transmission.

  20. Type of wear for the pair Ti6Al4V/PCTFE in ambient air and in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Bozet, J.-L.

    1993-04-01

    The pair Ti6Al4V/polychlorotrifluoroethylene (PCTFE) on a pin-on-disk tribometer in ambient air and liquid nitrogen with the contact pressure and sliding speed ranging from 3 to 9 MPa and 0.03 to 0.05 m/s, respectively, is evaluated within the framework of a high pressure valves for cryogenic rocket engines project. Results show that an abrasion wear process, which is closely connected with a tribochemical wear process producing fluorides and an abrasive form of carbon, exists when PCTFE is continuously rubbed against Ti6Al4V in ambient air, liquid nitrogen, and gaseous argon. Degradations detected on the Ti6Al4V surface are found to be unacceptable in most cases, but in the real cryotechnic valves this type of wear was not observed. The latter is attributed to the great dwell time between actuations and the low speed of the reciprocating movements which considerably limit the heating.

  1. A New Type of Steady and Stable, Laminar, Premixed Flame in Ultra-Lean, Hydrogen-Air Combustion

    SciTech Connect

    Grcar, Joseph F; Grcar, Joseph F

    2008-06-30

    Ultra-lean, hydrogen-air mixtures are found to support another kind of laminar flame that is steady and stable beside flat flames and flame balls. Direct numerical simulations are performed of flames that develop into steadily and stably propagating cells. These cells were the original meaning of the word"flamelet'' when they were observed in lean flammability studies conducted early in the development of combustion science. Several aspects of these two-dimensional flame cells are identified and are contrasted with the properties of one-dimensional flame balls and flat flames. Although lean hydrogen-air flames are subject to thermo-diffusive effects, in this case the result is to stabilize the flame rather than to render it unstable. The flame cells may be useful as basic components of engineering models for premixed combustion when the other types of idealized flames are inapplicable.

  2. Negative-ion Electrospray Tandem Mass Spectrometry and Microarray Analyses of Developmentally-regulated Antigens Based on Type 1 and Type 2 Backbone Sequences

    PubMed Central

    Gao, Chao; Zhang, Yibing; Liu, Yan; Feizi, Ten; Chai, Wengang

    2016-01-01

    Type 1 (Galβ1-3GlcNAc) and type 2 (Galβ1-4GlcNAc) sequences are constituents of the backbones of a large family of glycans of glycoproteins and glycolipids whose branching and peripheral substitutions are developmentally-regulated. It is highly desirable to have micro-sequencing methods that can be used to precisely identify and monitor these oligosaccharide sequences with high sensitivity. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation has been used for characterization of branching points, peripheral substitutions and partial assignment of linkages in reducing oligosaccharides. We now extend this method to characterizing entire sequences of linear type 1 and type 2 chain-based glycans, focusing on the type 1 and -2 units in the internal regions including the linkages connecting type 1 and type 2 disaccharide units. We apply the principles to sequence analysis of closely related isomeric oligosaccharides and demonstrate by microarray analyses distinct binding activities of antibodies and a lectin toward various combinations of type 1 and 2 units joined by 1,3- and 1,6-linkages. These sequence-specific carbohydrate-binding proteins are in turn valuable tools for detecting and distinguishing the type 1 and type 2-based developmentally-regulated glycan sequences. PMID:26530895

  3. SPIDER. V. Measuring Systematic Effects in Early-type Galaxy Stellar Masses from Photometric Spectral Energy Distribution Fitting

    NASA Astrophysics Data System (ADS)

    Swindle, R.; Gal, R. R.; La Barbera, F.; de Carvalho, R. R.

    2011-10-01

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of ~40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which ~5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 <= z <= 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (AV ) are also computed from fits to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and AV are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only ~0.06 dex, adding uncertainties of ~0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2σ uncertainties of ~0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by ~0.15 dex, with errors of ~0.02 dex at the 95% CL for the median stellar age subsample.

  4. Lower mass normalization of the stellar initial mass function for dense massive early-type galaxies at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Gargiulo, A.; Saracco, P.; Longhetti, M.; Tamburri, S.; Lonoce, I.; Ciocca, F.

