Science.gov

Sample records for air mass variability

  1. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  2. Northern East Asian Monsoon Precipitation Revealed by Air Mass Variability and Its Prediction

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Seo, K. H.

    2015-12-01

    This work provides a new perspective on the major factors controlling the East Asian summer monsoon (EASM) in July, and a promising physical-statistical forecasting of the EASM ahead of summer. Dominant modes of the EASM are revealed from the variability of large-scale air masses discerned by equivalent potential temperature, and are found to be dynamically connected with the anomalous sea surface temperatures (SSTs) over the three major oceans of the world and their counterparts of prevailing atmospheric oscillation or teleconnection patterns. Precipitation over Northeast Asia (NEA) during July is enhanced by the tropical central Indian Ocean warming and central Pacific El Niño-related SST warming, the northwestern Pacific cooling off the coast of NEA, and the North Atlantic Ocean warming. Using these factors and data from the preceding spring seasons, the authors build a multiple linear regression model for seasonal forecasting. The cross-validated correlation skill predicted for the period 1994 to 2012 is up to 0.84, which far exceeds the skill level of contemporary climate models.

  3. Upper air relaxation in regional climate model improves resolved interannual variability of the surface mass balance of Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke; van Meijgaard, Erik

    2015-04-01

    The surface mass balance (SMB) determines the variability of the mass balance of the Antarctic Ice sheet on sub-decadal timescales. Since continent-wide SMB cannot be measured, it must be modeled and regional climate models (RCMs) generally outperform global reanalyses in the representation of total mass flux and the spatial distribution of SMB. However, if RCMs are only forced with reanalysis on their lateral boundaries, the representation of the interannual variability of SMB deteriorates significantly. In this study we show how to improve the resolved interannual variability in RCM modeled SMB. For this purpose we use annual SMB observations in the Thwaites drainage basin in Antarctica derived from airborne radar reflections and the RCM RACMO2. RACMO2, driven by ERA-Interim, better represents the mean spatial SMB pattern in this basin than ERA-Interim. However, without relaxation in the interior, RACMO2 poorly resolves the observed interannual SMB variability. If we gently relax the temperature and wind field in the upper atmosphere in RACMO2 to ERA-Interim, RACMO2 gets the best of both. Upper air relaxation little changes the mean SMB and spatial pattern compared to the original RACMO2 output, but allows RACMO2 to resolve the observed interannual SMB as good as ERA-Interim.

  4. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  5. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  6. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    . In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component (43% OA) while semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA and depend on the air mass origin. A significant variability of ozone was observed that depends on the impact of different air mass types and solar radiation.

  7. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component contributing an average of 43% of the particulate organic mass while the semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA dependent on the air mass origin. The variability of ozone is not only affected by different types of air masses but also significantly by the diurnal variation as a consequence of the solar radiation as well as local meteorological parameters.

  8. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  9. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  10. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  11. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    ]. This dataset provides comprehensive monthly statistics on the wind meteorological regime at the stations of interest in a given range of altitudes. Based on long-term source observational data, the dataset is assumed being representative up to date, which allowed us to estimate monthly pollutant fluxes for the years 2006-2008 over segments of the Russian border and its whole [4]. In the current phase of our study, we calculate the inter-annual variations in the transboundary pollutant fluxes for 2000-2012 using longer-term EANET data and transient changes in air mass fluxes derived from the meteorological wind fields from ERA INTERIM re-analysis [5]. We gauge similar average air transport terms and dynamics from the statistical and reanalysis data, which bolsters our earlier findings. The reanalysis data, being naturally more variable, convolutes the variations in net air fluxes and pollutant concentrations into several episodes we emphasise, in addition to the integral pollutant transfer terms we estimate. At last, we discuss on the possibility of climate change effect on the flux strength and dynamics together with regional air quality tendencies in North-East Asia countries. References: Izrael, Yu.A., et al.: Monitoring of the Transboundary Air Pollution Transport. Gidrometeoizdat, Leningrad, 303 p., 187 (in Russian). Akimoto H., et al.: Periodic Report of the State of Acid Deposition in East Asia. Part I: Regional Assessment. EANET-UNEP/RRC.AP-ADORC, 258 p., 2006. Brukhan, F.F.: Aeroclimatic Characteristics of the Mean Winds over USSR (ed. Ignatjushina E.N.). Gidrometeoizdat, Moscow, 54 p., 1984 (in Russian). Gromov S.A., et al.: First-order evaluation of transboundary pollution fluxes in areas of EANET stations in Eastern Siberia and the Russian Far East. EANET Science Bulletin, vol. 3, pp. 195-203, 2013. Dee, D. P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quart. J. Royal Met. Soc., 137, 553-597, doi: 10

  12. Dynamics of Variable Mass Systems

    NASA Technical Reports Server (NTRS)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  13. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  14. Mass transfer cycles in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    King, A. R.; Frank, J.; Kolb, U.; Ritter, H.

    1995-01-01

    It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.

  15. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  16. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  17. Evolution of Southern Hemisphere spring air masses observed by HALOE

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  18. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  19. Variable volume combustor with an air bypass system

    DOEpatents

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  20. Air Mass Frequency during Precipitation Events in the United States Northern Plains

    NASA Astrophysics Data System (ADS)

    Loveless, D. M.; Sharr, N. J.; Baum, A.; Contract, J. S.; DePasquale, R.; Godek, M. L.

    2013-12-01

    Since 1980, numerous billion-dollar disasters have affected the Northern Plains of the United States, including nine droughts and four floods. Given the region's large agricultural sector, the ability to accurately forecast the frequency and quantity of precipitation events here is imperative as it has a major impact on the economy of states in the region. The atmospheric environment present during precipitation events can largely be described by the presiding air mass conditions since air masses characterize a multitude of meteorological variables at one time over a large region. Therefore, understanding the relationship between air masses and rainfall episodes can contribute to improved precipitation forecasts. The goal of this research is to add knowledge to current understandings of the factors responsible for precipitation in the Northern Plains through an assessment of synoptic air mass conditions. The Spatial Synoptic Classification is used to categorize 30 years of daily air mass types across the region and daily precipitation is acquired from the United States Historical Climatological Network at stations in close proximity. Air mass frequencies are then analyzed for all regional precipitation events and rainfall categories are developed based on precipitation quantity. Both annual and seasonal air mass frequencies are assessed at the time of precipitation events. Additionally, air mass frequencies are obtained for positive and negative phases of the Pacific/North American Pattern to examine the influence of a teleconnection forcing factor on the air mass types responsible for producing precipitation quantities. Results indicate that the Transitional (TR) air mass, associated with changing air mass conditions commonly related to passing fronts, is not the leading producer of rainfall in the region. The TR is generally responsible for only 10-20% of regional precipitation, which often is classed in a heavy rainfall category. All moist air mass varieties are

  1. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  2. Finescale Water-Mass Variability from ARGO Profiling Floats

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Finescale Water -Mass Variability from ARGO Profiling...assessment of water -mass (aka thermohaline or spice) variability as a measure of stirring along isopycnals, as well as density ratio Rρ statistics, from the...global ARGO profiling float data set. APPROACH For the water -mass analysis, the profile data is transformed onto σθ density coordinates

  3. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  4. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  5. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  6. Air suspension characterisation and effectiveness of a variable area orifice

    NASA Astrophysics Data System (ADS)

    Alonso, A.; Giménez, J. G.; Nieto, J.; Vinolas, J.

    2010-12-01

    The air spring is one of the components that most affects vehicle comfort. This element usually makes up the main part of the secondary suspension, which introduces both stiffness and damping between the bogie and the car body. Therefore, a deep understanding of this element is necessary in order to study the comfort of a vehicle, the influence of different parameters and the ways to improve it. In this work, the effect of the air spring system on comfort is studied. To accomplish this, a typical pneumatic suspension composition is briefly studied as a first step. Then, the test bench developed to characterise air springs is described, presenting experimental results. Correlation of the results with some theoretical models is also addressed. Afterwards, the effect of the air spring system on comfort is analysed, and finally, improvements from introducing a variable area orifice in the pipe that joints the air spring and the surge reservoir are discussed.

  7. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  8. Doubling down on peptide phosphorylation as a variable mass modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some mass spectrometrists believe that searching for variable post-translational modifications like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false positive rates. The basis for this is the premise that the al...

  9. On the White Dwarf Mass Problem of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Min; Li, Xiang-Dong

    2016-11-01

    Recent observations show that white dwarfs (WDs) in cataclysmic variables (CVs) have an average mass significantly higher than isolated WDs and WDs in post-common envelope binaries (PCEBs), which are thought to be the progenitors of CVs. This suggests that either the WDs have grown in mass during the PCEB/CV evolution or the binaries with low-mass WDs are unable to evolve to be CVs. In this paper, we calculate the evolution of accreting WD binaries with updated hydrogen accumulation efficiency and angular momentum loss (AML) prescriptions. We show that thermal-timescale mass transfer is not effective in changing the average WD mass distribution. The WD mass discrepancy is most likely related to unstable mass transfer in WD binaries, in which an efficient mechanism of AML is required.

  10. Ram air turbine driving a variable displacement hydraulic pump

    SciTech Connect

    Dickes, G.E.; Brekhus, R.D.; Seidel, W.E.

    1992-09-08

    This patent describes a ram air turbine for use in generating power for an aircraft by driving a load with an airstream intercepting blades of the turbine as the aircraft moves through the air with the turbine applying power to the load during rotation of the blades in a first rotational velocity range and during rotation of the blades in a second rotational velocity range which is lower than the first rotational velocity. It comprises a variable displacement hydraulic pump; and a reduced power output.

  11. Autocorrelation and variability of indoor air quality measurements.

    PubMed

    Luoma, M; Batterman, S A

    2000-01-01

    Measurements of gaseous and particulate concentrations are used to characterize the indoor environment, but such measurements may reflect temporary conditions that are not representative of longer time periods. Moreover, indoor air quality (IAQ) measurements are autocorrelated, a result of limited mixing and air exchange, cyclic emissions, HVAC operation, and other factors. This article analyzes the autocorrelation and variability of IAQ measurements using time series analysis techniques in conjunction with a simple IAQ model. Autocorrelations may be estimated using the air exchange rate (alpha) and ventilation effectiveness (epsilon) of the building or room under study, or estimated from pollutant measurements. From this, the variability, required sample size, and other sampling parameters are estimated. The method is tested in a case study in which particle number, fungi, bacteria, and carbon dioxide concentrations were continuously measured in an office building over a 1-week period. The estimated air exchange rate (1.4/hr) for area studied was predicted to yield autocorrelation coefficients of approximately 0.5 for measurements collected on 30-min intervals. Autocorrelation coefficients based on airborne measurements (lag 0.5 hr) ranged from 0.5 to 0.7 for 1-25 microm diameter particles, fungi, and CO2, but near zero for particles < or =1 microm diameter and bacteria. As expected, the variability of measurements with the lowest autocorrelation decreased the most at long sampling times. The implications for spaces with low alpha * epsilon products are that measurements may not benefit significantly from longer averaging periods, measurements on any single day may not be representative, and day-to-day variability may be significant. Steps to determine sample sizes, averaging times, and sampling strategies that can improve the representativeness of IAQ measurements are discussed.

  12. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  13. Finescale Water-Mass Variability from ARGO Profiling Floats

    DTIC Science & Technology

    2014-09-30

    characterize lateral stirring on O(100 km) lengthscales. This variability represents the low-wavenumber source for the submesoscale being studied under...produce a spectrum for water-mass variability on isopycnals over horizontal wavelengths of 0.03-30 km (Kunze et al. 2014). The submesoscale band...other. 4 REFERENCES D’Asaro, E.A., 1988: Geneation of submesoscale vortices – A new mechanism. J. Geophys. Res., 93, 6685-6693. Ferrari, R

  14. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  15. Identifying Dynamically Induced Variability in Glacier Mass-Balance Records

    NASA Astrophysics Data System (ADS)

    Christian, J. E.; Siler, N.; Koutnik, M. R.; Roe, G.

    2015-12-01

    Glacier mass-balance (i.e., accumulation vs. ablation) provides a direct indicator of a glacier's relationship with climate. However, mass-balance records contain noise due to internal climate variability (i.e., from stochastic fluctuations in large-scale atmospheric circulation), which can obscure or bias trends in these relatively short timeseries. This presents a challenge in correctly identifying the signature of anthropogenic change. "Dynamical adjustment" is a technique that identifies patterns of variance shared between a climate timeseries of interest (e.g., mass-balance) and independent "predictor" variables associated with large-scale circulation (e.g., Sea Level Pressure, SLP, or Sea Surface Temperature, SST). Extracting the component of variance due to internal variability leaves a residual timeseries for which trends can more confidently be attributed to external forcing. We apply dynamical adjustments based on Partial Least Squares Regression to mass-balance records from South Cascade Glacier in Washington State and Wolverine and Gulkana Glaciers in Alaska, independently analyzing seasonal balance records to assess the dynamical influences on winter accumulation and summer ablation. Seasonally averaged North Pacific SLP and SST fields perform comparably as predictor variables, explaining 50-60% of the variance in winter balance and 30-40% of variance in summer balance for South Cascade and Wolverine Glaciers. Gulkana glacier, located further inland than the other two glaciers, is less closely linked to North Pacific climate variability, with the predictors explaining roughly one-third of variance in its winter and summer balance. We analyze the significance of linear trends in the raw and adjusted mass-balance records, and find that for all three glaciers, a) summer balance shows a statistically significant downward trend that is not substantially altered when dynamically induced variability is removed, and b) winter balance shows no statistically

  16. Intraurban Spatiotemporal Variability of Ambient Air Pollutants across Metropolitan St. Louis

    NASA Astrophysics Data System (ADS)

    Du, Li

    Ambient air monitoring networks have been established in the United States since the 1970s to comply with the Clean Air Act. The monitoring networks are primarily used to determine compliance but also provide substantive support to air quality management and air quality research including studies on health effects of air pollutants. The Roxana Air Quality Study (RAQS) was conducted at the fenceline of a petroleum refinery in Roxana, Illinois. In addition to providing insights into air pollutant impacts from the refinery, these measurements increased the St. Louis area monitoring network density for gaseous air toxics and fine particulate matter (PM2.5) speciation and thus provided an opportunity to examine intraurban spatiotemporal variability for these air quality parameters. This dissertation focused on exploring and assessing aspects of ambient air pollutant spatiotemporal variability in the St. Louis area from three progressively expanded spatial scales using a suite of methods and metrics. RAQS data were used to characterize air quality conditions in the immediate vicinity of the petroleum refinery. For example, PM2.5 lanthanoids were used to track impacts from refinery fluidized bed catalytic cracker emissions. RAQS air toxics data were interpreted by comparing to network data from the Blair Street station in the City of St. Louis which is a National Air Toxics Trends Station. Species were classified as being spatially homogeneous (similar between sites) or heterogeneous (different between sites) and in the latter case these differences were interpreted using surface winds data. For PM 2.5 species, there were five concurrently operating sites in the St. Louis area - including the site in Roxana - which are either formally part of the national Chemical Speciation Network (CSN) or rigorously follow the CSN sampling and analytical protocols. This unusually large number of speciation sites for a region the size of St. Louis motivated a detailed examination of

  17. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004 2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-10-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  18. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004-2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-06-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration (PM1 and PM10) by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  19. A control strategy for adaptive absorber based on variable mass

    NASA Astrophysics Data System (ADS)

    Gao, Qiang; Han, Ning; Zhao, Yanqing; Duan, Chendong; Wang, Wanqin

    2015-07-01

    The tuned vibration absorber (TVA) has been an effective tool for vibration control. However, the application of TVA can cause resonance of the primary system and increase its vibration when the absorber is mistuned. In this paper, a novel control strategy based on adaptive tuned vibration absorber (ATVA) of variable mass is proposed to reduce the resonance of the primary system. Unlike most ATVAs suggested by other researchers which adjust the absorber natural frequency by changing the stiffness, the variable mass ATVA varies its natural frequency by changing absorber mass to match the excitation frequency. Some simulations and experiments were conducted to test the performance of the control strategy. The results show that the proposed control plan can widen the frequency bandwidth of the absorber, as well as suppress the resonance of the primary system significantly. This implies that the work is useful for practical applications of ATVA.

  20. Measurement and modeling of diel variability of polybrominated diphenyl ethers and chlordanes in air.

    PubMed

    Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C

    2008-05-01

    Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.

  1. Tunable hollow waveguide distributed Bragg reflectors with variable air core

    NASA Astrophysics Data System (ADS)

    Sakurai, Yasuki; Koyama, Fumio

    2004-06-01

    We demonstrate a tunable hollow waveguide distributed Bragg reflector consisting of a grating loaded slab hollow waveguide with a variable air-core. The modeling shows that a change in an air-core thickness enables a large shift of several tens of nanometers in Bragg wavelength due to a change of several percents in a propagation constant. We fabricated a slab hollow waveguide Bragg reflector with 620 μm long and, 190 nm deep 1st-order circular grating composed of SiO2, exhibiting strong Bragg reflection at 1558 nm with an air-core thickness of 10 μm for TM mode. The peak reflectivity is 65% including fiber coupling losses, the 3-dB bandwidth is 2.8 nm and the grating-induced loss is less than 0.5 dB. We demonstrate a 3 nm wavelength tuning of the fabricated hollow waveguide Bragg reflector by changing an air-core thickness from 10 μm to 7.9 μm.

  2. Variable soft sphere molecular model for air species

    NASA Astrophysics Data System (ADS)

    Koura, Katsuhisa; Matsumoto, Hiroaki

    1992-05-01

    A reliable set of cross-section parameters of the variable soft sphere (VSS) molecular model is determined for the Monte Carlo simulation of air species from the transport collision integrals or potential parameters provided by Cubley and Mason (1975) over the high-temperature range 300-15,000 K. The VSS cross-section parameters for the inverse-power-law potential are also determined from the viscosity coefficients recommended by Maitland and Smith (1972) for common species in the low (20-300 K) and high (300-2000 K) temperature ranges.

  3. Variable soft sphere molecular model for air species

    NASA Astrophysics Data System (ADS)

    Koura, Katsuhisa; Matsumoto, Hiroaki

    1992-05-01

    A reliable set of cross-section parameters of the variable soft sphere (VSS) molecular model is determined for the Monte Carlo simulation of air species from the transport collision integrals or potential parameters provided by Cubley and Mason [Phys. Fluids 18, 1109 (1975)] over the high-temperature range 300-15 000 K. The VSS cross-section parameters for the inverse-power-law potential are also determined from the viscosity coefficients recommended by Maitland and Smith [J. Chem. Eng. Data 17, 150 (1972)] for common species in the low (20-300 K) and high (300-2000 K) temperature ranges.

  4. Modeling of Fluctuating Mass Flux in Variable Density Flows

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mongia, H. C.; Nikjooy, M.

    1983-01-01

    The approach solves for both Reynolds and Favre averaged quantities and calculates the scalar pdf. Turbulent models used to close the governing equations are formulated to account for complex mixing and variable density effects. In addition, turbulent mass diffusivities are not assumed to be in constant proportion to turbulent momentum diffusivities. The governing equations are solved by a combination of finite-difference technique and Monte-Carlo simulation. Some preliminary results on simple variable density shear flows are presented. The differences between these results and those obtained using conventional models are discussed.

  5. Mode Selection Techniques in Variable Mass Flexible Body Modeling

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Ghosh, Tushar K.; Frenkel, David; Huynh, An

    2010-01-01

    In developing a flexible body spacecraft simulation for the Launch Abort System of the Orion vehicle, when a rapid mass depletion takes place, the dynamics problem with time varying eigenmodes had to be addressed. Three different techniques were implemented, with different trade-offs made between performance and fidelity. A number of technical issues had to be solved in the process. This paper covers the background of the variable mass flexibility problem, the three approaches to simulating it, and the technical issues that were solved in formulating and implementing them.

  6. A Synoptic Air Mass Approach to Defining Southwest U.S. Summer Duration and Change

    NASA Astrophysics Data System (ADS)

    Morrill, C.; Wachtel, C. J.; Godek, M. L.

    2015-12-01

    As the past decade was the warmest in the 110-year active record, and future Southwest warming is expected to be most intense in the summer season, it is important to have an updated atmospheric definition of what constitutes a Southwest summer. This is particularly true given the intensity of current drought conditions and that summers may be changing. Using weather-type data from the Spatial Synoptic Classification, this research aims to synoptically define the summer season in the Southwest since 1950. The Southwest is spatially described here by sub-region and 28 air mass stations within are chosen for air mass analysis. Daily air mass frequencies are examined to determine the dominant and less prevalent types annually and seasonally, from May to September. Then, frequencies in the middle of summer are compared to those in the seasonal fringe months to explore the possibility of a synoptic shift in the timing of the region's summer season. Finally, to further scrutinize how regional air mass frequencies have changed with time, the data are subdivided and evaluated for the 'Early record' (years prior to 1975) and 'Modern record' (post 1975). Frequency departures are tested for practical and statistical significance to characterize the strength of summer season variability. Results indicate that Dry Moderate air masses are the most common annually and in summer. Moist and transitional air masses tend to less frequent throughout the Southwest; however, frequencies vary greatly by sub-region. Wet and dry conditions are observed in accordance with the monsoon in some sub-regions, but not throughout the region. Significant changes in sub-regional air mass tendencies are identified that show the Early record experienced cooler air mass conditions (fewer tropical types and more moderate and cool types) than the Modern record. From a long-term synoptic air mass perspective, typical Southwest summers likely last from May to August. However, in the Modern record May

  7. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    NASA Astrophysics Data System (ADS)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the

  8. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  9. Gravitational lensing by a smoothly variable surface mass density

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan; Wambsganss, Joachim

    1989-01-01

    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  10. Variability of Winter Air Temperature in Mid-Latitude Europe

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Ardizzone, J.; Atlas, R.; Bungato, D.; Cierniewski, J.; Jusem, J. C.; Przybylak, R.; Schubert, S.; Starr, D.; Walczewski, J.

    2002-01-01

    The aim of this paper is to report extreme winter/early-spring air temperature (hereinafter temperature) anomalies in mid-latitude Europe, and to discuss the underlying forcing to these interannual fluctuations. Warm advection from the North Atlantic in late winter controls the surface-air temperature, as indicated by the substantial correlation between the speed of the surface southwesterlies over the eastern North Atlantic (quantified by a specific Index Ina) and the 2-meter level air temperatures (hereinafter Ts) over Europe, 45-60 deg N, in winter. In mid-March and subsequently, the correlation drops drastically (quite often it is negative). This change in the relationship between Ts and Ina marks a transition in the control of the surface-air temperature: absorption of insolation replaces the warm advection as the dominant control. This forcing by maritime-air advection in winter was demonstrated in a previous publication, and is re-examined here in conjunction with extreme fluctuations of temperatures in Europe. We analyze here the interannual variability at its extreme by comparing warm-winter/early-spring of 1989/90 with the opposite scenario in 1995/96. For these two December-to-March periods the differences in the monthly mean temperature in Warsaw and Torun, Poland, range above 10 C. Short-term (shorter than a month) fluctuations of the temperature are likewise very strong. We conduct pentad-by-pentad analysis of the surface-maximum air temperature (hereinafter Tmax), in a selected location, examining the dependence on Ina. The increased cloudiness and higher amounts of total precipitable water, corollary effects to the warm low-level advection. in the 1989/90 winter, enhance the positive temperature anomalies. The analysis of the ocean surface winds is based on the Special Sensor Microwave/Imager (SSM/I) dataset; ascent rates, and over land wind data are from the European Centre for Medium-Range Weather Forecasts (ECMWF); maps of 2-m temperature, cloud

  11. Where do the air masses between double tropopauses come from?

    NASA Astrophysics Data System (ADS)

    Parracho, A. C.; Marques, C. A. F.; Castanheira, J. M.

    2014-01-01

    An analysis of the origin of air masses that end up between double tropopauses (DT) in the subtropics and midlatitudes is presented. The double tropopauses were diagnosed in the ERA-Interim reanalysis (1979-2010), and the origin of air masses was analysed using the Lagrangian model FLEXPART. Different processes for the formation of double tropopauses (DT) have been suggested in the literature. Some studies have suggested that double tropopauses may occur as a response to the vertical profile of adiabatic heating, due to the residual meridional circulation, while others have put forward contradicting explanations. Whereas some studies have suggested that double tropopauses result from poleward excursions of the tropical tropopause over the extratropical one, others have argued that DTs develop in baroclinic unstable processes involving transport of air from high latitudes. In some regions, the DT structure has a semipermanent character which cannot be explained by excursions of the tropical tropopause alone. However, the results presented in this paper confirm that processes involving excursions of the tropical tropopause over the extratropical tropopause, which are therefore accompanied by intrusions of air from the tropical troposphere into the lower extratropical stratosphere, make a significant contribution for the occurrence of DTs in the subtropics and midlatitudes. Specifically, it is shown that the air between double tropopauses comes from equatorward regions, and has a higher percentage of tropospheric particles and a lower mean potential vorticity.

  12. Variable mass pendulum behaviour processed by wavelet analysis

    NASA Astrophysics Data System (ADS)

    Caccamo, M. T.; Magazù, S.

    2017-01-01

    The present work highlights how, in order to characterize the motion of a variable mass pendulum, wavelet analysis can be an effective tool in furnishing information on the time evolution of the oscillation spectral content. In particular, the wavelet transform is applied to process the motion of a hung funnel that loses fine sand at an exponential rate; it is shown how, in contrast to the Fourier transform which furnishes only an average frequency value for the motion, the wavelet approach makes it possible to perform a joint time-frequency analysis. The work is addressed at undergraduate and graduate students.

  13. Disambiguating seesaw models using invariant mass variables at hadron colliders

    NASA Astrophysics Data System (ADS)

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √{s}=14 and 100 TeV hadron colliders.

  14. Disambiguating seesaw models using invariant mass variables at hadron colliders

    DOE PAGES

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at themore » $$\\sqrt{s}$$ = 14 and 100TeV hadron colliders.« less

  15. Disambiguating seesaw models using invariant mass variables at hadron colliders

    SciTech Connect

    Dev, P. S. Bhupal; Kim, Doojin; Mohapatra, Rabindra N.

    2016-01-19

    Here, we propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. Furthermore, these kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. We also conducted a Monte Carlo simulation with detector effects in order to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the $\\sqrt{s}$ = 14 and 100TeV hadron colliders.

  16. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  17. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  18. Newtonian Version of the Variable Mass Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Carvalho, J. C.; Lima, J. A. S.

    1990-11-01

    RESUMEN. Se presenta una versi6n Newtoniana de los modelos cosmol6gicos espacialmente e isotr6picos con masa variable. La influencia de la variaci6n de masa en la evoluci6n de la funci6n de escala est establecida para el caso de un Universo lieno de polvo bajo Ia suposici6n de que esta variaci6n es un efecto estrictamente cosmol6jico. Se muestra que el hiperb6lico, parab6lico 0 el#ptico dcl movimiento de puede ser modificado a lo larjo de la expansi6n. ABSTRACT. This paper presents a Newtonian version of the spatially homojeneous and isotropic cosmolojical models with variable mass. The influence of the mass variation on the evolution of the scale function is established for the case of a dust-filled Universe under the assumption that this variation is a strict cosmolojical effect. It is shown that the hyperbolic, parabolic or elliptic character of the fluid motion can be modified alonj the expansion. Keq : COSMOLOGY

  19. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  20. Assessing surface air temperature variability using quantile regression

    NASA Astrophysics Data System (ADS)

    Timofeev, A. A.; Sterin, A. M.

    2014-12-01

    Many researches in climate change currently involve linear trends, based on measured variables. And many of them only consider trends in mean values, whereas it is clear, that not only means, but also whole shape of distribution changes over time and requires careful assessment. For example extreme values including outliers may get bigger, while median has zero slope.Quantile regression provides a convenient tool, that enables detailed analysis of changes in full range of distribution by producing a vector of quantile trends for any given set of quantiles.We have applied quantile regression to surface air temperature observations made at over 600 weather stations across Russian Federation during last four decades. The results demonstrate well pronounced regions with similar values of significant trends in different parts of temperature value distribution (left tail, middle part, right tail). The uncertainties of quantile trend estimations for several spatial patterns of trends over Russia are estimated and analyzed for each of four seasons.For temperature trend estimation over vast territories, quantile regression is an effort consuming approach, but is more informative than traditional instrument, to assess decadal evolution of temperature values, including evolution of extremes.Partial support of ERA NET RUS ACPCA joint project between EU and RBRF 12-05-91656-ЭРА-А is highly appreciated.

  1. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the

  2. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  3. Measuring mixed cellulose ester (MCE) filter mass under variable humidity conditions.

    PubMed

    Bogen, Kenneth T; Brorby, Greg; Berman, D Wayne; Sheehan, Pat; Floyd, Mark

    2011-06-01

    Mixed cellulose ester (MCE) filters, used routinely to collect dust samples from air for fiber analysis, are the only filter type that can be prepared for both phased contrast microscopy and transmission electron microscopy analyses. However, whenever fiber counts require collecting dust masses <100 μg on a single filter under variable relative humidity (RH) conditions, historically noted effects of humidity on MCE filter mass can hinder accurate estimates of dust mass, measured as loaded minus unloaded filter mass (M). In this study, a baseline set of hundreds of paired measures of change in RH versus M over different time intervals were obtained over a 5-day period for replicate series of 40 unloaded 37-mm MCE filters under varying RH conditions at a nearly constant temperature. Similar baseline data were obtained for 25-mm MCE filters. Linear regressions fit to these data allow improved estimates of dust mass loaded onto MCE filters from measures of M and RH made before and after loading occurs. Using established theory, these relationships were generalized to address temperature variation as well, and examples of numerical applications are provided.

  4. Infiltration History and Spatial Variability Derived from Chloride Mass Balance

    NASA Astrophysics Data System (ADS)

    Walton, J. C.; Jaimes, A.; Woocay, A.

    2007-12-01

    Chloride mass balance was applied to drill cuttings collected from the unsaturated zone surrounding the Yucca Mountain Project. Samples correspond to four Nye County Early Warning Drilling Program boreholes where air was used as the drilling fluid to preserve sample integrity. Infiltration dates before present and pore velocities were calculated using a range of annual chloride deposition rates obtained from the literature. The lower chloride loading corresponds to contemporary values, and the upper loading corresponds to an attempt to correct for either past greater chloride deposition or a past higher precipitation with chloride concentration remaining constant. In each borehole, pore velocities present two distinct slopes corresponding to different infiltration regimes. The first one, near the surface, presents the slowest infiltration rate. The second pore velocity corresponds to a past wetter period (late Pleistocene to early Holocene) with much faster pore velocities. Results indicate that pore velocities among the boreholes differ at most by a factor of approximately 3.5. Boreholes located in areas of little or gradual slope present faster infiltration rates than those in areas of greater slope. Borehole NC-EWDP-22S, near Fortymile Wash east of Yucca Mountain, exhibits the most rapid pore velocities where as boreholes further from the wash demonstrate lower velocities. These results denote the effects climate change, and runoff and run-on at the surface have over infiltration rates in arid regions.

  5. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  6. Climatology and variability of Southern Hemisphere marine cold-air outbreaks

    NASA Astrophysics Data System (ADS)

    Bracegirdle, Thomas J.; Kolstad, Erik W.

    2010-03-01

    Marine cold air outbreaks (MCAOs) are events where cold air flows over a relatively warm sea surface. Such outbreaks are associated with severe mesoscale weather systems that are not generally resolved in global climate models, such as polar lows and boundary-layer fronts. Here, an analysis of winter climatology and variability of MCAOs in the Southern Hemisphere (SH) is presented. Near the sea ice edge, north-south fluctuations of the Southern Annular Mode (SAM) index are key, while further north, large-scale wave disturbances are needed to move air masses far enough away from the Antarctic continent to instigate MCAOs. Unlike in the Northern Hemisphere (NH), the spatial patterns of mean and extreme values of the MCAO index differ considerably. Near 60°S, both mean and extreme values of the index are similar to those found in the main MCAO regions in the NH. Further north, the mean MCAO index is quite high, but the extreme values are much lower than in the NH. We conclude that MCAOs in the SH are as widespread and can be as strong as in the NH, but severe MCAOs near densely populated regions such as the Tasman Sea are less common than in the Nordic Seas and near Japan.

  7. The mass ratio of the cataclysmic variable AM Herculis.

    NASA Astrophysics Data System (ADS)

    Southwell, K. A.; Still, M. D.; Connon Smith, R.; Martin, J. S.

    1995-10-01

    We present far red time-resolved spectroscopy of the cataclysmic variable AM Herculis. We measure the radial velocity semi-amplitude of the secondary component to be 198+/-3km/s and the projected rotational velocity of this star to be 92+/-9km/s. Thus we are able to estimate the ratio of component masses to be 0.47+/-0.08. We show, however, that these measurements are likely to be biased by ionization of the inner secondary surface by radiation originating close to the shock region above the surface of the primary. Using models of the Na surface distribution on the secondary star, we attempt to produce a less biased orbital parameter solution. These results indicate that the uncertainties in the measured, irradiation-affected parameters are too large to produce a well-constrained, corrected orbital solution with our limited spectral information. However, the method employed to make the irradiation correction has potential to produce accurate binary parameters given improved data.

  8. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  9. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  10. Fan Electricity Consumption for Variable-Air-Volume Systems.

    DTIC Science & Technology

    1986-09-01

    Be Reduced in Air Handling Systems," .- Specifying Engineer (March 1981); R. Haines, "Fan Energy - P vs. PI Control ," Heating - Piping - Air...much higher humidity. Minneapolis has the highest heating requirements of all sites studied. 1.0 i. - P CONTROL OF ACINV PI CONTROL OF ACINV...load performance data. 15115 :. .- ’-- .... . .. .... .. .. ....---.- .-.-. -. .’"o , 1.0 I I I I - P CONTROL OF ACINV,- PI CONTROL OF ACINV 0.8

  11. Water mass variability in the Atlantic Subtropical Gyre reveals the mechanisms of recent Meridional Overturning changes

    NASA Astrophysics Data System (ADS)

    Gwyn Evans, Dafydd; Toole, John; Forget, Gael; Zika, Jan; Nurser, A. George; Naveira Garabato, Alberto; Yu, Lisan

    2015-04-01

    Interannual variability in the volumetric water-mass distribution within the North Atlantic subtropical gyre (STG) is described in relation to the recent reported changes in the Atlantic Meridional Overturning Circulation (AMOC). Using an Argo based gridded climatology and a high-resolution ocean state estimate (ECCO), we project the ocean into thermohaline coordinates as volumes of water defined by their temperature and salinity. We compare monthly time-series of the volumetric distribution to the volume changes implied by the water mass transformations due to air/sea fluxes of heat and freshwater over the STG, and the divergence of advective transports across the latitudinal boundaries of the STG. Coinciding with the reported AMOC changes during the winters of 2009/10 and 2010/11, in both the observations and the state estimate, the total STG volume above the thermocline decreases while the volume below increases in compensation. During the winter of 2009/10, this redistribution is equivalent to a transport of 25 Sv (1 Sv==106 m3s-1) over 3 months. A comparison to two air-sea flux re-analyses products shows that this variability cannot be explained by anomalous cooling over the STG, which suggests the volumetric redistribution is caused by changes in the transport divergence between 26 and 45°N. In ECCO, we see a reduction in the zonal circulation of the STG and divergence of transport above the thermocline. Below the thermocline we see an increase in the southward transport at 45°N and a decrease at 26°N. Using two wind-stress products, we present evidence that the observed changes are a barotropic response to anomalous wind-stress curl over the STG.