    2015-01-01

    Aims: This paper aims at understanding whether the normalization of the stellar initial mass function (IMF) of massive galaxies varies with cosmic time and/or with mean stellar mass density Σ = M⋆/(2πRe2). Methods: We have tackled this question by taking advantage of a spectroscopic sample of 18 dense (Σ > 2500 M⊙ pc-2) massive early-type galaxies (ETGs) that we collected at 1.2 ≲ z ≲ 1.6. Each galaxy in the sample was selected in order to have available: i) a high-resolution deep HST-F160W image to visually classify it as an ETG; ii) an accurate velocity dispersion estimate; iii) stellar mass derived through the fit of multiband photometry; and iv) structural parameters (i.e. effective radius Re and Sersic index n) derived in the F160W-band. We have constrained the mass-normalization of the IMF of dense high-z ETGs by comparing the true stellar masses of the ETGs in the sample (Mtrue) derived through virial theorem, hence IMF independent, with those inferred through the fit of the photometry which assume a reference IMF (Mref). Adopting the virial estimator as proxy of the true stellar mass, we have implicitly assumed that these systems have zero dark matter. However, recent dynamical analysis of massive local ETGs have shown that the dark matter fraction within Re in dense ETGs is negligible (<5-10%) and simulations of dissipationless mergers of spheroidal galaxies have shown that this fraction decreases going back with time. Accurate dynamical models of local ETGs performed by the ATLAS3D team have shown that the virial estimator is prone to underestimating or overestimating the total masses. We have considered this, and based on the results of ATLAS3D we have shown that for dense ETGs the mean value of total masses derived through the virial estimator with a non-homologous virial coefficient and Sersic-Re are perfectly in agreement with the mean value of those derived through more sophisticated dynamical models, although, of course, the estimates

  5. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    PubMed Central

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  6. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph

  7. Food addiction symptomology, impulsivity, mood, and body mass index in people with type two diabetes.

    PubMed

    Raymond, Karren-Lee; Lovell, Geoff P

    2015-12-01

    This research explored how food addiction (FA) and impulsivity (non-planning, motor, and attentional) relate to body mass index (BMI) in a sample of people with type 2 diabetes (t2d). Participants with t2d (N = 334, Mage = 41.0, SDage = 9.5, 66% female, MBMI = 37.6 kg/m(2), SDBMI = 8.0 kg/m(2)) completed an online survey including the Depression Anxiety Stress Scale (DASS-21), the Barratt Impulsiveness Scale (BIS-II), and the Yale Food Addiction Scale (YFAS). Results demonstrated that over 70% of the sample with t2d met the YFAS criteria for FA. Results also demonstrated that participants classified as FA had significantly higher BMI, t (332) = 12.11, p < .001. The food addict classification group also had a significantly higher percentage of obese participants, χ(2) (2) = 87.1, p < .001, phi = .511. Utilising a cross-sectional design to predict BMI, significant forward stepwise multiple regression demonstrated that FA (β = .386) and impulsivity (non-planning) (β = .286) were significant predictors. In combination FA and impulsivity (non-planning) significantly explained 38% of BMI variance; however depression, anxiety, and stress did not significantly improve the model. These results suggest FA and impulsivity (non-planning) are more salient cross-sectional predictors of BMI, in people with t2d, than indices of depression, anxiety, stress and impulsivity (motor and attentional). These results, implicating FA in the development of obesity, have important ramifications for potential future treatment methods of t2d where FA symptomology could be routinely screened, and if present, treated via addiction models rather than purely attempting to treat the potential consequences of FA. PMID:26232140

  8. VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air

    PubMed Central

    Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan

    2016-01-01

    Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205

  9. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  10. Air backed mandrel type fiber optic hydrophone with low noise floor

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; V, Sreehari C.; N, Praveen Kumar; Awasthi, R. L.; K, Vivek; B, Vishnu M.; Santhanakrishnan, T.; Moosad, K. P. B.; Mathew, Basil

    2014-10-01

    Low noise fiber optic hydrophone based on optical fiber coil wound on air-backed mandrel was developed. The sensor can be effectively used for underwater acoustic sensing. The design and characterization of the hydrophone is illustrated in this paper. A fiber Mach-Zehnder Interferometer (MZI) was developed and coupled with a Distributed Feedback (DFB) fiber laser source and an optical phase demodulation system, with an active modulation in one of the arms. The sensor head design was optimized to achieve noise spectral density <10 μrad/√Hz, for yielding sufficient sensitivity to sense acoustic pressure close to Deep Sea Sate Zero (DSS0).

  11. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  12. Bisthiadiazole-Fused Tetraazapentacenequinone: An Air-Stable Solution-Processable n-Type Organic Semiconductor.