  12. The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription.

    PubMed

    Venanzi, Emily S; Melamed, Rachel; Mathis, Diane; Benoist, Christophe

    2008-10-14

    The Aire transcription factor plays an important role in immunological self-tolerance by mediating the ectopic expression of peripheral self-antigens by thymic medullary epithelial cells (MECs), and the deletion of thymocytes that recognize them. In Aire-deficient humans or mice, central tolerance is incomplete and multiorgan autoimmune disease results. We examined the variability of Aire's effects on ectopic transcription among individual mice of three different inbred strains. Aire's function was, overall, quite similar in the three backgrounds, although generally stronger in C57BL/6 than in BALB/c or NOD mice, and a minority of Aire-regulated genes did show clear differences. Gene expression profiling of wild-type MECs from single mice, or from the two thymic lobes of the same mouse, revealed significantly greater variability in Aire-controlled ectopic gene expression than in Aire-independent transcripts. This "noisy" ectopic expression did not result from parental or early developmental imprinting, but from programming occurring after the formation of the thymic anlage, resulting from epigenetic effects or from the stochastic nature of Aire activity. Together, genetic and nongenetic variability in ectopic expression of peripheral antigens in the thymus make for differences in the portion of self determinants presented for tolerance induction. This variable self may be beneficial in preventing uniform holes in the T-cell repertoire in individuals of a species, but at the cost of variable susceptibility to autoimmunity.

  13. A determination of character and frequency changes in air masses using a spatial synoptic classification

    NASA Astrophysics Data System (ADS)

    Kalkstein, Laurence S.; Sheridan, Scott C.; Graybeal, Daniel Y.

    1998-09-01

    Of the numerous climate change studies which have been performed, few of these have analyzed recent trends using an air mass-based approach. The air mass approach is superior to simple trend analysis, as it can identify patterns which may be too subtle to influence the entire climate record. The recently-developed spatial synoptic classification (SSC) is thus used to identify trends over the contiguous United States for summer and winter seasons from 1948 to 1993. Both trends in air mass frequency and character have been assessed.The most noteworthy trend in frequency is a decline in air mass transitional days (TR) during both seasons. In winter, decreases of up to 1% per decade are noted in parts of the central U.S. Other notable trends include a decrease in moist tropical (MT) air in winter, and an increase in MT in summer over the southeastern states.Numerous national and local air mass character changes have been uncovered. A large overall upward trend in cloudiness is noted in summer. All air masses feature an overnight increase, yet afternoon cloudiness increases are generally limited to the three dry air masses. Also in summer, a significant warming and increase in dew point of MT air has occurred at many locales. The most profound winter trend is a large decrease in dew point (up to 1.5°C per decade) in the dry polar (DP) air mass over much of the eastern states.

  14. Temporal variability of air-pollutants over Abu Dhabi, UAE

    NASA Astrophysics Data System (ADS)

    Ghedira, H.; Ben Romdhane, H.; Beegum S, N.

    2013-12-01

    Air quality, the measure of the concentrations of gaseous pollutants and size or number of particulate matter, is one of the most important problems worldwide and has strong implications on human health, ecosystems, as well as regional and global climate. The levels of air pollutants such as sulphur dioxide (SO2), particulate matters (PM10, PM2.5), Ozone (O3), Nitrogen dioxide (NO2), Carbon monoxide (CO), etc. show an alarming increase in urban cities across the world and in many cases, the concentrations have grown well above the World Health Organization's guidelines for ambient air-quality standards. Here, we present the periodic fluctuations observed in the concentrations of air pollutants such as SO2, NO2, O3, CO, H2S, NMHC (Non methane Hydro Carbon) and VOC (volatile organic compounds) based on the measurements collected during the period 2008-2010 at Masdar City, Abu Dhabi (24.42oN, 54.61oE, 7m MSL). The measurements were carried out using an Air Quality Monitoring System (AQM60). All these pollutant species showed statistical periodic: diurnal, monthly, seasonal and annual variations. Diurnally, all the species, except ozone, depicted an afternoon low and nighttime/early morning high, attributed to the dynamics of the local atmospheric boundary layer. Whereas, an opposite pattern with daytime high and nighttime low was observed for O3, as the species is formed in the troposphere by catalytic photochemical reactions of NOx with CO, CH4 and other VOCs. Seasonally, the pollutants depicted higher values during summer and relatively lower values during winter, associated with changes in synoptic airmass types and/or removal processes. Concentrations of all the gaseous pollutants are within the National Ambient Air Quality Standards (NAAQS) throughout the year, whereas the PM10 often exceeded the limits, especially during dust storm episodes.

  15. Reassessment of MIPAS age of air trends and variability

    NASA Astrophysics Data System (ADS)

    Haenel, F. J.; Stiller, G. P.; von Clarmann, T.; Funke, B.; Eckert, E.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Reddmann, T.

    2015-11-01

    A new and improved setup of the SF6 retrieval together with a newly calibrated version of MIPAS-ENVISAT level 1b spectra (version 5, ESA data version 5.02/5.06) was used to obtain a new global SF6 data set, covering the total observational period of MIPAS from July 2002 to April 2012 for the first time. Monthly and zonally averaged SF6 profiles were converted into mean age of air using a tropospheric SF6-reference curve. The obtained data set of age of air was compared to airborne age of air measurements. The temporal evolution of the mean age of air was then investigated in 10° latitude and 1-2 km altitude bins. A regression model consisting of a constant and a linear trend term, two proxies for the quasi-biennial oscillation variation, sinusoidal terms for the seasonal and semiannual variation and overtones was fitted to the age of air time series. The annual cycle for particular regions in the stratosphere was investigated and compared to other studies. The age of air trend over the total MIPAS period consisting of the linear term was assessed and compared to previous findings of Stiller et al. (2012). While the linear increase of mean age is confirmed to be positive for the northern midlatitudes and southern polar middle stratosphere, differences are found in the northern polar upper stratosphere, where the mean age is now found to increase as well. The magnitude of trends in the northern midlatitude middle stratosphere is slightly lower compared to the previous version and the trends fit remarkably well to the trend derived by Engel et al. (2009). Negative age of air trends found by Stiller et al. (2012) are confirmed for the lowermost tropical stratosphere and lowermost southern midlatitudinal stratosphere. Differences to the previous data versions occur in the middle tropical stratosphere around 25 km, where the trends are now negative. Overall, the new latitude-altitude distribution of trends appears to be less patchy and more coherent than the previous

  16. Interannual Variability of OLR as Observed by AIRS and CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.

    2012-01-01

    This paper compares spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLR(sub CLR) (Clear Sky OLR) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. Both AIRS and CERES show a significant decrease in global mean and tropical mean OLR over this time period. We find excellent agreement of the anomaly time-series of the two OLR data sets in almost every detail, down to 1 deg X 1 deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper also examines the correlations of anomaly time series of AIRS and CERES OLR, on different spatial scales, as well as those of other AIRS derived products, with that of the NOAA Sea Surface Temperature (SST) product averaged over the NOAA Nino-4 spatial region. We refer to these SST anomalies as the El Nino Index. Large spatially coherent positive and negative correlations of OLR anomaly time series with that of the El Nino Index are found in different spatial regions. Anomalies of global mean, and especially tropical mean, OLR are highly positively correlated with the El Nino Index. These correlations explain that the recent global and tropical mean decreases in OLR over the period September 2002 through June 2011, as observed by both AIRS and CERES, are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of global mean, and especially tropical mean, OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions which lie outside the NOAA Nino-4 region, in which anomalies

  17. Some Problems of Movement of Bodies with Variable Masses and Cases of Their Integration

    NASA Astrophysics Data System (ADS)

    Mammadli, A. H.

    2009-12-01

    Problems of movement of bodies with variable masses within the framework of the two-body problem are considered. It is shown, that under certain conditions by the method of spatial-time transformation the differential equations of movement with variable coefficients suppose autonomization, i.e. are transformed to the differential equations with constant coefficients, integrated in quadrature. The analogue of the Jacobi integral is found, surfaces of zero velocity and possible regions of motion are determined. As an example the problem of the motion of a star with a variable mass inside a globular cluster with a variable mass is considered. It has turned out, that the solution of differential equations in new variables represents elliptical epicycloids, and in initial variables it is a very complex trajectory. At the research of motion in the gravitating and resisting medium it is shown, that in the law change of Jeans mass the change of a body mass sign is admissible.

  18. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  19. Modeling variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  20. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  1. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  2. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  3. Temporal variability of mass transport across Canary Islands Channels

    NASA Astrophysics Data System (ADS)

    Marrero-Díaz, Ángeles; Rodríguez-Santana, Ángel; José Machín, Francisco; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2014-05-01

    The equatorward flowing Canary Current (CC) is the main feature of the circulation in the Canary Islands region. The CC flow perturbation by the Canary Islands originate the Canary Eddy Corridor which is the major pathway for long lived eddies in the subtropical North Atlantic (Sangrà et al., 2009, DSR). Therefore the variability of the CC passing through the Canary Archipelago will have both local and regional importance. Past studies on the CC variability trough the Canary Islands point out a clearly seasonal variability (Fraile-Nuez et al, 2010 (JGR); Hernández-Guerra et al, 2002 (DSR)). However those studies where focused on the eastern islands channels missing the variability through the western island channels which are the main source of long lived eddies. In order to fill this gap from November 2012 until September 2013 we conducted trimonthly surveys crossing the whole islands channels using opportunity ships (Naviera Armas Ferries). XBT and XCTD where launched along the cross channels transects. Additionally a closed box circling the Archipelago was performed on October 2013 as part of the cruise RAPROCAN-2013 (IEO) using also XBT and XCTD. Dynamical variables where derived inferring salinity from S(T,p) analytical relationships for the region updated with new XCTD data. High resolution, vertical sections of temperature, potential density, geostrophic velocity and transport where obtained. Our preliminary results suggest that the CC suffer a noticeable acceleration in those islands channels where eddy shedding is more frequent. They also indicate a clearly seasonal variability of the flows passing the islands channels. With this regard we observed significant differences on the obtained seasonal variability with respect the cited past studies on the eastern islands channel (Lanzarote / Fuerteventura - Africa coast). This work was co-funded by Canary Government (TRAMIC project: PROID20100092) and the European Union (FEDER).

  4. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  5. Masses and radii for thirteen chromospherically active ellipsoidal variables

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.

    1990-01-01

    The amplitude of the ellipticity effect, the mass function, and the V sin i in ten long-period RS CVn SB1 binaries are used to compute limits on the masses of the two stars and the radius of the primary: zeta And, UV CrB, V1764 Cyg, V826 Her, V350 Lac, GX Lib, V1197 Ori, AP Psc, 33 Psc, and EE UMa. Explicit masses and radii are computed for three SB2 systems: BL CVn, V1817 Cyg, and TZ Tri. The primary in several is found to fill 95 percent or more of its Roche lobe. The two minima produced by the ellipticity effect are unequal in depth, with the effect largest when i is near 90 deg and the primary nearly fills its Roche lobe. The greatest inequality found, in UV CrB, was 0.08 mag.

  6. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  7. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  8. The 1958-2008 Greenland ice sheet surface mass balance variability simulated by the regional climate model MAR

    NASA Astrophysics Data System (ADS)

    Fettweis, X.; Franco, B.

    2009-04-01

    Results made with the regional climate model MAR over 1958-2008 show a very high interannual variability of the Greenland ice sheet (GrIS) surface mass balance (SMB) modelled in average to be 330 ± 130 km3/yr. To a first approximation, the SMB variability is driven by the annual precipitation anomaly minus the meltwater run-off rate variability. Sensitivity experiments carried out by the MAR model evaluate the impacts on the surface melt of (i) the summer SST around the Greenland, (ii) the snow pack temperature at the beginning of the spring, (iii) the winter snow accumulation, (iv) the solid and liquid summer precipitations and (v) the summer atmospheric circulation. This last one, by forcing the summer air temperature above the ice sheet, explains mainly the surface melt anomalies.

  9. Natural and forced air temperature variability in the Labrador region of Canada during the past century

    NASA Astrophysics Data System (ADS)

    Way, Robert G.; Viau, Andre E.

    2015-08-01

    Evaluation of Labrador air temperatures over the past century (1881-2011) shows multi-scale climate variability and strong linkages with ocean-atmospheric modes of variability and external forcings. The Arctic Oscillation, Atlantic Multidecadal Oscillation, and El Nino Southern Oscillation are shown to be the dominant seasonal and interannual drivers of regional air temperature variability for most of the past century. Several global climate models show disagreement with observations on the rate of recent warming which suggests that models are currently unable to reproduce regional climate variability in Labrador air temperature. Using a combination of empirical statistical modeling and global climate models, we show that 33 % of the variability in annual Labrador air temperatures over the period 1881-2011 can be explained by natural factors alone; however, the inclusion of anthropogenic forcing increases the explained variance to 65 %. Rapid warming over the past 17 years is shown to be linked to both natural and anthropogenic factors with several anomalously warm years being primarily linked to recent anomalies in the Arctic Oscillation and North Atlantic sea surface temperatures. Evidence is also presented that both empirical statistical models and global climate models underestimate the regional air temperature response to ocean salinity anomalies and volcanic eruptions. These results provide important insight into the predictability of future regional climate impacts for the Labrador region.

  10. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  11. Interannual Variability of OLR as Observed by AIRS and CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula I.; Iredell, Lena F.; Loeb, Norman G.

    2012-01-01

    The paper examines spatial anomaly time series of Outgoing Longwave Radiation (OLR) and Clear Sky OLR (OLR(sub CLR)) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. We find excellent agreement of the two OLR data sets in almost every detail down to the x11deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies high stability of both sets of results. Anomalies of global mean, and especially tropical mean, OLR are shown to be strongly correlated with an El Nino index. These correlations explain that the recent global and tropical mean decreases in OLR over the time period studied are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of mean OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions, one to the east of, and one to the west of, the NOAA Nino-4 region. Anomalies of OLR in these two spatial regions are both strongly correlated with the El Nino Index as a result of the strong anti-correlation of anomalies of cloud cover and mid-tropospheric water vapor in these two regions with the El Nino Index.

  12. Spinor Slow-Light and Dirac Particles with Variable Mass

    SciTech Connect

    Unanyan, R. G.; Otterbach, J.; Fleischhauer, M.; Ruseckas, J.; Kudriasov, V.; Juzeliunas, G.

    2010-10-22

    We consider the interaction of two weak probe fields of light with an atomic ensemble coherently driven by two pairs of standing wave laser fields in a tripod-type linkage scheme. The system is shown to exhibit a Dirac-like spectrum for light-matter quasiparticles with multiple dark states, termed spinor slow-light polaritons. They posses an 'effective speed of light' given by the group velocity of slow light, and can be made massive by inducing a small two-photon detuning. Control of the two-photon detuning can be used to locally vary the mass including a sign flip. Particularly, this allows the implementation of the random-mass Dirac model for which localized zero-energy (midgap) states exist with unusual long-range correlations.

  13. HAPSITE(Trademark) Gas Chromatograph/Mass Spectrometer Variability Assessment

    DTIC Science & Technology

    2005-07-27

    in an uncharacterized chemical environment that involves chemical warfare agents (CWA) or toxic industrial chemicals ( TIC ). Gas Chromatography/Mass...Research Institute (MRI) in Kansas City, Missouri conducted a study to optimize the use of a tri-bed concentrator with TIC . The tni-bed concentrator...The remaining 81 TIC were added based on a Navy threat assessment of chemicals that could be used in a terrorist attack or potentially hazardous

  14. Variability in winter mass balance of Northern Hemisphere glaciers and relations with atmospheric circulation

    USGS Publications Warehouse

    McCabe, G.J.; Fountain, A.G.; Dyurgerov, M.

    2000-01-01

    An analysis of variability in the winter mass balance (WMB) of 22 glaciers in the Northern Hemisphere indicates two primary modes of variability that explain 46% of the variability among all glaciers. The first mode of variability characterizes WMB variability in Northern and Central Europe and the second mode primarily represents WMB variability in northwestern North America, but also is related to variability in WMB of one glacier in Europe and one in Central Asia. These two modes of WMB variability are explained by variations in mesoscale atmospheric circulation which are driving forces of variations in surface temperature and precipitation. The first mode is highly correlated with the Arctic Oscillation Index, whereas the second mode is highly correlated with the Southern Oscillation Index. In addition, the second mode of WMB variability is highly correlated with variability in global winter temperatures. This result suggests some connection between global temperature trends and WMB for some glaciers.

  15. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during

  16. The water mass variability on the Romanian Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Buga, Luminita; Mihailov, Maria-Emanuela; Malciu, Viorel; Stefan, Sabina

    2013-04-01

    The long-term trends in the water mass thermohaline structure and the effect of Danube River freshwater discharge into the western Black Sea during the last four decades (1971 - 2010) are analyzed using the data collected on the Romanian shelf (NIMRD data base). The variations of the temperature and salinity over the studied period are relatively small. The temperature data reveal a slightly warming trend for the upper mixed layer (UML) while for the shelf cold water (SCW) - identified by the 8˚C upper isotherm depth - thermohaline structure remains practically constant. At the same time the salinity exhibits a decreasing trend in the entire water column.

  17. Computation of geographic variables for air pollution prediction models in South Korea.

    PubMed

    Eum, Youngseob; Song, Insang; Kim, Hwan-Cheol; Leem, Jong-Han; Kim, Sun-Young

    2015-01-01

    Recent cohort studies have relied on exposure prediction models to estimate individuallevel air pollution concentrations because individual air pollution measurements are not available for cohort locations. For such prediction models, geographic variables related to pollution sources are important inputs. We demonstrated the computation process of geographic variables mostly recorded in 2010 at regulatory air pollution monitoring sites in South Korea. On the basis of previous studies, we finalized a list of 313 geographic variables related to air pollution sources in eight categories including traffic, demographic characteristics, land use, transportation facilities, physical geography, emissions, vegetation, and altitude. We then obtained data from different sources such as the Statistics Geographic Information Service and Korean Transport Database. After integrating all available data to a single database by matching coordinate systems and converting non-spatial data to spatial data, we computed geographic variables at 294 regulatory monitoring sites in South Korea. The data integration and variable computation were performed by using ArcGIS version 10.2 (ESRI Inc., Redlands, CA, USA). For traffic, we computed the distances to the nearest roads and the sums of road lengths within different sizes of circular buffers. In addition, we calculated the numbers of residents, households, housing buildings, companies, and employees within the buffers. The percentages of areas for different types of land use compared to total areas were calculated within the buffers. For transportation facilities and physical geography, we computed the distances to the closest public transportation depots and the boundary lines. The vegetation index and altitude were estimated at a given location by using satellite data. The summary statistics of geographic variables in Seoul across monitoring sites showed different patterns between urban background and urban roadside sites. This study

  18. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  19. Variable protostellar mass accretion rates in cloud cores

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Lou, Yu-Qing

    2017-03-01

    Spherical hydrodynamic models with a polytropic equation of state (EoS) for forming protostars are revisited in order to investigate the so-called luminosity conundrum highlighted by observations. For a molecular cloud (MC) core with such an EoS with polytropic index γ > 1, the central mass accretion rate (MAR) decreases with increasing time as a protostar emerges, offering a sensible solution to this luminosity problem. As the MAR decreases, the protostellar luminosity also decreases, meaning that it is invalid to infer the star formation time from the currently observed luminosity using an isothermal model. Furthermore, observations of radial density profiles and the radio continua of numerous MC cores evolving towards protostars also suggest that polytropic dynamic spheres of γ > 1 should be used in physical models.

  20. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  1. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  2. Equations of motion for the variable mass flow-variable exhaust velocity rocket

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1972-01-01

    An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

  3. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  4. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  5. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  6. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  7. Trends and variability in the global dataset of glacier mass balance

    NASA Astrophysics Data System (ADS)

    Medwedeff, William G.; Roe, Gerard H.

    2016-06-01

    Glacier mass balance (i.e., accumulation and ablation) is the most direct connection between climate and glaciers. We perform a comprehensive evaluation of the available global network of mass-balance measurements. Each mass-balance time series is decomposed into a trend and the variability about that trend. Observed variability ranges by an order of magnitude, depending on climate setting (i.e., maritime vs continental). For the great majority of glaciers, variability is well characterized by normally distributed, random fluctuations that are uncorrelated between seasons, or in subsequent years. The magnitude of variability for both summer and winter is well correlated with mean wintertime balance, which reflects the climatic setting. Collectively, summertime variability exceeds wintertime variability, except for maritime glaciers. Trends in annual mass balance are generally negative, driven primarily by summertime changes. Approximately 25 % of annual-mean records show statistically significant negative trends when judged in isolation. In aggregate, the global trend is negative and significant. We further evaluate the magnitude of trends relative to the variability. We find that, on average, trends are approximately -0.2 standard deviations per decade, although there is a broad spread among individual glaciers. Finally, for two long records we also compare mass-balance trends and variability with nearby meteorological stations. We find significant differences among stations meaning caution is warranted in interpreting any point measurement (such as mass balance) as representative of region-wide behavior. By placing observed trends in the context of natural variability, the results are useful for interpreting past glacial history, and for placing constraints on future predictability.

  8. Spray deposition inside tree canopies from a newly developed variable-rate air assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional spray applications in orchards and ornamental nurseries are not target-oriented, resulting in significant waste of pesticides and contamination of the environment. To address this problem, a variable-rate air-assisted sprayer implementing laser scanning technology was developed to apply...

  9. Local air temperature tolerance: a sensible basis for estimating climate variability

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi; Post, Piia

    2016-11-01

    The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.

  10. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  11. Detection of volatile compounds with mass-sensitive sensor arrays in the presence of variable ambient humidity.

    PubMed

    Dickert, F L; Hayden, O; Zenkel, M E

    1999-04-01

    Mass-sensitive sensor arrays were established for the detection of isomeric or highly analogue analyte mixtures, which show similar physical and morphological properties. Supramolecular host-guest chemistry and arrays of four mass-sensitive quartz crystal microbalances have been successfully combined with multivariate calibration techniques in the presence of variable air moisture. This system enabled even the separation of xylene isomers [Formula: see text] a task that might be crucial even by gas chromatography. The data of the sensor arrays were analyzed with partial least squares and artificial neural networks. The xylene isomers could be detected with an accuracy of ∼1% in the range of 0-200 ppm, nearly eliminating the residual water cross-sensitivity of the sensor coatings, which allows effective work place or environmental monitoring of toxic compounds with fast response levels.

  12. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  13. Erroneous mass transit system and its tended relationship with motor vehicular air pollution (An integrated approach for reduction of urban air pollution in Lahore).

    PubMed

    Aziz, Amer; Bajwa, Ihsan Ullah

    2008-02-01

    Air pollution is threat to the lives of people living in big cities of Pakistan. In Lahore 1,250 people die annually because of air pollution. Mass transit system that can be put forth as solution to urban air pollution is contingent with right choice of system and its affiliation with motorized vehicles and nature of urban air pollution. Existing mass transit system in Lahore due to untrue operation causes surfeit discharge of motor vehicular carbon monoxide. Tended relationships of mass transit system with motorized vehicles and urban air pollution are quite noteworthy. The growing motor vehicles (a consequence of flawed public mass transit system) are potential source of urban air pollution. This paper attempts to highlight correlations and regression curves of existing mass transit system. Further it recommends a two facet approach for reduction of motor vehicular air pollution in Lahore.

  14. Variability in a Young, L/T Transition Planetary-mass Object

    NASA Astrophysics Data System (ADS)

    Biller, Beth A.; Vos, Johanna; Bonavita, Mariangela; Buenzli, Esther; Baxter, Claire; Crossfield, Ian J. M.; Allers, Katelyn; Liu, Michael C.; Bonnefoy, Mickaël; Deacon, Niall; Brandner, Wolfgang; Schlieder, Joshua E.; Dupuy, Trent; Kopytova, Taisiya; Manjavacas, Elena; Allard, France; Homeier, Derek; Henning, Thomas

    2015-11-01

    As part of our ongoing NTT SoFI survey for variability in young free-floating planets and low-mass brown dwarfs, we detect significant variability in the young, free-floating planetary-mass object PSO J318.5-22, likely due to rotational modulation of inhomogeneous cloud cover. A member of the 23 ± 3 Myr β Pic moving group, PSO J318.5-22 has Teff = {1160}-40+30 K and a mass estimate of 8.3 ± 0.5 MJup for a 23 ± 3 Myr age. PSO J318.5-22 is intermediate in mass between 51 Eri b and β Pic b, the two known exoplanet companions in the β Pic moving group. With variability amplitudes from 7% to 10% in JS at two separate epochs over 3-5 hr observations, we constrain the rotational period of this object to >5 hr. In KS, we marginally detect a variability trend of up to 3% over a 3 hr observation. This is the first detection of weather on an extrasolar planetary-mass object. Among L dwarfs surveyed at high photometric precision (<3%), this is the highest amplitude variability detection. Given the low surface gravity of this object, the high amplitude preliminarily suggests that such objects may be more variable than their high-mass counterparts, although observations of a larger sample are necessary to confirm this. Measuring similar variability for directly imaged planetary companions is possible with instruments such as SPHERE and GPI and will provide important constraints on formation. Measuring variability at multiple wavelengths can help constrain cloud structure. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 095.C-0590.

  15. Near-infrared Variability in the 2MASS Calibration Fields: A Search for Planetary Transit Candidates

    NASA Technical Reports Server (NTRS)

    Plavchan, Peter; Jura, M.; Kirkpatrick, J. Davy; Cutri, Roc M.; Gallagher, S. C.

    2008-01-01

    The Two Micron All Sky Survey (2MASS) photometric calibration observations cover approximately 6 square degrees on the sky in 35 'calibration fields,' each sampled in nominal photometric conditions between 562 and 3692 times during the 4 years of the 2MASS mission. We compile a catalog of variables from the calibration observations to search for M dwarfs transited by extrasolar planets. We present our methods for measuring periodic and nonperiodic flux variability. From 7554 sources with apparent K(sub s) magnitudes between 5.6 and 16.1, we identify 247 variables, including extragalactic variables and 23 periodic variables. We have discovered three M dwarf eclipsing systems, including two candidates for transiting extrasolar planets.

  16. Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    NASA Astrophysics Data System (ADS)

    Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; Pérez-Murano, F.; Fraxedas, J.; Esteve, J.; Barniol, N.

    2007-07-01

    Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10-11g/cm2Hz equivalent to 0.9ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10-17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.

  17. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  18. Is volcanic air pollution associated with decreased heart-rate variability?

    PubMed Central

    Chow, Dominic C; Grandinetti, Andrew; Fernandez, Ed; Sutton, A J; Elias, Tamar; Brooks, Barbara; Tam, Elizabeth K

    2010-01-01

    Objectives To determine the autonomic cardiovascular control among residents of Hawaii who are exposed to varying levels of volcanic air pollution (vog), which consists largely of sulfur dioxide (SO2) and acid aerosols. Methods In a cross-sectional study between April 2006 and June 2008, the authors measured cardiovagal autonomic function by heart-rate variability (HRV) in 72 healthy individuals who lived in four exposure zones on Hawaii Island: vog-free (n=18); episodic exposure to SO2 >200 ppb and acid aerosol (n=19); chronic exposure to SO2 ≥30 ppb and acid aerosol (n=15); and chronic exposure to acid aerosols (n=20). Individuals with diabetes or heart disease, or who had smoked in the preceding month were excluded. HRV was measured in all subjects during rest, paced breathing and active standing (Ewing manoeuvre). HRV was analysed in time and frequency domains and compared between the four exposure zones. Results There were no significant differences between exposure zones in HRV, in either time or frequency domains, even after adjustment for age, gender, ethnicity and body mass index. There was no significant HRV change in three individuals in whom HRV was measured before and during an exposure to combined SO2 100–250 ppb and concentration of respirable particles of diameter ≤2.5 μ (PM2.5) >500 μg/m3. Age was significantly correlated with time-domain parameters during paced breathing and the Ewing manoeuvre. Conclusions This study of healthy individuals found no appreciable effects of vog on the autonomic nervous system. PMID:21546995

  19. Movement simulation of the variable masses in the Gylden-Meshcherskii problem

    SciTech Connect

    Starinova, Olga L.; Salmin, Vadim V.

    2014-12-10

    The Gylden-Meshcherskii problem is used for various cases of dynamics of two points of the variable mass. For example, it describes of double star evolution due to mass loss at the photon expense and the corpuscular activity. Except, it is mathematical model for the movement of spacecraft with propulsion system. In the present work the mass variation laws, allowing a stationary form of the movement differential equations are considered. Movement simulation for all cases was conducted. The relative movement trajectories was constructed as for known Eddington-Jeans laws and for other mass variation laws.

  20. Stability of libration points in the restricted four-body problem with variable mass

    NASA Astrophysics Data System (ADS)

    Mittal, Amit; Aggarwal, Rajiv; Suraj, Md. Sanam; Bisht, Virender Singh

    2016-10-01

    We have investigated the stability of the Lagrangian solutions for the restricted four-body problem with variable mass. It has been assumed that the three primaries with masses m1, m2 and m3 form an equilateral triangle, wherein m2=m3. According to Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), the infinitesimal body varies its mass m with time. The space-time transformations of Meshcherskii (Studies on the Mechanics of Bodies of Variable Mass, GITTL, Moscow, 1949) are used by taking the values of the parameters q=1/2, k=0, n=1. The equations of motion of the infinitesimal body with variable mass have been determined. The equations of motion of the current problem differ from the ones of the restricted four-body problem with constant mass. There exist eight libration points, out of which two are collinear with the primary m1 and the rest are non-collinear for a fixed value of parameters γ (m {at time} t/m {at initial time}, 0<γ≤1 ), α (the proportionality constant in Jeans' law (Astronomy and Cosmogony, Cambridge University Press, Cambridge, 1928), 0≤α≤2.2) and μ=0.019 (the mass parameter). All the libration points are found to be unstable. The zero velocity surfaces (ZVS) are also drawn and regions of motion are discussed.

  1. Short time-scale AGN X-ray variability with EXOSAT: black hole mass and normalized variability amplitude

    NASA Astrophysics Data System (ADS)

    McHardy, I. M.

    2013-03-01

    The old EXOSAT medium energy measurements of high-frequency (HF) active galactic nuclei (AGN) power spectral normalization are re-examined in the light of accurate black hole mass determinations which were not available when these data were first published by Green et al. It is found that the normalized variability amplitude (NVA), measured directly from the power spectrum, is proportional to Mβ, where β ˜ -0.54 ± 0.08. As NVA is the square root of the power, these observations show that the normalization of the HF power spectrum for this sample of AGN varies very close to inversely with black hole mass. Almost the same value of β is obtained whether the quasar 3C 273 is included in the sample or not, suggesting that the same process that drives X-ray variability in Seyfert galaxies applies also to 3C 273. These observations support the work of Gierliński et al. who show that an almost exactly linear anticorrelation is required if the normalizations of the HF power spectra of AGN and X-ray binary systems are to scale similarly. These observations are also consistent with a number of studies showing that the short time-scale variance of AGN X-ray light curves varies approximately inversely with mass.

  2. The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.

    PubMed

    Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B

    2010-11-25

    Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.

  3. Mass extinction in a dynamical system of evolution with variable dimension.

    PubMed

    Tokita, K; Yasutomi, A

    1999-07-01

    Introducing the effect of extinction into the so-called replicator equations in mathematical biology, we construct a general model where the diversity of species, i.e., the dimension of the equation, is a time-dependent variable. The system shows very different behavior from the original replicator equation, and leads to mass extinction when the system initially has high diversity. The present theory can serve as a mathematical foundation for the paleontologic theory for mass extinction. This extinction dynamics is a prototype of dynamical systems where the variable dimension is inevitable.

  4. Millennial and Sub-millennial Variability of Total Air Content from the WAIS Divide Ice Core

    NASA Astrophysics Data System (ADS)

    Edwards, Jon; Brook, Edward; Fegyveresi, John; Lee, James; Mitchell, Logan; Sowers, Todd; Alley, Richard; McConnell, Joe; Severinghaus, Jeff; Baggenstos, Daniel

    2014-05-01

    The analysis of ancient air bubbles trapped in ice is integral to the reconstruction of climate over the last 800 ka. While mixing ratios of greenhouse gases along with isotopic ratios are being studied in ever increasing resolution, one aspect of the gas record that continues to be understudied is the total air content (TAC) of the trapped bubbles. Published records of TAC are often too low in temporal resolution to adequately capture sub-millennial scale variability. Here we present a high-resolution TAC record (10-50 year sampling resolution) from the WAIS Divide ice core, measured at Oregon State and Penn State Universities. The records cover a variety of climatic conditions over the last 56 ka and show millennial variability of up to 10% and sub-millennial variability between 2.5 and 3.5%. We find that using the pore close off volume parameterization (Delomotte et al., J. Glaciology, 1999, v.45), along with the site temperature derived from isotopes, our TAC record implies unrealistically large changes in surface pressure or elevation. For example, the TAC decreases by ~10% between 19.5ka and 17.3ka, and would imply an elevation increase of nearly 800m. The total accumulation of ice over this period is just 280m (Fudge et al. Nature 2013), making the calculated elevation interpretation implausible. To resolve this discrepancy, we investigate the millennial and sub-millennial variability in our TAC record as a function of changes in firn densification and particularly layering. The firn is the uppermost layer of an ice sheet where snow is compressed into ice, trapping ancient air. Thus firn processes are important for the interpretation of total air content as well as other gas records. We compare our TAC record with proxies for dust, temperature and accumulation to determine how processes other than elevation affect TAC.

  5. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  6. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those

  7. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  8. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  9. Effects of instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, Georgia.