    PubMed

    Cortizo-Lacalle, Diego; Gozalvez, Cristian; Olano, Mikel; Sun, Xiangnan; Melle-Franco, Manuel; Hueso, Luis E; Mateo-Alonso, Aurelio

    2015-12-01

    The synthesis and characterization of a tetraazapentacenequinone fused to two thiadiazoles is reported. This linear derivative constituting seven fused rings shows a very low LUMO level (-4.46 eV) and a low HOMO-LUMO gap (1.77 eV). Its high solubility, endowed by four triisopropylsilyl groups, allows the fabrication of air-stable field-effect transistors by liquid deposition methods that show electron mobilities up to 2.42 × 10(-3) cm(2) V(-1) s(-1) without any device optimization. PMID:26588192

  13. Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics

    NASA Astrophysics Data System (ADS)

    Li, Guanhong; Li, Qunqing; Jin, Yuanhao; Zhao, Yudan; Xiao, Xiaoyang; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2015-10-01

    Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed charges in the ALD layer. The key advantage of the method is the relatively low temperature (120 or 90 °C) required here for the ALD process because we need not employ this step to totally remove the absorbates on the SWNTs. This advantage facilitates the integration of both p-type and n-type transistors through a simple lift off process and compact CMOS inverters were demonstrated. We also demonstrated that the doping of SWNTs in the channel plays a more important role than the Schottky barriers at the metal contacts in carbon nanotube thin-film transistors, unlike the situation in individual SWNT-based transistors.Single-walled carbon nanotube (SWNT) thin-film transistors hold great potential for flexible electronics. However, fabrication of air-stable n-type devices by methods compatible with standard photolithography on flexible substrates is challenging. Here, we demonstrated that by using a bilayer dielectric structure of MgO and atomic layer deposited (ALD) Al2O3 or HfO2, air-stable n-type devices can be obtained. The mechanism for conduction type conversion was elucidated and attributed to the hole depletion in SWNT, the decrease of the trap state density by MgO assimilating adsorbed water molecules in the vicinity of SWNT, and the energy band bending because of the positive fixed

  14. Air stable organic salt as an n-type dopant for efficient and stable organic light-emitting diodes.

    PubMed

    Bin, Zhengyang; Duan, Lian; Qiu, Yong

    2015-04-01

    Air-stable and low-temperature-evaporable n-type dopants are highly desired for efficient and stable organic light-emitting diodes (OLEDs). In this work, 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide (o-MeO-DMBI-I), a thermally decomposable precursor of organic radical o-MeO-DMBI, has been employed as a novel n-type dopant in OLEDs, because of its air stability, low decomposition temperature, and lack of atom diffusion. The n-type electrical doping is evidenced by the rapid increase in current density of electron-only devices and the large improvement in conductivity, originated from increased electron concentration in electron-transport layer (ETL) and reduced electron injection barrier. A highly efficient and stable OLED is created using o-MeO-DMBI as an n-type dopant in Bphen. Compared with the control device with its high-temperature-evaporable n-type dopant cesium carbonate (Cs2CO3), o-MeO-DMBI-doped device showed an incredible boom in current efficiency from 28.6 to 42.2 cd/A. Moreover, the lifetime (T(70%)) of o-MeO-DMBI-doped device is 45 h, more than 20 times longer than that of the Cs2CO3-doped device (2 h). The enhanced efficiency and stability are attributed to the improved balance of holes and electrons in the emissive layer, and the eliminated atom diffusion of cesium. PMID:25768295

  15. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-01

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  16. Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Barkley, M. P.; Gonzalez Abad, G.; Bösch, H.; Kurosu, T.; Spurr, R.; Tilstra, L. G.

    2015-10-01

    Space-borne observations of formaldehyde (HCHO) are frequently used to derive surface emissions of isoprene, an important biogenic volatile organic compound. The conversion of retrieved HCHO slant column concentrations from satellite line-of-sight measurements to vertical columns is determined through application of an air mass factor (AMF), accounting for instrument viewing geometry, radiative transfer, and vertical profile of the absorber in the atmosphere. This step in the trace gas retrieval is subject to large errors. This work presents the AMF algorithm in use at the University of Leicester (UoL), which introduces scene-specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument-specific scattering weight calculation, and inclusion of an ozone vertical profile climatology. Application of these updates to HCHO slant columns from the GOME-2 instrument is shown to typically adjust the AMF by ±20 %, compared to a reference algorithm without these advanced parameterisations. On average the GOME-2 AMFs increase by 4 %, with over 70 % of locations having an AMF of 0-20 % larger than originally, largely resulting from the use of the latest GOME-2 reflectance product. Furthermore, the new UoL algorithm also incorporates a full radiative transfer error calculation for each scene to help characterise AMF uncertainties. Global median AMF errors are typically 50-60 %, and are driven by uncertainties in the HCHO profile shape and its vertical distribution relative to clouds and aerosols. If uncertainty on the a priori HCHO profile is relatively small (< 10 %) then the median AMF total error decreases to about 30-40 %.