    PubMed

    Wade, Katherine S; Mulholland, James A; Marmur, Amit; Russell, Armistead G; Hartsell, Ben; Edgerton, Eric; Klein, Mitch; Waller, Lance; Peel, Jennifer L; Tolbert, Paige E

    2006-06-01

    Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7-40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population-weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind

  10. Total-reflection X-ray fluorescence — a tool to obtain information about different air masses and air pollution

    NASA Astrophysics Data System (ADS)

    Schmeling, Martina

    2001-11-01

    Atmospheric aerosols are solid particles dissolved in air and change their chemical composition frequently depending on various parameters. In order to identify regional air circulation atmospheric aerosol filter samples were taken at Loyola University Chicago's Lake Shore Campus during the months of July and August 2000 with sampling times ranging between 1 and 2 h. The samples were digested in a microwave oven and analyzed by total-reflection X-ray fluorescence (TXRF) spectrometry. One diurnal variation comprising five consecutive sampling events was selected and discussed as well as 4 days experiencing different meteorology were compared to exemplify the variation in trace elemental concentration according to air mass movements and highlight the capability of total-reflection X-ray fluorescence analysis. It was found that due to changes in meteorological conditions particularly wind direction and wind speed, trace elemental compositions varied rapidly and could be used to distinguish between 'Lake Michigan air' and 'metropolitan Chicago air' on such short-term time scale like one hour. Back trajectory analysis was applied to support and corroborate the results. The outcome of this study clearly shows that total-reflection X-ray fluorescence is an optimal tool for analysis of atmospheric aerosols.

  11. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  12. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  13. Falling Chains as Variable-Mass Systems: Theoretical Model and Experimental Analysis

    ERIC Educational Resources Information Center

    de Sousa, Celia A.; Gordo, Paulo M.; Costa, Pedro

    2012-01-01

    In this paper, we revisit, theoretically and experimentally, the fall of a folded U-chain and of a pile-chain. The model calculation implies the division of the whole system into two subsystems of variable mass, allowing us to explore the role of tensional contact forces at the boundary of the subsystems. This justifies, for instance, that the…

  14. Apparent mass of the human body in the vertical direction: Inter-subject variability

    NASA Astrophysics Data System (ADS)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-02-01

    The biodynamic responses of the seated human body to whole-body vibration vary considerably between people, but the reasons for the variability are not well understood. This study was designed to determine how the physical characteristics of people affect their apparent mass and whether inter-subject variability is influenced by the magnitude of vibration and the support of a seat backrest. The vertical apparent masses of 80 seated adults (41 males and 39 females aged 18-65) were measured at frequencies between 0.6 and 20 Hz with four backrest conditions (no backrest, upright rigid backrest, reclined rigid backrest, reclined foam backrest) and with three magnitudes of random vibration (0.5, 1.0 and 1.5 m s -2 rms). Relationships between subject physical characteristics (age, gender, weight, and anthropometry) and subject apparent mass were investigated with multiple regression models. The strongest predictor of the modulus of the vertical apparent mass at 0.6 Hz, at resonance, and at 12 Hz was body weight, with other factors having only a marginal effect. After correction for other variables, the principal resonance frequency was most consistently associated with age and body mass index. As age increased from 18 to 65 years, the resonance frequency increased by up to 1.7 Hz, and when the body mass index was increased from 18 to 34 kg m -2 the resonance frequency decreased by up to 1.7 Hz. These changes were greater than the 0.9-Hz increase in resonance frequency between sitting without a backrest and sitting with a reclined rigid backrest, and greater than the 1.0-Hz reduction in resonance frequency when the magnitude of vibration increased from 0.5 to 1.5 m s -2 rms. It is concluded that the effects of age, body mass index, posture, vibration magnitude, and weight should be taken into account when defining the vertical apparent mass of the seated human body.

  15. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  16. Development and Evaluation of a Variable-Temperature Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Derkits, David; Wiseman, Alex; Snead, Russell F.; Dows, Martina; Harge, Jasmine; Lamp, Jared A.; Gronert, Scott

    2016-02-01

    A new, variable-temperature mass spectrometer system is described. By applying polyimide heating tape to the end-cap electrodes of a Bruker (Bremen, Germany) Esquire ion trap, it is possible to vary the effective temperature of the system between 40 and 100°C. The modification does not impact the operation of the ion trap and the heater can be used for extended periods without degradation of the system. The accuracy of the ion trap temperatures was assessed by examining two gas-phase equilibrium processes with known thermochemistry. In each case, the variable-temperature ion trap provided data that were in good accord with literature data, indicating the effective temperature in the ion trap environment was being successfully modulated by the changes in the set-point temperatures on the end-cap electrodes. The new design offers a convenient and effective way to convert commercial ion trap mass spectrometers into variable-temperature instruments.

  17. Annual variation of coastal uplift in Greenland as an indicator of variable and accelerating ice mass loss

    NASA Astrophysics Data System (ADS)

    Yang, Qian; Wdowinski, Shimon; Dixon, Timothy H.

    2013-05-01

    Seasonal melting of the coastal part of the Greenland ice sheet is investigated using GPS vertical displacement data from coastal stations, combined with data on atmospheric and ocean temperatures. Using a high pass filter and cubic spline models, we estimate five variables describing seasonal uplift, a proxy for proximal mass loss, including duration of the melt season and the amount of summer uplift. Our analysis shows both temporal and spatial variations of uplift. Southern coastal Greenland experienced anomalously large uplift in summer 2010, implying significant melting that year. However, the northwest coast did not experience significant change in uplift at that time. Our data suggest that a combination of warm summer air temperature and warm sub-surface ocean water temperature drove the large mass losses in 2010. Using the uplift pattern of 2008-2010, and comparing to atmospheric data and ocean water temperature data, we show that warm Irminger Water (IW) exerted significant influence on coastal melting in southeastern, southern and southwestern Greenland, reaching about 69°N in 2010. North of this, IW did not exert significant influence, in effect defining the northward limit of the sub-polar gyre for that year. Thus, short-term variability in the coastal GPS uplift signal can be used to infer an oceanographic parameter that has a critical influence on Greenland ice sheet health.

  18. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  19. Superpartner mass measurement technique using 1D orthogonal decompositions of the Cambridge transverse mass variable M(T2).

    PubMed

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T; Park, Myeonghun

    2010-07-30

    We propose a new model-independent technique for mass measurements in missing energy events at hadron colliders. We illustrate our method with the most challenging case of a single-step decay chain. We consider inclusive same-sign chargino pair production in supersymmetry, followed by leptonic decays to sneutrinos χ+ χ+ → ℓ+ ℓ'+ ν(ℓ)ν(ℓ') and invisible decays ν(ℓ) → ν(ℓ) χ(1)(0). We introduce two one-dimensional decompositions of the Cambridge MT2 variable: M(T2∥) and M(T2⊥), on the direction of the upstream transverse momentum P→T and the direction orthogonal to it, respectively. We show that the sneutrino mass Mc can be measured directly by minimizing the number of events N(Mc) in which MT2 exceeds a certain threshold, conveniently measured from the end point M(T2⊥)(max) (Mc).

  20. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. I.

    2010-03-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  1. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. İ.

    2009-09-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. Model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  2. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  3. Toward a better understanding of the impact of mass transit air pollutants on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  4. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres.

    PubMed

    Nin, Darren Z; Lam, Wing K; Kong, Pui W

    2016-01-01

    This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.

  5. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  6. Modeling short-term variability of semivolatile organic chemicals in air at a local scale: an integrated modeling approach.

    PubMed

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Di Guardo, Antonio

    2011-05-01

    Monitoring campaigns from different locations have recently shown how air concentrations of persistent semivolatile contaminants such as polychlorinated biphenyls (PCBs) often exhibit short-term (less than 24 h) variations. The observed patterns have been ascribed to different factors, such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and dynamics. Here, we present a new modeling approach developed in order to investigate the short-term variability in air concentrations of organic pollutants at a local scale. A new dynamic multimedia box model is supplied by a meteorological preprocessor (AERMET) with hourly values of air compartment height and wind speed. The resulting model is tested against an existing dataset of PCB air concentrations measured in Zurich, Switzerland. Results show the importance of such modeling approach in elucidating the short- and long-term behavior of semivolatile contaminants in the air/soil system.

  7. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  8. A three-mass tethered system for micro-g/variable-g applications

    NASA Technical Reports Server (NTRS)

    Lorenzini, E. C.

    1986-01-01

    This paper describes a Space-Station attached tethered system for micro-g/variable-g applications. The system consists of three platforms: the Space Station, an end mass anchored at the end of a 10 km long kevlar tether and a micro-g/variable-g laboratory with the capability of crawling along the tether. Control strategies are devised for performing both the deployment and the station-keeping maneuvers of the system. Effective algorithms are identified for damping out the major vibrational modes.

  9. Linking the spatial variability of glacier mass loss to fjord geometry

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Tinto, K. J.; Boghosian, A.; Cochran, J. R.; Csatho, B. M.; Bell, R. E.

    2015-12-01

    There is compelling evidence of increasing mass loss of the ice sheets using a diverse set of observations, including increased thinning rates measured from both airborne and satellite altimeters, elevated mass fluxes resulting from the acceleration of outlet glaciers, and mass changes measured directly from satellite gravimetry. A dominant characteristic of observed change in Greenland outlet glaciers is that it is locally random. Numerous studies have revealed a high degree of spatial and temporal variability of outlet glacier mass change. Modeling studies suggest that increased ocean temperatures may be responsible for the observed glacial retreat in Greenland through increased basal melting, leading to increased calving rates, terminus retreat, glacier speedup, and eventually thinning of inland ice. Knowledge of fjord geometry is crucial for ice-ocean interaction because the availability of ocean heat to the ice will be restricted by narrow sills and shallow grounding lines. We investigate whether the variability in observed changes among Greenland glaciers can be partially explained by variation in fjord geometry. Using statistical techniques commonly employed to detect patterns in complex spatial data, we objectively show that mass change in Greenland tidewater glaciers between 2003 and 2009 is indeed mostly spatially incoherent. Except for a few clusters of similar change in the NW and Scoresby Sund regions, there is significant glacier-scale variability in mass loss rates. To understand the drivers of this local variability, we compare fjord bathymetries from all regions of Greenland, modeled using airborne gravimetry measurements from NASA Operation IceBridge flights, to estimates of glaciological change. Specifically, we investigate the correlation between water depths at the grounding line and the dynamic mass loss of tidewater glaciers. In theory, a deep grounding line will allow greater interaction with the warm Atlantic Water observed in most fjords

  10. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  11. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  12. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  13. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    NASA Technical Reports Server (NTRS)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  14. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  15. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  16. Interannual variability of water masses transports across A25-OVIDE section (subpolar atlantic gyre)

    NASA Astrophysics Data System (ADS)

    Carracedo, L. I.; García, M.; Mercier, H.; Conde, P.; Lherminier, P.; Pérez, F. F.; Gilcoto, M.

    2012-04-01

    The Ovide (Observatoire de la Variabilité Interannuelle à DEcennale) project has consisted on repeated trans-oceanic hydrographic section from Greenland to Portugal every other year (from 2002 to 2010). This project is part of the CLIVAR (Climate Variability and Predictability) and CARBOOCEAN international programs, both focused on ocean climate variability. The section crosses the main currents implicated in the North Atlantic Meridional Overturning Circulation (MOC), and is very close to the previous A25 section ("Fourex") of the WOCE (World Ocean Circulation Experiment) performed in 1997. The North Atlantic Ocean plays a crucial role in the global thermohaline circulation as can be considered the departure point of the MOC, where the warm salty waters are transformed by deep winter convection into deep waters. The water mass distribution in the section is derived by means of OMP method for every cruise, and then combined with absolute velocity fields to provide the relative contribution from each water mass to the final transport values. The water mass circulation pattern across the section is then discussed within the context of interannual variability of the main MOC components, in terms of the different water mass components. The mean transport for each of these water masses results in 11.7 ± 2.6 Sv (1 Sv = 106 m3 s-1) for central waters, 2.0 ± 0.69 Sv for SubArtic Intermediate Water, 0.58 ± 0.51 Sv for Antartic Intermediate water and MW 0.15 ± 1.3 Sv, all of them flowing northward and contributing to the upper branch of the MOC. On other hand, the lower MOC branch transports southward -8.5 ± 2.0 Sv of LSW, -3.3 ± 0.33 Sv of Iceland-Scotland Overflow Water and -1.3 ± 0.92 Sv of Denmark Strait Overflow Water, with an almost zero net transport of North East Atlantic Deep Water of 0.17 ± 1.0 Sv. The knowledge of the variability and contribution of each water mass itself will allow a better understanding of the global circulation mechanisms in the

  17. Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study

    SciTech Connect

    Cappers, Peter; Mills, Andrew; Goldman, Charles; Wiser, Ryan; Eto, Joseph H.

    2011-09-10

    This scoping study focuses on the policy issues inherent in the claims made by some Smart Grid proponents that the demand response potential of mass market customers which is enabled by widespread implementation of Advanced Metering Infrastructure (AMI) through the Smart Grid could be the “silver bullet” for mitigating variable generation integration issues. In terms of approach, we will: identify key issues associated with integrating large amounts of variable generation into the bulk power system; identify demand response opportunities made more readily available to mass market customers through widespread deployment of AMI systems and how they can affect the bulk power system; assess the extent to which these mass market Demand Response (DR) opportunities can mitigate Variable Generation (VG) integration issues in the near-term and what electricity market structures and regulatory practices could be changed to further expand the ability for DR to mitigate VG integration issues over the long term; and provide a qualitative comparison of DR and other approaches to mitigate VG integration issues.

  18. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  19. Source areas and trajectories of nucleating air masses within and near the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Németh, Z.; Salma, I.

    2014-04-01

    Particle number size distributions were measured by differential mobility particle sizer in the diameter range of 6-1000 nm in the near-city background and city centre of Budapest continuously for two years. The city is situated in the middle part of the Carpathian Basin, which is a topographically discrete unit in the southeast Central Europe. Yearly mean nucleation frequencies and uncertainties for the near-city background and city centre were (28+6/-4) % and (27+9/-4) %, respectively. Total numbers of days with continuous and uninterrupted growth process were 43 and 31, respectively. These events and their properties were utilised to investigate if there are any specific tracks and/or separable source regions for the nucleating air masses within or near the basin. Local wind speed and direction data indicated that there seem to be differences between the nucleation and growth intervals and non-nucleation days. For further analysis, backward trajectories were generated by a simple air parcel trajectory model. Start and end time parameters of the nucleation, and end time parameter of the particle growth were derived by a standardized procedure based on examining the channel contents of the contour plots. These parameters were used to specify a segment on each air mass trajectory that is associated with the track of the nucleating air mass. The results indicated that the nucleation events happened in the continental boundary layer mostly within the Carpathian Basin but the most distant trajectories originated outside of the basin. The tracks of the nucleating air masses were predominantly associated with NW and SE geographical fields, while the source areas that could be separated were frequently situated in the NW and NE quarters. Many of them were within or close to large forested territories. The results also emphasize that the new particle formation and growth phenomenon that occurs in the region influences larger territories than the Carpathian Basin.

  20. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions.

    PubMed

    Lin, Meiyun; Fiore, Arlene M; Horowitz, Larry W; Langford, Andrew O; Oltmans, Samuel J; Tarasick, David; Rieder, Harald E

    2015-05-12

    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as 'exceptional events', which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<-1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events.

  1. Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions

    PubMed Central

    Lin, Meiyun; Fiore, Arlene M.; Horowitz, Larry W.; Langford, Andrew O.; Oltmans, Samuel J.; Tarasick, David; Rieder, Harald E.

    2015-01-01

    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events', which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<−1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events. PMID:25964012

  2. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  3. Greenland mass variation from time-variable gravity in the absence of GRACE

    NASA Astrophysics Data System (ADS)

    Baur, O.

    2013-08-01

    In a recent paper, the authors succeeded in the inference of time-variable gravity from orbit analysis of the CHAMP satellite. The authors demonstrated the potential of the adopted methods by validation against GRACE data and surface height changes from GPS ground stations. This paper presents the capability of orbit analysis for the spatiotemporal quantification of Greenland mass change trends. Based on CHAMP time-variable gravity fields from January 2003 to December 2009, we estimated the ice mass loss over the entire of Greenland to 246±10 Gt/yr. This result is in line with the findings from GRACE data analysis (223±10 Gt/yr) over the same period; the trend estimates differ by only 10%. Moreover, for some areas, the spatial mass variation patterns are in good agreement, pinpointing dominant deglaciation along the Greenland coastline. We conclude that orbit analysis of low-Earth orbiting spacecraft is suitable to assess Greenland mass balance in the absence of the GRACE satellites.

  4. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  5. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases.

  6. Heart rate, heart rate variability and behaviour of horses during air transport.

    PubMed

    Munsters, C C B M; de Gooijer, J-W; van den Broek, J; van Oldruitenborgh-Oosterbaan, M M Sloet

    2013-01-05

    Heart rate (HR), HR variability (HRV) and behaviour score (BS) of nine horses were evaluated during an eight-hour air transport between The Netherlands and New York. HR and HRV parameters were calculated every five minutes during the air transport. Compared with transit (40±3), mean HRs were higher during loading into the jet stall (67±21, P<0.001), loading into the aircraft (47±6, P=0.011), taxiing (50±8, P=0.001), and during periods of in-flight turbulence (46±7, P=0.017). During the flight, individual horses showed differences in mean HR (P=0.005) and peak HR (P<0.001). By contrast with HR data, HRV data did not differ between stages or horses. BS was highest during turbulence (3.2±0.4). However, behaviour did not always correspond with HR measurements: the least responsive horse had the highest HR. Loading into the jet stall caused the highest increase in HR and was considered the most stressful event. During transit, HR was generally comparable with resting rates. Previous studies have shown that loading and transporting by road caused more elevation in HR than during loading and transporting by air. HRV data were not found to be useful, and caution is needed when interpreting HRV data. Not every horse exhibited stress through visible (evasive) behaviour, and HR measurements may provide an additional tool to assess stress in horses.

  7. Bayesian latent variable modelling in studies of air pollution and health.

    PubMed

    Salway, Ruth; Lee, Duncan; Shaddick, Gavin; Walker, Stephen

    2010-11-20

    This paper describes the use of Bayesian latent variable models in the context of studies investigating the short-term effects of air pollution on health. Traditional Poisson or quasi-likelihood regression models used in this area assume that consecutive outcomes are independent (although the latter allows for overdispersion), which in many studies may be an untenable assumption as temporal correlation is to be expected. We compare this traditional approach with two Bayesian latent process models, which acknowledge the possibility of short-term autocorrelation. These include an autoregressive model that has previously been used in air pollution studies and an alternative based on a moving average structure that we describe here. A simulation study assesses the performance of these models when there are different forms of autocorrelation in the data. Although estimated risks are largely unbiased, the results show that assuming independence can produce confidence intervals that are too narrow. Failing to account for the additional uncertainty which may be associated with (positive) correlation can result in confidence/credible intervals being too narrow and thus lead to incorrect conclusions being made about the significance of estimated risks. The methods are illustrated within a case study of the effects of short-term exposure to air pollution on respiratory mortality in the elderly in London, between 1997 and 2003.

  8. Improving Hydrological Models by Applying Air Mass Boundary Identification in a Precipitation Phase Determination Scheme

    NASA Astrophysics Data System (ADS)

    Feiccabrino, James; Lundberg, Angela; Sandström, Nils

    2013-04-01

    Many hydrological models determine precipitation phase using surface weather station data. However, there are a declining number of augmented weather stations reporting manually observed precipitation phases, and a large number of automated observing systems (AOS) which do not report precipitation phase. Automated precipitation phase determination suffers from low accuracy in the precipitation phase transition zone (PPTZ), i.e. temperature range -1° C to 5° C where rain, snow and mixed precipitation is possible. Therefore, it is valuable to revisit surface based precipitation phase determination schemes (PPDS) while manual verification is still widely available. Hydrological and meteorological approaches to PPDS are vastly different. Most hydrological models apply surface meteorological data into one of two main PPDS approaches. The first is a single rain/snow threshold temperature (TRS), the second uses a formula to describe how mixed precipitation phase changes between the threshold temperatures TS (below this temperature all precipitation is considered snow) and TR (above this temperature all precipitation is considered rain). However, both approaches ignore the effect of lower tropospheric conditions on surface precipitation phase. An alternative could be to apply a meteorological approach in a hydrological model. Many meteorological approaches rely on weather balloon data to determine initial precipitation phase, and latent heat transfer for the melting or freezing of precipitation falling through the lower troposphere. These approaches can improve hydrological PPDS, but would require additional input data. Therefore, it would be beneficial to link expected lower tropospheric conditions to AOS data already used by the model. In a single air mass, rising air can be assumed to cool at a steady rate due to a decrease in atmospheric pressure. When two air masses meet, warm air is forced to ascend the more dense cold air. This causes a thin sharp warming (frontal

  9. A NEW SAMPLE OF CANDIDATE INTERMEDIATE-MASS BLACK HOLES SELECTED BY X-RAY VARIABILITY

    SciTech Connect

    Kamizasa, Naoya; Terashima, Yuichi; Awaki, Hisamitsu

    2012-05-20

    We present the results of X-ray variability and spectral analysis of a sample of 15 new candidates for active galactic nuclei with relatively low-mass black holes (BHs). They are selected from the Second XMM-Newton Serendipitous Source Catalogue based on strong variability quantified by normalized excess variances. Their BH masses are estimated to be (1.1-6.6) Multiplication-Sign 10{sup 6} M{sub Sun} by using a correlation between excess variance and BH mass. Seven sources have estimated BH masses smaller than 2 Multiplication-Sign 10{sup 6} M{sub Sun }, which are in the range for intermediate-mass black holes. Eddington ratios of sources with known redshifts range from 0.07 to 0.46 and the mean Eddington ratio is 0.24. These results imply that some of our sources are growing supermassive black holes, which are expected to have relatively low masses with high Eddington ratios. X-ray photon indices of the 15 sources are in the range of Almost-Equal-To 0.57-2.57 and 5 among them have steep (>2) photon indices, which are the range for narrow-line Seyfert 1s. Soft X-ray excess is seen in 12 sources and is expressed by a blackbody model with kT Almost-Equal-To 83-294 eV. We derive a correlation between X-ray photon indices and Eddington ratios, and find that the X-ray photon indices of about a half of our sources are flatter than the positive correlation suggested previously.

  10. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Mixing of stratospheric and tropospheric air-masses detected with CRISTA-NF during AMMA

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Guenther, G.; Hoffmann, L.; Konopka, P.; Riese, M.

    2009-04-01

    CRISTA-NF (CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - New Frontiers) is an infrared limb sounding instrument installed onbord the high-flying research aircraft M55-Geophysica and took part in the AMMA-SCOUT measurement campaign in Summer 2006. During the test flight on 29th of July 2006, CRISTA-NF detected a sharp boundary between ozone rich air over northernItaly and ozone poor air over southern Italy and the Mediterranean Sea. The structure is also clearly visible in the HNO3 distribution. The air mass boundary extends from about 10km altitude to the thermal tropopause at about 16km altitude with indication for mixing in the lower part of this altitude range. This is supported by enhanced values of PAN and water vapour found. The observed structure is also visible in the CLaMS (Chemical Lagrangian Model of the Stratosphere) ozone distribution but hardly resolved in ECMWF forecast data. Backward trajectories show that the ozone rich air is originated westwards, between 40 and 60oN while the ozone poor air is coming from the south-east, at about 0-20oN and has a younger age of air. In the presentation details of the CRISTA-NF measurements and retrieval procedures as well as the origin of the trace gas structures will be discussed.

  13. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  14. Variability in young very low mass stars: two surprises from spectrophotometric monitoring

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Scholz, A.; Eislöffel, J.

    2016-05-01

    We present simultaneous photometric and spectroscopic observations of seven young and highly variable M dwarfs in star-forming regions in Orion, conducted in four observing nights with FOcal Reducer and low dispersion Spectrograph2 at European Southern Observatory/VLT. All seven targets show significant photometric variability in the I band, with amplitudes between 0.1-0.8 mag, The spectra, however, remain remarkably constant, with spectral type changes less than 0.5 subtypes. Thus, the brightness changes are not caused by veiling that `fills in' absorption features. Three objects in the σ Ori cluster (age ˜3 Myr) exhibit strong Hα emission and Hα variability, in addition to the continuum variations. Their behaviour is mostly consistent with the presence of spots with temperature of ˜300 K above the photosphere and filling factors between 0.2-0.4, in contrast to typical hotspots observed in more massive stars. The remaining targets near ɛ Ori, likely to be older, show eclipse-like light curves, no significant Hα activity and are better represented by variable extinction due to circumstellar material. Interestingly, two of them show no evidence of infrared excess emission. Our study shows that high-amplitude variability in young very low mass stars can be caused by different phenomena than in more massive T Tauri stars and can persist when the disc has disappeared and accretion has ceased.

  15. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  16. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  17. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments.

  18. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  19. LOW-MASS ACTIVE GALACTIC NUCLEI WITH RAPID X-RAY VARIABILITY

    SciTech Connect

    Ho, Luis C.; Kim, Minjin

    2016-04-10

    We present a detailed study of the optical spectroscopic properties of 12 active galactic nuclei (AGNs) with candidate low-mass black holes (BHs) selected by Kamizasa et al. through rapid X-ray variability. The high-quality, echellette Magellan spectra reveal broad Hα emission in all the sources, allowing us to estimate robust virial BH masses and Eddington ratios for this unique sample. We confirm that the sample contains low-mass BHs accreting at high rates: the median M{sub BH} = 1.2 × 10{sup 6} M{sub ⊙} and median L{sub bol}/L{sub Edd} = 0.44. The sample follows the M{sub BH}–σ{sub *} relation, within the considerable scatter typical of pseudobulges, the probable hosts of these low-mass AGNs. Various lines of evidence suggest that ongoing star formation is prevalent in these systems. We propose a new strategy to estimate star formation rates in AGNs hosted by low-mass, low-metallicity galaxies, based on modification of an existing method using the strength of [O ii] λ3727, [O iii] λ5007, and X-rays.

  20. Surface Time-Variable Gravity Signals and Possible Sources Including Core Mass Flow

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Kuang, Weijia

    2003-01-01

    Over two decades of geodetic satellite-laser-ranging (SLR) data show that the variation of the Earth's oblateness parameter J2 has a clear seasonal signal of amplitude of about 3e-10 and a secular decrease of about -2.8e-11/year, superimposed on some interesting interannual fluctuations. Physically, any change in mass distribution or/inside the Earth will be reflected in the time-variable gravity signal obtained outside the Earth, according to Newton s gravitational law. Therefore, such signal contains contributions from all geophysical sources that redistribute mass, on all temporal and spatial scales, including those from the core. Besides Earth rotation and geomagnetic field variations, the time-variable gravity also contains information linking Earth surface observations with internal core dynamical processes. The time scales of the gravity signal are critical in helping differentiate different contributions. The atmosphere and hydrosphere are responsible for the seasonal and much of the interannual and intraseasoanl fluctuations, while the secular trend is due mainly to the post-glacial rebound but possibly core mass flow. To estimate the latter effect, we use our MoSST (Modular, Scalable, Self-consistent, Three-dimensional) core dynamics model to forward simulate the core flow, and density variation due to the core convection. Our results suggest that, when upward continued to the surface, the J2 component of the core mass redistribution can reach an overall amplitude of e-11/year, approaching the SLR detectability and significant in geophysical terms. We also find a general westward drift of the mass flow, with a speed comparable to that of the geomagnetic westward drift.

  1. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  2. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  3. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  4. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  5. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  6. Measurements of mixing layer height variability during the Ligurian air-sea interaction experiment (LASIE '07)

    NASA Astrophysics Data System (ADS)

    Förster, J.

    2009-09-01

    Air-sea interaction processes play a dominant role with respect to detection ranges of shipborne radar and infrared sensor systems. Especially in the littoral most often temperature and humidity gradients affect propagation paths and are the reason for abnormal phenomena such as ducting or mirage. Besides refractivity, spray and aerosols ejected from the sea surface can further degrade the quality of shipborne surveillance systems. Thus environmental effects might seriously hamper ship self defense. During the Ligurian Air-Sea Interaction Experiment (LASIE '07 - 16.06.-26.06.2007) the Federal Armed Forces Underwater Acoustics and Marine Geophysics Research Institute (FWG) carried out simultaneous in-situ measurements of meteorological and oceanographic parameters to study air-sea interaction processes with respect to littoral boundary layer variability. The characterization of the environment included both, in-situ measurements of atmospheric and sea surface parameters. Investigations were carried out on board RV PLANET, RV URANIA and at the ODAS-Italy1 buoy of the Italian National Council of Research (CNR). On board RV PLANET the sea surface and meteorological conditions were analyzed by two multi-sensor buoys, ship sensors and radiosondes. Emphasis was given to the vertical structure of the Marine Boundary Layer (MBL) and its variability. It was analyzed by a one lense lidar ceilometer CL31, a tethersonde system TT12 and radiosondes RS92 (Vaisala). The latter were launched every three hours. The TT12 consisted of three radiosondes, which could be adapted to separate altitudes of special interest. The experiment was characterized by changing meteorological conditions resulting in offshore and onshore blowing winds. In the first case the air temperature TAir was higher than the sea surface temperature TWater leading to a very stable surface layer. This situation was associated with a strong temperature inversion and a very clear atmosphere with a visibility of

  7. Variability of mass-size relationships in tropical Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Fontaine, Emmanuel; Leroy, Delphine; Delanoë, Julien; Dupuy, Régis; Lilie, Lyle; Strapp, Walter; Protat, Alain; Schwarzenböeck, Alfons

    2015-04-01

    The mass of individual ice hydrometeors in Mesoscale Convective Systems (MCS) has been investigated in the past using different methods in order to retrieve power law type mass-size relationships m(D) with m = α D^β. This study focuses on the variability of mass-size relationships in different types of MCS. Three types of tropical MCS were sampled during different airborne campaigns: (i) continental MCS during the West African monsoon (Megha-Tropique 2010), (ii) oceanic MCS over the Indian Ocean (Megha-Tropique 2011), and (iii) coastal MCS during the North-Australian monsoon (HAIC-HIWC). Mass-size relationships of ice hydrometeors are derived from a combined analysis of particle images from 2D-array probes and associated reflectivity factors measured with a Doppler cloud radar (94GHz) on the same research aircraft. A theoretical study of numerous hydrometeor shapes simulated in 3D and arbitrarily projected on a 2D plan allowed to constrain the exponent β of the m(D) relationship as a function of the derived surface-diameter relationship S(D), which is likewise written as a power law. Since S(D) always can be determined for real data from 2D optical array probes or other particle imagers, the evolution of the m(D) exponent β can be calculated along the flight trajectory. Then the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivity factor matching the measured reflectivity factor along the aircraft trajectory. Finally, the Condensed Water Content (CWC) is deduced from measured particle size distributions (PSD) and retrieved m(D) relationships along the flight trajectory. Solely for the HAIC-HIWC campaign (North Australian Monsoon) a bulk reference measurement (IKP instrument) of high CWC could be performed in order to compare with the above described CWC deduced from ice hydrometeor images and reflectivity factors. Both CWC are coherent. Mean profiles of m(D) coefficients, PSD, and CWC are calculated as a function of the

  8. Has Natural Variability Masked the Expected Increase in Antarctic Surface Mass Balance with Global Warming?

    NASA Astrophysics Data System (ADS)

    Previdi, M. J.; Polvani, L. M.

    2015-12-01

    One of the expected and rather paradoxical consequences of anthropogenic global warming is an increase in Antarctic surface mass balance (or net snow accumulation), as robustly simulated by both global and regional climate models. This surface mass balance (SMB) increase occurs because the higher moisture content of a warmer atmosphere leads to increases in precipitation, with this precipitation falling in the form of snow over Antarctica. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB during the past several decades. Here, we show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal is still relatively small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable in a statistical sense as a result of large natural SMB variability on interannual-to-multidecadal timescales. However, our analysis reveals that if the world continues to follow the present trajectory of greenhouse gas emissions, the anthropogenic impact on Antarctic SMB will emerge from natural variability by the middle of the current century. With this, SMB increases over Antarctica will begin to mitigate global sea-level rise, partially offsetting the effects of dynamic ice loss.

  9. Has Natural Variability Masked the Expected Increase in Antarctic Surface Mass Balance with Global Warming?

    NASA Astrophysics Data System (ADS)

    Previdi, Michael; Polvani, Lorenzo M.

    2016-04-01

    One of the expected and rather paradoxical consequences of anthropogenic global warming is an increase in Antarctic surface mass balance (or net snow accumulation), as robustly simulated by both global and regional climate models. This surface mass balance (SMB) increase occurs because the higher moisture content of a warmer atmosphere leads to increases in precipitation, with this precipitation falling in the form of snow over Antarctica. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB during the past several decades. Here, we show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal is still relatively small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable in a statistical sense as a result of large natural SMB variability on interannual-to-multidecadal timescales. However, our analysis reveals that if the world continues to follow the present trajectory of greenhouse gas emissions, the anthropogenic impact on Antarctic SMB will emerge from natural variability by the middle of the current century. With this, SMB increases over Antarctica will begin to mitigate global sea-level rise, partially offsetting the effects of dynamic ice loss.

  10. Re-interpreting the Oxbridge stransverse mass variable M T2 in general cases

    NASA Astrophysics Data System (ADS)

    Mahbubani, Rakhi; Matchev, Konstantin T.; Park, Myeonghun

    2013-03-01

    We extend the range of possible applications of M T2 type analyses to decay chains with multiple invisible particles, as well as to asymmetric event topologies with different parent and/or different children particles. We advocate two possible approaches. In the first, we introduce suitably defined 3 + 1-dimensional analogues of the M T2 variable, which take into account all relevant on-shell kinematic constraints in a given event topology. The second approach utilizes the conventional M T2 variable, but its kinematic endpoint is suitably reinterpreted on a case by case basis, depending on the specific event topology at hand. We provide the general prescription for this reinterpretation, including the formulas relating the measured M T2 endpoint (as a function of the test masses of all the invisible particles) to the underlying physical mass spectrum. We also provide analytical formulas for the shape of the differential distribution of the doubly projected {M_{{T{2_{bot }}}}} variable for the ten possible event topologies with one visible particle and up to two invisible particles per decay chain. We illustrate our results with the example of leptonic chargino decays {{widetilde{χ}}+}to {ell+}ν {{widetilde{χ}}^0} in supersymmetry.

  11. Preliminary experimental results on studying possibility of variable mass liner (VML) formation

    SciTech Connect

    1995-12-31

    The main objective of the present experiment was to study the formation process and initial stage of acceleration of a variable-mass plasma liner (VML). The method is based on magnetic acceleration of a liner with the mass reduced during such acceleration. The experiment was carried out on February 16 at VNIIEF. This report describes the results of measurements obtained in the experiment and preliminary analysis of the results characterizing operation of the test facility main units: helical EMG; 5-module disk EMG 400 mm in diameter (DEMG); ponderomotive unit (PU) with a cylindric condensed liner and a special tooth-cutoff. The first part of the report presents measurement results obtained on the VNIIEF`s diagnostic equipment that are compared with those obtained by American specialists on their diagnostic equipment. Information submitted by American specialists is included in part 2 of this report. The second part of the report presents preliminary computational-theoretic analysis of the main measured results describing operation of DEMG TL system in the experiment; experimental data are compared with theoretical ones obtained before and after the experiment. But more emphasis is placed on the data preliminary analysis indicating that in the experiment a variable mass liner is formed (VML or plasma bubble).

  12. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district.

    PubMed

    Young, Li-Hao; Wang, Yi-Ting; Hsu, Hung-Chieh; Lin, Ching-Hui; Liou, Yi-Jyun; Lai, Ying-Chung; Lin, Yun-Hua; Chang, Wei-Lun; Chiang, Hung-Lung; Cheng, Man-Ting

    2012-05-15

    First measurements of ambient 10-1000 nm particle number concentrations (N(TOT)) and size distributions were made at an urban, coastal, mountain and downwind site within the Central Taiwan Air Quality Management District during a cold and a warm period. The primary objectives were to characterize the spatial and temporal variability of the size-fractionated submicrometer particles and their relationships with copollutants and meteorological parameters. The results show that the ultrafine particles (<100 nm) are the major contributor to the N(TOT). The mean N(TOT) was highest at the urban site, whereas lower and comparable at the three other sites. Although the mean N(TOT) at each site showed insignificant differences between study periods, their diurnal patterns and size distribution modal characteristics were modestly to substantially different between study sites. Correlation analyses of time-resolved collocated aerosol, copollutants and meteorological data suggest that the observed variability is largely attributable to the local traffic and to a lesser extent photochemistry and SO(2) possibly from combustion sources or regional transport. Despite sharing a common traffic source, the ultrafine particles were poorly correlated with the accumulation particles (100-1000 nm), between which the latter showed strong positive correlation with the PM(2.5) and PM(10). Overall, the N(TOT) and size distributions show modest spatial heterogeneity and strong diurnal variability. In addition, the ultrafine particles have variable sources or meteorology-dependent formation processes within the study area. The results imply that single-site measurements of PM(2.5), PM(10) or N(TOT) alone and without discriminating particle sizes would be inadequate for exposure and impact assessment of submicrometer particle numbers in a region of diverse environments.

  13. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  14. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  15. Assessing soil hydrological variability at the cm- to dm-scale using air permeameter measurements

    NASA Astrophysics Data System (ADS)

    Beerten, K.; Vandersmissen, N.; Rogiers, B.; Mallants, D.

    2012-04-01

    Soils and surficial sediments are crucial elements in the hydrological cycle since they are the medium through which infiltrating precipitation percolates to the aquifer. At the same time, soil horizons and shallow stratigraphy may act as hydraulic barriers that can promote runoff or interflow and hamper deep infiltration. For most catchments little is known about the small-scale horizontal and vertical variability of soil hydrological properties. Such information is however required to calculate detailed soil water flow paths and estimate small scale spatial variability in recharge and run-off. We present the results from field air permeameter measurements to assess the small-scale variability of saturated hydraulic conductivity in heterogeneous 2-D soil profiles. To this end, several outcrops in the unsaturated zone (sandy soils with podzolisation) of an interfluve in the Kleine Nete river catchment (Campine area, Northern Belgium) were investigated using a hand-held permeameter. Measurements were done each 10 cm on ~ 2 x 1 m or ~ 2 x 0.5 m grids. The initial results of the measurements (air permeability Kair; millidarcy) are recalculated to saturated hydraulic conductivity (Ks; m/s) using specific transfer functions (Loll et al., 1999; Iversen et al., 2003). Validation of the results is done with independent lab-based constant head Ks measurements. The results show that field based Ks values generally range between 10-3 m/s and 10-7 m/s within one profile, but extremely high values (up to 10-1 m/s) have been measured as well. The lowest values are found in the organic- and silt-rich Bh horizon of podzol soils observed within the profiles (~ 10-6-10-7m/s), while the highest values are observed in overlying dune sands less than 40 cm deep (up to 10-3 m/s with outliers to 10-1 m/s). Comparison of field and laboratory based Ks data reveals there is fair agreement between both methods, apart from several outliers. Scatter plots indicate that almost all points

  16. FTO genotype is associated with phenotypic variability of body mass index

    PubMed Central

    Yang, Jian; Loos, Ruth J. F.; Powell, Joseph E.; Medland, Sarah E.; Speliotes, Elizabeth K.; Chasman, Daniel I.; Rose, Lynda M.; Thorleifsson, Gudmar; Steinthorsdottir, Valgerdur; Mägi, Reedik; Waite, Lindsay; Smith, Albert Vernon; Yerges-Armstrong, Laura M.; Monda, Keri L.; Hadley, David; Mahajan, Anubha; Li, Guo; Kapur, Karen; Vitart, Veronique; Huffman, Jennifer E.; Wang, Sophie R.; Palmer, Cameron; Esko, Tõnu; Fischer, Krista; Zhao, Jing Hua; Demirkan, Ayşe; Isaacs, Aaron; Feitosa, Mary F.; Luan, Jian’an; Heard-Costa, Nancy L.; White, Charles; Jackson, Anne U.; Preuss, Michael; Ziegler, Andreas; Eriksson, Joel; Kutalik, Zoltán; Frau, Francesca; Nolte, Ilja M.; Van Vliet-Ostaptchouk, Jana V.; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Verweij, Niek; Goel, Anuj; Medina-Gomez, Carolina; Estrada, Karol; Bragg-Gresham, Jennifer Lynn; Sanna, Serena; Sidore, Carlo; Tyrer, Jonathan; Teumer, Alexander; Prokopenko, Inga; Mangino, Massimo; Lindgren, Cecilia M.; Assimes, Themistocles L.; Shuldiner, Alan R.; Hui, Jennie; Beilby, John P.; McArdle, Wendy L.; Hall, Per; Haritunians, Talin; Zgaga, Lina; Kolcic, Ivana; Polasek, Ozren; Zemunik, Tatijana; Oostra, Ben A.; Junttila, M. Juhani; Grönberg, Henrik; Schreiber, Stefan; Peters, Annette; Hicks, Andrew A.; Stephens, Jonathan; Foad, Nicola S.; Laitinen, Jaana; Pouta, Anneli; Kaakinen, Marika; Willemsen, Gonneke; Vink, Jacqueline M.; Wild, Sarah H.; Navis, Gerjan; Asselbergs, Folkert W.; Homuth, Georg; John, Ulrich; Iribarren, Carlos; Harris, Tamara; Launer, Lenore; Gudnason, Vilmundur; O’Connell, Jeffrey R.; Boerwinkle, Eric; Cadby, Gemma; Palmer, Lyle J.; James, Alan L.; Musk, Arthur W.; Ingelsson, Erik; Psaty, Bruce M.; Beckmann, Jacques S.; Waeber, Gerard; Vollenweider, Peter; Hayward, Caroline; Wright, Alan F.; Rudan, Igor; Groop, Leif C.; Metspalu, Andres; Khaw, Kay Tee; van Duijn, Cornelia M.; Borecki, Ingrid B.; Province, Michael A.; Wareham, Nicholas J.; Tardif, Jean-Claude; Huikuri, Heikki V.; Cupples, L. Adrienne; Atwood, Larry D.; Fox, Caroline S.; Boehnke, Michael; Collins, Francis S.; Mohlke, Karen L.; Erdmann, Jeanette; Schunkert, Heribert; Hengstenberg, Christian; Stark, Klaus; Lorentzon, Mattias; Ohlsson, Claes; Cusi, Daniele; Staessen, Jan A.; Van der Klauw, Melanie M.; Pramstaller, Peter P.; Kathiresan, Sekar; Jolley, Jennifer D.; Ripatti, Samuli; Jarvelin, Marjo-Riitta; de Geus, Eco J. C.; Boomsma, Dorret I.; Penninx, Brenda; Wilson, James F.; Campbell, Harry; Chanock, Stephen J.; van der Harst, Pim; Hamsten, Anders; Watkins, Hugh; Hofman, Albert; Witteman, Jacqueline C.; Zillikens, M. Carola; Uitterlinden, André G.; Rivadeneira, Fernando; Zillikens, M. Carola; Kiemeney, Lambertus A.; Vermeulen, Sita H.; Abecasis, Goncalo R.; Schlessinger, David; Schipf, Sabine; Stumvoll, Michael; Tönjes, Anke; Spector, Tim D.; North, Kari E.; Lettre, Guillaume; McCarthy, Mark I.; Berndt, Sonja I.; Heath, Andrew C.; Madden, Pamela A. F.; Nyholt, Dale R.; Montgomery, Grant W.; Martin, Nicholas G.; McKnight, Barbara; Strachan, David P.; Hill, William G.; Snieder, Harold; Ridker, Paul M.; Thorsteinsdottir, Unnur; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N.; Goddard, Michael E.; Visscher, Peter M.

    2013-01-01

    There is evidence across several species for genetic control of phenotypic variation of complex traits1–4, such that the variance among phenotypes is genotype dependent. Understanding genetic control of variability is important in evolutionary biology, agricultural selection programmes and human medicine, yet for complex traits, no individual genetic variants associated with variance, as opposed to the mean, have been identified. Here we perform a meta-analysis of genome-wide association studies of phenotypic variation using 170,000 samples on height and body mass index (BMI) in human populations. We report evidence that the single nucleotide polymorphism (SNP) rs7202116 at the FTO gene locus, which is known to be associated with obesity (as measured by mean BMI for each rs7202116 genotype)5–7, is also associated with phenotypic variability. We show that the results are not due to scale effects or other artefacts, and find no other experiment-wise significant evidence for effects on variability, either at loci other than FTO for BMI or at any locus for height. The difference in variance for BMI among individuals with opposite homozygous genotypes at the FTO locus is approximately 7%, corresponding to a difference of 0.5 kilograms in the standard deviation of weight. Our results indicate that genetic variants can be discovered that are associated with variability, and that between-person variability in obesity can partly be explained by the genotype at the FTO locus. The results are consistent with reported FTO by environment interactions for BMI8, possibly mediated by DNA methylation9,10. Our BMI results for other SNPs and our height results for all SNPs suggest that most genetic variants, including those that influence mean height or mean BMI, are not associated with phenotypic variance, or that their effects on variability are too small to detect even with samples sizes greater than 100,000. PMID:22982992

  17. Earth System Data Records of Mass Transport from Time-Variable Gravity Data

    NASA Astrophysics Data System (ADS)

    Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.

    2014-12-01

    Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.

  18. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI

  19. An analysis of surface air temperature trends and variability along the Andes

    NASA Astrophysics Data System (ADS)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of

  20. Improving the sensitivity of stop searches with on-shell constrained invariant mass variables

    NASA Astrophysics Data System (ADS)

    Cho, Won Sang; Gainer, James S.; Kim, Doojin; Matchev, Konstantin T.; Moortgat, Filip; Pape, Luc; Park, Myeonghun

    2015-05-01

    The search for light stops is of paramount importance, both in general as a promising path to the discovery of beyond the standard model physics and more specifically as a way of evaluating the success of the naturalness paradigm. While the LHC experiments have ruled out much of the relevant parameter space, there are "stop gaps", i.e., values of sparticle masses for which existing LHC analyses have relatively little sensitivity to light stops. We point out that techniques involving on-shell constrained M 2 variables can do much to enhance sensitivity in this region and hence help close the stop gaps. We demonstrate the use of these variables for several benchmark points and describe the effect of realistic complications, such as detector effects and combinatorial backgrounds, in order to provide a useful toolkit for light stop searches in particular, and new physics searches at the LHC in general.

  1. Variability and mass loss in IA O-B-A supergiants

    NASA Technical Reports Server (NTRS)

    Schild, R. E.; Garrison, R. F.; Hiltner, W. A.

    1983-01-01

    Recently completed catalogs of MK spectral types and UBV photometry of 1227 OB stars in the southern Milky Way have been analyzed to investigate brightness and color variability among the Ia supergiants. It is found that brightness variability is common among the O9-B1 supergiants with typical amplitudes about 0.1 and time scales longer than a week and shorter than 1000 days. Among the A supergiants fluctuations in U-B color are found on similar time scales and with amplitude about 0.1. For many early Ia supergiants there is a poor correlation between Balmer jump and spectral type, as had been known previously. An attempt to correlate the Balmer jump deficiency with mass loss rate yielded uncertain results.

  2. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  3. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  4. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  5. Absolute air refractive index measurement and tracking based on variable length vacuum cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiangzhi; Zhang, Tieli; Ellis, Jonathan D.

    2016-06-01

    A refractometer system using four modified Wu-type heterodyne interferometers with a variable length vacuum cell is presented. The proposed system has two working modes: (1) a moving mode for measuring the absolute air refractive index at the start of a measurement and (2) a static mode for monitoring the air refractive index fluctuation with the same bandwidth as a traditional displacement interferometer. The system requires no gas filling or pumping during the measurement and can be used for real-time refractive index compensation. Comparison experiments with empirical equations are conducted to investigate the feasibility and performance of the proposed system. The standard deviation of the measurement difference between the proposed system and empirical equation is 2.8 parts in 107, which is close to the uncertainty of our refractive index reference based on the accuracy of the environmental sensors. The relative refractive index tracking is a few parts in 108 with a bandwidth of 10 Hz, but high bandwidths are readily achievable.

  6. Southern Hemisphere water mass conversion linked with North Atlantic climate variability.

    PubMed

    Pahnke, Katharina; Zahn, Rainer

    2005-03-18

    Intermediate water variability at multicentennial scales is documented by 340,000-year-long isotope time series from bottom-dwelling foraminifers at a mid-depth core site in the southwest Pacific. Periods of sudden increases in intermediate water production are linked with transient Southern Hemisphere warm episodes, which implies direct control of climate warming on intermediate water conversion at high southern latitudes. Coincidence with episodes of climate cooling and minimum or halted deepwater convection in the North Atlantic provides striking evidence for interdependence of water mass conversion in both hemispheres, with implications for interhemispheric forcing of ocean thermohaline circulation and climate instability.

  7. On mass and momentum conservation in the variable-parameter Muskingum method

    NASA Astrophysics Data System (ADS)

    Reggiani, Paolo; Todini, Ezio; Meißner, Dennis

    2016-12-01

    In this paper we investigate mass and momentum conservation in one-dimensional routing models. To this end we formulate the conservation equations for a finite-dimensional reach and compute individual terms using three standard Saint-Venant (SV) solvers: SOBEK, HEC-RAS and MIKE11. We also employ two different variable-parameter Muskingum (VPM) formulations: the classical Muskingum-Cunge (MC) and the revised, mass-conservative Muskingum-Cunge-Todini (MCT) approach, whereby geometrical cross sections are treated analytically in both cases. We initially compare the three SV solvers for a straight mild-sloping prismatic channel with geometric cross sections and a synthetic hydrograph as boundary conditions against the analytical MC and MCT solutions. The comparison is substantiated by the fact that in this flow regime the conditions for the parabolic equation model solved by MC and MCT are met. Through this intercomparison we show that all approaches have comparable mass and momentum conservation properties, except the MC. Then we extend the MCT to use natural cross sections for a real irregular river channel forced by an observed triple-peak event and compare the results with SOBEK. The model intercomparison demonstrates that the VPM in the form of MCT can be a computationally efficient, fully mass and momentum conservative approach and therefore constitutes a valid alternative to Saint-Venant based flood wave routing for a wide variety of rivers and channels in the world when downstream boundary conditions or hydraulic structures are non-influential.

  8. Mass transfer in cataclysmic variables - Clues from the dwarf nova period distribution

    NASA Technical Reports Server (NTRS)

    Shafter, A. W.; Wheeler, J. C.; Cannizzo, J. K.

    1986-01-01

    Evidence is presented in support of the hypothesis that the mean mass-transfer rate at a given orbital period is not continuous across the 2-3 hr gap in the orbital period distribution for cataclysmic variables. It is pointed out that although dwarf novae comprise nearly half (48 percent) of all disk systems with orbital periods less than 10 hr, only three systems out of the 22 with periods between 3 and 4 hr appear to be dwarf novae. The overall orbital period distribution for dwarf novae in conjunction with the predictions from current theories of dwarf nova eruptions are used to argue that mass-transfer rates must be generally higher for systems with orbital periods greater than 3 hr relative to systems with periods less than 2 hr. It is further argued that the mean mass-transfer rate at a given orbital period cannot increase more steeply than P exp 1.7 unless the white dwarf mass is positively correlated with orbital period.

  9. The Barents Sea frontal zones and water masses variability (1980-2011)

    NASA Astrophysics Data System (ADS)

    Oziel, L.; Sirven, J.; Gascard, J.-C.

    2016-01-01

    The polar front separates the warm and saline Atlantic Water entering the southern Barents Sea from the cold and fresh Arctic Water located in the north. These water masses can mix together (mainly in the center of the Barents Sea), be cooled by the atmosphere and receive salt because of brine release; these processes generate dense water in winter, which then cascades into the Arctic Ocean to form the Arctic Intermediate Water. To study the interannual variability and evolution of the frontal zones and the corresponding variations of the water masses, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database, which covers the 1980-2011 period. The summer data were interpolated on a regular grid. A probability density function is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be identified: the Northern Front is associated with strong salinity gradients and the Southern Front with temperature gradients. Both fronts enclose the denser Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. The frontal zones variability is found by using data from a general circulation model. The link with the atmospheric variability, represented here by the Arctic Oscillation, is not clear. However, model results suggest that such a link could be validated if winter data were taken into account. A strong trend appears: the Atlantic Water (Arctic Water) occupies a larger (smaller) volume of the Barents Sea. This trend amplifies during the last decade and the model study suggests that this could be accompanied by a northwards displacement of the Southern Front in the eastern part of the Barents Sea. The results are less clear for the Northern Front. The observations show that the volume of the Barents Sea Water

  10. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  11. Individual exposure estimates may be erroneous when spatiotemporal variability of air pollution and human mobility are ignored.

    PubMed

    Park, Yoo Min; Kwan, Mei-Po

    2017-01-01

    This study aims to empirically demonstrate the necessity to consider both the spatiotemporal variability of air pollution and individual daily movement patterns in exposure and health risk assessment. It compares four different types of exposure estimates generated by using (1) individual movement data and hourly air pollution concentrations; (2) individual movement data and daily average air pollution data; (3) residential location and hourly pollution levels; and (4) residential location and daily average pollution data. These four estimates are significantly different, which supports the argument that ignoring the spatiotemporal variability of environmental risk factors and human mobility may lead to misleading results in exposure assessment. Additionally, three-dimensional (3D) geovisualization presented in the paper shows how person-specific space-time context is generated by the interactions between air pollution and an individual, and how the different individualized contexts place individuals at different levels of health risk.

  12. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  13. 20th century ethane variability from polar firn air and implications for the methane budget

    NASA Astrophysics Data System (ADS)

    Saltzman, E. S.; Verhulst, K. R.; Aydin, K. M.; Battle, M. O.; Montzka, S. A.; Tang, Q.; Prather, M. J.

    2010-12-01

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they impact both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, while methane alone has large sources from wetlands, agriculture, landfills and wastewater. Here we use measurements in firn air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane during the 20th century. Ethane levels rose from early in the century until the 1980’s when the trend reverses, with a period of decline over the next 20 years. This variability is primarily driven by changes in ethane emissions from fossil fuels that peaked in the 1960’s and 1970’s at 14-16 Tg/y and dropped to 8-10 Tg/y before the end of the century. The reduction in fossil-fuel sources is likely related to changes in light hydrocarbon recovery during petroleum production and use. The ethane-based emission history implies that the decline in the fossil-fuel source of methane may have started prior to the 1980’s and that the magnitude of the decline is larger than previous estimates.

  14. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  15. Impact of Air Temperature and SST Variability on Cholera Incidence in Southeastern Africa, 1971-2006

    NASA Astrophysics Data System (ADS)

    Paz, Shlomit

    2010-05-01

    The most important climatic parameter related to cholera outbreaks is the temperature, especially of the water bodies and the aquatic environment. This factor governs the survival and growth of V. cholerae, since it has a direct influence on its abundance in the environment, or alternatively, through its indirect influence on other aquatic organisms to which the pathogen is found to attach. Thus, the potential for cholera outbreaks may rise, parallel to the increase in ocean surface temperature. Indeed, recent studies indicate that global warming might create a favorable environment for V. cholerae and increase its incidence in vulnerable areas. Africa is vulnerable to climate variability. According to the recent IPCC report on Africa, the air temperature has indicated a significant warming trend since the 1960s. In recent years, most of the research into disease vectors in Africa related to climate variability has focused on malaria. The IPCC indicated that the need exists to examine the vulnerabilities and impacts of climatic factors on cholera in Africa. In light of this, the study uses a Poisson Regression Model to analyze the possible association between the cholera rates in southeastern Africa and the annual variability of air temperature and sea surface temperature (SST) at regional and hemispheric scales, for the period 1971-2006. Data description is as follows: Number of cholera cases per year in Uganda, Kenya, Rwanda, Burundi, Tanzania, Malawi, Zambia and Mozambique. Source: WHO Global Health Atlas - cholera. Seasonal and annual temperature time series: Regional scale: a) Air temperature for southeastern Africa (30° E-36° E, 5° S-17° S), source: NOAA NCEP-NCAR; b) Sea surface temperature, for the western Indian Ocean (0-20° S, 40° E-45° E), source: NOAA, Kaplan SST dataset. Hemispheric scale (for the whole Southern Hemisphere): a) Air temperature anomaly; b) Sea surface temperature anomaly. Source: CRU, University of East Anglia. The following

  16. Determination of variables for air distribution system with elastic valve for down-the-hole pneumatic hammer

    NASA Astrophysics Data System (ADS)

    Primychkin, AYu; Kondratenko, AS; Timonin, VV

    2017-02-01

    The air distribution system of down-the-hole pneumatic hammer 105 mm in diameter is updated to enhance drilling efficiency. The design model of the down-the-hole pneumatic hammer is constructed in ITI SimulationX environment. The basic variables of the air distribution system with an elastic valve are determined so that to ensure increased impact energy at the limited pre-impact velocity and the same machine size.

  17. X-ray variability in Galactic high-mass black hole binaries

    NASA Astrophysics Data System (ADS)

    Axelsson, Magnus

    The stars of the night sky can to the naked eye appear to be steady and unchanging, apart from the twinkling created by air moving in the atmosphere. However, when viewed in X-rays, the sky is far from constant, with detectable changes occurring on very short timescales. Black hole X-ray binaries are strong sources of X-rays. These systems contain a star and a black hole in orbit around each other. As matter from the companion star is accreted by the black hole, large amounts of gravitational energy are released, giving rise to strong X-ray emission. The accretion flow close to a black hole is characterized by strong gravity, high-energy radiation and variability on timescales down to milliseconds. These systems allow us to probe physics under conditions we cannot recreate in a laboratory, and provide some of the strongest observational indications of the existence of black holes. Temporal analysis is a powerful diagnostic of the geometry and physical processes of this environment. The bulk of this thesis concerns studies of the rapid variability of perhaps the most well-known of all black hole binaries: Cygnus X-1. By tapping into the large amount of archival data available, a systematic study of the variability, in the form of the power spectrum, is conducted. The results show that timing studies can indeed give valuable information on the emission mechanisms and accretion geometry. Tying characteristic frequencies to effects predicted by general relativity directly gives information about the parameters of the compact object. Using these results, the past evolution of the binary system is studied. In addition, results from temporal analysis of the possible black hole binary Cygnus X-3 are presented. The study of X-ray variability covers timescales from years to seconds, and shows that while temporal analysis provides clues to this complex system, it does not provide immediate insight into the accretion geometry, or the nature of the compact object

  18. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  19. Variable stars in the VVV globular clusters. I. 2MASS-GC 02 and Terzan 10

    SciTech Connect

    Alonso-García, Javier; Dékány, István; Catelan, Márcio; Ramos, Rodrigo Contreras; Gran, Felipe; Leyton, Paul; Minniti, Dante; Amigo, Pía E-mail: idekany@astro.puc.cl E-mail: rcontrer@astro.puc.cl E-mail: pia.amigo@uv.cl E-mail: dante@astrofisica.cl

    2015-03-01

    The VISTA Variables in the Vía Láctea (VVV) ESO Public Survey is opening a new window to study inner Galactic globular clusters (GCs) using their variable stars. These GCs have been neglected in the past due to the difficulties caused by the presence of elevated extinction and high field stellar densities in their lines of sight. However, the discovery and study of any present variables in these clusters, especially RR Lyrae stars, can help to greatly improve the accuracy of their physical parameters. It can also help to shed some light on the questions raised by the intriguing Oosterhoff dichotomy in the Galactic GC system. In a series of papers we plan to explore variable stars in the GCs falling inside the field of the VVV survey. In this first paper, we search for and study the variables present in two highly reddened, moderately metal-poor, faint, inner Galactic GCs: 2MASS-GC 02 and Terzan 10. We report the discovery of sizable populations of RR Lyrae stars in both GCs. We use near-infrared period–luminosity relations to determine the color excess of each RR Lyrae star, from which we obtain both accurate distances to the GCs and the ratios of the selective-to-total extinction in their directions. We find the extinction toward both clusters to be elevated, non-standard, and highly differential. We also find both clusters to be closer to the Galactic center than previously thought, with Terzan 10 being on the far side of the Galactic bulge. Finally, we discuss their Oosterhoff properties, and conclude that both clusters stand out from the dichotomy followed by most Galactic GCs.

  20. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  1. Effects of Mass and Volume Fraction Skewness in Variable Density Mixing Processes

    NASA Astrophysics Data System (ADS)

    Wachtor, Adam J.; Bakosi, Jozsef; Ristorcelli, Raymond

    2015-11-01

    Among the parameters characterizing mixing by variable density turbulence of fluids involving density variations of a factor of 5 to 10 are the Atwood, Froude, Schmidt, and Reynolds numbers. There is evidence that the amount of each fluid present when the two pure fluids mix, as described by the probability density function of the mass or molar (volume) fraction, also strongly affects the mixing process. To investigate this phenomena, implicit large-eddy simulations (ILES) are performed for binary fluid mixtures in statistically homogenous environments under constant acceleration. These coarse grained simulations are used as data for theory validation and mix model development. ILES has been demonstrated to accurately capture the mixing behavior of a passive scalar field through stirring and advection by a turbulent velocity field. The present work advances that research and studies the extent to which an under-resolved active scalar drives the subsequent fluid motion and determines the nature of the mixing process. Effects of initial distributions of the mass and molar (volume) fraction probability density function on the resulting variable density turbulence and mixing are investigated and compared to direct numerical simulations from the Johns Hopkins Turbulence Database. Funded by the LANL LDRD-ER on ``Inserting Nonlinear N-Material Coupling PDF Information into Turbulent Mixing Models'' through exploratory research project number 20150498ER.

  2. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  3. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  4. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  5. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  6. The pulsation modes and masses of carbon-rich long period variables

    NASA Astrophysics Data System (ADS)

    Bergeat, J.; Knapik, A.; Rutily, B.

    2002-08-01

    Following our study of the carbon-rich giants in the HR diagram and of their luminosity function (Paper III), we investigate the pulsation data of the long period variables (LPVs) included in our sample. Pulsation modes (fundamental, overtone(s)) for carbon LPVs are identified in the period-radius diagram, making use of observed bi-periodicity in a small subsample of those stars, and of comparison to models. Mean pulsation masses are then deduced from theoretical PMR-relations, with due attention paid to a possible bias while averaging. Mean (present) pulsation masses (0.6 - 4.0 Msun) are found to increase along the group sequence HC5 to CV6, with still larger masses possibly associated with cool extreme CV7-objects with strong mass loss and thick circumstellar shells. This is consistent with the 0.8-4 Msun range of initial masses found in Paper III for the majority of carbon-rich giants affected by mass loss during their evolution. The pulsation masses found for a few HC-stars (Mle0 .8 Msun) are consistent with their low initial masses (Mi<~ 1.1 Msun), as inferred from their thick disk membership (age =~ 11 Gyr?) and locus in the HR diagram. A mean pulsation mass of =~ 0.6 Msun is found for the three population II Cepheids in the sample. A mass-luminosity diagram is proposed for the Galactic carbon giants. The data from observations is found consistent with theoretical predictions from AGB modeling, specially the third dredge-up (TDU) through thermal pulses (TP) with a carbon star formation line (CSFL) for TP-AGB stars. It appears that the CV-giants are close to the tip and end of their evolutionary tracks in the TP-AGB of the HR diagram. It is confirmed that this end shifts toward lower effective temperatures and higher luminosities, with increasing masses. It is shown that the C/O abundance ratios do correlate with effective temperatures, according to three distinct distributions (halo CH stars, thick disk HC-stars, and thin disk CV-stars). The mean stellar

  7. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-05

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER.

  8. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  9. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  10. Spatial and temporal variability in distribution of water masses in Hornsund, Spitsbergen

    NASA Astrophysics Data System (ADS)

    Promińska, Agnieszka; Falck, Eva; Walczowski, Waldemar; Sundfjord, Arild

    2016-04-01

    Arctic fjords constitute an important part of many recent investigations because this is the place where different water masses meet, mix, and transform, influencing the stability of glaciers. Hornsund, the southernmost fjord of West Spitsbergen, has been studied during the past 15 years. Observations were based primarily on high resolution measurements of water temperature and salinity along fixed sections, that have been performed every July between 2001-2015. Research carried out in years 2010 - 2015 under Polish - Norwegian projects AWAKE and AWAKE-2 allowed for expansion of the database with data covering the period from spring to autumn. During this time measurements were also conducted from a small boat in the vicinity of glaciers with a time resolution of 1-2 weeks in addition to a mooring system deployed in the fjord and on the shelf just outside Hornsund. Synthesis of our measurements give an overview of water masses observed in the fjord. From summer to summer observations reveal high variability in water temperature and salinity giving a distinct division into an area influenced by oceanic factors (Main Basin) and an area which is more influenced by local factors (Brepollen). The chronology of water mass transformation has been obtained indicating a time of transition between winter (Arctic type), additionally interrupted by temporary inflow of waters of Atlantic origin, and summer (Atlantic type) conditions.

  11. Impact of photometric variability on age and mass determination in young stellar objects: the case of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Messina, Sergio; Parihar, Padmakar; Distefano, Elisa

    2017-03-01

    Very young stars, like the Orion Nebula Cluster (ONC) members analysed in the present study, exhibit photometric variability with a wide range of amplitudes. Such a prominent variability reflects in the inferred values of stellar colours and luminosities and, in turn, in the inferred stellar ages and masses. In this study, we measure the amplitudes of the photometric variability in V, R and I optical bands of a sample of 346 ONC members. We use these measurements to investigate how this variability affects the inferred masses and ages and whether it alone can account for the age spread among ONC members reported by earlier studies. We make use of colour-magnitude and Hertzprung-Russell (HR) diagrams. We find that members that show periodic and smooth photometric rotational modulation have masses and ages that are unaffected by variability when theoretical isochrones and evolutionary mass tracks are used in either colour-magnitude or HR diagrams. On the other hand, members with periodic but very scattered photometric rotational modulation and non-periodic members have masses and ages that are significantly affected. Moreover, using HR diagrams, we find that the observed I-band photometric variability can take account of only a fraction (˜50 per cent) of the inferred age spread, whereas the V-band photometric variability is large enough to mask any age spread.

  12. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  13. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  14. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    Context. High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the cirscumstellar disk in Be/X-ray binaries. In either case, the Hα line stands out as the main source of information about the state of the accreting material. Aims: We present the results of our monitoring program to study the long-term variability of the Hα line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Methods: We fitted the Hα line with Gaussian profiles and obtained the line parameters and equivalent width. The peak separation in split profiles was used to determine the disk velocity law and estimate the disk radius. The relative intensity of the two peaks (V/R ratio) allowed us to investigate the distribution of gas particles in the disk. The equivalent width was used to characterise the degree of variability of the systems. We also studied the variability of the Hα line in correlation with the X-ray activity. Results: Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods; ii) we show that a Keplerian distribution of gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars; iii) a decrease in the Hα equivalent width is generally observed after major X-ray outbursts; iv) we confirm that the Hα equivalent width correlates with disk radius; v) while systems with supergiant companions display multi-structured profiles, most of the Be/X-ray binaries show, at some epoch, double-peak asymmetric profiles, which indicates that density inhomogeneities is a common property in the disk of Be/X-ray binaries; vi) the

  15. Observations of the variability of shallow trade wind cumulus cloudiness and mass flux

    NASA Astrophysics Data System (ADS)

    Lamer, K.; Kollias, P.; Nuijens, L.

    2015-06-01

    Two years of ground-based remote sensing observations are used to study the vertical structure of marine cumulus near the island of Barbados, including their cloud fraction and mass flux profile. Daily radar derived cloud fraction profiles peak at different height levels depending on the depth of the cumuli and thus the extent to which they precipitate. Nonprecipitating cumuli have a peak cloud fraction of about 5% near mean cloud base (700 m), whereas precipitating cumuli tend to have a peak of only 2% near cloud base. Nineteen percent of the precipitating cumuli are accompanied by large cloud fractions near the detrainment level of cumulus tops (~1700 m). Day-to-day variations in cloud fraction near cloud base are modest (~3%). Nonprecipitating cumuli have their largest reflectivities near cloud top and an ascending core surrounded by a subsiding shell. Precipitating cumuli with enhanced elevated cloudiness (stratiform outflow) are deeper and contain larger vertical gradients in reflectivity and Doppler velocity than precipitating cumuli without such outflow. Bulk (3 h) statistics reveal that nonprecipitating shallow cumuli are active and organized. They contain on average 79% in-cloud updrafts with 86% of them being organized in large coherent structures contributing to a maximum updraft mass flux of 8-36 gm-2 s-1 just above cloud base. Alternatively, downdrafts contribute insignificantly to the mass flux and show little vertical and temporal variability (0-7 gm-2 s-1). Complementary Raman lidar information suggests that updraft mass flux profile slope is inversely related to environmental relative humidity.

  16. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  17. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  18. CHANGES IN HEART RATE VARIABILITY AND LUNG FUNCTION OBSERVED IN NC PATROL TROOPERS EXPOSED TO PM AND AIR TOXICS

    EPA Science Inventory

    Changes in Heart Rate Variability and Lung Function in NC Patrol Troopers exposed to PM and Air Toxics

    Michael Riediker1, Wayne E Cascio1, Robert B Devlin2, Thomas Griggs1&4, Margaret Herbst1, Ronald W Williams3, Steve P McCorquodale4, Philip A Bromberg1
    1) University o...

  19. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).