  17. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  18. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants

    PubMed Central

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-01-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate. PMID:26507004

  19. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants.

    PubMed

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-06-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate. PMID:26507004

  20. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants.

    PubMed

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-06-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate.

  1. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  2. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  3. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  4. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  5. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing.

    PubMed

    Pangallo, Domenico; Chovanová, Katarina; Simonovicová, Alexandra; Ferianc, Peter

    2009-03-01

    This study deals with establishing the characteristics of a microbial community isolated from indoor artworks and the surrounding air environment. It is one of the few studies on microbial degradation of indoor artworks. It shows the potential biodegradative risk that can occur if artworks are not exhibited and conserved in an appropriate environment. The microbial community isolated from the indoor artworks and air environment was examined by cultural and molecular methods. Different plate assays were used to screen the biodegradative activity of the isolated microflora: Remazol Brilliant Blue R, phenol red, and Azure B for the ligninolytic properties; Ostazin brilliant red H-3B for cellulose degradation; CaCO3 glucose agar for solubilization activity; and B4 agar for biomineralization. To type the bacterial and fungal isolates, 2 PCR methods, repetitive extragenic palindromes (REP) and random amplified microsatellite polymorphisms (RAMP) were used. The art objects were principally colonized by fungi. The most commonly isolated strains were represented by hyphomycetes of the genera Penicillium, Aspergillus, Cladosporium, and Chaetomium. Members of these genera showed intensive biodegradation activity, both on wood and on stone. Bacteria were predominant in the air, exhibiting complex communities, both in the air and on the artworks. The most frequently isolated genera were Bacillus and Staphylococcus with extensive biodegradation abilities. REP-PCR revealed high variability within strains belonging to the same genus. RAMP is a new PCR-based method, used in this research for the first time to cluster the microfilamentous fungi and to characterize and select especially Penicillium and Aspergillus strains, which were isolated in a large number.

  6. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  7. Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses

    SciTech Connect

    Iorio, Lorenzo

    2010-08-01

    We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi and the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.

  8. [Characteristics of aerosol water-soluble inorganic ions in three types air-pollution incidents of Nanjing City].

    PubMed

    Zhang, Qiu-Chen; Zhu, Bin; Su, Ji-Feng; Wang, Hong-Lei

    2012-06-01

    In order to compare aerosol water-soluble inorganic species in different air-pollution periods, samples of PM10, PM2.1, PM1.1 and the main water-soluble ions (NH4+, Mg2+, Ca2+, Na+, K+, NO2(-), F(-), NO3(-), Cl(-), SO4(2-)) were measured, which were from 3 air-pollution incidents (continued pollution in October 16-30 of 2009, sandstorm pollution in April 27-30 of 2010, and crop burning pollution in June 14 of 2010. The results show that aerosol pollution of 3 periods is serious. The lowest PM2.1/PM10 is only 0.27, which is from sandstorm pollution period, while the largest is 0. 7 from crop burning pollution period. In continued pollution periods, NO3(-) and SO4(2-) are the dominant ions, and the total anions account for an average of 18.62%, 32.92% and 33.53% of PM10, PM2.1 and PM1.1. Total water-soluble ions only account for 13.36%, 23.72% and 28.54% of PM10, PM2.1 and PM1.1 due to the insoluble species is increased in sandstorm pollution period. The mass concentration of Ca2+ in sandstorm pollution period is higher than the other two pollution periods, and which is mainly in coarse particles with diameter larger than 1 microm. All the ten water-soluble ions are much higher in crop burning pollution especially K+ which is the tracer from crop burning. The peak mass concentrations of NO3(-), SO4(2-) and NH4+ are in 0.43-0.65 microm. PMID:22946180

  9. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1.

    PubMed

    Kim, Si-Wook; Kim, Dohun

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage.