    PubMed

    Armitage, James M; Hayward, Stephen J; Wania, Frank

    2013-01-01

    The main objective of this study was to evaluate the performance and demonstrate the utility of a fugacity-based model of XAD passive air samplers (XAD-PAS) designed to simulate the uptake of neutral organic chemicals under variable temperatures, external wind speeds and ambient air concentrations. The model (PAS-SIM) simulates the transport of the chemical across the air-side boundary layer and within the sampler medium, which is segmented into a user-defined number of thin layers. Model performance was evaluated using data for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from a field calibration study (i.e., active and XAD-PAS data) conducted in Egbert, Ontario, Canada. With some exceptions, modeled PAS uptake curves are in good agreement with the empirical PAS data. The results are highly encouraging, given the uncertainty in the active air sampler data used as input and other uncertainties related to model parametrization (e.g., sampler-air partition coefficients, the influence of wind speed on sampling rates). The study supports the further development and evaluation of the PAS-SIM model as a diagnostic (e.g., to aid interpretation of calibration studies and monitoring data) and prognostic (e.g., to inform design of future passive air sampling campaigns) tool.

  20. Air mass characterization during the DAURE field campaign by PTR-TOF

    NASA Astrophysics Data System (ADS)

    Metzger, Axel; Schallhart, Simon; Müller, Markus; Hansel, Armin

    2010-05-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a wide variety of biogenic and anthropogenic sources. Although some of the sources are well characterized, many uncertainties remain about the fate of these compounds in the atmosphere and their role in organic aerosol formation. Here we present measurements using Proton Transfer Reaction Time-of-Flight (PTR-TOF) Mass Spectrometry during the DAURE field campaign ("Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean") obtained during February and March 2009. Measurements were performed at a rural mountain site located in the Montseny Natural Park 40 km to the NNE of the city of Barcelona, and 25 km from the Mediterranean coast. Volatile organic compounds where identified and quantified using PTR-TOF with 1 minute time resolution. The instruments mass resolving power of 4000 - 5000 and a mass accuracy of 5 ppm allows for the unambiguous sum-formula identification of e.g. hydrocarbons (HCs) or oxygenated VOCs (OVOCs). The high time resolution allows separating out on site pollution events. Air masses impacted by biomass-burning, urban, marine and vegetation emissions are characterized using tracers like acetonitrile, aromatics, dimethyl sulfide or biogenic compounds (terpenoids) and the degree of photochemical processing is inferred from the data.

  1. Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord

    NASA Astrophysics Data System (ADS)

    Divya, David T.; Krishnan, K. P.

    2017-03-01

    The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).

  2. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - I. Levels and variabilities

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Lakić, Nataša; Radić, Ranka

    2010-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study the spatial and temporal variabilities and to explore the significance of averaging effects inherent to 24 h-sampling. Measurement uncertainty was quantified on basis of three independent side-by-side samplers, deployed at one of the sites. PAH abundances in the urban and rural environments differed largely. Levels at the urban sites exceeded the levels at the rural site by >100%. The discrepancy was largely dominated by emission of 3-4 ring PAHs in the city, while 5-6 ring PAHs were more evenly distributed between city sites and the hill site. During the night a higher fraction of the semivolatile PAHs might have been stored in the soil or sorbed to surfaces. PAH patterns were undistinguishable across the three sites. However, concentrations of more particle-associated substances differed significantly between the urban sites than between one of the urban sites and the rural site (3 σ uncertainty). Time-averaging (on a 24 h-basis) would have masked the significant inter-site differences of half of the substances which were found at different levels (on a 4 h-basis).

  3. Long-period humidity variability in the Arctic atmosphere from upper-air observations

    NASA Astrophysics Data System (ADS)

    Agurenko, A.; Khokhlova, A.

    2014-12-01

    Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).

  4. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  5. A new approach to the correlation of boundary layer mass transfer rates with thermal diffusion and/or variable properties

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Rosner, D. E.

    1979-01-01

    A rational approach to the correlation of boundary layer mass transport rates, applicable to many commonly encountered laminar flow conditions with thermal diffusion and/or variable properties, is outlined. The correlation scheme builds upon already available constant property blowing/suction solutions by introducing appropriate correction factors to account for the additional ('pseudo' blowing and source) effects identified with variable properties and thermal diffusion. Applications of the scheme to the particular laminar boundary layer mass transfer problems considered herein (alkali and transition metal compound vapor transport) indicates satisfactory accuracy up to effective blowing factors equivalent to about one third of the 'blow off' value. As a useful by-product of the variable property correlation, we extend the heat-mass transfer analogy, for a wide range of Lewis numbers, to include variable property effects.

  6. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  7. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  8. Seasonal and inter-annual variability of lower stratospheric age of air spectra

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Birner, Thomas

    2016-08-01

    Trace gas transport in the lower stratosphere is investigated by analysing seasonal and inter-annual variations of the age of air spectrum - the probability distribution of stratospheric transit times. Age spectra are obtained using the Chemical Lagrangian Model of the Stratosphere (CLaMS) driven by ERA-Interim winds and total diabatic heating rates, and using a time-evolving boundary-impulse-response (BIER) method based on multiple tracer pulses. Seasonal age spectra show large deviations from an idealized stationary uni-modal shape. Multiple modes emerge in the spectrum throughout the stratosphere, strongest at high latitudes, caused by the interplay of seasonally varying tropical upward mass flux, stratospheric transport barriers and recirculation. Inter-annual variations in transport (e.g. quasi-biennial oscillation) cause significant modulations of the age spectrum shape. In fact, one particular QBO phase may determine the spectrum's mode during the following 2-3 years. Interpretation of the age spectrum in terms of transport contributions due to the residual circulation and mixing is generally not straightforward. It turns out that advection by the residual circulation represents the dominant pathway in the deep tropics and in the winter hemisphere extratropics above 500 K, controlling the modal age in these regions. In contrast, in the summer hemisphere, particularly in the lowermost stratosphere, mixing represents the most probable pathway controlling the modal age.

  9. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    SciTech Connect

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  10. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  11. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  12. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  13. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  14. Fabric variability associated with periglacial mass-wasting at Eagle Summit, Alaska

    NASA Astrophysics Data System (ADS)

    Millar, Susan W. S.

    2005-12-01

    Fabric analysis is a frequently applied technique and, when used in concert with other tools, aids the interpretation of glacigenic and colluvial depositional environments. The research presented here focuses on its application to periglacial colluvium, using a stratified systematic unaligned sampling framework in order to assess the variation of fabrics generated. The range of possible variation in fabric is necessary information for its application to periglacial paleoenvironmental interpretation. Fabric strength and shape from 68 samples, of 50 stones each on a range of microgeomorphic settings across terrain influenced by periglacial mass-wasting in central Alaska, were analyzed in relation to local slope orientation, clast characteristics, organic mat thickness, stone density, distance downslope from the divide, soil texture and soil moisture. Principal components analysis (PCA) was used to reduce stone characteristics to three factors. Multiple regression analyses of the three factors and environmental variables, with the fabric strength parameters as dependent variables, indicate that stone characteristics, particularly size and platyness, are the most significant factors determining fabric strength. No distinct fabric strength or shape was associated with specific landforms. These results raise serious doubts as to the time-cost effectiveness of the application of fabric analysis as a paleoenvironmental tool to identify periglacial landforms from their deposits.

  15. Direct measurement of sub-surface mass change using the variable-baseline gravity gradient method

    USGS Publications Warehouse

    Kennedy, Jeffrey; Ferré, Ty P. A.; Güntner, Andreas; Abe, Maiko; Creutzfeldt, Benjamin

    2014-01-01

    Time-lapse gravity data provide a direct, non-destructive method to monitor mass changes at scales from cm to km. But, the effectively infinite spatial sensitivity of gravity measurements can make it difficult to isolate the signal of interest. The variable-baseline gravity gradient method, based on the difference of measurements between two gravimeters, is an alternative to the conventional approach of individually modeling all sources of mass and elevation change. This approach can improve the signal-to-noise ratio for many applications by removing the contributions of Earth tides, loading, and other signals that have the same effect on both gravimeters. At the same time, this approach can focus the support volume within a relatively small user-defined region of the subsurface. The method is demonstrated using paired superconducting gravimeters to make for the first time a large-scale, non-invasive measurement of infiltration wetting front velocity and change in water content above the wetting front.

  16. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean.

    PubMed

    Sardessai, S; Shetye, Suhas; Maya, M V; Mangala, K R; Prasanna Kumar, S

    2010-01-01

    Nutrient characteristics of four water masses in the light of their thermohaline properties are examined in the eastern Equatorial Indian Ocean during winter, spring and summer monsoon. The presence of low salinity water mass with "Surface enrichments" of inorganic nutrients was observed relative to 20 m in the mixed layer. Lowest oxygen levels of 19 microM at 3 degrees N in the euphotic zone indicate mixing of low oxygen high salinity Arabian Sea waters with the equatorial Indian Ocean. The seasonal variability of nutrients was regulated by seasonally varying physical processes like thermocline elevation, meridional and zonal transport, the equatorial undercurrent and biological processes of uptake and remineralization. Circulation of Arabian Sea high salinity waters with nitrate deficit could also be seen from low N/P ratio with a minimum of 8.9 in spring and a maximum of 13.6 in winter. This large deviation from Redfield N/P ratio indicates the presence of denitrified high salinity waters with a seasonal nitrate deficit ranging from -4.85 to 1.52 in the Eastern Equatorial Indian Ocean.

  17. Time-Variable Gravity Signal Due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.; Cox, C. M.

    2002-01-01

    Cox and Chao [2002] reported the detection of a large anomaly in the form of a positive "jump" in the time series of Earth's lowest-degree gravity harmonic J2, or the dynamic oblateness, during 1998. This prompted us to examine the mass redistribution in the global oceans. We report here a seesaw of the sea-surface height (SSH) in the extratropic north + south Pacific basins -- the leading (nonseasonal) EOF/PC mode in SSH derived from the 10-year TOPEX/Poseidon altimetry data in the extratropic Pacific region. The mode underwent a step-like jump with time evolution that match remarkably well with the observed J2 anomaly. However, the magnitude is several times too small to explain the observed J2, even if assuming the SSH jump was all mass-induced (as opposed to any steric effect which causes no time-variable gravity signal). If one accepts the notion that this extratropic Pacific seesaw is part of the geophysical process that produced the observed 1998 J2 anomaly, then this finding suggests strong geophysical connection of the interannual-to-decadal variation of J2 with the Pacific Decadal Oscillation (PDO), as the time series of the above EOF/PC mode is actually a formally defined PDO Index series.

  18. EXAMINING THE IMPACT OF CLIMATE CHANGE AND VARIABILITY OF REGIONAL AIR QUALITY OVER THE UNITED STATES

    EPA Science Inventory

    The United States has established a series of standards for criteria and other air pollutants to safeguard air quality to protect human health and the environment. The Climate Impact on Regional Air Quality (CIRAQ) project, a collaborative research effort involving multiple Fede...

  19. Use of stable lead isotopes and trace metals to characterize air mass sources into the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    VéRon, Alain J.; Church, Thomas M.

    1997-12-01

    Stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) and trace metals (Mn, Al, Fe, Ni, Cu, Cd, Zn, Pb) have been analyzed in aerosol collected during the Atlantic Stratocumulus Transition Experiment-Marine Aerosol and Gas Exchange (ASTEX-MAGE) cruise that transited between Miami and the Azores from May to July 1992. Our goal was to define the continental signatures of the air masses encountered between the Azores and the subtropical regions. The combination of air mass trajectories, trace metal concentrations and stable lead isotopes allowed us to characterize the anthropogenic character of encountered air masses. The average 206Pb/207Pb ratio was 1.148±0.021 and corresponded to a mixing between well defined European (such as Great Britain with 1.115<206Pb/207Pb<1.125 and France with 206Pb/207Pb=1.141±0.000) and North American sources (with 206Pb/207Pb=1.184±0.000). On the basis of air mass trajectories and trace metal concentrations, the background isotopic signature associated with the trade winds (206Pb/207Pb=1.161±0.004) is consistent with previous reports by Church et al. [1990] such as 206Pb/207Pb=1.154±0.004 in 1988, (Véron et al., 1993), 206Pb/207Pb=1.155±0.004 in 1989, and Hamelin et al. [1996] (206Pb/207Pb=1.158±0.006) in 1991. Short-term variations of continental air mass sources was particularly investigated by considering the anthropogenic character of aerosols collected during two Lagrangian experiments conducted as part of the ASTEX-MAGE cruise. We demonstrated the utility of stable lead isotopes to assign a "continental source signature" (or mixture thereof) to air masses beyond that normally possible by conventional air mass trajectory analysis in remote oceanic regions.

  20. Future satellite missions for time-variable geopotential recovery - results from the ESA Mass Transport Project

    NASA Astrophysics Data System (ADS)

    Reubelt, T.; Sneeuw, N.; Visser, P. N. A. M.; van Dam, T.; Losch, M.

    2009-04-01

    With the successful GRACE mission (data collection since Spring 2002), global time-variable gravity fields can be recovered beyond the lower degrees for the first time. Although GRACE is able to detect significant features of the time-variable geopotential, e.g. the continental hydrological cycle, trends in ice-mass change in Antarctica or Greenland or sea level rise, its mission concept suffers from inherent deficiencies. The main limitations of GRACE are (i) the range-rate measurements (insufficient accuracy, anisotropy of the leader-follower-formation), (ii) aliasing due to spatial and temporal undersampling and (iii) inaccurate de-aliasing products. This leads to an erroneous North-South striping pattern and a limited accuracy and resolution for many scientific studies. Within the ESA project „Monitoring and Modeling Individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites" potential future satellite mission concepts, which could improve time-variable geopotential-recovery, have been studied. An improved accuracy of a future laser instrument as well as an enhanced temporal sampling have been regarded in the simulations, which were based on repeat orbits. An enhanced sampling can be achieved by means of multi-satellite-missions, where the spatial and/or temporal resolutions are improved by: 1) additional satellites on interleaved groundtracks and/or 2) time shifted satellites on the same groundtrack. Another possibility is the so-called Pete-Bender-design, where the satellites fly on different repeat-orbits with different inclinations, which also allows for more homogeneous groundtrack coverage. Sophisticated satellite-formations such as cartwheels or gravity wheels have not been regarded so far due to the unsolved technical problems (e.g. control of the laser instrument) related to these designs. The primary objective of the simulation studies was the precise recovery of the input hydrological signal and the trends of

  1. Probing Cloud-Driven Variability on Two of the Youngest, Lowest-Mass Brown Dwarfs in the Solar Neighborhood

    NASA Astrophysics Data System (ADS)

    Schneider, Adam; Cushing, Michael; Kirkpatrick, J. Davy

    2016-08-01

    Young, late-type brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique testbeds for investigating the physical conditions present in this critical temperature and mass regime. WISEA 1147-2040 and 2MASS 1119-1137, two recently discovered late-type (~L7) brown dwarfs, have both been determined to be members of the ~10 Myr old TW Hya Association (Kellogg et al. 2016, Schneider et al. 2016). Each has an estimated mass of 5-6 MJup, making them two of the youngest and lowest-mass free floating objects yet found in the solar neighborhood. As such, these two planetary mass objects provide unparalleled laboratories for investigating giant planet-like atmospheres far from the contaminating starlight of a host sun. Condensate clouds play a critical role in shaping the emergent spectra of both brown dwarfs and gas giant planets, and can cause photometric variability via their non-uniform spatial distribution. We propose to photometrically monitor WISEA 1147-2040 and 2MASS 1119-1137 in order to search for the presence of cloud-driven variability to 1) investigate the potential trend of low surface gravity with high-amplitude variability in a previously unexplored mass regime and 2) explore the angular momentum evolution of isolated planetary mass objects.

  2. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  3. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  4. In vitro effects of pollutants from particulate and volatile fractions of air samples-day and night variability.

    PubMed

    Novák, Jiří; Giesy, John P; Klánová, Jana; Hilscherová, Klára

    2013-09-01

    Chemicals in air were characterized for potential interference with signaling of estrogen, androgen, and arylhydrocarbon (AhR) receptors, which are known to play an important role in endocrine-disruptive changes in vivo. Previously, effects of this type have been studied mainly in particulate matter in the ambient air from various localities. In this study, both volatile and particulate fractions of air from three sites in Banja Luka region (Bosnia and Herzegovina) were investigated to describe the distribution of endocrine-disrupting contaminants on a small spatial scale. Circadian variability of air pollution was investigated by collecting samples during both day and night. Air samples collected from urban localities at night were more potent in producing the AhR-mediated effects than those collected during daytime. This trend was not observed at the reference rural location. None of the samples showed significant estrogenic or androgenic activity. On the other hand, anti-androgenicity was detected in both particulate and vapor phases, while anti-estrogenicity was detected only in the particulate fraction of air from all localities. The AhR-mediated potencies of samples were associated primarily with non-persistent compounds. Based on the concentrations of 28 individual compounds, PAHs accounted for approximately 30 % of the AhR-mediated potency determined by the bioassay. The results show that there can be a significant difference between levels of bioactive compounds in air between daytime and nighttime.

  5. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  6. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  7. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  8. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  9. A prediction-based approach to modelling temporal and spatial variability of traffic-related air pollution in Montreal, Canada

    NASA Astrophysics Data System (ADS)

    Crouse, Dan L.; Goldberg, Mark S.; Ross, Nancy A.

    Concentrations of traffic-related air pollution can be highly variable at the local scale and can have substantial seasonal variability. This study was designed to provide estimates of intra-urban concentrations of ambient nitrogen dioxide (NO 2) in Montreal, Canada, that would be used subsequently in health studies of chronic diseases and long-term exposures to traffic-related air pollution. We measured concentrations of NO 2 at 133 locations in Montreal with passive diffusion samplers in three seasons during 2005 and 2006. We then used land use regression, a proven statistical prediction method for describing spatial patterns of air pollution, to develop separate estimates of spatial variability across the city by regressing NO 2 against available land-use variables in each of these three periods. We also developed a "pooled" model across these sampling periods to provide an estimate of an annual average. Our modelling strategy was to develop a predictive model that maximized the model R2. This strategy is different from other strategies whose goal is to identify causal relationships between predictors and concentrations of NO 2. Observed concentrations of NO 2 ranged from 2.6 ppb to 31.5 ppb, with mean values of 12.6 ppb in December 2005, 14.0 ppb in May 2006, and 8.9 ppb in August 2006. The greatest variability was observed during May. Concentrations of NO 2 were highest downtown and near major highways, and they were lowest in the western part of the city. Our pooled model explained approximately 80% of the variability in concentrations of NO 2. Although there were differences in concentrations of NO 2 between the three sampling periods, we found that the spatial variability did not vary significantly across the three sampling periods and that the pooled model was representative of mean annual spatial patterns.

  10. Confirmation of mass-independent Ni isotopic variability in iron meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Robert C. J.; Elliott, Tim; Coath, Christopher D.; Regelous, Marcel

    2011-12-01

    We report high-precision analyses of internally-normalised Ni isotope ratios in 12 bulk iron meteorites. Our measurements of 60Ni/ 61Ni, 62Ni/ 61Ni and 64Ni/ 61Ni normalised to 58Ni/ 61Ni and expressed in parts per ten thousand (‱) relative to NIST SRM 986 as ɛ60Ni,ɛ62Ni and ɛ64Ni, vary by 0.146, 0.228 and 0.687, respectively. The precision on a typical analysis is 0.03‱, 0.05‱ and 0.08‱ for ɛ60Ni, ɛ62Ni and ɛ64Ni, respectively, which is comparable to our sample reproducibility. We show that this 'mass-independent' Ni isotope variability cannot be ascribed to interferences, inaccurate correction of instrumental or natural mass-dependent fractionation, fractionation controlled by nuclear field shift effects, nor the influence of cosmic ray spallation. These results thus document the presence of mass-independent Ni isotopic heterogeneity in bulk meteoritic samples, as previously proposed by Regelous et al. (2008) (EPSL 272, 330-338), but our new analyses are more precise and include determination of 64Ni. Intriguingly, we find that terrestrial materials do not yield homogenous internally-normalised Ni isotope compositions, which, as pointed out by Young et al. (2002) (GCA 66, 1095-1104), may be the expected result of using the exponential (kinetic) law and atomic masses to normalise all fractionation processes. The certified Ni isotope reference material NIST SRM 986 defines zero in this study, while appropriate ratios for the bulk silicate Earth are given by the peridotites JP-1 and DTS-2 and, relative to NIST SRM 986, yield deviations in ɛ60Ni, ɛ62Ni and ɛ64Ni of -0.006‱, 0.036‱ and 0.119‱, respectively. There is a strong positive correlation between ɛ64Ni and ɛ62Ni in iron meteorites analyses, with a slope of 3.03 ± 0.71. The variations of Ni isotope anomalies in iron meteorites are consistent with heterogeneous distribution of a nucleosynthetic component from a type Ia supernova into the proto-solar nebula.

  11. Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Mattis, Ina; Tesche, Matthias; Ansmann, Albert; BöSenberg, Jens; Chaikovski, Anatoly; Freudenthaler, Volker; Komguem, Leonce; Linné, Holger; Matthias, Volker; Pelon, Jacques; Sauvage, Laurent; Sobolewski, Piotr; Vaughan, Geraint; Wiegner, Matthias

    2004-12-01

    For the first time, the vertically resolved aerosol optical properties of western and central/eastern European haze are investigated as a function of air mass transport. Special emphasis is put on clean maritime air masses that cross the European continent from the west and become increasingly polluted on their way into the continent. The study is based on observations at seven lidar stations (Aberystwyth, Paris, Hamburg, Munich, Leipzig, Belsk, and Minsk) of the European Aerosol Research Lidar Network (EARLINET) and on backward trajectory analysis. For the first time, a lidar network monitored continent-scale haze air masses for several years (since 2000). Height profiles of the particle backscatter coefficient and the particle optical depth of the planetary boundary layer (PBL) at 355-nm wavelength are analyzed for the period from May 2000 to November 2002. From the observations at Aberystwyth, Wales, the aerosol reference profile for air entering Europe from pristine environments was determined. A mean 355-nm optical depth of 0.05 and a mean PBL height of 1.5 km was found for clean maritime summer conditions. The particle optical depth and PBL height increased with increasing distance from the North Atlantic. Mean summer PBL heights were 1.9-2.8 km at the continental sites of Leipzig, Belsk, and Minsk. Winter mean PBL heights were mostly between 0.7 and 1.3 km over the seven EARLINET sites. Summer mean 355-nm optical depths increased from 0.17 (Hamburg, northwesterly airflow from the North Sea) and 0.21 (Paris, westerly flow from the Atlantic) over 0.33 (Hamburg, westerly flow) and 0.35 (Leipzig, westerly flow) to 0.59 (Belsk, westerly flow), and decreased again to 0.37 (westerly flow) at Minsk. Winter mean optical depths were, on average, 10-30% lower than the respective summer values. PBL-mean extinction coefficients were of the order of 200 Mm-1 at 355 nm at Hamburg and Leipzig, Germany, and close to 600 Mm-1 at Belsk, Poland, in winter for westerly flows

  12. Variability in surface ozone background over the United States: Implications for air quality policy

    NASA Astrophysics Data System (ADS)

    Fiore, A.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Fairlie, T. D.; Li, Q.

    2003-12-01

    The U.S. Environmental Protection Agency (EPA) presently uses a 40 ppbv background O3 level as a baseline in its O3 risk assessments. This background is defined as those concentrations that would exist in the absence of North American emissions. [2001] have argued that frequent occurrences of O3 concentrations above 50-60 ppbv at remote northern U.S. sites in spring are of stratospheric origin, challenging the EPA background estimate and implying that the current O3 standard (84 ppbv, 8-hour average) may be unattainable. We show that a 3-D global model of tropospheric chemistry reproduces much of the observed variability in U.S. surface O3 concentrations, including the springtime high-O3 events, with only a minor stratospheric contribution (always <20 ppbv). We conclude that the previous interpretations of a stratospheric source for these events underestimated the role of regional and hemispheric pollution. While stratospheric intrusions might occasionally elevate surface O3 at high-altitude sites, our results indicate that these events are rare and would not compromise the O3 air quality standard. We find that the O3 background is generally 15-35 ppbv, with some incidences of 40-50 ppbv in the west in spring at high-elevation sites (>2 km). It declines from spring to summer and further decreases during O3 pollution episodes. The 40 ppbv background assumed by EPA thus actually underestimates the risk associated with O3 during polluted conditions. A better definition would represent background as a function of season, altitude, and total surface O3 concentration. Natural O3 levels are typically 10-25 ppbv and never exceed 40 ppbv. International controls to reduce the hemispheric pollution background would facilitate compliance with an AOT40-type standard (cumulative exposure to O3 above 40 ppbv) in the United States.

  13. Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter

    NASA Astrophysics Data System (ADS)

    Yang, Shuangyan; Li, Tim

    2016-10-01

    The intraseasonal oscillation (ISO) of air temperature over the mid- and high-latitude Eurasia in boreal winter was investigated by NCEP-NCAR reanalysis data. It is found that the intraseasonal temperature disturbances exhibit maximum variability near the surface in the region of 50°-75°N, 80°‒120°E and they propagate southeastwards at average zonal and meridional phase speeds of 3.2 and 2.5 m s-1, respectively. The low-level temperature signal is tightly coupled with upper-tropospheric height anomalies, and both propagate southeastward in a similar phase speed. A diagnosis of the temperature budget reveals that the southeastward propagation is primarily attributed to the advection of the temperature anomaly by the mean wind. A wave activity flux analysis indicates that the southeastward propagating wave train is likely a result of Rossby wave energy propagation. The source of the Rossby wave train appears at the high latitude Europe/Atlantic sector, where maximum wave activity flux convergence resides. During its southeastward journey, the ISO perturbation gains energy from the mean flow through both kinetic and potential energy conversions. A physics-based empirical model was constructed to predict the intraseasonal temperature anomaly over southeast China. The major predictability source is the southeastward-propagating ISO signal. The data for 1979‒2003 were used as a training period to construct the empirical model. A 10-yr (2004‒2013) independent forecast shows that the model attains a useful skill of up to 25 days.

  14. Global Distribution and Variability of Surface Skin and Surface Air Temperatures as Depicted in the AIRS Version-6 Data Set

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2014-01-01

    In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.

  15. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  16. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  17. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    NASA Astrophysics Data System (ADS)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between

  18. Pruning The ELM Survey: Characterizing Candidate Low-mass White Dwarfs through Photometric Variability

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Gianninas, A.; Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Montgomery, M. H.; Castanheira, B. G.; Vanderbosch, Z.; Winget, K. I.; Brown, Warren R.

    2017-02-01

    We assess the photometric variability of nine stars with spectroscopic Teff and log g values from the ELM Survey that locates them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6, and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity (RV) variations that confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31 hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cut-off for surface reflection in a white dwarf, and this target is likely a high-amplitude δ Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured RV variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342 hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius >0.4 R⊙—too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to ELM white dwarf classification is SDSS J105435.78‑212155.9, which has consistent signatures of Doppler beaming and ellipsoidal variations. We conclude that the ELM Survey contains multiple false positives from another stellar population at Teff ≲ 9000 K, possibly related to the sdA stars recently reported from SDSS spectra.

  19. Variability and risk analysis of Hong Kong air quality based on Monsoon and El Niño conditions

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Suk; Zhou, Wen; Cheung, Ho Nam; Chow, Chak Hang

    2013-03-01

    This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions. Significantly negative correlations were found when Niño 3 led particulate matter ⩽10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory, while the other pollutants (e.g., O3, SO2) showed modest correlations. A significant decreasing trend in visibility was observed during the autumn and winter, which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong. In an El Niño summer, the visibility was relatively better, while visibility in other seasons was diminished. On the other hand, in La Niña events, significant changes occurred in visibility in winter and autumn. Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM), but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants. Rainfall was lower during most of the strong EAWM years compared to the weak years. This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out, so concentrations remain at a higher level. Finally, based on the conditional Air Pollution Index (API) risk assessment, site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.

  20. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  1. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  2. A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures.

    PubMed

    Su, J G; Jerrett, M; Beckerman, B

    2009-06-01

    Land use regression (LUR) has emerged as an effective and economical means of estimating air pollution exposures for epidemiological studies. To date, no systematic method has been developed for optimizing the variable selection process. Traditionally, a limited number of buffer distances assumed having the highest correlations with measured pollutant concentrations are used in the manual stepwise selection process or a model transferred from another urban area. In this paper we propose a novel and systematic way of modeling long-term average air pollutant concentrations through "A Distance Decay REgression Selection Strategy" (ADDRESS). The selection process includes multiple steps and, at each step, a full spectrum of correlation coefficients and buffer distance decay curves are used to select a spatial covariate of the highest correlation (compared to other variables) at its optimized buffer distance. At the first step, the series of distance decay curves is constructed using the measured concentrations against the chosen spatial covariates. A variable with the highest correlation to pollutant levels at its optimized buffer distance is chosen as the first predictor of the LUR model from all the distance decay curves. Starting from the second step, the prediction residuals are used to construct new series of distance decay curves and the variable of the highest correlation at its optimized buffer distance is chosen to be added to the model. This process continues until a variable being added does not contribute significantly (p>0.10) to the model performance. The distance decay curve yields a visualization of change and trend of correlation between the spatial covariates and air pollution concentrations or their prediction residuals, providing a transparent and efficient means of selecting optimized buffer distances. Empirical comparisons suggested that the ADDRESS method produced better results than a manual stepwise selection process of limited buffer distances

  3. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  4. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  5. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia).

    PubMed

    Hückstädt, Luis A; Tift, Michael S; Riet-Sapriza, Federico; Franco-Trecu, Valentina; Baylis, Alastair M M; Orben, Rachael A; Arnould, John P Y; Sepulveda, Maritza; Santos-Carvallo, Macarena; Burns, Jennifer M; Costa, Daniel P

    2016-08-01

    Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.

  6. Seasonal to interannual variability of water mass characteristics and currents on the Namibian shelf

    NASA Astrophysics Data System (ADS)

    Junker, Tim; Mohrholz, Volker; Siegfried, Lydia; van der Plas, Anja

    2017-01-01

    We present long-term current meter records from the Benguela system together with salinity and temperature observations gathered by a mooring on the Namibian shelf across 13 years (2002-2015). From this unique data set a climatological mean state is estimated enabling us to investigate seasonal to interannual variations of these variables on the Namibian shelf. The present study highlights the importance of the alongshore advection for the water mass characteristics in the Benguela system on a seasonal time scale. The annual cycle of the alongshore transport is characterized by a biannual flow reversal. Poleward directed currents dominate from October to April, and from May to September equatorward currents prevail. In addition, we present observational evidence for a biannual intrusion of tropical waters into the Benguela system with maxima in October and February. Based on the in situ temperature data, several anomalous events are described that affect the whole water column. During the outstanding warm event in austral fall 2011 the monthly temperature anomaly exceeds one Kelvin for five consecutive months peaking in March (2.4 K) in the upper layer of the water column. Our study suggests, that the occurrence of such extreme temperature events in the Benguela upwelling system is closely related to the strength of the alongshore advection in austral summer.

  7. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  8. Video analysis of sliding chains: A dynamic model based on variable-mass systems

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Page, A.; Riera, J.; Hueso, J. L.

    2015-06-01

    This paper presents an experimental study of the dynamics of a chain sliding off of a table, using video analysis to test a theoretical model. The model consists of two variable-mass subsystems, with friction between the chain and the table and assumes that all links move at the same speed. In order to check the model, the chain position x(t) is obtained using video analysis. The smoothed function x(t) and its derivatives v(t) and a(t) are numerically computed using a local regression algorithm. In this way, the differential equation governing the motion can be directly tested, instead of comparing the position with the solution of the differential equation. Our procedure is very sensitive to deviations between the model and reality, so we can detect the point at which the chain ceases to be in tension and the model is no longer valid. This experiment shows students the limitations of simplified models and offers an opportunity to assess a model's range of validity.

  9. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.

  10. Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.

    PubMed

    Mai, Horace K W; Chan, Daniel W T; Burnett, John

    2003-09-01

    In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.

  11. Can we use fixed ambient air monitors to estimate population long-term exposure to air pollutants? The case of spatial variability in the Genotox ER study.

    PubMed

    Nerriere, Eléna; Zmirou-Navier, Denis; Blanchard, Olivier; Momas, Isabelle; Ladner, Joël; Le Moullec, Yvon; Personnaz, Marie-Blanche; Lameloise, Philippe; Delmas, Véronique; Target, Alain; Desqueyroux, Hélène

    2005-01-01

    Associations between average total personal exposures to PM2.5, PM10, and NO2 and concomitant outdoor concentrations were assessed within the framework of the Genotox ER study. It was carried out in four French metropolitan areas (Grenoble, Paris, Rouen, and Strasbourg) with the participation, in each site, of 60-90 nonsmoking volunteers composed of two groups of equal size (adults and children) who carried the personal Harvard Chempass multipollutant sampler during 48 h along two different seasons ("hot" and "cold"). In each center, volunteers were selected so as to live (home and work/school) in three different urban sectors contrasted in terms of air pollution (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). In parallel to personal exposure measurements, a fixed ambient air monitoring station surveyed the same pollutants in each local sector. A linear regression model was accommodated where the dependent pollutant-specific variable was the difference, for each subject, between the average ambient air concentrations over 48 h and the personal exposure over the same period. The explanatory variables were the metropolitan areas, the three urban sectors, season, and age group. While average exposures to particles were underestimated by outdoor monitors, in almost all cities, seasons, and age groups, differences were lower for NO2 and, in general, in the other direction. Relationships between average total personal exposures and ambient air levels varied across metropolitan areas and local urban sectors. These results suggest that using ambient air concentrations to assess average exposure of populations, in epidemiological studies of long-term effects or in a risk assessment setting, calls for some caution. Comparison of personal exposures to PM or NO2 with ambient air levels is inherently disturbed by indoor sources and activities patterns. Discrepancies between measurement devices and local

  12. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  13. Observation of the transport of polluted air masses from the northeastern United States to Cape Sable Island, Nova Scotia, Canada, during the 1993 NARE summer intensive

    NASA Astrophysics Data System (ADS)

    Knapp, K. G.; Balsley, B. B.; Jensen, M. L.; Hanson, H. P.; Birks, J. W.

    1998-06-01

    Vertical profiles of ozone, temperature, pressure, and water vapor mass mixing ratio obtained using a parafoil kite platform during the North Atlantic Regional Experiment (NARE) 1993 summer intensive at Cape Sable Island, Nova Scotia, Canada, demonstrate the of use of kite platforms for the collection of vertically and temporally resolved data over a fixed location. During the period August 8-28, 1993, 39 profiles of the lower atmosphere were collected. Data collected as part of this field campaign illustrate the complex vertical stratification and temporal variability of pollutants transported into the Maritime Provinces of Canada. Transport phenomena resulted in pollution events in which ozone at the ground level remained in the 20-40 parts per billion by volume (ppbv) range, while mixing ratios of 90-130 ppbv were observed above ˜300 m. Back trajectories indicate that these highly elevated levels of ozone are attributable to source regions in the heavily industrialized northeastern United States. Vertical stratification of the lower atmosphere was also present during transport of Canadian air to the sampling site, with layers of both elevated and diminished ozone observed, while marine air did not exhibit layering characteristic of air masses originating from continental source regions.