  10. Management of long-term persistent air leakage developed after bullectomy for giant bullous lung disease associated with neurofibromatosis type 1

    PubMed Central

    Kim, Si-Wook

    2016-01-01

    Persistent air leakage is a serious and sometimes fatal complication of bullous lung disease surgery. A 32-year-old man with lung involvement of neurofibromatosis type I underwent bullectomy for huge bullae and recurrent pneumothorax. Persistent postoperative air leakage developed and the lung was totally collapsed. The initial surgery failed, but a second trial employing a novel suture technique on half-absorbed polyglycolic acid (PGA) felt successfully resolved the massive air leakage. Pneumothorax did not recur and the patient remained stable without dyspnea. Thus, a suture technique employing half-absorbed PGA felt was an effective option for managing persistent air leakage. PMID:26904244

  11. The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Janz, Joachim; Pota, Vincenzo; Pastorello, Nicola; Usher, Christopher; Spitler, Lee R.; Foster, Caroline; Jennings, Zachary G.; Villaume, Alexa; Kartha, Sreeja

    2016-08-01

    We study mass distributions within and beyond 5 effective radii (Re) in 23 early-type galaxies from the SAGES Legacy Unifying Globulars and Galaxies Survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEep Imaging Multi-Object Spectrograph, and consist of line-of-sight velocities for ˜3500 GCs, measured with a high precision of ˜15 km s-1 per GC and extending out to ˜13 Re. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within 5 Re (fDM) increases from ˜0.6 to ˜0.8 for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies (M* ˜ 1011 M⊙) having low fDM ˜ 0.3, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light (M/L) ratio, and the assumed slope of the gravitational potential. However, the low fDM in the ˜1011 M⊙ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these M* ˜ 1011 M⊙ galaxies with low fDM have very diffuse dark matter haloes, implying that they assembled late. Beyond 5 Re, the M/L gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.

  12. Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge

    NASA Astrophysics Data System (ADS)

    Chen, She; Zeng, Rong; Zhuang, Chijie; Zhou, Xuan; Ding, Yujian

    2016-03-01

    One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment. supported by the Fund of the National Priority Basic Research of China (2011CB209403) and National Natural Science Foundation of China (Nos. 51325703, 51377094, 51577098)

  13. New masses for the O-type binary DH Cephei, and the temperatures of O-stars.

    NASA Astrophysics Data System (ADS)

    Hilditch, R. W.; Harries, T. J.; Bell, S. A.

    1996-10-01

    Spectroscopic observations, secured in 1973 and 1991, are analysed together with data from Sturm & Simon (1993) and Penny et al. (1996) to yield a new determination of the masses of the O+O-type binary system DH Cep. The masses are 32.7+/-1.7Msun_ for the O5.5V primary and 29.6+/-1.6Msun_ for the O6.5V secondary. Analysis of the light curves from Lines et al. (1986), coupled with temperature and flux ratios from Sturm & Simon, results in revised absolute parameters with final masses increased by 10% relative to those determined by Sturm & Simon. These revised parameters are in excellent accord with the evolutionary models of Schaller et al. (1992), at an age of 1.5Myr. In the context of those evolutionary models, and the work of Schoenberner & Harmanec (1995) on lower-mass binaries, we discuss the properties of 6 O to B0 detached binaries including DH Cep. The masses and radii for the components of these systems are all in remarkable agreement with the Schaller et al. models of solar composition. The O star temperatures need to be reduced by an average ~1000K to achieve agreement in T_eff_ with the models, but this averaged value may hide the need for substantial reductions (~2500K) around O8. We note also some discrepancies between derived visual absolute magnitudes, and the M_v_-spectral type relationship for O stars compiled by Schmidt-Kaler (1982).

  14. Isotopic abundance measurements on solid nuclear-type samples by glow discharge mass spectrometry.

    PubMed

    Betti, M; Rasmussen, G; Koch, L

    1996-07-01

    A double-focusing Glow Discharge Mass Spectrometer (GDMS) installed in a glovebox for nuclear sample screening has been employed for isotopic measurements. Isotopic compositions of zirconium, silicon, lithium, boron, uranium and plutonium which are elements of nuclear concern have been determined. Interferences arising from the matrix sample and the discharge gas (Ar) for each of these elements are discussed. The GDMS results are compared with those from Thermal Ionization Mass Spectrometry (TIMS). For boron and lithium at microg/g-ng/g levels, the two methods gave results in good agreement. In samples containing uranium the isotopic composition obtained by GDMS was in agreement with those from TIMS independently of the enrichment. Attempts for the determination of plutonium isotopic composition were also made. In this case, due to the interferences of uranium at mass 238 and americium at mass 241, the GDMS raw data are complementary with those values obtained from physical non-destructive techniques.