  14. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  15. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  16. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  17. Numerical Simulation of Air Mass Modification Over the East China Sea during the Winter Season

    NASA Astrophysics Data System (ADS)

    Hsu, Wu-Ron

    Air mass modification over the East China Sea during cold air outbreaks in the winter season was simulated by utilizing a high-resolution numerical model. The model includes most of the major physical processes, such as, surface exchange of heat and moisture between water and air; condensation and evaporation; and vertical turbulent transfer of heat, moisture, and momentum. The simulated convective boundary layer (CBL) consists of a surface layer, a subcloud layer, and a cloud layer. It is capped by an inversion with strong temperature and moisture gradients. Mesoscale cellular convection (MCC) embedded within the convective layer moves along with the mean wind. The average aspect ratio of the cells is 17.5, which agrees with observed aspect ratios for convective cells over the East China Sea. The upward convective motion correlates very well with the appearance of clouds, higher temperature, and higher moisture content in the CBL. The effects of diabatic heating were found to be very important in driving the thermal convection. Without the release of latent heat, the convective layer would be very shallow, and the convective motion would be greatly suppressed. Even though the formulation and dissipation of a cloud is associated with the movement of the resolvable scale MCC, the vertical transport of heat and moisture is achieved mainly by the unresolvable turbulent eddies. The distribution of specific humidity during the passage of the surface front reveals the moisture being pushed upward along the frontal surface as observed. The cold and dry air behind the cold front is quickly modified by strong convection over the warm water surface, especially over the Kuroshio Current. A cloud-free region exists near the coast where the CBL is too shallow for clouds to develop. A layer of stratocumulus forms downstream from the cloud-free region. The depth of the CBL increases toward the Kuroshio Current due to strong heat and moisture fluxes from the water surface. The CBL

  18. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  19. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  20. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Breen, Michael S.; Burke, Janet M.; Batterman, Stuart A.; Vette, Alan F.; Godwin, Christopher; Croghan, Carry W.; Schultz, Bradley D.; Long, Thomas C.

    2014-01-01

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h−1 with a median of 0.64 h−1. For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010–2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated

  1. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C

    2014-11-07

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and

  2. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database

    NASA Astrophysics Data System (ADS)

    Garcia, Fausto; Shendell, Derek G.; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  3. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database.

    PubMed

    Garcia, Fausto; Shendell, Derek G; Madrigano, Jaime

    2017-03-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  4. Relationship among environmental quality variables, housing variables, and residential needs: a secondary analysis of the relationship among indoor, outdoor, and personal air (RIOPA) concentrations database

    NASA Astrophysics Data System (ADS)

    Garcia, Fausto; Shendell, Derek G.; Madrigano, Jaime

    2016-08-01

    Retrospective descriptive secondary analyses of data from relationships of indoor, outdoor, and personal air (RIOPA) study homes (in Houston, Texas; Los Angeles County, California; and, Elizabeth, New Jersey May 1999-February 2001) were conducted. Data included air exchange rates, associations between indoor and outdoor temperature and humidity, and calculated apparent temperature and humidex. Analyses examined if study homes provided optimum thermal comfort for residents during both heating and cooling seasons when compared to current American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) Standards 62/62.1 and 55. Results suggested outdoor temperature, humidex, and apparent temperature during the cooling season potentially served as indicators of indoor personal exposure to parameters of thermal comfort. Outdoor temperatures, humidex, and apparent temperature during the cooling season had statistically significant predictive abilities in predicting indoor temperature. During the heating season, only humidex in Texas and combined data across study states were statistically significant, but with weaker to moderate predicative ability. The high degree of correlation between outdoor and indoor environmental variables provided support for the validity of epidemiologic studies of weather relying on temporal comparisons. Results indicated most RIOPA study residents experienced thermal comfort; however, many values indicated how several residents may have experienced some discomfort depending on clothing and indoor activities. With climate change, increases in temperature are expected, with more days of extreme heat and humidity and, potentially harsher, longer winters. Homes being built or modernized should be created with the appropriate guidelines to provide comfort for residents daily and in extreme weather events.

  5. Neutral losses: a type of important variables in prediction of branching degree for acyclic alkenes from mass spectra.

    PubMed

    Zhang, Liangxiao; Fan, Wei; Cao, Dongsheng; Zeng, Maomao; Xiao, Hongbin; Liang, Yizeng

    2012-03-30

    Neutral losses are a type of important variables in mass spectral interpretation. Since it is hard to calculate or extract neutral losses from mass spectra, they are usually discarded. In this study, dissimilarity analysis was employed to extract mass spectral characteristics for predicting branching degree of acyclic alkenes. The relationships between branching degree and neutral loss were constructed under direction of experimental observation and mass spectral fragmentations. A branching degree predictor of acyclic alkenes was subsequently built based on the above relationships. After tested by the experimental data in previous studies, the predictor could correctly provide the branching degree from abundant ions of mass spectra. More importantly, this predictor was able to point out which acyclic alkenes could be predicted correctly or not.

  6. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    SciTech Connect

    Broman, D.; Axelman, J.; Bandh, C.; Ishaq, R.; Naef, C.; Pettersen, H.; Zebuehr, Y.

    1995-12-31

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over water and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.

  7. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed Central

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  8. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  9. Global variability in angina pectoris and its association with body mass index and poverty.

    PubMed

    Liu, Longjian; Ma, Jixiang; Yin, Xiaoyan; Kelepouris, Ellie; Eisen, Howard J

    2011-03-01

    In the absence of a previous global comparison, we examined the variability in the prevalence of angina across 52 countries and its association with body weight and the poverty index using data from the World Health Organization-World Health Survey. The participants with angina were defined as those who had positive results using a Rose angina questionnaire and/or self-report of a physician diagnosis of angina. The body mass index (BMI) was determined as the weight in kilograms divided by the square of the height in meters. The poverty index (a standard score of socioeconomic status for a given country) was extracted from the United Nations' statistics. The associations of angina with the BMI and poverty index were analyzed cross-sectionally using univariate and multivariate analyses. The results showed that the total participants (n = 210,787) had an average age of 40.64 years. The prevalence of angina ranged from 2.44% in Tunisia to 23.89% in Chad. Those participants with a BMI of <18.5 kg/m(2) (underweight), 25 to 29 kg/m(2) (overweight), or BMI ≥ 30 kg/m(2) (obese) had a significantly greater risk of having angina compared to those with a normal BMI (≥ 18.5 but <25 k/m(2)). The odds ratios of overweight and obese for angina remained significant in the multilevel models, in which the influence of the country-level poverty status was considered. A tendency was seen for underweight status and a poverty index >14.65% to be associated with the risk of having angina, although these associations were not statistically significant in the multilevel models. In conclusion, significant variations were found in the anginal rates across 52 countries worldwide. An increased BMI was significantly associated with the odds of having angina.

  10. Time-Variable Gravity Signal due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Boy, J. -P.; Cox, C. M.; Au, A. Y.

    2003-01-01

    Using the satellite-laser-ranging (SLR) data, Cox and Chao [2002] reported the detection of a large post-1998 anomaly (in the form of a positive jump) in the time series of Earth s lowest-degree gravity harmonic 52, or the dynamic oblateness. Among several groups now examining the mass redistribution in the global geophysical fluids in search of the cause(s), we report here a temporally coinciding anomalies found in the extratropic north + south Pacific basins. Clearly seen in the leading EOFPC mode for extratropic Pacific, these anomalies occurred in sea-surface height, sea-surface temperature, and temperature- and salinity-depth profiles. We based our analysis on two different data sources: TOPEX/Poseidon altimetry, and the ECCO ocean general circulation model output assimilating T/P data. The magnitude of these changes, when converted to equivalent J2 change, appears to be a few times too small to explain the observed J2 directly. These findings, and the fact that the anomalies occurred following the strong 1997-98 El Nino, suggest strong geophysical connection of the interannual-to-decadal variation of 52 with the Pacific Decadal Oscillation (PDO) and the ultimate global-change processes that cause PDO. More work is underway, and additional independent data sources are examined, paying close attention to the fact that the J2 anomaly has been reversing back to normal since 2001. These include: (1) cryospheric contributions (melting of glaciers and ice sheets); (2) land hydrological contributions; (3) polar sea influences ( e g , via deep flow); (4) fluid flow in Earth's core; (5) time-variable gravity signals from SLR in higher harmonic degree/order, including J3,J4, (2,1), and (2,2) coefficients, considering their lower signal-to-noise ratios; (6) Earth rotation data in terms of length-of-day and polar motion.

  11. Health impact assessment of traffic-related air pollution at the urban project scale: influence of variability and uncertainty.

    PubMed

    Chart-Asa, Chidsanuphong; Gibson, Jacqueline MacDonald

    2015-02-15

    This paper develops and then demonstrates a new approach for quantifying health impacts of traffic-related particulate matter air pollution at the urban project scale that includes variability and uncertainty in the analysis. We focus on primary particulate matter having a diameter less than 2.5 μm (PM2.5). The new approach accounts for variability in vehicle emissions due to temperature, road grade, and traffic behavior variability; seasonal variability in concentration-response coefficients; demographic variability at a fine spatial scale; uncertainty in air quality model accuracy; and uncertainty in concentration-response coefficients. We demonstrate the approach for a case study roadway corridor with a population of 16,000, where a new extension of the University of North Carolina (UNC) at Chapel Hill campus is slated for construction. The results indicate that at this case study site, health impact estimates increased by factors of 4-9, depending on the health impact considered, compared to using a conventional health impact assessment approach that overlooks these variability and uncertainty sources. In addition, we demonstrate how the method can be used to assess health disparities. For example, in the case study corridor, our method demonstrates the existence of statistically significant racial disparities in exposure to traffic-related PM2.5 under present-day traffic conditions: the correlation between percent black and annual attributable deaths in each census block is 0.37 (t(114)=4.2, p<0.0001). Overall, our results show that the proposed new campus will cause only a small incremental increase in health risks (annual risk 6×10(-10); lifetime risk 4×10(-8)), compared to if the campus is not built. Nonetheless, the approach we illustrate could be useful for improving the quality of information to support decision-making for other urban development projects.

  12. Simulated Future Air Temperature and Precipitation Climatology and Variability in the Mediterranean Basin by Using Downscaled Global Climate Model Outputs

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugba; Pelin Ceber, Zeynep; Türkeş, Murat; Kurnaz, M. Levent

    2014-05-01

    The Mediterranean Basin is one of the regions that shall be affected most by the impacts of the future climate changes on temperature regime including changes in heat waves intensity and frequency, seasonal and interannual precipitation variability including changes in summer dryness and drought events, and hydrology and water resources. In this study, projected future changes in mean air temperature and precipitation climatology and inter-annual variability over the Mediterranean region were simulated. For performing this aim, the future changes in annual and seasonal averages for the future period of 2070-2100 with respect to the period from 1970 to 2000 were investigated. Global climate model outputs of the World Climate Research Program's (WCRP's) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset were used. SRES A2, A1B and B1 emission scenarios' outputs of the Intergovernmental Panel on Climate Change (IPCC) were used in future climate model projections. Future surface mean air temperatures of the larger Mediterranean basin increase mostly in summer and least in winter, and precipitation amounts decreases in all seasons at almost all parts of the basin. Future climate signals for surface air temperatures and precipitation totals will be much larger than the inter-model standard deviation. Inter-annual temperature variability increases evidently in summer season and decreases in the northern part of the domain in the winter season, while precipitation variability increases in almost all parts of domain. Probability distribution functions are found to be shifted and flattened for future period compared to reference period. This indicates that occurrence frequency and intensity of extreme weather conditions will increase in the future period. This work has been supported by Bogazici University BAP under project number 7362. One of the authors (MLK) was partially supported by Mercator-IPC Fellowship Program.

  13. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  14. On the association between daily mortality and air mass types in Athens, Greece during winter and summer.

    PubMed

    Kassomenos, Pavlos A; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  15. On the opposing roles of air temperature and wind speed variability in flux estimation from remotely sensed land surface states

    NASA Astrophysics Data System (ADS)

    Bertoldi, G.; Albertson, J. D.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2007-10-01

    In semi-arid regions the evapotranspiration rates depend on both the spatial distribution of the vegetation and the soil moisture, for a given radiation regime. Remote sensing can provide high resolution spatially distributed estimation (o ˜ 10-100 m) of land surface states. However, data on the near surface air properties are not readily available at the same resolution and are often taken as spatially uniform over a greater region. Concern for how this scale mismatch might lead to erroneous flux estimations motivates this effort. This paper examines the relative roles of variability in the two dominant atmospheric states, wind speed and air temperature, on the variability of the surface fluxes. The study is conducted with a Large Eddy Simulation (LES) model of the Atmospheric Boundary Layer (ABL), where the boundary conditions are given by a surface energy balance model based on remotely sensed land surface data. Simulations have been performed for the late morning hours of two clear-sky summer days during the SGP97 experiment with different wetness conditions over an area characterized by a high contrast in surface temperature, canopy cover, and roughness between vegetated and dry bare soil areas. Spatial variability in canopy density effects both the air temperature Ta, through the energy partitioning, and the wind speed U, via the roughness, leading to local variations at 5 m above the ground of the order of 1 K and 1 m/s, respectively. Simulations show that the Ta variability tends to decrease the sensible heat flux H (- 30 W/m2) over bare soil areas and to increase it (+30 W/m2) over dense vegetation, thus reducing the total variability of the surface fluxes relative to those that would be estimated for spatially constant Ta, as observed in previous studies. The variability in U tends to increase H over bare soil (+50 W/m2), while having negligible effects over the vegetation, thus increasing the spatial variance of surface fluxes. However, when considered

  16. A comparison of surface air temperature variability in three 1000-Yr. coupled ocean-atmosphere model integrations

    SciTech Connect

    Stouffer, R.J.; Hegerl, G.; Tett, S.

    2000-02-01

    This study compares the variability of surface air temperature in three long coupled ocean-atmosphere general circulation model integrations. It is shown that the annual mean climatology of the surface air temperatures (SAT) in all three models is realistic and the linear trends over the 1,000-yr integrations are small over most areas of the globe. Second, although there are notable differences among the models, the models' SAT variability is fairly realistic on annual to decadal timescales, both in terms of the geographical distribution and of the global mean values. A notable exception is the poor simulation of observed tropical Pacific variability. In the HadCM2 model, the tropical variability is overestimated, while in the GFDL and HAM3L models, it is underestimated. Also, the ENSO-related spectral peak in the globally averaged observed SAT differs from that in any of the models. The relatively low resolution required to integrate models for long time periods inhibits the successful simulation of the variability in this region. On timescales longer than a few decades, the largest variance in the models is generally located near sea ice margins in high latitudes, which are also regions of deep oceanic convection and variability related to variations in the thermohaline circulation. However, the exact geographical location of these maxima varies from model to model. The preferred patterns of interdecadal variability that are common to all three coupled models can be isolated by computing empirical orthogonal functions (EOFs) of all model data simultaneously using the common EOF technique. A comparison of the variance each model associated with these common EOF patterns shows that the models generally agree on the most prominent patterns of variability. However, the amplitudes of the dominant models of variability differ to some extent between the models and between the models and observations. For example, two of the models have a mode with relatively large

  17. Identifying the Role of Extratropical Air-Sea Interactions in North Pacific Climate Variability with a Hierarchy of CESM Simulations

    NASA Astrophysics Data System (ADS)

    Sun, T.; Okumura, Y.

    2015-12-01

    Large-scale patterns of extratropical sea surface temperature (SST) variability are primarily driven by intrinsic modes of atmospheric circulation variability through changes in surface heat fluxes and ocean currents. While these changes in extratropical SSTs in turn affect the atmospheric circulation, it remains unclear to what extent the oceanic feedback modifies the overall climate variability. The present study focuses on North Pacific variability and revisits this long-standing problem by analyzing multi-century-millennium control simulations of an atmospheric model (CAM4) coupled to the ocean with varying degrees: a 300-yr run of standalone CAM4, 500-year run of CAM4 coupled to a slab ocean (CAM4SOM), and 1300-yr run of fully coupled model (CCSM4). The leading mode of North Pacific atmospheric variability is very similar among three models and resembles the observed Pacific-North American (PNA) pattern, in support of the stochastic climate model. In CAM4SOM, the associated surface heat flux anomalies induce SST changes during boreal winter, which tend to persist into the following winter through positive cloud feedback. These SST changes leave weak, but distinct imprints on the atmosphere. The atmospheric response is highly seasonally dependent and projects onto the original PNA pattern in the upper troposphere during boreal winter while a direct baroclinic response becomes prevalent in the other seasons. The thermodynamic air-sea interactions only marginally increase the persistency of PNA variability in CAM4SOM compared to the standalone CAM4 simulation. In CCSM4, a similar influence of extratropical SSTs is suggested but difficult to isolate due to the dominant impact of El Nino-Southern Oscillation and associated atmospheric teleconnections. Nevertheless, dynamically-induced SST variability in the oceanic frontal region appears to add more persistency to atmospheric variability because of its low-frequency nature.

  18. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  19. Paper spray mass spectrometry and PLS-DA improved by variable selection for the forensic discrimination of beers.

    PubMed

    Pereira, Hebert Vinicius; Amador, Victória Silva; Sena, Marcelo Martins; Augusti, Rodinei; Piccin, Evandro

    2016-10-12

    Paper spray mass spectrometry (PS-MS) combined with partial least squares discriminant analysis (PLS-DA) was applied for the first time in a forensic context to a fast and effective differentiation of beers. Eight different brands of American standard lager beers produced by four different breweries (141 samples from 55 batches) were studied with the aim at performing a differentiation according to their market prices. The three leader brands in the Brazilian beer market, which have been subject to fraud, were modeled as the higher-price class, while the five brands most used for counterfeiting were modeled as the lower-price class. Parameters affecting the paper spray ionization were examined and optimized. The best MS signal stability and intensity was obtained while using the positive ion mode, with PS(+) mass spectra characterized by intense pairs of signals corresponding to sodium and potassium adducts of malto-oligosaccharides. Discrimination was not apparent neither by using visual inspection nor principal component analysis (PCA). However, supervised classification models provided high rates of sensitivity and specificity. A PLS-DA model using full scan mass spectra were improved by variable selection with ordered predictors selection (OPS), providing 100% of reliability rate and reducing the number of variables from 1701 to 60. This model was interpreted by detecting fifteen variables as the most significant VIP (variable importance in projection) scores, which were therefore considered diagnostic ions for this type of beer counterfeit.

  20. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  1. Inverse Estimation of SO2 Emissions over China with Local Air Mass Factor Applied

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, J.; Xu, X.; Henze, D. K.

    2015-12-01

    Sulfur dioxide (SO2) has significant impacts on human health as it forms sulfate aerosols in the atmosphere. Widespread uncertainty in the magnitude of SO2 emissions hinders efforts to address this issue. In this work we use Ozone Monitoring Instrument (OMI) slant column SO2 observations as constraints to conduct inversion of SO2 emissions over China for April 2008. Local air mass factors are formulated as the integral of the relative vertical distribution of SO2 simulated from GEOS-Chem, weighted by scattering weights computed from VLIDORT. They are applied to convert slant column to vertical column GEOS-Chem SO2. After data assimilation SO2 emissions decrease in Sichuan Basin, South China, and most areas of North China. The posterior SO2 emissions are evaluated with in situ SO2 observation. Besides, we apply the posterior SO2 emissions of April 2008 to April 2009, and it leads to improved agreement of modeled SO2 to the OMI observations. This offers potential to update SO2 emissions in real time.

  2. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  3. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  4. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan J.; Carrivick, Jonathan L.; Rowan, Ann V.

    2017-02-01

    Region-wide averaging of Himalayan glacier mass change has masked any catchment or glacier-scale variability in glacier recession; thus the role of a number of glaciological processes in glacier wastage remains poorly understood. In this study, we quantify mass loss rates over the period 2000-2015 for 32 glaciers across the Everest region and assess how future ice loss is likely to differ depending on glacier hypsometry. The mean mass balance of all 32 glaciers in our sample was -0.52 ± 0.22 m water equivalent (w.e.) a-1. The mean mass balance of nine lacustrine-terminating glaciers (-0.70 ± 0.26 m w.e. a-1) was 32 % more negative than land-terminating, debris-covered glaciers (-0.53 ± 0.21 m w.e. a-1). The mass balance of lacustrine-terminating glaciers is highly variable (-0.45 ± 0.13 to -0.91 ± 0.22 m w.e. a-1), perhaps reflecting glacial lakes at different stages of development. To assess the importance of hypsometry on glacier response to future temperature increases, we calculated current (Dudh Koshi - 0.41, Tama Koshi - 0.43, Pumqu - 0.37) and prospective future glacier accumulation area Ratios (AARs). IPCC AR5 RCP 4.5 warming (0.9-2.3 °C by 2100) could reduce AARs to 0.29 or 0.08 in the Tama Koshi catchment, 0.27 or 0.17 in the Dudh Koshi catchment and 0.29 or 0.18 in the Pumqu catchment. Our results suggest that glacial lake expansion across the Himalayas could expedite ice mass loss and the prediction of future contributions of glacial meltwater to river flow will be complicated by spatially variable glacier responses to climate change.

  5. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables.

    PubMed

    Eckley, Chris S; Tate, Mike T; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A; Wickland, Kimberly P; Wang, Bronwen; Gray, John E; Edwards, Grant C; Krabbenhoft, Dave P; Smith, David B

    2016-10-15

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  6. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    USGS Publications Warehouse

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  7. Air quality variability near a highway in a complex urban environment

    NASA Astrophysics Data System (ADS)

    Baldauf, Richard W.; Heist, David; Isakov, Vlad; Perry, Steven; Hagler, Gayle S. W.; Kimbrough, Sue; Shores, Richard; Black, Kevin; Brixey, Laurie

    2013-01-01

    In response to growing public health concerns regarding elevated air pollutant exposures and adverse human health effects for near-road populations, a study was conducted to assess how complex urban roadway configurations affect local-scale air quality. This study combined fixed-site and mobile air quality measurements with laboratory wind tunnel experiments to examine how the transport and dispersion of traffic-emitted pollutants varies with changing roadway configuration, notably with at-grade and cut section designs. Results of the study indicated that short-term maximum concentrations occurred with measurements made along at-grade locations, however, average concentrations tended to be higher at the top of the cut section compared with the at-grade location, most often occurring during lower air pollutant events. Wind flow and NO2/NOx ratios indicated that the cut section moderated peak concentrations through increased transport and dispersion, as well as reducing the influence of turbulence from vehicle activity near the road. The at-grade locations also experienced a higher impact from primary vehicle emissions than those measurements made at similar distances along a cut section. Mobile monitoring suggested that these peak concentrations quickly conformed to concentration levels measured near cut sections within 50-100 m of the source highway. Wind tunnel simulations of the study site with and without the cut section present indicated that the cut section reduced the concentrations of primary emitted vehicle pollutants by 15-25 percent for receptors located approximately 20 m from the highway. The wind tunnel simulations also revealed that buildings and other urban features influenced local-scale pollutant transport and need to be considered when evaluating near-road air quality.

  8. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012)

    NASA Astrophysics Data System (ADS)

    Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric

    2016-06-01

    Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related

  9. Variable Stars and The Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2014-09-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation, and evolution of these LIMS.

  10. Variable Stars and the Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2012-06-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation and evolution of these LIMS.

  11. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  12. Measurement error models in chemical mass balance analysis of air quality data

    NASA Astrophysics Data System (ADS)

    Christensen, William F.; Gunst, Richard F.

    The chemical mass balance (CMB) equations have been used to apportion observed pollutant concentrations to their various pollution sources. Typical analyses incorporate estimated pollution source profiles, estimated source profile error variances, and error variances associated with the ambient measurement process. Often the CMB model is fit to the data using an iteratively re-weighted least-squares algorithm to obtain the effective variance solution. We consider the chemical mass balance model within the framework of the statistical measurement error model (e.g., Fuller, W.A., Measurement Error Models, Wiley, NewYork, 1987), and we illustrate that the models assumed by each of the approaches to the CMB equations are in fact special cases of a general measurement error model. We compare alternative source contribution estimators with the commonly used effective variance estimator when standard assumptions are valid and when such assumptions are violated. Four approaches for source contribution estimation and inference are compared using computer simulation: weighted least squares (with standard errors adjusted for source profile error), the effective variance approach of Watson et al. (Atmos, Environ., 18, 1984, 1347), the Britt and Luecke (Technometrics, 15, 1973, 233) approach, and a method of moments approach given in Fuller (1987, p. 193). For the scenarios we consider, the simplistic weighted least-squares approach performs as well as the more widely used effective variance solution in most cases, and is slightly superior to the effective variance solution when source profile variability is large. The four estimation approaches are illustrated using real PM 2.5 data from Fresno and the conclusions drawn from the computer simulation are validated.

  13. Regression calibration with instrumental variables for longitudinal models with interaction terms, and application to air pollution studies

    PubMed Central

    Strand, M; Sillau, S; Grunwald, G K; Rabinovitch, N

    2015-01-01

    In this paper, we derive forms of estimators and associated variances for regression calibration with instrumental variables in longitudinal models that include interaction terms between two unobservable predictors and interactions between these predictors and covariates not measured with error; the inclusion of the latter interactions generalize results we previously reported. The methods are applied to air pollution and health data collected on children with asthma. The new methods allow for the examination of how the relationship between health outcome leukotriene E4 (LTE4, a biomarker of inflammation) and two unobservable pollutant exposures and their interaction are modified by the presence or absence of upper respiratory infections. The pollutant variables include secondhand smoke and ambient (outdoor) fine particulate matter. Simulations verify the accuracy of the proposed methods under various conditions. PMID:26640396

  14. Assessing Spatial and Temporal Variability of VOCs and PM-Components in Outdoor Air during the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Exposure models for air pollutants often adjust for effects of the physical environment (e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions. Yet attempts are seldom made to attribute variability in observed outdoor air measurements to spe...

  15. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2009-02-01

    ABSTRACT Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05-0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  16. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  17. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  18. Ozone and Other Air Quality Related Variables Affecting Visibility in the Southeast United States

    DTIC Science & Technology

    2011-07-28

    Environmental Protection Agency (EPA), 1997a). In 1952 Haagen-Smit first used the term "photochemical smog " to describe the mix of air pollutants that arise in...water vapor, is known as "photochemical smog ." Photochemical smog is now recognized to be responsible for the high ozone levels typically found in...to the other oxidants. Low visibility pollution episodes (regional haze, photochemical smog ) contain high concentrations of these oxidants, mainly

  19. Variable air temperature response of gas-phase atmospheric polychlorinated biphenyls near a former manufacturing facility.

    PubMed

    Hermanson, Mark H; Scholten, Cheryl A; Compher, Kevin

    2003-09-15

    Many investigations of gas-phase atmospheric PCB show a strong relationship between concentration and air temperature, especially near PCB sources. Comparative gas-phase atmospheric PCB trends during an annual temperature regime at two sites near a former PCB manufacturing plant and nearby PCB landfills in Anniston, AL, indicate a departure from this trend. The Mars Hill sampling site, located closest to the plant and landfills, shows an annual average sigmaPCB concentration of 27 ng m(-3) (ranging from 8.7 to 82 ng m(-3)) three times the average at Carter, 1.5 km away (9 ng m(-3), ranging from 1.1 to 39). However, total PCB and congener concentrations vary more with air temperature at Carter where PCB are evaporating from surfaces during warmer weather. The slopes of the Clausius-Clapeyron plots of 18 of the most concentrated congeners representing dichloro- through heptachlorobiphenyl homologues are significantly higher at the Carter site. While some of the atmospheric PCB at Mars Hill is derived from ground surface evaporation, the source of much of it apparently is the material buried in the landfills, which has different thermal properties than surface materials and is not in equilibrium with air temperature.

  20. Mass change, environmental variability and female fertility in wild Propithecus verreauxi.

    PubMed

    Richard, A F; Dewar, R E; Schwartz, M; Ratsirarson, J

    2000-10-01

    Accurate estimates of mass and size are important in a wide range of research questions in population and evolutionary biology, and yet such data are still rare for wild primates. This study presents detailed longitudinal data from a large population of wild indriids, and demonstrates links between fluctuations in body mass, environmental cycles, and reproduction. Understanding these links is a necessary step toward explaining the function and evolution of distinctive features of lemur biology and behavior. During the first 12 years of an ongoing study of the sifaka, Propithecus verreauxi verreauxi, at Beza Mahafaly in southwest Madagascar, 320 animals were captured and weighed throughout the year. Adult males and females exhibit seasonal cycles of mass loss, with females losing significantly more mass than males. In 2 drought years this pattern was especially pronounced. Compared to lighter females, females who were heavier at the time of the mating season were more likely to give birth in the following birth season. By showing (1) seasonally greater mass loss in reproductive females compared to males, particularly in drought years, (2) a close link between female mass and fertility, and (3) an uncoupling of the periods of highest body mass and of gestation and lactation, these results suggest that energy acquisition and storage are critically important in the life history strategies of female sifaka, and that "capital breeding" may be a feature of sifaka reproductive strategies.

  1. Novel models on fluid's variable thermo-physical properties for extensive study on convection heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Shang, De-Yi; Zhong, Liang-Cai

    2017-01-01

    Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.

  2. Estimation of Soil Moisture Content Using Air-Launched GPR Techniques in Variable Soil Conditions

    NASA Astrophysics Data System (ADS)

    Hardel, B.; Kelly, B.

    2008-12-01

    Air-launched Ground Penetrating Radar (GPR) techniques have most frequently been used for infrastructure characterization, but these techniques show promise for soil moisture estimation in the near subsurface. Air- launched GPR data can be acquired very quickly, and data processing can be easily automated, so these techniques have potential for efficient estimation of water content in the shallow subsurface over large areas. In this experiment, we investigate the efficacy of air-launched GPR techniques for estimating soil water content under saturated and dry conditions in both sandy and organic-rich soils. Data were also acquired to investigate the depth of penetration of air-launched data in these soils using multiple GPR frequencies. The experiment was performed in a large tank under controlled climatic conditions. Initially, the tank was filled with wet sand to a depth of 24-cm, and GPR data were acquired over the sand using 250-, 500-, and 1000-MHz antennas. Then, a thin plastic tarp was placed on the wet sand, a 3-cm layer of dry sand was placed on the tarp, and data collection was repeated. Additional 3-cm layers of dry sand were placed in the tank, with data acquisition after each layer, until the dry sand layer was 15-cm thick. The tank was then excavated, and a basal layer of dry sand was added. Data were again acquired over the dry sand, and the incremental filling of the tank and data acquisition were repeated using 3-cm layers of wet sand. Finally, the entire process was repeated using a basal layer of wet organic soil overlain by dry organic soil and using a basal layer of dry organic soil overlain by wet organic soil. For all air-launch data, the dielectric constant was determined using the amplitudes of the reflection from the soil surface, and Topp's equation was used to convert the dielectric constant to water content. Data analysis is ongoing, but preliminary results indicate that water content can be estimated with reasonable accuracy in both

  3. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn Charles

    1999-12-01

    -7, 10-5, and 10-5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10-5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  4. Change of microbial communities in glaciers along a transition of air masses in western China

    NASA Astrophysics Data System (ADS)

    Xiang, Shu-Rong; Chen, Yong; Shang, Tian-Cui; Jing, Ze-Fan; Wu, Guangjian

    2010-12-01

    Microbial community dynamics across glaciers in different climatic zones provide important information about the sources, transportation pathways, and deposition of microorganisms. To better understand the possible driving forces of microbial community shifts in glacier ice at a large spatial scale, 16S rRNA gene amplification was used to establish clone libraries containing 95 bacterial sequences from three different habitats in the Qiangyong Gacier in 2005. The libraries were used in phylogenetic comparison with 149 previously reported sequences from the surface samples collected from the Kuytun 51, and East Rongbuk glaciers in the same year. The results showed the presence of cosmopolitan and endemic species, and displayed a tendency of zonal distribution of bacterial communities at genera and community levels, corresponding to the geographic placement of the three glaciers. Data also showed a significant difference in the proportion of dominant phylogenetic groups in the three glaciers. Comamonadaceae/Polaromonas (Betaproteobacteria) and Flexibacteraceae (Bacteroidetes) were dominant in the Qiangyong Glacier, Cyanobacteria, Comamonadaceae/Polaromonas, and Rhodoferax (Betaproteobacteria) were dominant in the Kuytun 51 Glacier, and Acinetobacteria (Gammaproteobacteria) were dominant in the Rongbuk Glacier. In conclusion, the current study provides evidence of microbial biogeography in glacier ice at both the fine lineage and whole community levels. The biogeographical patterns were generally associated with the hydrological transition over the glaciers in the northern periphery and southern part of the Tibetan plateau. This supports our hypothesis of air mass behavior being one of the main drivers determining the zonal distribution of microbial communities across the mountain glaciers in western China.

  5. Noncognitive Variables as Predictors of Achievement in Freshmen English. AIR 1996 Annual Forum Paper.

    ERIC Educational Resources Information Center

    House, J. Daniel; Prion, Susan K.

    This study investigated the correlation between noncognitive variables and academic success in a freshman composition course. A sample of 257 freshmen taking an introductory English course completed a survey assessing their attitudes and achievement expectancies. The questionnaire measured self-ratings of overall academic ability, drive to…

  6. Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  7. Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability

    EPA Science Inventory

    This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...

  8. Gravitational lensing by a smoothly variable three-dimensional mass distribution

    NASA Technical Reports Server (NTRS)

    Lee, Man Hoi; Paczynski, Bohdan

    1990-01-01

    A smooth three-dimensional mass distribution is approximated by a model with multiple thin screens, with surface mass density varying smoothly on each screen. It is found that 16 screens are sufficient for a good approximation of the three-dimensional distribution of matter. It is also found that in this multiscreen model the distribution of amplifications of single images is dominated by the convergence due to matter within the beam. The shear caused by matter outside the beam has no significant effect. This finding considerably simplifies the modeling of lensing by a smooth three-dimensional mass distribution by effectively reducing the problem to one dimension, as it is sufficient to know the mass distribution along a straight light ray.

  9. Arctic mass, freshwater and heat fluxes: methods and modelled seasonal variability.

    PubMed

    Bacon, Sheldon; Aksenov, Yevgeny; Fawcett, Stephen; Madec, Gurvan

    2015-10-13

    Considering the Arctic Ocean (including sea ice) as a defined volume, we develop equations describing the time-varying fluxes of mass, heat and freshwater (FW) into, and storage of those quantities within, that volume. The seasonal cycles of fluxes and storage of mass, heat and FW are quantified and illustrated using output from a numerical model. The meanings of 'reference values' and FW fluxes are discussed, and the potential for error through the use of arbitrary reference values is examined.

  10. On the nature of the variability of the Martian thermospheric mass density: Results from electron reflectometry with Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    England, Scott L.; Lillis, Robert J.

    2012-02-01

    Knowledge of Mars' thermospheric mass density is important for understanding the current state and evolution of the Martian atmosphere, and for spacecraft such as the upcoming MAVEN mission that will fly through this region on every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching the mass density observations at these altitudes, especially on the nightside. Thus, there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which this must be defined, the data set of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource. Here we present an empirical model of the thermospheric density structure of this data set. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with both latitude and dust opacity. Further, we examine the short-term variability of the thermospheric density and show that it exhibits a repeatable behavior with latitude and season that is indicative of atmospheric wave activity seen in the lower thermosphere. This short-term variability is consistently highest in the southern hemisphere, peaking around perihelion, which may have significant implications for studies of atmospheric escape.

  11. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  12. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    NASA Astrophysics Data System (ADS)

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-01

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the final state particles fully democratically and consider the sorted set of the invariant masses of all possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2 ≤ n ≤ N) and determines the kinematic endpoint m ( n, r) max of the distribution of the r-th largest n-body invariant mass m ( n, r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.

  13. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    DOE PAGES

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-19

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the nal state particles fully democratically and consider the sorted set of the invariant masses of allmore » possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2≤ n≤ N) and determines the kinematic endpoint m(n,r)max of the distribution of the r-th largest n-body invariant mass m(n,r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.« less

  14. Using sorted invariant mass variables to evade combinatorial ambiguities in cascade decays

    SciTech Connect

    Kim, Doojin; Matchev, Konstantin T.; Park, Myeonghun

    2016-02-19

    The classic method for mass determination in a SUSY-like cascade decay chain relies on measurements of the kinematic endpoints in the invariant mass distributions of suitable collections of visible decay products. However, the procedure is complicated by combinatorial ambiguities: e.g., the visible final state particles may be indistinguishable (as in the case of QCD jets), or one may not know the exact order in which they are emitted along the decay chain. In order to avoid such combinatorial ambiguities, we propose to treat the nal state particles fully democratically and consider the sorted set of the invariant masses of all possible partitions of the visible particles in the decay chain. In particular, for a decay to N visible particles, one considers the sorted sets of all possible n-body invariant mass combinations (2≤ n≤ N) and determines the kinematic endpoint m(n,r)max of the distribution of the r-th largest n-body invariant mass m(n,r) for each possible value of n and r. For the classic example of a squark decay in supersymmetry, we provide analytical formulas for the interpretation of these endpoints in terms of the underlying physical masses. We point out that these measurements can be used to determine the structure of the decay topology, e.g., the number and position of intermediate on-shell resonances.

  15. 6-year periodicity and variable synchronicity in a mass-flowering plant.

    PubMed

    Kakishima, Satoshi; Yoshimura, Jin; Murata, Hiroko; Murata, Jin

    2011-01-01

    Periodical organisms, such as bamboos and periodical cicadas, are very famous for their synchronous reproduction. In bamboos and other periodical plants, the synchronicity of mass-flowering and withering has been often reported indicating these species are monocarpic (semelparous) species. Therefore, synchronicity and periodicity are often suspected to be fairly tightly coupled traits in these periodical plants. We investigate the periodicity and synchronicity of Strobilanthes flexicaulis, and a closely related species S. tashiroi on Okinawa Island, Japan. The genus Strobilanthes is known for several periodical species. Based on 32-year observational data, we confirmed that S. flexicaulis is 6-year periodical mass-flowering monocarpic plant. All the flowering plants had died after flowering. In contrast, we found that S. tashiroi is a polycarpic perennial with no mass-flowering from three-year individual tracking. We also surveyed six local populations of S. flexicaulis and found variation in the synchronicity from four highly synchronized populations (>98% of plants flowering in the mass year) to two less synchronized one with 11-47% of plants flowering before and after the mass year. This result might imply that synchrony may be selected for when periodicity is established in monocarpic species. We found the selective advantages for mass-flowering in pollinator activities and predator satiation. The current results suggest that the periodical S. flexicaulis might have evolved periodicity from a non-periodical close relative. The current report should become a key finding for understanding the evolution of periodical plants.

  16. 6-Year Periodicity and Variable Synchronicity in a Mass-Flowering Plant

    PubMed Central

    Kakishima, Satoshi; Yoshimura, Jin; Murata, Hiroko; Murata, Jin

    2011-01-01

    Periodical organisms, such as bamboos and periodical cicadas, are very famous for their synchronous reproduction. In bamboos and other periodical plants, the synchronicity of mass-flowering and withering has been often reported indicating these species are monocarpic (semelparous) species. Therefore, synchronicity and periodicity are often suspected to be fairly tightly coupled traits in these periodical plants. We investigate the periodicity and synchronicity of Strobilanthes flexicaulis, and a closely related species S. tashiroi on Okinawa Island, Japan. The genus Strobilanthes is known for several periodical species. Based on 32-year observational data, we confirmed that S. flexicaulis is 6-year periodical mass-flowering monocarpic plant. All the flowering plants had died after flowering. In contrast, we found that S. tashiroi is a polycarpic perennial with no mass-flowering from three-year individual tracking. We also surveyed six local populations of S. flexicaulis and found variation in the synchronicity from four highly synchronized populations (>98% of plants flowering in the mass year) to two less synchronized one with 11–47% of plants flowering before and after the mass year. This result might imply that synchrony may be selected for when periodicity is established in monocarpic species. We found the selective advantages for mass-flowering in pollinator activities and predator satiation. The current results suggest that the periodical S. flexicaulis might have evolved periodicity from a non-periodical close relative. The current report should become a key finding for understanding the evolution of periodical plants. PMID:22163279

  17. Industrial air pollution in rural Kenya: community awareness, risk perception and associations between risk variables

    PubMed Central

    2014-01-01

    Background Developing countries have limited air quality management systems due to inadequate legislation and lack of political will, among other challenges. Maintaining a balance between economic development and sustainable environment is a challenge, hence investments in pollution prevention technologies get sidelined in favor of short-term benefits from increased production and job creation. This lack of air quality management capability translates into lack of air pollution data, hence the false belief that there is no problem. The objectives of the study were to: assess the population’s environmental awareness, explore their perception of pollution threat to their health; examine the association between specific health hazards. Methods A cross-sectional study was implemented by gathering quantitative information on demographic, health status, environmental perception and environmental knowledge of residents to understand their view of pollution in their neighborhood. Focus group discussions (FGDs) allowed for corroboration of the quantitative data. Results Over 80% of respondents perceived industrial pollution as posing a considerable risk to them despite the fact that the economy of the area largely depended on the factory. Respondents also argued that they had not been actively involved in identifying solutions to the environmental challenges. The study revealed a significant association between industrial pollution as a risk and, perception of risk from other familiar health hazards. The most important factors influencing the respondents’ pollution risk perception were environmental awareness and family health status. Conclusion This study avails information to policy makers and researchers concerning public awareness and attitudes towards environmental pollution pertinent to development and implementation of environmental policies for public health. PMID:24742166

  18. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  19. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Akyüz, Mehmet

    2008-05-01

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006-2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pg m-3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

  20. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  1. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Schneider, J F; Boparai, A S; Reed, L L

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 microg/mL or higher. This method is ideal for screening samples for quick response situations.

  2. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  3. Categorisation of air quality monitoring stations by evaluation of PM(10) variability.

    PubMed

    Barrero, M A; Orza, J A G; Cabello, M; Cantón, L

    2015-08-15

    Air Quality Monitoring Networks (AQMNs) are composed by a number of stations, which are typically classified as urban, suburban or rural, and background, industrial or traffic, depending on the location and the influence of the immediate surroundings. These categories are not necessarily homogeneous and distinct from one another, regarding the levels of the monitored pollutants. A classification providing groups with these features is of interest for air quality management and research purposes, and therefore, other classification criteria should be explored. In this work, the variations of PM10 concentrations in 43 stations in the AQMN of the Basque Country in the period 2005-2012 have been studied to group them according to common characteristics. The characteristic variations in time are synthesised by the autocorrelation function (ACF), with both daily and hourly data, and by the average diurnal evolution pattern of the normalised concentrations on a seasonal basis (Evol-P). A methodology based on k-means clustering of these features is proposed. Each classification gives a different piece of information that has been phenomenologically related with specific dispersion and emission dynamics. The classification based on Evol-Ps is found to be the most influential one when comparing PM10 levels between groups. A combination of these categorisations provides 5 groups with significantly different levels of PM10, improving the discrimination of the conventional classification. Our results indicate that the time series of the pollutant concentrations contain enough information to provide an objective classification of the monitoring stations in an AQMN.

  4. An air-water interfacial area based variable tortuosity model for unsaturated sands

    SciTech Connect

    Khaleel, Raziuddin; Saripalli, Prasad

    2006-05-01

    Based on Kozeny-Carman equation for saturated media permeability, a new model is developed for the prediction of unsaturated hydraulic conductivity, K as a function of moisture content, ?. The K(???) estimates are obtained using laboratory measurements of moisture retention and saturated hydraulic conductivity, and a saturation-dependent tortuosity based on the immiscible fluid (air-water) interfacial area. Tortuosity (?a) for unsaturated media is defined as aaw/aaw,o (ratio of the specific air-water interfacial area of a real and the corresponding idealized porous medium). A correspondence between the real and idealized media is established by using the laboratory-measured soil moisture retention curve to calculate the interfacial area. The general trend in prediction of ?a as a function water saturation is in agreement with similar recent predictions based on diffusion theory. Unsaturated hydraulic conductivities measured for a number of coarse-textured, repacked Hanford sediments agree well with predictions based on the modified Kozeny-Carman relation. Because of the use of saturated hydraulic conductivity, a slight bias is apparent in measured and predicted K at low ?. While the modified Kozeny-Carman relation was found to be reasonably accurate in predicting K(??) for the repacked, sandy soils considered in this study, a further testing of the new model for undisturbed sediments and other soil textures would be useful.

  5. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  6. Black hole mass estimation from X-ray variability measurements in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Nikolajuk, M.; Papadakis, I. E.; Czerny, B.

    2004-05-01

    We propose a new method of estimation of the black hole masses in active galactic nuclei (AGN) based on the normalized excess variance, σ2nxs. We derive a relation between σ2nxs, the length of the observation, T, the light-curve bin size, Δt, and the black hole mass, assuming that (i) the power spectrum above the high-frequency break, νbf, has a slope of -2, (ii) the high-frequency break scales with black hole mass, (iii) the power-spectrum amplitude (in frequency-power space) is universal and (iv) σ2nxs is calculated from observations of length T < 1/νbf. Values of black hole masses in AGN obtained with this method are consistent with estimates based on other techniques such as reverberation mapping or the MBH-stellar velocity dispersion relation. The method is formally equivalent to methods based on power spectrum scaling with mass, but the use of σ2nxs has the big advantage of being applicable to relatively low-quality data.

  7. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  8. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  9. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    NASA Astrophysics Data System (ADS)

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-10-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample.

  10. Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies

    PubMed Central

    Thiery, Gwendoline; Mernaugh, Ray L.; Yan, Heping; Spraggins, Jeffrey M.; Yang, Junhai; Parl, Fritz F.; Caprioli, Richard M.

    2012-01-01

    Recombinant scfv antibodies specific for CYP1A1 and CYP1B1 P450 enzymes were combined with targeted imaging mass spectrometry to simultaneously detect the P450 enzymes present in archived, paraffin-embedded, human breast cancer tissue sections. By using CYP1A1 and CYP1B1 specific scfv, each coupled to a unique reporter molecule (i.e., a mass tag) it was possible to simultaneously detect multiple antigens within a single tissue sample with high sensitivity and specificity using mass spectrometry. The capability of imaging multiple antigens at the same time is a significant advance that overcomes technical barriers encountered when using present day approaches to develop assays that can simultaneously detect more than a single antigen in the same tissue sample. PMID:22869296

  11. The initial mass function of stars: evidence for uniformity in variable systems.

    PubMed

    Kroupa, Pavel

    2002-01-04

    The distribution of stellar masses that form in one star formation event in a given volume of space is called the initial mass function (IMF). The IMF has been estimated from low-mass brown dwarfs to very massive stars. Combining IMF estimates for different populations in which the stars can be observed individually unveils an extraordinary uniformity of the IMF. This general insight appears to hold for populations including present-day star formation in small molecular clouds, rich and dense massive star-clusters forming in giant clouds, through to ancient and metal-poor exotic stellar populations that may be dominated by dark matter. This apparent universality of the IMF is a challenge for star formation theory, because elementary considerations suggest that the IMF ought to systematically vary with star-forming conditions.

  12. Within- and Between-Home Variability in Indoor-Air Insecticide Levels during Pregnancy among an Inner-City Cohort from New York City

    PubMed Central

    Whyatt, Robin M.; Garfinkel, Robin; Hoepner, Lori A.; Holmes, Darrell; Borjas, Mejico; Williams, Megan K.; Reyes, Andria; Rauh, Virginia; Perera, Frederica P.; Camann, David E.

    2007-01-01

    Background Residential insecticide use is widespread in the United States, but few data are available on the persistence and variability in levels in the indoor environment. Objective The study aim was to assess within- and between-home variability in indoor-air insecticides over the final 2 months of pregnancy among a cohort of African-American and Dominican women from New York City. Methods Women not employed outside the home were enrolled between February 2001 and May 2004 (n = 102); 9 insecticides and an adjuvant were measured in 48-hr personal air samples and 2-week integrated indoor air samples collected sequentially for 7.0 ± 2.3 weeks (n = 337 air samples). Results Sixty-one percent of the women reported using pest control during the air samplings. Chlorpyrifos, diazinon, and propoxur were detected in 99–100% of personal and indoor samples (range, 0.4–641 ng/m3). Piperonyl butoxide (a pyrethroid adjuvant) was detected in 45.5–68.5% (0.2–608 ng/m3). There was little within-home variability and no significant difference in air concentrations within homes over time (p ≥ 0.2); between-home variability accounted for 88% of the variance in the indoor air levels of propoxur, 92% in chlorpyrifos, 94% in diazinon, and 62% in piperonyl butoxide (p < 0.001). Indoor and maternal personal air insecticide levels were highly correlated (r = 0.7–0.9, p < 0.001). Diazinon and chlorpyrifos levels declined 5-fold between 2001 and 2004 but were detected in all homes 1.5 and 2.5 years, respectively, after the U.S. Environmental Protection Agency ban on their residential use. Conclusion Results showed that the insecticides were persistent in the home with little variability in air concentrations over the 2 months and contributed to chronic maternal inhalation exposures during pregnancy. PMID:17431487

  13. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  14. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  15. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  16. Implications of variable mass loading in the Io torus: The Jovian flywheel

    NASA Astrophysics Data System (ADS)

    Pontius, D. H.

    1995-10-01

    The Io plasma torus exhibits a persistent lag from corotation with Jupiter, a phenomenon associated with mass loading due to local ionization of neutrals ejected from Io. The observed lag is the sum of two effects: slippage of the high-altitude neutral atmosphere relative to the planet and slippage of the torus relative to the neutrals. However, the relative weights of the two effects have not been well constrained. Recent observations show that the lag is very steady and insensitive to the position of Io. Models of torus chemistry suggest that mass loading should be concentrated in the vicinity of Io. If the lag is indeed a consequence of mass loading, then this inhomogeneity should presumably lead to more pronounced spatial and temporal variations than are observed. I show that because the neutral atmosphere has a much larger moment of inertia than the torus, it acts as a massive flywheel that requires several hundred hours to adjust to a changing source. By further implication, the effects of local time variations in the mass loading are also smoothed out, and the observed lag reflects the longitude-averaged source rate. This also confirms earlier predictions that most of the observed lag is accountable to slippage of the neutral atmosphere. Implications for radial transport are also discussed. .

  17. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  18. CORONAL MASS EJECTIONS AS A MECHANISM FOR PRODUCING IR VARIABILITY IN DEBRIS DISKS

    SciTech Connect

    Osten, Rachel; Livio, Mario; Lubow, Steve; Pringle, J. E.; Soderblom, David; Valenti, Jeff

    2013-03-10

    Motivated by recent observations of short-timescale variations in the infrared emission of circumstellar disks, we propose that coronal mass ejections can remove dust grains on timescales as short as a few days. Continuous monitoring of stellar activity, coupled with infrared observations, can place meaningful constraints on the proposed mechanism.

  19. Layout and variables of air-powered drive of small-size pneumatic winch

    NASA Astrophysics Data System (ADS)

    Gileta, VP; Baris, AV; Vanag, YuV

    2017-02-01

    The paper describes three layouts of a winch with a harmonic drive and a flexible gear in the form of a set of spindles: classical layout with the remote motor and barrel; layout with the harmonic drive and remote motor; layout with the barrel with the in-built drive members. The analytical models are developed to determine acting faces and lateral dimension of rigid gear teeth depending on the layout and on the design and kinematic variables of the winch and the drive.

  20. Impact of Climatic Variability on Atmospheric Mass Distribution and GRACE-Derived Gravity Fields

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Ponte, Rui M.; Frey, Herbert (Technical Monitor)

    2003-01-01

    During the period we calculated the atmospheric data sets related to its mass and angular momentum distribution. For mass, we determined the various harmonics from the NCEP-NCAR reanalysis, especially the low-order harmonics that are useful in studying the gravitation distribution as will be determined from the GRACE mission. Atmospheric mass is also related to the atmospheric loading on the solid Earth; we cooperated with scientists who needed the atmospheric mass information for understanding its contributions to the overall loading, necessary for vertical and horizontal coordinate estimation. We calculated atmospheric angular momentum from the NCEP-NCAR reanalyses and 4 operational meteorological centers, based on the motion (wind) terms and the mass (surface pressure) terms. These are associated with motions of the planet, including its axial component causing changes in the length of day, more related to the winds, and the equatorial component related to motions of the pole, more related to the mass. Tasks related to the ocean mass and angular momentum were added to the project as well. For these we have noted the ocean impact on motions of the pole as well as the torque mechanisms that relate the transfer of angular momentum between oceans and solid earth. The activities of the project may be summarized in the following first manuscript written in December 2002, for a symposium that Dr. Salstein attended on Geodynamics. We have continued to assess ocean angular momentum (OAM) quantities derived from bottom pressure and velocity fields estimated with our finite-difference barotropic (single layer) model. Three years of output (1993-95) from a run without any data constraints was compared to output from a corresponding run that was constrained by altimeter data using a Kalman filter and smoother scheme. Respective OAM time series were combined with corresponding atmospheric series and compared to observed polar motion. The constrained OAM series provided

  1. Short-term variability and mass loss in Be stars. I. BRITE satellite photometry of η and μ Centauri

    NASA Astrophysics Data System (ADS)

    Baade, D.; Rivinius, Th.; Pigulski, A.; Carciofi, A. C.; Martayan, Ch.; Moffat, A. F. J.; Wade, G. A.; Weiss, W. W.; Grunhut, J.; Handler, G.; Kuschnig, R.; Mehner, A.; Pablo, H.; Popowicz, A.; Rucinski, S.; Whittaker, G.

    2016-04-01

    Context. Empirical evidence for the involvement of nonradial pulsations (NRPs) in the mass loss from Be stars ranges from (i) a singular case (μ Cen) of repetitive mass ejections triggered by multi-mode beating to (ii) several photometric reports about enormous numbers of pulsation modes that suddenly appear during outbursts and on to (iii) effective single-mode pulsators. Aims: The purpose of this study is to develop a more detailed empirical description of the star-to-disk mass transfer and to check the hypothesis that spates of transient nonradial pulsation modes accompany and even drive mass-loss episodes. Methods: The BRITE Constellation of nanosatellites was used to obtain mmag photometry of the Be stars η and μ Cen. Results: In the low-inclination star μ Cen, light pollution by variable amounts of near-stellar matter prevented any new insights into the variability and other properties of the central star. In the equator-on star η Cen, BRITE photometry and Heros echelle spectroscopy from the 1990s reveal an intricate clockwork of star-disk interactions. The mass transfer is modulated with the frequency difference of two NRP modes and an amplitude three times as large as the amplitude sum of the two NRP modes. This process feeds a high-amplitude circumstellar activity running with the incoherent and slightly lower so-called Štefl frequency. The mass-loss-modulation cycles are tightly coupled to variations in the value of the Štefl frequency and in its amplitude, albeit with strongly drifting phase differences. Conclusions: The observations are well described by the decomposition of the mass loss into a pulsation-related engine in the star and a viscosity-dominated engine in the circumstellar disk. Arguments are developed that large-scale gas-circulation flows occur at the interface. The propagation rates of these eddies manifest themselves as Štefl frequencies. Bursts in power spectra during mass-loss events can be understood as the noise inherent to

  2. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  3. Prediction of segmental lean mass using anthropometric variables in young adults.

    PubMed

    Scafoglieri, Aldo; Tresignie, Jonathan; Provyn, Steven; Marfell-Jones, Mike; Reilly, Thomas; Bautmans, Ivan; Clarys, Jan Pieter

    2012-01-01

    The aim of the present study was to develop and cross-validate anthropometrical prediction equations for segmental lean tissue mass (SLM). One hundred and seventeen young healthy Caucasians (67 men and 50 women; mean age: 31.9 ± 10.0 years; Body Mass Index: 24.3 ± 3.2 kg · m(-2)) were included. Body mass (BM), stretch stature (SS), 14 circumferences (CC), 13 skinfolds (SF) and 4 bone breadths (BB) were used as anthropometric measurements. Segmental lean mass of both arms, trunk and both legs were measured by dual energy X-ray absorptiometry as the criterion method. Three prediction equations for SLM were developed as follows: arms = 40.394(BM) + 169.836(CCarm-tensed) + 399.162(CCwrist) - 85.414(SFtriceps) - 39.790(SFbiceps) - 7289.190, where Adj.R (2) = 0.97, P < 0.001, and standard error of estimate (SEE) = 355 g;trunk = 181.530(BM) + 155.037(SS) + 534.818(CCneck) + 175.638(CCchest) - 88.359(SFchest) - 147.232(SFsupraspinale) - 46522.165, where Adj.R(2) = 0.97, P < 0.001, and SEE = 1077g; and legs = 55.838(BM) + 88.356(SS) + 235.579(CCmid-thigh) + 278.595(CCcalf) + 288.984(CCankle) - 84.954(SFfront-thigh) - 53.009(SFmedial calf) - 28522.241, where Adj.R (2) = 0.96, P < 0.001, and SEE = 724 g. Cross-validation statistics showed no significant differences (P < 0.05) between observed and predicted SLM. Root mean squared errors were smallest for arms (362 g), followed by legs (820 g) and trunk (1477 g). These new prediction equations allow an accurate estimation of segmental lean mass in groups of young adults, but estimation errors of 8 to 14% can occur in certain individuals.

  4. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  5. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals

    NASA Astrophysics Data System (ADS)

    Lorente, Alba; Folkert Boersma, K.; Yu, Huan; Dörner, Steffen; Hilboll, Andreas; Richter, Andreas; Liu, Mengyao; Lamsal, Lok N.; Barkley, Michael; De Smedt, Isabelle; Van Roozendael, Michel; Wang, Yang; Wagner, Thomas; Beirle, Steffen; Lin, Jin-Tai; Krotkov, Nickolay; Stammes, Piet; Wang, Ping; Eskes, Henk J.; Krol, Maarten

    2017-03-01

    Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude resolved AMFs from different RTMs (to within 3 %), and in the tropospheric AMFs (to within 6 %) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42 % over polluted regions and 31 % over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40 % depending on cloud fraction and cloud pressure, and 11 % on average) even for low

  6. Relationship between maternal pre‐pregnancy body mass index, gestational weight gain and childhood fatness at 6–7 years by air displacement plethysmography

    PubMed Central

    Santos, Iná S.; Matijasevich, Alicia

    2015-01-01

    Abstract This study aims to investigate the effect of maternal pre‐pregnancy body mass index (BMI) and gestational weight gain (GWG) on offspring body composition. In this prospective cohort study, offspring body composition at 6 years of age was obtained through air displacement plethysmography. Linear regression was used to obtain crude and adjusted coefficients. Information regarding offspring body composition and maternal pre‐pregnancy BMI was available for 3156 children and on offspring body composition and GWG for 3129 children. There was a direct association of maternal pre‐pregnancy BMI and GWG with offspring's fat mass (FM), fat‐free mass (FFM), fat mass index (FMI), fat‐free mass index (FFMI) and body fat percent (BF%) in crude and adjusted analyses. After adjustment for co‐variables, for each kg m−2 of maternal pre‐pregnancy BMI increase, there was a mean increment of 0.13 kg in the offspring FFM, 0.06 kg m−2 in FFMI, 0.11 kg in FM, 0.07 kg m−2 in FMI and 0.18% in BF%. For each kilogram of maternal GWG increase, there was a mean increment of 0.08 kg in offspring's FM, 0.05 kg m−2 in FMI, 0.04 kg in FFM, 0.01 kg m−2 in FFMI and 0.18 % in BF%. Mothers with a higher pre‐pregnancy BMI or GWG tend to have children with greater adiposity at age 6 years. Fetal overnutrition is more likely among mothers with greater BMI during pregnancy; as a consequence, it can accelerate the childhood obesity epidemic. PMID:25850519

  7. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  8. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  9. Low-frequency variability of surface air temperature over the Barents Sea: causes and mechanisms

    NASA Astrophysics Data System (ADS)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, Rune G.

    2016-08-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations in the sea-ice cover, which then cause massive changes in the ocean-atmosphere heat exchanges. Here we describe the mechanism driving surface temperatures and heat fluxes in the Barents Sea based primarily on analyzes of one global coupled climate model. It is found that the ocean drives the low-frequency changes in surface temperature, whereas the atmosphere compensates the oceanic transport anomalies. The seasonal dependence and the role of individual components of the ocean-atmosphere energy budget are analyzed in detail, showing that seasonally-varying climate mechanisms play an important role. Herein, sea ice is governing the seasonal response, by acting as a lid that opens and closes during warm and cold periods, respectively, thereby modulating the surface heat fluxes.

  10. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  11. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  12. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  13. DEEP, LOW MASS RATIO OVERCONTACT BINARY SYSTEMS. XIII. DZ PISCIUM WITH INTRINSIC LIGHT VARIABILITY

    SciTech Connect

    Yang, Y.-G.; Dai, H.-F.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2013-08-01

    New multi-color photometry for the eclipsing binary DZ Psc was performed in 2011 and 2012 using the 85 cm telescope at the Xinglong Station of the National Astronomical Observatories of China. Using the updated Wilson-Devinney (W-D) code, we deduced two sets of photometric solutions. The overcontact degree is f = 89.7({+-} 1.0)%, identifying DZ Psc as a deep, low mass ratio overcontact binary. The asymmetric light curves (i.e., LC{sub 2} in 2012) were modeled by a hot spot on the primary star. Based on all of the available light minimum times, we discovered that the orbital period of DZ Psc may be undergoing a secular period increase with a cyclic variation. The modulated period and semi-amplitude of this oscillation are P{sub mod} = 11.89({+-} 0.19) yr and A = 0.0064({+-} 0.0006) days, which may be possibly attributed to either cyclic magnetic activity or light-time effect due to the third body. The long-term period increases at a rate of dP/dt=+7.43({+-}0.17) Multiplication-Sign 10{sup -7} days yr{sup -1}, which may be interpreted as conserved mass transfer from the less massive component to the more massive one. With mass transferring, DZ Psc will finally merge into a rapid-rotation single star when J{sub spin}/J{sub orb} > 1/3.

  14. The Role of Intra-Island Temperature Variability at Palmyra Atoll in Mass Coral Bleaching Events

    NASA Astrophysics Data System (ADS)

    Urmy, S.; McNally, J.; Bartz, J.; Dunbar, R.

    2008-12-01

    Mass coral bleaching events have been reported in Palmyra Atoll during severe El Niños in the last 30 years, and are thought to be increasing both in frequency and magnitude. During these events, bleaching is highly localized, with some parts of the reef showing a much greater effect than others. NOAA's Coral Reef Watch monitors thermal stress on corals by calculating degree heating weeks (DHW) from satellite sea surface temperature in a 50 km pixel around each reef group or atoll of interest. While this technique allows some predictive capacity, especially for mass bleaching events, it does not consider the effects of reef geometry on bleaching susceptibility at different reef groups (Hoeke et al., 2006). Furthermore, because of its large scale, it cannot differentiate between open ocean, backreef, or lagoon temperatures. This project compiles high resolution temperature time series recorded in situ at a number of locations on the reef at Palmyra from 2002-2008, with surprising results. At any one given time, corals at different locations around the atoll may be experiencing temperature stresses that are significantly different both between locations and from the satellite DHW product. Shallow reef flats appear to be a source of heated water that, if advected elsewhere on the reef, may stress corals in normally cooler locations. A more thorough understanding of these mechanisms could improve our predictive capability as to which areas of the reef are at greatest risk if mass bleaching events continue to increase in severity and frequency.

  15. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  16. Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

    DTIC Science & Technology

    2009-10-01

    improved their estimate. In The Art of Wargaming, Peter Perla suggests that adding exercise analysis could help. He recommends a “continuous cycle...Survey, 44. 45. Ibid., 27–28. 46. “Desert Shield Tactical Air Force Combat Losses, Damage, and Muni- tions Consumption.” 47. Ibid. 48. Perla , Art of...Williamson. Strategy for Defeat: The Luftwaffe, 1933– 1945, 1983. Reprint. Maxwell AFB, AL: Air University Press, 2007. Perla , Peter P. The Art of Wargaming

  17. On the nature of the variability in the Martian thermospheric mass density: Results from the Mars Global Surveyor Electron Reflectometer

    NASA Astrophysics Data System (ADS)

    England, S.; Lillis, R. J.

    2011-12-01

    Knowledge of Mars' thermospheric mass density (~120--200 km altitude) is important for understanding the current state and evolution of the Martian atmosphere and for spacecraft such as the upcoming MAVEN mission that will fly through this region every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching mass density observations at these altitudes, especially on the nightside. Thus there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which these must be defined, the dataset of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource that can be used to enhance our prediction of these densities beyond what is given by such global-scale models. Here we present an empirical model of the thermospheric density structure based on the MAG/ER dataset. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with latitude. Further, we examine the short- and longer-term variability of the thermospheric density and show that it exhibits a complex behavior with latitude and season that is indicative of both atmospheric conditions at lower altitudes and possible lower atmosphere wave sources.

  18. Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Wahr, J.

    2013-06-01

    Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) mission have been available since 2002 to estimate the mass balance of the Greenland and Antarctic Ice Sheets. We analyze current progress and uncertainties in GRACE estimates of ice sheet mass balance. We discuss the impacts of errors associated with spherical harmonic truncation, spatial averaging, temporal sampling, and leakage from other time-dependent signals (e.g., glacial isostatic adjustment (GIA)). The largest sources of error for Antarctica are the GIA correction, the omission of l=1 terms, nontidal changes in ocean mass, and measurement errors. For Greenland, the errors come mostly from the uncertainty in the scaling factor. Using Release 5.0 (RL05) GRACE fields for January 2003 through November 2012, we find a mass change of -258 ± 41 Gt/yr for Greenland, with an acceleration of -31 ± 6 Gt/yr2, and a loss that migrated clockwise around the ice sheet margin to progressively affect the entire periphery. For Antarctica, we report changes of -83 ± 49 and -147 ± 80 Gt/yr for two GIA models, with an acceleration of -12 ± 9 Gt/yr2 and a dominance from the southeast pacific sector of West Antarctica and the Antarctic Peninsula.

  19. Hierarchical control of ride height system for electronically controlled air suspension based on variable structure and fuzzy control theory

    NASA Astrophysics Data System (ADS)

    Xu, Xing; Zhou, Kongkang; Zou, Nannan; Jiang, Hong; Cui, Xiaoli

    2015-09-01

    The current research of air suspension mainly focuses on the characteristics and design of the air spring. In fact, electronically controlled air suspension (ECAS) has excellent performance in flexible height adjustment during different driving conditions. However, the nonlinearity of the ride height adjusting system and the uneven distribution of payload affect the control accuracy of ride height and the body attitude. Firstly, the three-point measurement system of three height sensors is used to establish the mathematical model of the ride height adjusting system. The decentralized control of ride height and the centralized control of body attitude are presented to design the ride height control system for ECAS. The exact feedback linearization method is adopted for the nonlinear mathematical model of the ride height system. Secondly, according to the hierarchical control theory, the variable structure control (VSC) technique is used to design a controller that is able to adjust the ride height for the quarter-vehicle anywhere, and each quarter-vehicle height control system is independent. Meanwhile, the three-point height signals obtained by three height sensors are tracked to calculate the body pitch and roll attitude over time, and then by calculating the deviation of pitch and roll and its rates, the height control correction is reassigned based on the fuzzy algorithm. Finally, to verify the effectiveness and performance of the proposed combined control strategy, a validating test of ride height control system with and without road disturbance is carried out. Testing results show that the height adjusting time of both lifting and lowering is over 5 s, and the pitch angle and the roll angle of body attitude are less than 0.15°. This research proposes a hierarchical control method that can guarantee the attitude stability, as well as satisfy the ride height tracking system.

  20. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  1. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  2. Radon in indoor air of primary schools: determinant factors, their variability and effective dose.

    PubMed

    Madureira, Joana; Paciência, Inês; Rufo, João; Moreira, André; de Oliveira Fernandes, Eduardo; Pereira, Alcides

    2016-04-01

    Radon is a radioactive gas, abundant in granitic areas, such as in the city of Porto at the north-east of Portugal. This gas is a recognized carcinogenic agent, being appointed by the World Health Organization as the leading cause of lung cancer after smoking. The aim of this preliminary survey was to determine indoor radon concentrations in public primary schools, to analyse the main factors influencing their indoor concentration levels and to estimate the effective dose in students and teachers in primary schools. Radon concentrations were measured in 45 classrooms from 13 public primary schools located in Porto, using CR-39 passive radon detectors for about 2-month period. In all schools, radon concentrations ranged from 56 to 889 Bq/m(3) (mean = 197 Bq/m(3)). The results showed that the limit of 100 Bq/m(3) established by WHO IAQ guidelines was exceeded in 92 % of the measurements, as well as 8 % of the measurements exceeded the limit of 400 Bq/m(3) established by the national legislation. Moreover, the mean annual effective dose was calculated as 1.25 mSv/y (ranging between 0.58 and 3.07 mSv/y), which is below the action level (3-10 mSv). The considerable variability of radon concentration observed between and within floors indicates a need to monitor concentrations in several rooms for each floor. A single radon detector for each room can be used, provided that the measurement error is considerably lower than variability of radon concentration between rooms. The results of the present survey will provide useful baseline data for adopting safety measures and dealing effectively with radiation emergencies. In particular, radon remediation techniques should be used in buildings located in the highest radon risk areas of Portugal. The results obtained in the current study concerning radon levels and their variations will be useful to optimize the design of future research surveys.

  3. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  4. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  5. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR

    NASA Astrophysics Data System (ADS)

    Kruber, S.; Farrher, G. D.; Anoardo, E.

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α -helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm3 the effective magnet homogeneity is lower than 130 ppm.

  6. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    PubMed

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm.

  7. Morphologic Variability of two Adjacent Mass-Transport Deposits: Twin Slides, Gela Basin (Sicily Channel).

    NASA Astrophysics Data System (ADS)

    Minisini, D.; Trincardi, F.; Asioli, A.; Canu, M.; Foglini, F.

    2006-12-01

    Integrating geophysical, sedimentological, structural and paleontological data, we reconstruct the age, size and internal geometry of two adjacent and recent mass-transport deposits (Twin Slides) exposed on the seafloor of Gela Basin (Sicily Channel). Twin Slides are coeval (late-Holocene), and were likely triggered by an earthquake. Twin Slides originated from the mobilization of Pleistocene slope units, are only 6 km apart from each other, have their headscarps in similar water depth (230 m), and have a comparable run out distance (ca. 10 km). Both slides suggest a multistage evolution, but differ in internal organization and morphological expression. The northern slide shows a deposit characterised by pressure ridges in the toe region suggesting a component of plastic deformation, while the southern slide is characterised by large blocks and a reduced thickness of displaced masses. We ascribe the difference in deformation style and resulting morphology to the stratigraphic architecture of the Pleistocene progradational units involved in failure. In the case of the blocky southern slide the units affected by failure are slightly older (Eemian or pre-Emian) and more consolidated; furthermore, in the area where the headscarp is located these units appear affected by shallow faulting likely resulting in the definition of large blocks. The northern slide, instead, affects progradational units of the Last Glacial Maximum in an area where these units are more than 100 m thick and, possibly, underconsolidated.

  8. Mass transfer effects on the unsteady mhd radiative- convective flow of a micropolar fluid past a vertical porous plate with variable heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Reddy, M. Gnaneswara

    2013-03-01

    The problem of unsteady two-dimensional laminar flow of a viscous incompressible micropolar fluid past a vertical porous plate in the presence of a transverse magnetic field and thermal radiation with variable heat and mass fluxes is considered. The free stream velocity is subjected to exponentially increasing or decreasing small perturbations. A uniform magnetic field acts perpendicularly to a porous surface where a micropolar fluid is absorbed with a suction velocity varying with time. The Rosseland approximation is used to describe radiative heat transfer in the limit of optically thick fluids. The effects of the flow parameters and thermophysical properties on the velocity and temperature fields across the boundary layer are investigated. The effects of various parameters on the velocity, microrotation velocity, temperature, and concentration profiles are given graphically, and the values of the skin friction and couple stress coefficients are presented.

  9. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  10. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  11. Numerical study of coupled transfer of heat and mass between air and water inside a geothermal water cooling tower

    NASA Astrophysics Data System (ADS)

    Bassem, Mohamed Mehdi; Bourouni, Karim; Thameur Chaibi, Mohamed

    2006-11-01

    In the south of Tunisia, geothermal water is used to irrigate cultures. Since its temperature is very high (70 C), geothermal water is cooled by cooling towers. These towers are sized empirically and present many operating problems such as excessive energy consumption, big loss of vapour and low cooling efficiency. The aim of our work is modelling the coupled heat and mass transfer between air and water inside the cooling tower. The most important results obtained are that the evaporative potential is dominating the convective one in the cooling process. That's why the cooling is more efficient in summer than in hibernal period when humidity of ambient air reaches high values. In other hand, the negative convective phenomenon is illustrated. In fact, at the bottom of the tower, water temperature reaches the air one; the two fluids begin to cooling simultaneously. Air is cooled by convection and water by evaporation. We demonstrate also that there is no point in putting fans in working during cold weather. We studied also the effect of the variation of heat transfer coefficient on the efficiency of cooling.

  12. Bora event variability and the role of air-sea feedback

    USGS Publications Warehouse

    Pullen, J.; Doyle, J.D.; Haack, T.; Dorman, C.; Signell, R.P.; Lee, C.M.

    2007-01-01

    A two-way interacting high resolution numerical simulation of the Adriatic Sea using the Navy Coastal Ocean Model (NCOM) and Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS??) was conducted to improve forecast momentum and heat flux fields, and to evaluate surface flux field differences for two consecutive bora events during February 2003. (COAMPS?? is a registered trademark of the Naval Research Laboratory.) The strength, mean positions and extensions of the bora jets, and the atmospheric conditions driving them varied considerably between the two events. Bora 1 had 62% stronger heat flux and 51% larger momentum flux than bora 2. The latter displayed much greater diurnal variability characterized by inertial oscillations and the early morning strengthening of a west Adriatic barrier jet, beneath which a stronger west Adriatic ocean current developed. Elsewhere, surface ocean current differences between the two events were directly related to differences in wind stress curl generated by the position and strength of the individual bora jets. The mean heat flux bias was reduced by 72%, and heat flux RMSE reduced by 30% on average at four instrumented over-water sites in the two-way coupled simulation relative to the uncoupled control. Largest reductions in wind stress were found in the bora jets, while the biggest reductions in heat flux were found along the north and west coasts of the Adriatic. In bora 2, SST gradients impacted the wind stress curl along the north and west coasts, and in bora 1 wind stress curl was sensitive to the Istrian front position and strength. The two-way coupled simulation produced diminished surface current speeds of ???12% over the northern Adriatic during both bora compared with a one-way coupled simulation. Copyright 2007 by the American Geophysical Union.

  13. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  14. Intra-urban variability of air pollution in Windsor, Ontario-Measurement and modeling for human exposure assessment

    SciTech Connect

    Wheeler, Amanda J. Smith-Doiron, Marc; Xu Xiaohong; Gilbert, Nicolas L.; Brook, Jeffrey R.

    2008-01-15

    There are acknowledged difficulties in epidemiological studies to accurately assign exposure to air pollution for large populations, and large, long-term cohort studies have typically relied upon data from central monitoring stations. This approach has generally been adequate when populations span large areas or diverse cities. However, when the effects of intra-urban differences in exposure are being studied, the use of these existing central sites are likely to be inadequate for representing spatial variability that exists within an urban area. As part of the Border Air Quality Strategy (BAQS), an international agreement between the governments of Canada and the United States, a number of air health effects studies are being undertaken by Health Canada and the US EPA. Health Canada's research largely focuses on the chronic exposure of elementary school children to air pollution. The exposure characterization for this population to a variety of air pollutants has been assessed using land-use regression (LUR) models. This approach has been applied in several cities to nitrogen dioxide (NO{sub 2}), as an assumed traffic exposure marker. However, the models have largely been developed from limited periods of saturation monitoring data and often only represent one or two seasons. Two key questions from these previous efforts, which are examined in this paper, are: If NO{sub 2} is a traffic marker, what other pollutants, potentially traffic related, might it actually represent? How well is the within city spatial variability of NO{sub 2}, and other traffic-related pollutants, characterized by a single saturation monitoring campaign. Input data for the models developed in this paper were obtained across a network of 54 monitoring sites situated across Windsor, Ontario. The pollutants studied were NO{sub 2}, sulfur dioxide (SO{sub 2}) and volatile organic compounds, which were measured in all four seasons by deploying passive samplers for 2-week periods. Correlations

  15. Intra-urban variability of air pollution in Windsor, Ontario--measurement and modeling for human exposure assessment.

    PubMed

    Wheeler, Amanda J; Smith-Doiron, Marc; Xu, Xiaohong; Gilbert, Nicolas L; Brook, Jeffrey R

    2008-01-01

    There are acknowledged difficulties in epidemiological studies to accurately assign exposure to air pollution for large populations, and large, long-term cohort studies have typically relied upon data from central monitoring stations. This approach has generally been adequate when populations span large areas or diverse cities. However, when the effects of intra-urban differences in exposure are being studied, the use of these existing central sites are likely to be inadequate for representing spatial variability that exists within an urban area. As part of the Border Air Quality Strategy (BAQS), an international agreement between the governments of Canada and the United States, a number of air health effects studies are being undertaken by Health Canada and the US EPA. Health Canada's research largely focuses on the chronic exposure of elementary school children to air pollution. The exposure characterization for this population to a variety of air pollutants has been assessed using land-use regression (LUR) models. This approach has been applied in several cities to nitrogen dioxide (NO2), as an assumed traffic exposure marker. However, the models have largely been developed from limited periods of saturation monitoring data and often only represent one or two seasons. Two key questions from these previous efforts, which are examined in this paper, are: If NO2 is a traffic marker, what other pollutants, potentially traffic related, might it actually represent? How well is the within city spatial variability of NO2, and other traffic-related pollutants, characterized by a single saturation monitoring campaign. Input data for the models developed in this paper were obtained across a network of 54 monitoring sites situated across Windsor, Ontario. The pollutants studied were NO2, sulfur dioxide (SO2) and volatile organic compounds, which were measured in all four seasons by deploying passive samplers for 2-week periods. Correlations among these pollutants were

  16. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.

    PubMed

    Kaledin, Alexey L; Lian, Tianquan; Hill, Craig L; Musaev, Djamaladdin G

    2014-08-12

    We describe an extension of the conventional Fourier grid discrete variable representation (DVR) to the bound state problem of a particle with a position-dependent mass. An infinite order DVR, derived for a variable mass kinetic energy operator, coupled with an efficient grid contraction scheme yields essentially exact eigenvalues for a chosen grid spacing. Implementation of the method is shown to be very practical due to the fact that in a DVR no integral evaluation is necessary and that the resultant kinetic energy matrix is sparse. Numerical calculations are presented for exciton states of spherical, cylindrical, and toric Type I (CdSe/ZnS) core-shell quantum dots. In these examples, electron-hole interaction is treated explicitly by solving a self-consistent Schrödinger-Poisson equation on a contracted DVR grid. Prospective applications of the developed approach to calculating electron transfer rates between adsorbed molecular acceptors and quantum confined nanocrystals of generic shape, dimensionality, and composition are also discussed.

  17. Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects.

    PubMed

    Graff, Beata; Szyndler, Anna; Czechowicz, Krzysztof; Kucharska, Wiesława; Graff, Grzegorz; Boutouyrie, Pierre; Laurent, Stephane; Narkiewicz, Krzysztof

    2013-11-01

    Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.

  18. Ambient air analyses using nonspecific flame ionization and electron capture detection compared to specific detection by mass spectroscopy

    SciTech Connect

    Pleil, J.D.; Oliver, K.D.; McClenny, W.A.

    1988-08-01

    Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.

  19. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  20. Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass

    NASA Astrophysics Data System (ADS)

    Gorkavyi, N.

    2005-12-01

    Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).

  1. Modeling the Transport and Chemical Evolution of Onshore and Offshore Emissions and their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    SciTech Connect

    Kiran Alapaty; Adel Hanna

    2006-10-16

    This research project has two primary objectives: (1) to further develop and refine the Multiscale Air Quality Simulation Platform-Variable Grid Resolution (MAQSIP-VGR) model, an advanced variable-grid-resolution air quality model, to provide detailed, accurate representation of the dynamical and chemical processes governing the fate of anthropogenic emissions in coastal environments; and (2) to improve current understanding of the potential impact of onshore and offshore oil and gas exploration and production (E&P) emissions on O{sub 3} and particulate matter nonattainment in the Gulf of Mexico and surrounding states.

  2. Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, Scott D.; Zahorowski, Wlodek; Williams, Alastair G.; Crawford, Jagoda; Griffiths, Alan D.

    2013-01-01

    We use 7 years of hourly radon observations at Mauna Loa Observatory (MLO), together with 10-day back trajectories, to identify baseline air masses at the station. The amplitude of the annual MLO radon cycle, based on monthly means, was 98 mBq m-3 (39 -137 mBq m-3), with maximum values in February (90th percentile 330 mBq m-3) and minimum values in August (10th percentile 8.1 mBq m-3). The composite diurnal radon cycle (amplitude 49 mBq m-3) is discussed with reference to the influences of local flow features affecting the site, and a 3-hour diurnal sampling window (0730-1030 HST) is proposed for observing the least terrestrially influenced tropospheric air masses. A set of 763 baseline events is selected, using the proposed sampling window together with trajectory information, and presented along with measured radon concentrations as a supplement. This data set represents a resource for the selection of baseline events at MLO for use with a range of trace species. A reduced set of 196 "deep baseline" events occurring in the July-September window is also presented and discussed. The distribution (10th/50th/90th percentile) of radon in deep-baseline events (8.7/29.2/66.1 mBq m-3) was considerably lower than that for the overall set of 763 baseline events (12.3/40.8/104.1 mBq m-3). Results from a simple budget calculation, using sonde-derived mixing depths and literature-based estimates of oceanic radon flux and radon concentrations in the marine boundary layer, indicate that the main source of residual radon in the lower troposphere under baseline conditions at MLO is downward mixing from aged terrestrial air masses in the upper troposphere.

  3. The young low-mass star ISO-Oph-50: extreme variability induced by a clumpy, evolving circumstellar disc

    NASA Astrophysics Data System (ADS)

    Scholz, Alexander; Mužić, Koraljka; Geers, Vincent

    2015-07-01

    ISO-Oph-50 is a young low-mass object in the ˜1 Myr old Ophiuchus star-forming region undergoing dramatic changes in its optical/near/mid-infrared brightness by 2-4 mag. We present new multi-band photometry and near-infrared spectra, combined with a synopsis of the existing literature data. Based on the spectroscopy, the source is confirmed as a mid-M dwarf, with evidence for ongoing accretion. The near-infrared light curves show large-scale variations, with 2-4 mag amplitude in the bands IJHK, with the object generally being bluer when faint. Near its brightest state, the object shows colour changes consistent with variable extinction of ΔAV ˜ 7 mag. High-cadence monitoring at 3.6 μm reveals quasi-periodic variations with a typical time-scale of 1-2 weeks. The best explanation for these characteristics is a low-mass star seen through circumstellar matter, whose complex variability is caused by changing inhomogeneities in the inner parts of the disc. When faint, the direct stellar emission is blocked; the near-infrared radiation is dominated by scattered light. When bright, the emission is consistent with a photosphere strongly reddened by circumstellar dust. Based on the available constraints, the inhomogeneities have to be located at or beyond ˜0.1 au distance from the star. If this scenario turns out to be correct, a major portion of the inner disc has to be clumpy, structured, and/or in turmoil. In its observational characteristics, this object resembles other types of young stellar objects with variability caused in the inner disc. Compared to other objects, however, ISO-Oph-50 is clearly an extreme case, given the large amplitude of the brightness and colour changes combined with the erratic behaviour. ISO-Oph-50 has been near its brightest state since 2013; further monitoring is highly encouraged.

  4. Quantile Regression Analysis of the Distributional Effects of Air Pollution on Blood Pressure, Heart Rate Variability, Blood Lipids, and Biomarkers of Inflammation in Elderly American Men: The Normative Aging Study

    PubMed Central

    Bind, Marie-Abele; Peters, Annette; Koutrakis, Petros; Coull, Brent; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Background: Previous studies have observed associations between air pollution and heart disease. Susceptibility to air pollution effects has been examined mostly with a test of effect modification, but little evidence is available whether air pollution distorts cardiovascular risk factor distribution. Objectives: This paper aims to examine distributional and heterogeneous effects of air pollution on known cardiovascular biomarkers. Methods: A total of 1,112 men from the Normative Aging Study and residents of the greater Boston, Massachusetts, area with mean age of 69 years at baseline were included in this study during the period 1995–2013. We used quantile regression and random slope models to investigate distributional effects and heterogeneity in the traffic-related responses on blood pressure, heart rate variability, repolarization, lipids, and inflammation. We considered 28-day averaged exposure to particle number, PM2.5 black carbon, and PM2.5 mass concentrations (measured at a single monitor near the site of the study visits). Results: We observed some evidence suggesting distributional effects of traffic-related pollutants on systolic blood pressure, heart rate variability, corrected QT interval, low density lipoprotein (LDL) cholesterol, triglyceride, and intercellular adhesion molecule-1 (ICAM-1). For example, among participants with LDL cholesterol below 80 mg/dL, an interquartile range increase in PM2.5 black carbon exposure was associated with a 7-mg/dL (95% CI: 5, 10) increase in LDL cholesterol, while among subjects with LDL cholesterol levels close to 160 mg/dL, the same exposure was related to a 16-mg/dL (95% CI: 13, 20) increase in LDL cholesterol. We observed similar heterogeneous associations across low versus high percentiles of the LDL distribution for PM2.5 mass and particle number. Conclusions: These results suggest that air pollution distorts the distribution of cardiovascular risk factors, and that, for several outcomes, effects may be

  5. Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century

    NASA Astrophysics Data System (ADS)

    Previdi, Michael; Polvani, Lorenzo M.

    2016-09-01

    Global and regional climate models robustly simulate increases in Antarctic surface mass balance (SMB) during the twentieth and twenty-first centuries in response to anthropogenic global warming. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB in recent decades. We show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal during the second half of the twentieth century is small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable as a result of large natural SMB variability. However, our analysis reveals that the anthropogenic impact on Antarctic SMB is very likely to emerge from natural variability by the middle of the current century, thus mitigating future increases in global sea level.

  6. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  7. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  8. Seasonal cycle and interannual variability of the total CH4 mixing ratios in West Siberia: Results from AIRS/AMSU and chemistry transport models for 2003-2013

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Mordvin, Egor

    Methane (CH4) is an important greenhouse gas. It has much higher global warming potential comparing to carbon dioxide on per mass emitted basis. Atmospheric methane also plays an important role in atmospheric ozone chemistry and is the main source of water vapor in the stratosphere. The recent increase of CH4 in 2007-2008, after a nearly stable period of about one decade, is attributed to the increased emissions from tropical and Arctic wetlands. However, many uncertainties regarding natural and anthropogenic methane emissions still exist. For example, the total CH4 emissions from wetlands in West Siberia are estimated to be in the range from 1.6 to 20 Tg/year. The main causes leading to such large uncertainties are significant spatial and temporal variation of CH4 emissions and the sparseness of ground observational networks. The purpose of this study is to investigate the seasonal cycle and interannual variability of the total CH4 mixing ratios (CH4-Tot) in West Siberia for 2003-2013 using the AIRS/AMSU-Aqua measurements and the results from chemistry transport models MOZART4 and ACTM-CCSR/NIES/FRCGC. The key feature of the proposed approach is chemistry transport model-based regression equation linking CH4-Tot with mid-upper tropospheric CH4 (in the layer from 50 to 250 hPa below the tropopause), the tropopause height and the surface temperature. The observational information in our approach comes from the AIRS/AMSU measurements. Comparison of the retrieved CH4-Tot with the measurements of CH4 from the Total Carbon Column Observing Network (TCCON) have shown that the model captures observed seasonal cycles and interannual variability at mid-latitude sites. The spatial and temporal distributions of CH4-Tot in West Siberia for 2003-2013 are presented. Analysis of deseasonalized time-series indicates that the total CH4 mixing ratios increases about 4 ppbv/yr from 2007. This work was supported in part by the Russian Foundation for Basic Research (grant No 13

  9. The influence of mass-transfer variability on the growth of white dwarfs, and the implications for Type Ia supernova rates

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Voss, R.; Knigge, C.

    2014-06-01

    White dwarfs (WDs) can increase their mass by accretion from companion stars, provided the mass-accretion rate is high enough to avoid nova eruptions. The accretion regimes that allow growth of the WDs are usually calculated assuming constant mass-transfer rates. However, it is possible that these systems are influenced by effects that cause the rate to fluctuate on various time-scales. We investigate how long-term mass-transfer variability affects accreting WDs systems. We show that, if such variability is present, it expands the parameter space of binaries where the WD can effectively increase its mass. Furthermore, we find that the Type Ia supernova (SNIa) rate is enhanced by a factor 2-2.5 to a rate that is comparable with the lower limit of the observed rates. The changes in the delay-time distribution allow for more SNIae in stellar populations with ages of a few Gyr. Thus, mass-transfer variability gives rise to a new formation channel of SNIa events that can significantly contribute to the SNIa rate. Mass-transfer variability is also likely to affect other binary populations through enhanced WD growth. For example, it may explain why WDs in cataclysmic variables are observed to be more massive than single WDs, on average.

  10. X-RAY DETERMINATION OF THE VARIABLE RATE OF MASS ACCRETION ONTO TW HYDRAE

    SciTech Connect

    Brickhouse, N. S.; Cranmer, S. R.; Dupree, A. K.; Guenther, H. M.; Wolk, S. J.; Luna, G. J. M.

    2012-12-01

    Diagnostics of electron temperature (T{sub e} ), electron density (n{sub e} ), and hydrogen column density (N{sub H}) from the Chandra High Energy Transmission Grating spectrum of He-like Ne IX in TW Hydrae (TW Hya), in conjunction with a classical accretion model, allow us to infer the accretion rate onto the star directly from measurements of the accreting material. The new method introduces the use of the absorption of Ne IX lines as a measure of the column density of the intervening, accreting material. On average, the derived mass accretion rate for TW Hya is 1.5 Multiplication-Sign 10{sup -9} M{sub Sun} yr{sup -1}, for a stellar magnetic field strength of 600 G and a filling factor of 3.5%. Three individual Chandra exposures show statistically significant differences in the Ne IX line ratios, indicating changes in N{sub H}, T{sub e} , and n{sub e} by factors of 0.28, 1.6, and 1.3, respectively. In exposures separated by 2.7 days, the observations reported here suggest a five-fold reduction in the accretion rate. This powerful new technique promises to substantially improve our understanding of the accretion process in young stars.

  11. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  12. Avoiding transthoracic echocardiography and transesophageal echocardiography for patients with variable body mass indexes in infective endocarditis

    PubMed Central

    Sogomonian, Robert; Alkhawam, Hassan; Vyas, Neil; Jolly, JoshPaul; Nguyen, James; Haftevani, Emma A. Moradoghli; Al-khazraji, Ahmed; Ashraf, Amar

    2016-01-01

    Background Echocardiography has been a popular modality used to aid in the diagnosis of infective endocarditis (IE) with the modified Duke criteria. We evaluated the necessity between the uses of either a transthoracic echocardiography (TTE) or transesophageal echocardiography (TEE) in patients with a body mass index (BMI) greater than or equal to 25 kg/m2 and less than 25 kg/m2. Methods A single-centered, retrospective study of 198 patients between 2005 and 2012 diagnosed with IE based on modified Duke criteria. Patients, required to be above age 18, had undergone an echocardiogram study and had blood cultures to be included in the study. Results Among 198 patients, two echocardiographic groups were evaluated as 158 patients obtained a TTE, 143 obtained a TEE, and 103 overlapped with TEE and TTE. Out of these patients, 167 patients were included in the study as 109 (65%) were discovered to have native valve vegetations on TEE and 58 (35%) with TTE. TTE findings were compared with TEE results for true negatives and positives to isolate valvular vegetations. Overall sensitivity of TTE was calculated to be 67% with a specificity of 93%. Patients were further divided into two groups with the first group having a BMI ≥25 kg/m2 and the subsequent group with a BMI <25 kg/m2. Patients with a BMI ≥25 kg/m2 who underwent a TTE study had a sensitivity and specificity of 54 and 92%, respectively. On the contrary, patients with a BMI < 25 kg/m2 had a TTE sensitivity and specificity of 78 and 95%, respectively. Conclusions Patients with a BMI <25 kg/m2 and a negative TTE should refrain from further diagnostic studies, with TEE strong clinical judgment is warranted. Patients with a BMI ≥ 25 kg/m2 may proceed directly to TEE as the initial study, possibly avoiding an additional study with a TTE. PMID:27124167

  13. The long-range transport of Asian air pollution: Its variability and impacts on western North America

    NASA Astrophysics Data System (ADS)

    Reidmiller, David R.

    This dissertation uses measurements from the Mt. Bachelor Observatory (MBO: 43.98° N, 121.69° W; 2.7 km above sea level) in the Cascade Range of central Oregon and elsewhere to investigate the impacts and causes of variability in the Asian long-range transport of air pollution (ALRT) on multiple spatiotemporal scales. Carbon monoxide (CO) observations from MBO, satellite retrievals, a global chemical transport model (CTM) and a backtrajectory index revealed that significant declines (2-21%) in springtime CO at MBO and elsewhere from spring 2005 to spring 2006 were attributable to: (a) strong wildfires in SE Asia during winter 2004 through spring 2005, and (b) the transport pattern in March and April 2006 which limited the inflow of East Asian industrial pollution to the lower free troposphere (FT) over western North America (NA). Ozone (O3) results from 16 CTMs were compared to Clean Air Status and Trends Network (CASTNet) observations in the U.S. for 2001. While the impact of foreign emissions on surface O3 in the U.S. is not negligible (decline of 0.3-0.9 ppbv for a 20% reduction in anthropogenic emissions abroad) - and is of increasing concern given the recent growth in Asian emissions - the effect of NA emissions reductions (decline of 5-6 ppbv for a 20% reduction in anthropogenic O3 precursors) was found to be substantially greater. Chairlift sounding data from MBO revealed that a boundary layer influence at the summit begins ˜10:00 PDT during spring. Using these data, I isolated FT nitrogen oxide (NOX = NO + NO2) observations from 1 autumn and 3 spring campaigns. Significant interannual variability was detected and attributed to changes in FT synoptic conditions. Substantially lower NO X levels were observed during spring 2009 when there were: (1) higher geopotential heights (Z) and warmer temperatures ( T) over the Gulf of Alaska and (2) much weaker winds throughout the North Pacific. A characterization of the top 20 FT NOX events revealed that half (n=10

  14. Investigation on the variability of East Asia Boreal Summer Front Frequency and Linkage between Tropical Air Temperature

    NASA Astrophysics Data System (ADS)

    Choi, Eunho; Lim, Gyu-Ho

    2016-04-01

    Summer time front is one of the most significant phenomena over East Asia including China, Korea and Japan. Many efforts have been established to understand the nature of front. However, there was no research conducting identifying East Asia summer time fronts objectively. We have established objective front recognition method. The method follows next procedures : 1) We calculate vorticity on 850-hPa surface. 2) Any grid point that have horizontal gradient of equivalent potential temperature (EPT hereafter) on 850-hPa surface less than 4 'c / 100km set to zero. 3) Next, we smooth this field using 9-point smoothing technique. 4) Finally we extract the main axis of closed contour correspond to vorticity of 1.5 10-5s-5. Voronoi diagram used to extract this axis. We define this axis as front on 850-hPa pressure surface. We have applied the method on 1981-2010 ERA-Interim dataset. From the result, front frequency maximums are in around of East China Sea (34N, 122E), north (38N, 136E) and south (34N, 140E) of main island of Japan. Below 30N and above 40N, front frequency tends to decrease maybe due to decrease in the magnitude of gradient of EPT and the frequency of cyclonic weather disturbance. Two main regions affect the variability of East Asia Front Frequency. One is equatorial positive region especially over Taiwan (25N, 120E). The other one is East Sea next to Korea (40N, 135E). Humid warm air transported from southern China (20N-30N, 100E-110E) and dry cold air transported from northern China (30N-40N, 100E-110E) compressed by clockwise high system over Taiwan and counter-clockwise low system over East Sea). This compressed precipitation-making system or front moves by extratropical westerly and transported out to north-western Pacific. It looks like geopotential over Taiwan affected by tropical activity, especially vertical integration of temperature (VIT hereafter) over tropical region (30S-30N). When VIT is higher than normal, geopotential over Taiwan also

  15. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components.

  16. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  17. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  18. Identification of European Air Masses Using an Interactive Computer Technique for Separating Mixed Normal Distributions.

    DTIC Science & Technology

    1982-01-01

    classifying a maritime surface, he refers to the Pacific, Atlantic, or Gulf of Mexico using the general term "maritime" only when the exact origin is...portions of North Atlantic NPA PA air modified over warm North Atlantic TC Southern U.S. and Northern Mexico TG Gulf of Mexico and Caribbean NTG TG...Bergeron, T., 1928: " Uber Die Dreidimensional Verknupfende Wetteranalyse, Teil I." Geofys. Pub!., Vol. 5, No. 6. Berggren, R., 1953: "On Temperature

  19. Flow of variably fluidized granular masses across three-dimensional terrain I. Coulomb mixture theory

    USGS Publications Warehouse

    Iverson, R.M.; Denlinger, R.P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  20. Variability in the Heritability of Body Mass Index: A Systematic Review and Meta-Regression

    PubMed Central

    Elks, Cathy E.; den Hoed, Marcel; Zhao, Jing Hua; Sharp, Stephen J.; Wareham, Nicholas J.; Loos, Ruth J. F.; Ong, Ken K.

    2012-01-01

    Evidence for a major role of genetic factors in the determination of body mass index (BMI) comes from studies of related individuals. Despite consistent evidence for a heritable component of BMI, estimates of BMI heritability vary widely between studies and the reasons for this remain unclear. While some variation is natural due to differences between populations and settings, study design factors may also explain some of the heterogeneity. We performed a systematic review that identified 88 independent estimates of BMI heritability from twin studies (total 140,525 twins) and 27 estimates from family studies (42,968 family members). BMI heritability estimates from twin studies ranged from 0.47 to 0.90 (5th/50th/95th centiles: 0.58/0.75/0.87) and were generally higher than those from family studies (range: 0.24–0.81; 5th/50th/95th centiles: 0.25/0.46/0.68). Meta-regression of the results from twin studies showed that BMI heritability estimates were 0.07 (P = 0.001) higher in children than in adults; estimates increased with mean age among childhood studies (+0.012/year, P = 0.002), but decreased with mean age in adult studies (−0.002/year, P = 0.002). Heritability estimates derived from AE twin models (which assume no contribution of shared environment) were 0.12 higher than those from ACE models (P < 0.001), whilst lower estimates were associated with self reported versus DNA-based determination of zygosity (−0.04, P = 0.02), and with self reported versus measured BMI (−0.05, P = 0.03). Although the observed differences in heritability according to aspects of study design are relatively small, together, the above factors explained 47% of the heterogeneity in estimates of BMI heritability from twin studies. In summary, while some variation in BMI heritability is expected due to population-level differences, study design factors explained nearly half the heterogeneity reported in twin studies. The genetic contribution to BMI appears to

  1. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.; Denlinger, Roger P.

    2001-01-01

    Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability

  2. Properties of individual aerosol particles and their relation to air mass origins in a south China coastal city

    NASA Astrophysics Data System (ADS)

    Shi, Zongbo; He, Kebin; Xue, Zhigang; Yang, Fumo; Chen, Yanju; Ma, Yongliang; Luo, Jiaojiao

    2009-05-01

    Atmospheric particles in urban and rural areas in Shenzhen city were collected in summer and winter 2004. The particles were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. The fine particles (<1 μm) were categorized into chain-like, elongated, rounded, and others on the basis of their morphology. Chain-like particles were likely soot aggregates. In summer and winter, chain-like particles accounted for 43% and 42% of total particles in the urban area, and 22% and 43% in the rural area, respectively. The elongated particles were mixtures of aged sea salts and ammonium sulfate, suggesting an aqueous phase reaction mechanism, i.e., in-cloud sulfate formation. Such particles occupied 12% of total particles in the urban area in the summer and were rarely observed in the wintertime samples. The rounded particles were mainly composed of sulfate and/or carbon. Their number concentration in the urban area was more than three times higher in the winter. In addition, we found that air masses from northern inland contained much higher concentrations of particles than those from the ocean. This was particularly evident in the rural area, where concentrations of chain-like and rounded particles were eight times higher in the continental air masses. These results suggest the strong influence of regional pollution on the particle number concentrations in the coastal city.

  3. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  4. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  5. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  6. USEPA Environmental Quality Index (EQI) - Air, Water, Land, Built, and Sociodemographic Domains Transformed Variables Dataset as Input for the USEPA EQI, by County for the United States

    EPA Pesticide Factsheets

    The US Environmental Protection Agency's (EPA) National Health and Environmental Effects Research Laboratory (NHEERL) in the Environmental Public Health Division (EPHD) is currently engaged in research aimed at developing a measure that estimates overall environmental quality at the county level for the United States. This work is being conducted as an effort to learn more about how various environmental factors simultaneously contribute to health disparities in low-income and minority populations, and to better estimate the total environmental and social context to which humans are exposed. This dataset contains the finalized transformed variables chosen to represent the Air, Water, Land, Built, and Sociodemographic Domains of the total environment. Six criteria air pollutants and 81 hazardous air pollutants are included in this dataset. Data sources are the EPA's Air Quality system (http://www.epa.gov/ttn/airs/airsaqs/) and the National-scale Air Toxics Assessment (http://www.epa.gov/nata/). Variables are average pollutant concentrations or emissions for 2000-2005 at the county level for all counties in the United States. Data on water impairment, waste permits, beach closures, domestic water source, deposition for 9 pollutants, drought status, and 60 chemical contaminants. Data sources are the EPA's WATERS (Watershed Assessment, Tracking and Environmental ResultS) Database (http://www.epa.gov/waters/), the U.S. Geological Survey Estimates of Water Use in the

  7. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  8. A Cautionary Tale on the Inclusion of Variable Posttranslational Modifications in Database-Dependent Searches of Mass Spectrometry Data.

    PubMed

    Svozil, J; Baerenfaller, K

    2017-01-01

    Mass spectrometry-based proteomics allows in principle the identification of unknown target proteins of posttranslational modifications and the sites of attachment. Including a variety of posttranslational modifications in database-dependent searches of high-throughput mass spectrometry data holds the promise to gain spectrum assignments to modified peptides, thereby increasing the number of assigned spectra, and to identify potentially interesting modification events. However, these potential benefits come for the price of an increased search space, which can lead to reduced scores, increased score thresholds, and erroneous peptide spectrum matches. We have assessed here the advantages and disadvantages of including the variable posttranslational modifications methionine oxidation, protein N-terminal acetylation, cysteine carbamidomethylation, transformation of N-terminal glutamine to pyroglutamic acid (Gln→pyro-Glu), and deamidation of asparagine and glutamine. Based on calculations of local false discovery rates and comparisons to known features of the respective modifications, we recommend for searches of samples that were not enriched for specific posttranslational modifications to only include methionine oxidation, protein N-terminal acetylation, and peptide N-terminal Gln→pyro-Glu as variable modifications. The principle of the validation strategy adopted here can also be applied for assessing the inclusion of posttranslational modifications for differently prepared samples, or for additional modifications. In addition, we have reassessed the special properties of the ubiquitin footprint, which is the remainder of ubiquitin moieties attached to lysines after tryptic digest. We show here that the ubiquitin footprint often breaks off as neutral loss and that it can be distinguished from dicarbamidomethylation events.

  9. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and