  15. SPITZER OBSERVATIONS OF THE {lambda} ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    SciTech Connect

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J. E-mail: muzerol@stsci.ed

    2010-10-20

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young ({approx}5 Myr) {lambda} Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M{sub sun} to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from {approx}6% for K-type stars (R{sub C} - J < 2) to {approx}27% for stars with spectral-type M5 or later (R{sub C} - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the {lambda} Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as {approx}5 Myr.

  16. Utilization of Whole-Cell MALDI-TOF Mass Spectrometry to Differentiate Burkholderia pseudomallei Wild-Type and Constructed Mutants.

    PubMed

    Niyompanich, Suthamat; Srisanga, Kitima; Jaresitthikunchai, Janthima; Roytrakul, Sittiruk; Tungpradabkul, Sumalee

    2015-01-01

    Whole-cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (whole-cell MALDI-TOF MS) has been widely adopted as a useful technology in the identification and typing of microorganisms. This study employed the whole-cell MALDI-TOF MS to identify and differentiate wild-type and mutants containing constructed single gene mutations of Burkholderia pseudomallei, a pathogenic bacterium causing melioidosis disease in both humans and animals. Candidate biomarkers for the B. pseudomallei mutants, including rpoS, ppk, and bpsI isolates, were determined. Taxon-specific and clinical isolate-specific biomarkers of B. pseudomallei were consistently found and conserved across all average mass spectra. Cluster analysis of MALDI spectra of all isolates exhibited separate distribution. A total of twelve potential mass peaks discriminating between wild-type and mutant isolates were identified using ClinProTools analysis. Two peaks (m/z 2721 and 2748 Da) were specific for the rpoS isolate, three (m/z 3150, 3378, and 7994 Da) for ppk, and seven (m/z 3420, 3520, 3587, 3688, 4623, 4708, and 5450 Da) for bpsI. Our findings demonstrated that the rapid, accurate, and reproducible mass profiling technology could have new implications in laboratory-based rapid differentiation of extensive libraries of genetically altered bacteria. PMID:26656930

  17. A Solar Type II Radio Burst from Coronal Mass Ejection-Coronal Ray Interaction: Simultaneous Radio and Extreme Ultraviolet Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Du, Guohui; Feng, Li; Feng, Shiwei; Kong, Xiangliang; Guo, Fan; Wang, Bing; Li, Gang

    2014-05-01

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  18. A solar type II radio burst from coronal mass ejection-coronal ray interaction: Simultaneous radio and extreme ultraviolet imaging

    SciTech Connect

    Chen, Yao; Du, Guohui; Feng, Shiwei; Kong, Xiangliang; Wang, Bing; Feng, Li; Guo, Fan; Li, Gang

    2014-05-20

    Simultaneous radio and extreme ultraviolet (EUV)/white-light imaging data are examined for a solar type II radio burst occurring on 2010 March 18 to deduce its source location. Using a bow-shock model, we reconstruct the three-dimensional EUV wave front (presumably the type-II-emitting shock) based on the imaging data of the two Solar TErrestrial RElations Observatory spacecraft. It is then combined with the Nançay radio imaging data to infer the three-dimensional position of the type II source. It is found that the type II source coincides with the interface between the coronal mass ejection (CME) EUV wave front and a nearby coronal ray structure, providing evidence that the type II emission is physically related to the CME-ray interaction. This result, consistent with those of previous studies, is based on simultaneous radio and EUV imaging data for the first time.

  19. Easy dual-mode ambient mass spectrometry with Venturi self-pumping, canned air, disposable parts and voltage-free sonic-spray ionization.

    PubMed

    Schwab, Nicolas V; Porcari, Andreia M; Coelho, Mirela B; Schmidt, Eduardo M; Jara, Jose L; Visentainer, Jesui V; Eberlin, Marcos N

    2012-06-01

    An exceptionally easy to assemble source for ambient mass spectrometry is described. Based on Venturi easy ambient sonic-spray ionization (V-EASI), the source was further simplified by the use of a can of compressed air which simultaneously provides solution or solvent Venturi self-pumping and continuous, stable and abundant low-noise ion signal via voltage-free sonic-spraying. Further simplification was also attained by the use of inexpensive and readily commercially available parts: a surgical 2-way catheter, an aerosol can of compressed air, a 30 cm long fused-silica capillary and a hypodermic needle. This "Spartan" V-EASI source seems to offer one of the easiest and cheapest ways to make ions for ambient desorption/ionization mass spectrometry analysis of both liquid and solid samples. PMID:22349120

  20. Associations between lower extremity muscle mass and metabolic parameters related to obesity in Japanese obese patients with type 2 diabetes.

    PubMed

    Hamasaki, Hidetaka; Kawashima, Yu; Adachi, Hiroki; Moriyama, Sumie; Katsuyama, Hisayuki; Sako, Akahito; Yanai, Hidekatsu

    2015-01-01

    Background. Age-related loss of muscle mass (sarcopenia) increases the incidence of obesity in the elderly by reducing physical activity. This sarcopenic obesity may become self-perpetuating, increasing the risks for metabolic syndrome, disability, and mortality. We investigated the associations of two sarcopenic indices, the ratio of lower extremity muscle mass to body weight (L/W ratio) and the ratio of lower extremity muscle mass to upper extremity muscle mass (L/U ratio), with metabolic parameters related to obesity in patients with type 2 diabetes and obesity. Methods. Of 148 inpatients with type 2 diabetes treated between October 2013 and April 2014, we recruited 26 with obesity but no physical disability. Daily physical activity was measured by a triaxial accelerometer during a period of hospitalization, and which was also evaluated by our previously reported non-exercise activity thermogenesis questionnaire. We measured body composition by bioelectrical impedance and investigated the correlations of L/W and L/U ratios with body weight, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), visceral fat area, subcutaneous fat area, serum lipid profile, and daily physical activity. Results. The L/W ratio was significantly and negatively correlated with BMI, WC, WHR, body fat mass, body fat percentage, subcutaneous fat area, and serum free fatty acid concentration, was positively correlated with daily physical activity: the locomotive non-exercise activity thermogenesis score, but was not correlated with visceral fat area. The L/U ratio was significantly and positively correlated with serum high-density lipoprotein cholesterol. Conclusions. High L/W and L/U ratios, indicative of relatively preserved lower extremity muscle mass, were predictive of improved metabolic parameters related to obesity. Preserved muscle fitness in obesity, especially of the lower extremities, may prevent sarcopenic obesity and lower associated risks for metabolic

  1. `Majorana Mass' Fermions as Untrue Majorana Particles, Rather Endowed with Pseudoscalar-Type Charges than Genuinely Neutral

    NASA Astrophysics Data System (ADS)

    Ziino, G.

    2016-03-01

    The idea of a `Majorana mass' to make a chiral neutrino really neutral is here reconsidered. It is pointed out that such an approach, unlike Majorana's (non-chiral) old one, does not strictly lead, in general, to a true self-conjugate particle. This can be seen on directly using the basic definition (or fundamental representation) of charge conjugation C in Quantum Field Theory, as an operation just acting on annihilation and creation operators and just expressing particle-antiparticle interchange. It is found, indeed, that the `active' and `sterile' whole fields which can be obtained from mixing the chiral components of two mutually charge-conjugate Dirac fields are themselves `charge conjugate' to each other (rather than individually self-conjugate). These fields, taken as mass eigenfields (as in the `Majorana mass' case), are shown to describe particles carrying pseudoscalar-type charges and being neutral relative to scalar-type charges only. For them, ` CP symmetry' would be nothing but pure mirror symmetry, and C violation (already implied in their respective `active' and `sterile' behaviors) should then involve time-reversal violation as well. The new (no longer strictly chargeless) `Majorana mass' neutrino model still proves, however, neither to affect the usual expectation for a neutrinoless double β-decay, nor to prevent `active' and `sterile' neutrino varieties from generally taking different mass values. One has, on the other hand, that any fermion being just a genuine (i.e. really self-conjugate) Majorana particle cannot truly exist in two distinct—`active' and `sterile'—versions, and it can further bear only a unified mass kind which may at once be said to be either a `Majorana-like' or a `Dirac-like' mass kind.

  2. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  3. Effects of chromium brewer's yeast supplementation on body mass, blood carbohydrates, and lipids and minerals in type 2 diabetic patients.

    PubMed

    Król, Ewelina; Krejpcio, Zbigniew; Byks, Hanna; Bogdański, Paweł; Pupek-Musialik, Danuta

    2011-11-01

    Chromium(III) is considered as an essential element for carbohydrate and lipid metabolism. The aim of this clinical study was to evaluate the efficacy of Cr brewer's yeast supplementation on body mass, carbohydrate, lipids and mineral indices in type 2 diabetic patients. Twenty adult type 2 diabetic subjects (11 males and 9 females aged 37-63) were supplemented with Cr brewer's yeast in dosages of 500 μg Cr/person/day or placebo for 8 weeks in a double-blind, placebo-controlled crossover design. It was found that supplemental Cr did not affect body mass, blood lipid profile, resistin levels, and the serum and hair Zn, Fe, and Cu levels, but increased serum Cr (by 116%) and hair Cr (by 20.6%) concentrations and improved some blood carbohydrate indices (significant increase in the β cell function index by 18.8%) in type 2 diabetic patients. In conclusion, Cr brewer's yeast has a weak hypoglycemic potential, but does not affect body mass, blood biochemical profile, and microelement levels in type 2 diabetic subjects.

  4. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    NASA Astrophysics Data System (ADS)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2014-05-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithm based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  5. Mass Conservation and Positivity Preservation with Ensemble-type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; McLaughlin, Dennis B.; Cohn, Stephen E.; Verlaan, Martin

    2013-01-01

    Maintaining conservative physical laws numerically has long been recognized as being important in the development of numerical weather prediction (NWP) models. In the broader context of data assimilation, concerted efforts to maintain conservation laws numerically and to understand the significance of doing so have begun only recently. In order to enforce physically based conservation laws of total mass and positivity in the ensemble Kalman filter, we incorporate constraints to ensure that the filter ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. We show that the analysis steps of ensemble transform Kalman filter (ETKF) algorithm and ensemble Kalman filter algorithm (EnKF) can conserve the mass integral, but do not preserve positivity. Further, if localization is applied or if negative values are simply set to zero, then the total mass is not conserved either. In order to ensure mass conservation, a projection matrix that corrects for localization effects is constructed. In order to maintain both mass conservation and positivity preservation through the analysis step, we construct a data assimilation algorithms based on quadratic programming and ensemble Kalman filtering. Mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate constraints. Some simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. The results show clear improvements in both analyses and forecasts, particularly in the presence of localized features. Behavior of the algorithm is also tested in presence of model error.

  6. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  7. Characterization of volatile organic compounds (VOCs) in Asian and North American pollution plumes during INTEX-B: identification of specific Chinese air mass tracers

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Meinardi, S.; Simpson, I. J.; Atlas, E. L.; Beyersdorf, A. J.; Baker, A. K.; Blake, N. J.; Yang, M.; Midyett, J. R.; Novak, B. J.; McKeachie, R. J.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Campos, T.; Weinheimer, A. J.; Sherwood Rowland, F.; Blake, D. R.

    2009-03-01

    We present results from the Intercontinental Chemical Transport Experiment - Phase B (INTEX-B) aircraft mission conducted in spring 2006. By analyzing the mixing ratios of volatile organic compounds (VOCs) measured during the second part of the field campaign, together with kinematic back trajectories, we were able to identify five plumes originating from China, four plumes from other Asian regions, and three plumes from the United States. To identify specific tracers for the different air masses, we focused on characterizing the VOC composition of these different pollution plumes. The Chinese and other Asian air masses were significantly enhanced in carbonyl sulfide (OCS) and methyl chloride (CH3Cl), while all CFC replacement compounds were elevated in US plumes, particularly HCFC-134a. Although elevated mixing ratios of Halon-1211 were measured in some of the Chinese plumes, several measurements at background levels were also observed. After analyzing the VOC distribution in the Chinese pollution plumes and the correlations among selected compounds, we suggest the use of a suite of species, rather than the use of a single gas, to be used as specific tracers of Chinese air masses (namely OCS, CH3Cl, 1,2-dichloroethane, and Halon-1211). In an era of constantly changing halocarbon usage patterns, this suite of gases best reflects new emission characteristics from China.

  8. A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set

    NASA Astrophysics Data System (ADS)

    Scalzo, R.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.; Nearby Supernova Factory, The

    2012-09-01

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < MV < -20) and the velocity of the Si II λ6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including 56Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  9. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET

    SciTech Connect

    Scalzo, R.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; Nugent, P.; Collaboration: Nearby Supernova Factory; and others

    2012-09-20

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M{sub V} < -20) and the velocity of the Si II {lambda}6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including {sup 56}Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  10. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling s