Sample records for air mass variability

  1. Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface 210Pb and 7Be concentrations in southwestern Europe.

    PubMed

    Grossi, C; Ballester, J; Serrano, I; Galmarini, S; Camacho, A; Curcoll, R; Morguí, J A; Rodò, X; Duch, M A

    2016-12-01

    The variability of the atmospheric concentration of the 7 Be and 210 Pb radionuclides is strongly linked to the origin of air masses, the strength of their sources and the processes of wet and dry deposition. It has been shown how these processes and their variability are strongly affected by climate change. Thus, a deeper knowledge of the relationship between the atmospheric radionuclides variability measured close to the ground and these atmospheric processes could help in the analysis of climate scenarios. In the present study, we analyze the atmospheric variability of a 14-year time series of 7 Be and 210 Pb in a Mediterranean coastal city using a synergy of different indicators and tools such as: the local meteorological conditions, global and regional climate indexes and a lagrangian atmospheric transport model. We particularly focus on the relationships between the main pathways of air masses and sun spots occurrence, the variability of the local relative humidity and temperature conditions, and the main modes of regional climate variability, such as the North Atlantic Oscillation (NAO) and the Western Mediterranean Oscillation (WeMO). The variability of the observed atmospheric concentrations of both 7 Be and 210 Pb radionuclides was found to be mainly positively associated to the local climate conditions of temperature and to the pathways of air masses arriving at the station. Measured radionuclide concentrations significantly increase when air masses travel at low tropospheric levels from central Europe and the western part of the Iberian Peninsula, while low concentrations are associated with westerly air masses. We found a significant negative correlation between the WeMO index and the atmospheric variability of both radionuclides and no significant association was observed for the NAO index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influence of the relative optical air mass on ultraviolet erythemal irradiance

    NASA Astrophysics Data System (ADS)

    Antón, M.; Serrano, A.; Cancillo, M. L.; García, J. A.

    2009-12-01

    The main objective of this article is to analyze the relationship between the transmissivity for ultraviolet erythemal irradiance (UVER) and the relative optical air mass at Badajoz (Southwestern Spain). Thus, a power expression between both variables is developed, which analyses in detail how atmospheric transmission is influenced by the total ozone column (TOC) and the atmospheric clearness. The period of analysis extends from 2001 to 2005. The experimental results indicate that clearness conditions play an important role in the relationship between UVER transmissivity and the relative optical air mass, while the effect of TOC is much smaller for this data set. In addition, the results show that UVER transmissivity is more sensitive to changes in atmospheric clearness than to TOC variability. Changes in TOC values higher than 15% cause UVER trasnmissivity to vary between 14% and 22%, while changes between cloud-free and overcast conditions produce variations in UVER transmissivity between 68% and 74% depending on the relative optical air mass.

  3. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also identified for the onset of spring. Late spring frequencies are similar but with more variability in all moist variety air mass frequencies. These findings indicate that, from a synoptic perspective, springs in the Northeast can be defined by dry air mass conditions through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the Northeast spring season may also be represented by more variable day-to-day air mass conditions in modern times than detected in past decades. 1950 - 1975 (black) and 1976 - 2010 (gray) Philadelphia, PA Spring air mass frequency (%).

  4. An index of anomalous convective instability to detect tornadic and hail storms

    NASA Astrophysics Data System (ADS)

    Qian, Weihong; Leung, Jeremy Cheuk-Hin; Luo, Weimeng; Du, Jun; Gao, Jidong

    2017-12-01

    In this article, the synoptic-scale spatial structures for raising tornadic and hail storms are compared by analyzing the total and anomalous variable fields from the troposphere to the stratosphere. 15 cases of tornado outbreaks and 20 cases of hail storms that occurred in the central United States during 1980-2011 were studied. The anomalous temperature-height field shows that a tornadic or hail storm usually occurs at the boundary of anomalous warm and cold air masses horizontally in the troposphere. In one side, an anomalous warm air mass in the mid-low troposphere and an anomalous cold air mass in the stratosphere are vertically separated by a positive center of height anomalies at the upper troposphere. In another side, an opposite vertical pattern shows that an anomalous cold air mass in the mid-low troposphere and an anomalous warm air mass in the stratosphere are separated by a negative center of height anomalies at the upper troposphere. Therefore, two pairs of adjacent anomalous warm/cold centers and one pair of anomalous high/low centers combining together form a major tornadic or hail storm paradigm, which can be physically considered as the storage of anomalous potential energy (APE) to generate severe weather. To quantitatively measure the APE, we define an index of anomalous convective instability (ACI) which is a difference of integrating temperature anomalies based on two vertically opposite anomalous air masses. The APE transformation to anomalous kinetic energy, which reduces horizontal and vertical gradients of temperature anomalies, produces anomalous rising and sinking flows in the lower-layer anomalous warm and cold air mass sides, respectively. The intensity of ACI index for tornadic storm cases is 1.5 times larger than that of hail storm cases in average. Thus, this expression of anomalous variables is better than total variables used in the traditional synoptic chart and the ACI index is better than other indices to detect potential tornadic and hail storms in order to understand the environmental conditions affecting severe weather in analytical and model output datasets.

  5. Meteorological conditions during the summer 1986 CITE 2 flight series

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott

    1990-01-01

    An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.

  6. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase. In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component (43% OA) while semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA and depend on the air mass origin. A significant variability of ozone was observed that depends on the impact of different air mass types and solar radiation.

  7. Winter air-mass-based synoptic climatological approach and hospital admissions for myocardial infarction in Florence, Italy.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Grifoni, Daniele; Orlandini, Simone; Cecchi, Lorenzo; Bacci, Laura; Modesti, Pietro Amedeo; Gensini, Gian Franco; Maracchi, Giampiero

    2006-09-01

    The aim of this study was to evaluate the relationship between the risk of hospital admission for myocardial infarction (MI) and the daily weather conditions during the winters of 1998-2003, according to an air-mass-based synoptic climatological approach. The effects of time lag and 2-day sequences with specific air mass types were also investigated. Studies concerning the relationship between atmospheric conditions and human health need to take into consideration simultaneous effects of many weather variables. At the moment few studies have surveyed these effects on hospitalizations for MI. Analyses were concentrated on winter, when the maximum peak of hospitalization occurred. An objective daily air mass classification by means of statistical analyses based on ground meteorological data was carried out. A comparison between air mass classification and hospital admissions was made by the calculation of a MI admission index, and to detect significant relationships the Mann-Whitney U test, the analysis of variance, and the Bonferroni test were used. Significant increases in hospital admissions for MI were evident 24h after a day characterized by an anticyclonic continental air mass and 6 days after a day characterized by a cyclonic air mass. Increased risk of hospitalization was found even when specific 2-day air mass sequences occurred. These results represent an important step in identifying reliable linkages between weather and health.

  8. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all air masses passing the continent the organic aerosol fraction dominated the total NR-PM1. For this reason, using Positive Matrix Factorization (PMF) four organic aerosol (OA) classes that can be associated with various aerosol sources and components were identified: a highly-oxygenated OA is the major component contributing an average of 43% of the particulate organic mass while the semi-volatile OA accounts for 23%. A hydrocarbon-like OA mainly resulting from industries, traffic and shipping emissions as well as particles from wood burning emissions also contribute to total OA dependent on the air mass origin. The variability of ozone is not only affected by different types of air masses but also significantly by the diurnal variation as a consequence of the solar radiation as well as local meteorological parameters.

  9. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  10. Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air

    DTIC Science & Technology

    2004-10-15

    called spillage occurs, and the air mass capture decreases (Fig. 3). To avoid performance penalties at off-design Mach numbers, a variable geometry inlet...AND SUBTITLE 5. FUNDING NUMBERS Microwave-Driven Air Plasma Studies for Drag Reduction and Power Extraction in Supersonic Air 6. AUTHOR(S) Richard B...MONITORING AGENCY REPORT NUMBER Air Force Office of Scientific Research/NA (John Schmisseur, Program Manager) 801 N. Randolph St., Room 732 Arlington

  11. Identifying source regions for the atmospheric input of PCDD/Fs to the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Sellström, Ulla; Egebäck, Anna-Lena; McLachlan, Michael S.

    PCDD/F contamination of the Baltic Sea has resulted in the European Union imposing restrictions on the marketing of several fish species. Atmospheric deposition is the major source of PCDD/Fs to the Baltic Sea, and hence there is a need to identify the source regions of the PCDD/Fs in ambient air over the Baltic Sea. A novel monitoring strategy was employed to address this question. During the winter of 2006-2007 air samples were collected in Aspvreten (southern Sweden) and Pallas (northern Finland). Short sampling times (24 h) were employed and only samples with stable air mass back trajectories were selected for analysis of the 2,3,7,8-substituted PCDD/F congeners. The range in the PCDD/F concentrations from 40 samples collected at Aspvreten was a factor of almost 50 (range 0.6-29 fg TEQ/m 3). When the samples were grouped according to air mass origin into seven compass sectors, the variability was much lower (typically less than a factor of 3). This indicates that air mass origin was the primary source of the variability. The contribution of each sector to the PCDD/F contamination over the Baltic Sea during the winter half year of 2006/2007 was calculated from the average PCDD/F concentration for each sector and the frequency with which the air over the Baltic Sea came from that sector. Air masses originating from the south-southwest, south-southeast and east segments contributed 65% of the PCDDs and 75% of the PCDFs. Strong correlations were obtained between the concentrations of most of the PCDD/F congeners and the concentration of soot. These correlations can be used to predict the PCDD/F concentrations during the winter half year from inexpensive soot measurements.

  12. On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.

    PubMed

    Westgate, John N; Wania, Frank

    2011-10-15

    Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.

  13. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  14. Pneumatic Variable Series Elastic Actuator

    PubMed Central

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-01-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on–off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator. PMID:27354755

  15. Combustion mode switching with a turbocharged/supercharged engine

    DOEpatents

    Mond, Alan; Jiang, Li

    2015-09-22

    A method for switching between low- and high-dilution combustion modes in an internal combustion engine having an intake passage with an exhaust-driven turbocharger, a crankshaft-driven positive displacement supercharger downstream of the turbocharger and having variable boost controllable with a supercharger bypass valve, and a throttle valve downstream of the supercharger. The current combustion mode and mass air flow are determined. A switch to the target combustion mode is commanded when an operating condition falls within a range of predetermined operating conditions. A target mass air flow to achieve a target air-fuel ratio corresponding to the current operating condition and the target combustion mode is determined. The degree of opening of the supercharger bypass valve and the throttle valve are controlled to achieve the target mass air flow. The amount of residual exhaust gas is manipulated.

  16. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Thaw, Melissa; Esser, Brad

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  17. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE PAGES

    Visser, Ate; Thaw, Melissa; Esser, Brad

    2017-11-20

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  18. [Air pollution in an urban area nearby the Rome-Ciampino city airport].

    PubMed

    Di Menno di Bucchianico, Alessandro; Cattani, Giorgio; Gaeta, Alessandra; Caricchia, Anna Maria; Troiano, Francesco; Sozzi, Roberto; Bolignano, Andrea; Sacco, Fabrizio; Damizia, Sesto; Barberini, Silvia; Caleprico, Roberta; Fabozzi, Tina; Ancona, Carla; Ancona, Laura; Cesaroni, Giulia; Forastiere, Francesco; Gobbi, Gian Paolo; Costabile, Francesca; Angelini, Federico; Barnaba, Francesca; Inglessis, Marco; Tancredi, Francesco; Palumbo, Lorenzo; Fontana, Luca; Bergamaschi, Antonio; Iavicoli, Ivo

    2014-01-01

    to assess air pollution spatial and temporal variability in the urban area nearby the Ciampino International Airport (Rome) and to investigate the airport-related emissions contribute. the study domain was a 64 km2 area around the airport. Two fifteen-day monitoring campaigns (late spring, winter) were carried out. Results were evaluated using several runs outputs of an airport-related sources Lagrangian particle model and a photochemical model (the Flexible Air quality Regional Model, FARM). both standard and high time resolution air pollutant concentrations measurements: CO, NO, NO2, C6H6, mass and number concentration of several PM fractions. 46 fixed points (spread over the study area) of NO2 and volatile organic compounds concentrations (fifteen days averages); deterministic models outputs. standard time resolution measurements, as well as model outputs, showed the airport contribution to air pollution levels being little compared to the main source in the area (i.e. vehicular traffic). However, using high time resolution measurements, peaks of particles associated with aircraft takeoff (total number concentration and soot mass concentration), and landing (coarse mass concentration) were observed, when the site measurement was downwind to the runway. the frequently observed transient spikes associated with aircraft movements could lead to a not negligible contribute to ultrafine, soot and coarse particles exposure of people living around the airport. Such contribute and its spatial and temporal variability should be investigated when assessing the airports air quality impact.

  19. Sensitivity of solar-cell performance to atmospheric variables. 1: Single cell

    NASA Technical Reports Server (NTRS)

    Klucher, T. M.

    1976-01-01

    The short circuit current of a typical silicon solar cell under direct solar radiation was measured for a range of turbidity, water vapor content, and air mass to determine the relation of the solar cell calibration value (current-to-intensity ratio) to those atmospheric variables. A previously developed regression equation was modified to describe the relation between calibration value, turbidity, water vapor content, and air mass. Based on the value of the constants obtained by a least squares fit of the data to the equation, it was found that turbidity lowers the value, while increase in water vapor increases the calibration value. Cell calibration values exhibited a change of about 6% over the range of atmospheric conditions experienced.

  20. The Cross-Validation of the United States Air Force Submaximal Cycle Ergometer Test to Estimate Aerobic Capacity

    DTIC Science & Technology

    1994-06-01

    the University of Florida. When body composition variables were included in the regression model, such as % body fat and fet free mass, as well as the...maximal oxygen intake . JAMA 203:201-210, 1968. 2. Sharp, J.R. The new Air Force fitness test: A field trial assessing effectiveness and safety...more muscle mass and less fat than the female counterpart. However males and females appear to adapt equally to training (53,55). Also men have a larger

  1. Robustness analysis of an air heating plant and control law by using polynomial chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.

    2014-12-10

    This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less

  2. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  3. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  4. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air.

    PubMed

    Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel

    2018-02-09

    New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  5. Modeling and validation of heat and mass transfer in individual coffee beans during the coffee roasting process using computational fluid dynamics (CFD).

    PubMed

    Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan

    2013-01-01

    Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.

  6. Long-term variability of aerosol optical properties and radiative effects in Northern Finland

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö

    2017-04-01

    We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.

  7. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    NASA Technical Reports Server (NTRS)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  8. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    PubMed

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  9. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; López, Damián A.; Silva-Busso, Adrián

    2018-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP). This region was subject to strong warming trends in the atmospheric surface layer. Surface air temperature increased about 3 K in 50 years, concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. The positive trend in surface air temperature has currently come to a halt. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K (100 m)-1) and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns. The increased mesocyclonic activity during the wintertime over the past decades in the study area results in intensified advection of warm, moist air with high temperatures and rain and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. Its impact on winter accumulation results in the observed negative mass balance estimates. Six years of continuous glaciological measurements on mass balance stake transects as well as 5 years of climatological data time series are presented and a spatially distributed glacier energy balance melt model adapted and run based on these multi-year data sets. The glaciological surface mass balance model is generally in good agreement with observations, except for atmospheric conditions promoting snow drift by high wind speeds, turbulence-driven snow deposition and snow layer erosion by rain. No drift in the difference between simulated mass balance and mass balance measurements can be seen over the course of the 5-year model run period. The winter accumulation does not suffice to compensate for the high variability in summer ablation. The results are analysed to assess changes in meltwater input to the coastal waters, specific glacier mass balance and the equilibrium line altitude (ELA). The Fourcade Glacier catchment drains into Potter cove, has an area of 23.6 km2 and is glacierized to 93.8 %. Annual discharge from Fourcade Glacier into Potter Cove is estimated to q ¯ = 25±6 hm3 yr-1 with the standard deviation of 8 % annotating the high interannual variability. The average ELA calculated from our own glaciological observations on Fourcade Glacier over the time period 2010 to 2015 amounts to 260±20 m. Published studies suggest rather stable conditions of slightly negative glacier mass balance until the mid-1980s with an ELA of approx. 150 m. The calculated accumulation area ratio suggests dramatic changes in the future extent of the inland ice cap for the South Shetland Islands.

  10. Effects of synoptic patterns on atmospheric chemistry and aerosols during the Arctic Ocean Expedition 1996

    NASA Astrophysics Data System (ADS)

    Nilsson, E. Douglas; Barr, Sumner

    2001-12-01

    The atmospheric program on the Arctic Ocean Expedition of July through September 1996 (AOE-96) was focused on aerosol climate feedback. The expedition took place close to the saddle point between a semipersistent anticyclonic ridge from near Scandinavia to the Arctic coast of eastern Siberia and a trough from the Canadian archipelago across the pole to north central Siberia. The weather varied from anticyclonic clear-sky conditions to cyclonic cloudy conditions, and 13 identifiable migratory features (frontal bands, wave disturbances) clearly influenced local weather, clouds, atmospheric transport, and chemistry. This includes an explosive polar cyclone, born at the lateral heat gradient between Greenland and the pack ice rather than between open sea and the pack ice. The synoptic scale weather systems caused the strongest variability in trace gases (O3 in particular) and aerosols, and also strong variability in the cloud cover. The formation of air masses over the pack ice primarily depends on if there is cyclonic (convergent) or anticyclonic (divergent) flow. Cyclonic flow resulted in a modified marine air mass loaded with vapor, but with low aerosol number concentrations owing to frequent clouds and fogs and efficient cloud scavenging of the aerosol. Anticyclonic flow resulted in almost continental air masses with clear sky, long residence time over the pack ice and subsidence slowly replacing the boundary layer with free tropospheric air, low vapor concentrations, but large aerosol number in lack of efficient cloud scavenging. The synoptic variability and advection from south of the ice edge were weaker than during the predecessor International Arctic Ocean Expedition in 1991 (IAOE-91), when on average the sampled air spent 55 hours over the pack ice compared to more than 120 hours during AOE-96, owing to exceptionally high cyclone activity in 1991. This caused a large difference in atmospheric transport, chemistry, and aerosols between the two expeditions.

  11. Measurement and modeling of diel variability of polybrominated diphenyl ethers and chlordanes in air.

    PubMed

    Moeckel, Claudia; Macleod, Matthew; Hungerbühler, Konrad; Jones, Kevin C

    2008-05-01

    Short-term variability of concentrations of polybrominated diphenyl ethers (PBDEs) and chlordanes in air at a semirural site in England over a 5 day period is reported. Four-hour air samples were collected during a period dominated by a high pressure system that produced stable diel (24-h) patterns of meteorological conditions such as temperature and atmospheric boundary layer height. PBDE and chlordane concentrations showed clear diel variability with concentrations in the afternoon and evening being 1.9 - 2.7 times higher than in the early morning. The measurements are interpreted using a multimedia mass balance model parametrized with forcing functions representing local temperature, atmospheric boundary layer height, wind speed and hydroxyl radical concentrations. Model results indicate that reversible, temperature-controlled air-surface exchange is the primary driver of the diel concentration pattern observed for chlordanes and PBDE 28. For higher brominated PBDE congeners (47, 99 and 100), the effect of variable atmospheric mixing height in combination with irreversible deposition on aerosol particles is dominant and explains the diel patterns almost entirely. Higher concentrations of chlordanes and PBDEs in air observed at the end of the study period could be related to likely source areas using back trajectory analysis. This is the first study to clearly document diel variability in concentrations of PBDEs in air over a period of several days. Our model analysis indicates that high daytime and low nighttime concentrations of semivolatile organic chemicals can arise from different underlying driving processes, and are not necessarily evidence of reversible air-surface exchange on a 24-h time scale.

  12. An Analytic Approach to Modeling Land-Atmosphere Interaction: 1. Construct and Equilibrium Behavior

    NASA Astrophysics Data System (ADS)

    Brubaker, Kaye L.; Entekhabi, Dara

    1995-03-01

    A four-variable land-atmosphere model is developed to investigate the coupled exchanges of water and energy between the land surface and atmosphere and the role of these exchanges in the statistical behavior of continental climates. The land-atmosphere system is substantially simplified and formulated as a set of ordinary differential equations that, with the addition of random noise, are suitable for analysis in the form of the multivariate Îto equation. The model treats the soil layer and the near-surface atmosphere as reservoirs with storage capacities for heat and water. The transfers between these reservoirs are regulated by four states: soil saturation, soil temperature, air specific humidity, and air potential temperature. The atmospheric reservoir is treated as a turbulently mixed boundary layer of fixed depth. Heat and moisture advection, precipitation, and layer-top air entrainment are parameterized. The system is forced externally by solar radiation and the lateral advection of air and water mass. The remaining energy and water mass exchanges are expressed in terms of the state variables. The model development and equilibrium solutions are presented. Although comparisons between observed data and steady state model results re inexact, the model appears to do a reasonable job of partitioning net radiation into sensible and latent heat flux in appropriate proportions for bare-soil midlatitude summer conditions. Subsequent work will introduce randomness into the forcing terms to investigate the effect of water-energy coupling and land-atmosphere interaction on variability and persistence in the climatic system.

  13. Method and apparatus for checking fire detectors

    NASA Technical Reports Server (NTRS)

    Clawson, G. T. (Inventor)

    1974-01-01

    A fire detector checking method and device are disclosed for nondestructively verifying the operation of installed fire detectors of the type which operate on the principle of detecting the rate of temperature rise of the ambient air to sound an alarm and/or which sound an alarm when the temperature of the ambient air reaches a preset level. The fire alarm checker uses the principle of effecting a controlled simulated alarm condition to ascertain wheather or not the detector will respond. The checker comprises a hand-held instrument employing a controlled heat source, e.g., an electric lamp having a variable input, for heating at a controlled rate an enclosed mass of air in a first compartment, which air mass is then disposed about the fire detector to be checked. A second compartment of the device houses an electronic circuit to sense and adjust the temperature level and heating rate of the heat source.

  14. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  15. Competing roles of air temperature and summer precipitation events on proglacial stream discharges in Chhota Shigri Glacier catchment, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    AL, R.

    2016-12-01

    It has been widely recognized that western Himalayan region depends heavily on glacier and snow melt for its water needs. This is true especially for the Chenab sub-basin and more generally for other sub-catchments of the mighty Indus catering to the water demands of millions of stake holders who depend on this water resource. However, there are very few studies available to understand high altitude glaciated catchments, the climatic controls over their flow regimes, and their dependency on glacier mass balances, mainly because of poor access. Hence, the proglacial stream discharges from Chhota Shigri Glacier, a representative glacier of western Himalayan region has been analyzed for understanding the impact of rising air temperatures and highly variable summer precipitation events on discharges that are sourced majorly from snow melt and glacier wastage. This study, for the first time attempts to understand the factors influencing the interannual, subseasonal, and the diurnal variability observed in this representative catchment over four ablation seasons (2010-2013), by monitoring solar radiation, air temperature, summer precipitation, albedo and transient snow cover. The proglacial discharge is governed by air temperatures and albedo-enhancing summer precipitation events, which also enhances transient snow cover. While, the positive mass balance years gave rise to lesser proglacial discharges in comparison to negative mass balance years, lesser winter accumulation was compensated by the lower ablation resulting summer snowfall events in some years. While rising summer air temperatures give rise to glacier wastage, the role of melting transient snow cover on stream discharge is highly significant, especially for positive mass balance years. The pronounced interannual variations and the decreased proglacial discharge in comparison to 1980s suggest that Chhota Shigri Glacier is possibly wasting its way to reach equilibrium to the changed climatic conditions of the 21st century; however these findings need to be corroborated with runoff modeling.

  16. Aerosol Composition and Variability in Baltimore Measured during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Thornhill, K. L.; Winstead, E. L.; Diskin, G. S.; Chatfield, R. B.; Natraj, V.; Anderson, B. E.

    2012-12-01

    In order to relate satellite-based measurements of aerosols to ground-level air quality, the correlation between aerosol optical properties (wavelength-dependent scattering and absorption measured by satellites) and mass measurements of aerosol loading (i.e. PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type (such as composition, size, hygroscopicity, and mass scattering and absorption efficiencies) and to the surrounding atmosphere (such as temperature, relative humidity and altitude). The DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality) project was designed to provide a unique dataset for determining variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Extensive in-situ profiling of the lower atmosphere in the Baltimore-Washington D.C. region was performed during fourteen flights during July 2011. Identical flight plans and profile locations throughout the campaign provide meaningful statistics for analysis. Measured aerosol mass was composed primarily of ammonium sulfate (campaign average of 36%) and water-soluble organics (58%). A distinct difference in composition was related to aerosol loading with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 60%). This composition shift causes a change in the water-uptake potential (hygroscopicity) of the aerosols with higher relative organic composition decreasing water-uptake. On average, sulfate mass increased during the day due to increased photochemistry, while organics decreased. Analysis of the linkage between aerosol loading and optical properties was also performed. The absorption by black carbon was dependent on the amount of organic coating with an increase in mass absorption efficiency from 7.5 m2/g for bare soot to 16 m2/g at an organic mass fraction of 70%. The organic fraction was also found to correlate with the absorption Angstrom exponent which is a solely optical measurement. This relationship allows for a possible understanding of aerosol composition based on solely-optical methods (such as satellite-based sensors). Comparison of aerosol composition to scattering indicated significant scattering from non-hydrophilic particles. The origin seemed to be hydrophobic organic material, and the scattering effects were roughly the same magnitude as the water-soluble organics. Such aerosols are not simulated in many air pollution models, and require more field study. 246 profiles were performed at six locations throughout the region. Variability in aerosol scattering (as a proxy for aerosol optical depth) amongst the six sites is dependent on variability in aerosol loading, composition, and relative humidity (the amount of water available for water uptake onto the aerosols). Aerosol loading was found to be the predominant source accounting for 68% on average of the measured variability in scattering with minor contributions from relative humidity (24%) and aerosol composition (8%).

  17. Relationship Between Chronic Obstructive Pulmonary Disease and Air Pollutants Depending on the Origin and Trajectory of Air Masses in the North of Spain.

    PubMed

    Santurtún, Ana; Rasilla, Domingo F; Riancho, Leyre; Zarrabeitia, María T

    2017-11-01

    Chronic obstructive pulmonary disease (COPD) is a common respiratory condition and one of the leading causes of death. Our aim was to analyze the association between emergency room visits due to this disease and meteorological variables and atmospheric contaminant levels in Santander, depending on the origin and trajectory of air masses. Data from emergency room visits at Hospital Marqués de Valdecilla were collected on a daily basis during an 8-year period. Data on concentrations of the main atmospheric pollutants and meteorological variables were also recorded.Retrotrajectories leading to Santander at a height of1,500 meters above sea level were then calculated. Finally, a correlation model was produced to evaluate the effect of the contaminants on emergency visitsdue to COPD. There is a direct association between PM 10 levels and the number of visits to the emergency room due to COPD. For every 10μg/m3 increase in pollutantlevels, emergency visitsincrease by3.34% (p=0.00005), and thiseffect is enhanced in individualsover 74 years of age. This effect is heightened when PM10 levels depend on air masses from the South and when air recirculation occurs. There is no association betweenother pollutants and the number of visits to the emergency room. Exposure to high levels of PM10 causes exacerbations in COPD patients. By studying the atmospheric circulation pattern, we can predict whether PM10 levels will be inappropriately high, and we can also obtain information about the particle components. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote sensing and climate research studies in dynamic aerosol-rich environments like Dongsha.

  19. Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; Liu, Yinan; Lai, Jiawei; Qi, Shaomian; An, Chunhua; Lu, Yao; Duan, Xuexin; Pang, Wei; Zhang, Daihua; Sun, Dong; Chen, Jian-Hao; Liu, Jing

    2018-04-01

    Few-layer black phosphorus (FLBP), a recently discovered two-dimensional semiconductor, has attracted substantial attention in the scientific and technical communities due to its great potential in electronic and optoelectronic applications. However, reactivity of FLBP flakes with ambient species limits its direct applications. Among various methods to passivate FLBP in ambient environment, nanocomposites mixing FLBP flakes with stable matrix may be one of the most promising approaches for industry applications. Here, we report a simple one-step procedure to mass produce air-stable FLBP/phospholipids nanocomposite in liquid phase. The resultant nanocomposite is found to have ultralow tunneling barrier for charge carriers which can be described by an Efros-Shklovskii variable range hopping mechanism. Devices made from such mass-produced FLBP/phospholipids nanocomposite show highly stable electrical conductivity and opto-electrical response in ambient conditions, indicating its promising applications in both electronic and optoelectronic applications. This method could also be generalized to the mass production of nanocomposites consisting of other air-sensitive 2D materials, such as FeSe, NbSe2, WTe2, etc.

  20. Trace gases and air mass origin at Kaashidhoo, Indian Ocean

    NASA Astrophysics Data System (ADS)

    Lobert, Jürgen M.; Harris, Joyce M.

    2002-10-01

    Carbon monoxide (CO) was measured at the Kaashidhoo Climate Observatory (KCO, Republic of Maldives) between February 1998 and March 2000 to assess the regional pollution of the remote atmosphere in the northern Indian Ocean. CO showed a distinct annual cycle with maximum daily mixing ratios of around 240 parts per billion (ppb), a seasonal difference of about 200 ppb, and high variability during the dry seasons. Detailed air mass trajectory analysis for 1998, 1999, and 2000 was used to identify source regions and to associate them with various levels of pollution encountered at KCO. We conclude that most significant changes in local pollution throughout the year are caused by changes in air masses. Air at KCO generally originated from three main regions with decreasing pollution: India and southeast Asia, the Arabian Sea, and the Southern Hemisphere. We show that isentropic air mass trajectories can be used to predict CO pollution levels at KCO to a certain extent and vice versa. Nitrous oxide, CFC-11, CFC-12, CCI4, and SF6 were measured during the Indian Ocean Experiment (February to March 1999) to support pollution analysis and to confirm that India is the main source for heavy pollution measured at KCO. Correlations between CO and other gases and aerosol properties measured at the surface illustrate that CO may also be used as a proxy for aerosol loading and general pollution at the surface.

  1. Analysis of Isentropic Transport in the Lower Tropical Stratosphere from Laminae Observed in Shadoz Ozone Profiles

    NASA Astrophysics Data System (ADS)

    Portafaix, T.; Bencherif, H.; Godin-Beekmann, S.; Begue, N.; Culot, A.

    2014-12-01

    The subtropical dynamical barrier located in the lower stratosphere on the edge of the Tropical Stratospheric Reservoir (TSR), controls and limits exchanges between tropical and extratropical lower stratosphere. The geographical position of stations located near from the edge of the Tropical Stratospheric Reservoir is interesting since they are regularly interested by air-mass filaments originated from TSR or mid-latitudes. During such filamentary events, profiles of chemical species are modified according to the origin and the height of the air mass. These perturbations called "laminae" are generally associated to quasi-horizontal transport events. Many SHADOZ (Southern Hemisphere ADditional OZonesondes) stations from all around the southern tropics were selected in order to study the variability of laminae. Profiles from ozonesondes were analyzed to detect laminae using a statistical standard deviation method from the climatology. Time series of laminae were investigated by a multilinear regression model in order to estimate the influence of several proxy on laminae variability from 1998 to 2013. Different forcings such as QBO, ENSO or IOD were applied. The first objective is to better quantify isentropic transport as function of the station location and the influence of the QBO on the laminae occurrences. Finally, cases studies were conducted from high-resolution advection model MIMOSA. These allow us to identify the air mass origin and to highlight privileged roads where meridional transport occurs between tropics and midlatitudes.

  2. Isentropic Analysis of Convective Motions

    NASA Technical Reports Server (NTRS)

    Pauluis, Olivier M.; Mrowiec, Agnieszka A.

    2013-01-01

    This paper analyzes the convective mass transport by sorting air parcels in terms of their equivalent potential temperature to determine an isentropic streamfunction. By averaging the vertical mass flux at a constant value of the equivalent potential temperature, one can compute an isentropic mass transport that filters out reversible oscillatory motions such as gravity waves. This novel approach emphasizes the fact that the vertical energy and entropy transports by convection are due to the combination of ascending air parcels with high energy and entropy and subsiding air parcels with lower energy and entropy. Such conditional averaging can be extended to other dynamic and thermodynamic variables such as vertical velocity, temperature, or relative humidity to obtain a comprehensive description of convective motions. It is also shown how this approach can be used to determine the mean diabatic tendencies from the three-dimensional dynamic and thermodynamic fields. A two-stream approximation that partitions the isentropic circulation into a mean updraft and a mean downdraft is also introduced. This offers a straightforward way to identify the mean properties of rising and subsiding air parcels. The results from the two-stream approximation are compared with two other definitions of the cloud mass flux. It is argued that the isentropic analysis offers a robust definition of the convective mass transport that is not tainted by the need to arbitrarily distinguish between convection and its environment, and that separates the irreversible convective overturning fromoscillations associated with gravity waves.

  3. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric acid was found to be the main particle formation contributor. The AMS analysis showed inorganic sulfate species being substantially higher during the growth stages of urban compared to continentally influenced events that are characterized by lower PM1 mass concentrations mainly composed of oxidized organics. The lowest average PM1 mass and number concentrations (2 μg m-3, 1000 cm-3) were found in marine air mass types characterized by the highest sulfate PM1-fraction (54%, 0.91 μg m-3) and volume size distributions probably dominated by sodium chloride particles from sea spray. Two to five times higher submicron aerosol mass concentrations were observed in continental (2.5 μg m-3) and urban (4.2 μg m-3) air mass types mainly consisting of organic species that were further evaluated using Positive Matrix Factorization (PMF). Zhang, Q. et al. (2004), Environ. Sci. Technol., 38, 4797-4809.

  4. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  5. Glucose Homeostasis Variables in Pregnancy versus Maternal and Infant Body Composition

    PubMed Central

    Henriksson, Pontus; Löf, Marie; Forsum, Elisabet

    2015-01-01

    Intrauterine factors influence infant size and body composition but the mechanisms involved are to a large extent unknown. We studied relationships between the body composition of pregnant women and variables related to their glucose homeostasis, i.e., glucose, HOMA-IR (homeostasis model assessment-insulin resistance), hemoglobin A1c and IGFBP-1 (insulin-like growth factor binding protein-1), and related these variables to the body composition of their infants. Body composition of 209 women in gestational week 32 and of their healthy, singleton and full-term one-week-old infants was measured using air displacement plethysmography. Glucose homeostasis variables were assessed in gestational week 32. HOMA-IR was positively related to fat mass index and fat mass (r2 = 0.32, p < 0.001) of the women. Maternal glucose and HOMA-IR values were positively (p ≤ 0.006) associated, while IGFBP-1was negatively (p = 0.001) associated, with infant fat mass. HOMA-IR was positively associated with fat mass of daughters (p < 0.001), but not of sons (p = 0.65) (Sex-interaction: p = 0.042). In conclusion, glucose homeostasis variables of pregnant women are related to their own body composition and to that of their infants. The results suggest that a previously identified relationship between fat mass of mothers and daughters is mediated by maternal insulin resistance. PMID:26184296

  6. Determination of the proton-to-helium ratio in cosmic rays at ultra-high energies from the tail of the Xmax distribution

    NASA Astrophysics Data System (ADS)

    Yushkov, A.; Risse, M.; Werner, M.; Krieg, J.

    2016-12-01

    We present a method to determine the proton-to-helium ratio in cosmic rays at ultra-high energies. It makes use of the exponential slope, Λ, of the tail of the Xmax distribution measured by an air shower experiment. The method is quite robust with respect to uncertainties from modeling hadronic interactions and to systematic errors on Xmax and energy, and to the possible presence of primary nuclei heavier than helium. Obtaining the proton-to-helium ratio with air shower experiments would be a remarkable achievement. To quantify the applicability of a particular mass-sensitive variable for mass composition analysis despite hadronic uncertainties we introduce as a metric the 'analysis indicator' and find an improved performance of the Λ method compared to other variables currently used in the literature. The fraction of events in the tail of the Xmax distribution can provide additional information on the presence of nuclei heavier than helium in the primary beam.

  7. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  8. Particulate matter in the rural settlement during winter time

    NASA Astrophysics Data System (ADS)

    Olszowski, Tomasz

    2017-10-01

    The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.

  9. A Mass Diffusion Model for Dry Snow Utilizing a Fabric Tensor to Characterize Anisotropy

    NASA Astrophysics Data System (ADS)

    Shertzer, Richard H.; Adams, Edward E.

    2018-03-01

    A homogenization algorithm for randomly distributed microstructures is applied to develop a mass diffusion model for dry snow. Homogenization is a multiscale approach linking constituent behavior at the microscopic level—among ice and air—to the macroscopic material—snow. Principles of continuum mechanics at the microscopic scale describe water vapor diffusion across an ice grain's surface to the air-filled pore space. Volume averaging and a localization assumption scale up and down, respectively, between microscopic and macroscopic scales. The model yields a mass diffusivity expression at the macroscopic scale that is, in general, a second-order tensor parameterized by both bulk and microstructural variables. The model predicts a mass diffusivity of water vapor through snow that is less than that through air. Mass diffusivity is expected to decrease linearly with ice volume fraction. Potential anisotropy in snow's mass diffusivity is captured due to the tensor representation. The tensor is built from directional data assigned to specific, idealized microstructural features. Such anisotropy has been observed in the field and laboratories in snow morphologies of interest such as weak layers of depth hoar and near-surface facets.

  10. Investigating the variability in brown carbon light-absorption properties

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Cheng, Z.; Atwi, K.

    2017-12-01

    Combustion of biomass fuels contributes a significant portion of brown carbon (BrC), the light-absorbing fraction of organic aerosols. BrC exhibits highly variable light-absorption properties, with imaginary part of the refractive indices (k) reported in the literature varying over two orders of magnitude. This high variability in k is attributed to the chaotic nature of combustion; however, there is a major gap in the fundamental understanding of this variability. To address this gap, we hypothesize that BrC is comprised of black carbon (BC) precursors whose transformation to BC has not seen fruition. Depending on the combustion conditions, these BC precursors exhibit different maturity levels which dictate their light-absorption properties (k). The more mature are the precursors, the more absorptive (or BC-like) they are. Therefore, k of BrC obtained from a certain measurement depends on the specific combustion conditions associated with the measurement, leading to the aforementioned variability in the literature. To test this hypothesis, we performed controlled combustion experiments in which the combustion conditions (temperature and air/fuel ratio) were varied and k was retrieved from real-time multi-wavelength light-absorption measurements at each condition. We used benzene, the inception of which during combustion is the initial critical step leading to BC formation, as a model fuel. By varying the combustion conditions from relatively inefficient (low temperature and/or air/fuel ratio) to relatively efficient (high temperature and/or air/fuel ratio), we isolated BrC components with progressively increasing k, spanning the wide range reported in the literature. We also performed thermodenuder measurements to constrain the volatility of the BrC, as well as laser desorption ionization mass spectrometry analysis to constrain its molecular mass. We found that as the combustion conditions approached the BC-formation threshold, the increase in k was associated with an increase in molecular mass and decrease in volatility. This confirms our hypothesis, since the BC precursors are expected to grow in size and become less volatile as they mature. These results provide the first correlation between the BrC physical, chemical, and consequent light-absorption properties.

  11. Studies of Arctic Tropospheric Ozone Depletion Events Through Buoy-Borne Observations and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Halfacre, John W.

    The photochemically-induced destruction of ground-level Arctic ozone in the Arctic occurs at the onset of spring, in concert with polar sunrise. Solar radiation is believed to stimulate a series of reactions that cause the production and release of molecular halogens from frozen, salty surfaces, though this mechanism is not yet well understood. The subsequent photolysis of molecular halogens produces reactive halogen atoms that remove ozone from the atmosphere in these so-called "Ozone Depletion Events" (ODEs). Given that much of the Arctic region is sunlit, meteorologically stable, and covered by saline ice and snow, it is expected that ODEs could be a phenomenon that occurs across the entire Arctic region. Indeed, an ever-growing body of evidence from coastal sites indicates that Arctic air masses devoid of O3 most often pass over sea ice-covered regions before arriving at an observation site, suggesting ODE chemistry occurs upwind over the frozen Arctic Ocean. However, outside of coastal observations, there exist very few long-term observations from the Arctic Ocean from which quantitative assessments of basic ODE characteristics can be made. This work presents the interpretation of ODEs through unique chemical and meteorological observations from several ice-tethered buoys deployed around the Arctic Ocean. These observations include detection of ozone, bromine monoxide, and measurements of temperature, relative humidity, atmospheric pressure, wind speed, and wind direction. To assess whether the O-Buoys were observing locally based depletion chemistry or the transport of ozone-poor air masses, periods of ozone decay were interpreted based on current understanding of ozone depletion kinetics, which are believed to follow a pseudo-first order rate law. In addition, the spatial extents of ODEs were estimated using air mass trajectory modeling to assess whether they are a localized or synoptic phenomenon. Results indicate that current understanding of the responsible chemical mechanisms are lacking, ODEs are observed primarily due to air mass transport (even in the Arctic Ocean), or some combination of both. Air mass trajectory modeling was also used in tandem with remote sensing observations of sea ice to determine the types of surfaces air masses were exposed to before arriving at O-Buoys. The impact of surface exposure was subsequently compared with local meteorology to assess which variables had the most effect on O 3 variability. For two observation sites, the impact of local meteorology was significantly stronger than air mass history, while a third was inconclusive. Finally, this work tests the viability of the hypothesis that initial production of molecular halogens from frozen saline surfaces results from photolytic production of the hydroxyl radical, and could be enhanced in the presence of O3. This investigation was enabled by a custom frozen-walled flow reactor coupled with chemical ionization spectrometry. It was found that hydroxyl radical could indeed promote the production and release of iodine, bromine, and chlorine, and that this production could be enhanced in the presence of ozone.

  12. Factors That Modulate Properties of Primary Marine Aerosol Generated From Ambient Seawater on Ships at Sea

    NASA Astrophysics Data System (ADS)

    Keene, William C.; Long, Michael S.; Reid, Jeffrey S.; Frossard, Amanda A.; Kieber, David J.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Quinn, Patricia K.; Bates, Timothy S.

    2017-11-01

    Model primary marine aerosol (mPMA) was produced by bubbling clean air through flowing natural seawater in a high-capacity generator deployed on ships in the eastern North Pacific and western North Atlantic Oceans. Physicochemical properties of seawater and mPMA were quantified to characterize factors that modulated production. Differences in surfactant organic matter (OM) and associated properties including surface tension sustained plumes with smaller bubble sizes, slower rise velocities, larger void fractions, and older surface ages in biologically productive relative to oligotrophic seawater. Production efficiencies for mPMA number (PEnum) and mass (PEmass) per unit air detrained from biologically productive seawater during daytime were greater and mass median diameters smaller than those in the same seawater at night and in oligotrophic seawater during day and night. PEmass decreased with increasing air detrainment rate suggesting that surface bubble rafts suppressed emission of jet droplets and associated mPMA mass. Relative to bubbles emitted at 60 cm depth, PEnum for bubbles emitted from 100 cm depth was approximately 2 times greater. mPMA OM enrichment factors (EFs) and mass fractions based on a coarse frit, fine frits, and a seawater jet exhibited similar size-dependent variability over a wide range in chlorophyll a concentrations. Results indicate that the physical production of PMA number and mass from the ocean surface varies systematically as interrelated functions of seawater type and, in biologically productive waters, time of day; bubble injection rate, depth, size, and surface age; and physical characteristics of the air-water interface whereas size-resolved OM EFs and mass fractions are relatively invariant.

  13. Development of a non-piston MR suspension rod for variable mass systems

    NASA Astrophysics Data System (ADS)

    Deng, Huaxia; Han, Guanghui; Zhang, Jin; Wang, Mingxian; Ma, Mengchao; Zhong, Xiang; Yu, Liandong

    2018-06-01

    The semi-active suspension systems for variable mass systems require long work stroke and variable damping, while the currently piston structure limits the work stroke for the magnetorheological (MR) dampers. The main work of this paper is to design a semi-active non-piston MR (NPMR) suspension rod for the reduction of the vibration of an automatic impeller washing machine, which is a typical variable mass system. The designed suspension rod locates in the suspension system that links the internal tub to the washing machine cabinet. The NPMR suspension rod includes a MR part and a air part. The MR part can provide low initial damping force and the unlimited work stroke compared with the piston MR damper. The hysteretic response tests and vibration performance evaluation with different loadings are conducted to verify the dynamic performance for the designed rod. The measured damping force of the MR part varies from 5 to 20 N. Studies of dehydration mode experiments of the washing machine indicate that its vibration acceleration with the NPMR suspension rods can reduce to half of the original passive ones in certain conditions.

  14. Burner rig study of variables involved in hole plugging of air cooled turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1983-01-01

    The effects of combustion gas composition, flame temperatures, and cooling air mass flow on the plugging of film cooling holes by a Ca-Fe-P-containing deposit were investigated. The testing was performed on film-cooled vanes exposed to the combustion gases of an atmospheric Mach 0.3 burner rig. The extent of plugging was determined by measurement of the open hole area at the conclusion of the tests as well as continuous monitoring of some of the tests using stop-action photography. In general, as the P content increased, plugging rates also increased. The plugging was reduced by increasing flame temperature and cooling air mass flow rates. At times up to approximately 2 hours little plugging was observed. This apparent incubation period was followed by rapid plugging, reaching in several hours a maximum closure whose value depended on the conditions of the test.

  15. Direct computation of thermodynamic properties of chemically reacting air with consideration to CFD

    NASA Astrophysics Data System (ADS)

    Iannelli, Joe

    2003-10-01

    This paper details a two-equation procedure to calculate exactly mass and mole fractions, pressure, temperature, specific heats, speed of sound and the thermodynamic and jacobian partial derivatives of pressure and temperature for a five-species chemically reacting equilibrium air. The procedure generates these thermodynamic properties using as independent variables either pressure and temperature or density and internal energy, for CFD applications. An original element in this procedure consists in the exact physically meaningful solution of the mass-fraction and mass-action equations. Air-equivalent molecular masses for oxygen and nitrogen are then developed to account, within a mixture of only oxygen and nitrogen, for the presence of carbon dioxide, argon and the other noble gases within atmospheric air. The mathematical formulation also introduces a versatile system non-dimensionalization that makes the procedure uniformly applicable to flows ranging from shock-tube flows with zero initial velocity to aerothermodynamic flows with supersonic/hypersonic free-stream Mach numbers. Over a temperature range of more than 10000 K and pressure and density ranges corresponding to an increase in altitude in standard atmosphere of 30000 m above sea level, the predicted distributions of mole fractions, constant-volume specific heat, and speed of sound for the model five species agree with independently published results, and all the calculated thermodynamic properties, including their partial derivatives, remain continuous, smooth, and physically meaningful.

  16. Summertime tropospheric ozone distributions over central and eastern Canada

    NASA Technical Reports Server (NTRS)

    Anderson, B. E.; Gregory, G. L.; Barrick, J. D.; Collins, J. E., Jr.; Sachse, G. W.; Shipham, M. C.; Hudgins, C. H.

    1994-01-01

    Ozone measurements were obtained between the surface and the 6-km altitude on aircraft flights over central and eastern Canada during the summer 1990 NASA Global Tropospheric Experiment Arctic Boundary Layer Expedition (GTE/ABLE 3B). Tropospheric O3 budgets for these regions were observed to be highly variable and significantly impacted by long-range transport and regional scale air mass modification processes. For example, integrated O3 abundance below 5-km altitude averaged 40% and 30% greater in air masses influenced by anthropogenic sources and biomass burning, respectively, than in background (polar) air. Conversely, aged air transported from subtropical areas of the Pacific at times reduced O3 abundance in this height interval by up to 20%. Though intrusion of anthropogenic air was infrequent during the experiment period, the influence of biomass-burning emissions was particularly notable as two thirds of the flights sampled air influenced by plumes from fires burning in Alaska and western Canada. The impinging pollution, both natural and anthropogenic, not only elevated O3 levels directly but also was a source of reactive nitrogen (and nonmethane hydrocarbons) which generally increases the tropospheric lifetime of O3 via moderation of photochemical destruction rates.

  17. Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies.

    PubMed

    Goldman, Gretchen T; Mulholland, James A; Russell, Armistead G; Strickland, Matthew J; Klein, Mitchel; Waller, Lance A; Tolbert, Paige E

    2011-06-22

    Two distinctly different types of measurement error are Berkson and classical. Impacts of measurement error in epidemiologic studies of ambient air pollution are expected to depend on error type. We characterize measurement error due to instrument imprecision and spatial variability as multiplicative (i.e. additive on the log scale) and model it over a range of error types to assess impacts on risk ratio estimates both on a per measurement unit basis and on a per interquartile range (IQR) basis in a time-series study in Atlanta. Daily measures of twelve ambient air pollutants were analyzed: NO2, NOx, O3, SO2, CO, PM10 mass, PM2.5 mass, and PM2.5 components sulfate, nitrate, ammonium, elemental carbon and organic carbon. Semivariogram analysis was applied to assess spatial variability. Error due to this spatial variability was added to a reference pollutant time-series on the log scale using Monte Carlo simulations. Each of these time-series was exponentiated and introduced to a Poisson generalized linear model of cardiovascular disease emergency department visits. Measurement error resulted in reduced statistical significance for the risk ratio estimates for all amounts (corresponding to different pollutants) and types of error. When modelled as classical-type error, risk ratios were attenuated, particularly for primary air pollutants, with average attenuation in risk ratios on a per unit of measurement basis ranging from 18% to 92% and on an IQR basis ranging from 18% to 86%. When modelled as Berkson-type error, risk ratios per unit of measurement were biased away from the null hypothesis by 2% to 31%, whereas risk ratios per IQR were attenuated (i.e. biased toward the null) by 5% to 34%. For CO modelled error amount, a range of error types were simulated and effects on risk ratio bias and significance were observed. For multiplicative error, both the amount and type of measurement error impact health effect estimates in air pollution epidemiology. By modelling instrument imprecision and spatial variability as different error types, we estimate direction and magnitude of the effects of error over a range of error types.

  18. Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution--results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, L; Künzli, N; Röösli, M; Braun-Fahrländer, C; Mathys, P; Stern, W; Jantunen, M; Kousa, A

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM2.5 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM2.5 mass were not correlated to corresponding home outdoor levels (n = 44, rSpearman (Sp) = 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, rSp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, rSp = 0.53; Br: n = 44, rSp = 0.21) and crustal (Ca: n = 44, rSp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM2.5 levels may be more appropriate exposure estimates than total personal PM2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  19. Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution-Results of the European EXPOLIS-EAS Study (Swiss Center Basel).

    PubMed

    Oglesby, Lucy; Künzli, Nino; Röösli, Martin; Braun-Fahrländer, Charlotte; Mathys, Patrick; Stern, Willem; Jantunen, Matti; Kousa, Anu

    2000-07-01

    To evaluate the validity of fixed-site fine particle levels as exposure surrogates in air pollution epidemiology, we considered four indicator groups: (1) PM 25 total mass concentrations, (2) sulfur and potassium for regional air pollution, (3) lead and bromine for traffic-related particles, and (4) calcium for crustal particles. Using data from the European EXPOLIS (Air Pollution Exposure Distribution within Adult Urban Populations in Europe) study, we assessed the associations between 48-hr personal exposures and home outdoor levels of the indicators. Furthermore, within-city variability of fine particle levels was evaluated. Personal exposures to PM 2.5 mass were not correlated to corresponding home outdoor levels (n = 44, r S (S) =r o v ' Spearman (Sp) 0.07). In the group reporting neither relevant indoor sources nor relevant activities, personal exposures and home outdoor levels of sulfur were highly correlated (n = 40, r Sp = 0.85). In contrast, the associations were weaker for traffic (Pb: n = 44, r Sp = 0.53; Br: n = 44, r Sp = 0.21) and crustal (Ca: n = 44, r Sp = 0.12) indicators. This contrast is consistent with spatially homogeneous regional pollution and higher spatial variability of traffic and crustal indicators observed in Basel, Switzerland. We conclude that for regional air pollution, fixed-site fine particle levels are valid exposure surrogates. For source-specific exposures, however, fixed-site data are probably not the optimal measure. Still, in air pollution epidemiology, ambient PM 2.5 levels may be more appropriate exposure estimates than total personal PM 2.5 exposure, since the latter reflects a mixture of indoor and outdoor sources.

  20. Perspectives on NO, NOy, and fine aerosol sources and variability during SONEX

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Sparling, Lynn C.; Kondo, Yutaka; Anderson, Bruce E.; Gregory, Gerald L.; Sachse, Glen W.

    Distributions of upper tropospheric tracer data on each of the 14 science flights of SONEX (SASS [Subsonics Assessment] Ozone and Nitrogen Oxides Experiment) provide a statistical overview of NO, NOy and fine aerosol variability during SONEX (an aircraft mission conducted in October and November 1997). The wide range of variability of NO from all sources provides a perspective on the aircraft perturbation. Background distributions of NOy are somewhat elevated inside flight corridors relative to outside; fine aerosol and NO/NOy in and out of corridors are similar. The potential vorticity of air sampled during SONEX is low relative to the NAFC (North Atlantic Flight Corridor) as a whole, due either to advection of lower latitude air into the corridor or biases in sampling to avoid the stratosphere. High NO/NOy (>0.4) from fresh lightning and aircraft sources was usually associated with pv much lower than the NAFC as a whole. Air masses identified as tropospheric by a low ozone criterion nevertheless have high pv, a marker for stratospheric air. Thus, stratospheric and surface sources also contribute to overall variability. A statistically robust assessment of the relative aircraft NO contribution during SONEX, based on data alone, is unlikely, given the mixture of other NO sources within which the aircraft signal is embedded. This underscores the need for more data and modeling studies.

  1. Variability in ozone and its precursor gases over the Bay of Bengal during post-monsoon

    NASA Astrophysics Data System (ADS)

    Mallik, Chinmay; Lal, Shyam; Venkataramani, Sethuram; Naja, Manish; Ojha, Narendra

    2013-04-01

    O3 and precursor gases were measured during a ship campaign over the Bay of Bengal (BoB) during 28 October -17 November, 2010. The measurements revealed the large spatial heterogeneity in trace gas levels over the BoB during post-monsoon months. The heterogeneity was attributed to unique transport patterns over north and south BoB during this period. Four distinct types of air-masses influenced by heavy pollution from nearby source regions (49% time over North-West Myanmar, East Bangladesh and North-East India), mixed type (25% time over Myanmar, Thailand and Vietnam and 75% time over East BoB), affected by long-range transport of pollutants (59% time over continental South Myanmar, Vietnam and Hong-Kong region of China) and pristine marine (99% time over oceanic regions) were identified. Among these, the continental air masses were fresher compared to marine air masses. High O3 and CO levels were observed in air masses coming from South-East Asia. O3, C4H10 and alkenes were highest in air masses arriving from eastern IGP, Bangladesh, Myanmar via the North BoB. The C2H2 to CO slope of 0.004 and C3H8 to CO slope of 0.003 indicated predominance of biofuel/biomass burning in air masses from South-East Asia. The i-C4H10 to n- C4H10 value of 0.62 indicated contributions of urban/industrial sources in air masses arriving from Bangladesh, India and North-West Myanmar. 'Potential Source Contribution Function' analysis indicated fire impacted South of Myanmar and Thailand regions as potential contributors to high CO levels above 260 ppbv measured on 14 November. Observed enhancements in surface CO during 2-3 November were attributed to the faster transport of continental pollutants associated with cyclonic winds. The O3 e-fold time of 2.3 days indicated the higher rate of O3 destruction over the BoB due to higher precursor levels. Principle component analysis indicated that transport from continental source regions played a major role in determining the chemical composition of the air masses during the campaign and presence of regional sources of NOx. Diurnal variations of surface O3 revealed effects of advection, entrainment and photochemistry. Chemical box model simulations of O3 diurnal variations over the BoB were found to be very sensitive to background O3 and NO2 levels as well as dilution.

  2. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    NASA Astrophysics Data System (ADS)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  3. A new exposure metric for traffic-related air pollution? An analysis of determinants of hopanes in settled indoor house dust.

    PubMed

    Sbihi, Hind; Brook, Jeffrey R; Allen, Ryan W; Curran, Jason H; Dell, Sharon; Mandhane, Piush; Scott, James A; Sears, Malcolm R; Subbarao, Padmaja; Takaro, Timothy K; Turvey, Stuart E; Wheeler, Amanda J; Brauer, Michael

    2013-06-19

    Exposure to traffic-related air pollution (TRAP) can adversely impact health but epidemiologic studies are limited in their abilities to assess long-term exposures and incorporate variability in indoor pollutant infiltration. In order to examine settled house dust levels of hopanes, engine lubricating oil byproducts found in vehicle exhaust, as a novel TRAP exposure measure, dust samples were collected from 171 homes in five Canadian cities and analyzed by gas chromatography-mass spectrometry. To evaluate source contributions, the relative abundance of the highest concentration hopane monomer in house dust was compared to that in outdoor air. Geographic variables related to TRAP emissions and outdoor NO2 concentrations from city-specific TRAP land use regression (LUR) models were calculated at each georeferenced residence location and assessed as predictors of variability in dust hopanes. Hopanes relative abundance in house dust and ambient air were significantly correlated (Pearson's r=0.48, p<0.05), suggesting that dust hopanes likely result from traffic emissions. The proportion of variance in dust hopanes concentrations explained by LUR NO2 was less than 10% in Vancouver, Winnipeg and Toronto while the correlations in Edmonton and Windsor explained 20 to 40% of the variance. Modeling with household factors such as air conditioning and shoe removal along with geographic predictors related to TRAP generally increased the proportion of explained variability (10-80%) in measured indoor hopanes dust levels. Hopanes can consistently be detected in house dust and may be a useful tracer of TRAP exposure if determinants of their spatiotemporal variability are well-characterized, and when home-specific factors are considered.

  4. A new exposure metric for traffic-related air pollution? An analysis of determinants of hopanes in settled indoor house dust

    PubMed Central

    2013-01-01

    Background Exposure to traffic-related air pollution (TRAP) can adversely impact health but epidemiologic studies are limited in their abilities to assess long-term exposures and incorporate variability in indoor pollutant infiltration. Methods In order to examine settled house dust levels of hopanes, engine lubricating oil byproducts found in vehicle exhaust, as a novel TRAP exposure measure, dust samples were collected from 171 homes in five Canadian cities and analyzed by gas chromatography–mass spectrometry. To evaluate source contributions, the relative abundance of the highest concentration hopane monomer in house dust was compared to that in outdoor air. Geographic variables related to TRAP emissions and outdoor NO2 concentrations from city-specific TRAP land use regression (LUR) models were calculated at each georeferenced residence location and assessed as predictors of variability in dust hopanes. Results Hopanes relative abundance in house dust and ambient air were significantly correlated (Pearson’s r=0.48, p<0.05), suggesting that dust hopanes likely result from traffic emissions. The proportion of variance in dust hopanes concentrations explained by LUR NO2 was less than 10% in Vancouver, Winnipeg and Toronto while the correlations in Edmonton and Windsor explained 20 to 40% of the variance. Modeling with household factors such as air conditioning and shoe removal along with geographic predictors related to TRAP generally increased the proportion of explained variability (10-80%) in measured indoor hopanes dust levels. Conclusions Hopanes can consistently be detected in house dust and may be a useful tracer of TRAP exposure if determinants of their spatiotemporal variability are well-characterized, and when home-specific factors are considered. PMID:23782977

  5. Synthetic optimization of air turbine for dental handpieces.

    PubMed

    Shi, Z Y; Dong, T

    2014-01-01

    A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.

  6. Sensitivity of glacier mass balance and equilibrium line altitude to climatic change on King George Island, Antarctic Peninsula.

    NASA Astrophysics Data System (ADS)

    Falk, Ulrike; Lopez, Damian; Silva-Busso, Adrian

    2017-04-01

    The South Shetland Islands are located at the northern tip of the Antarctic Peninsula which is among the fastest warming regions on Earth. Surface air temperature increases (ca. 3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0 K/100 m), and a distinct spatial heterogeneity reflecting the impact of synoptic weather patterns especially during winter glacial mass accumulation periods. The increased mesocyclonic activity during the winter time in the study area results in intensified advection of warm, moist air with high temperatures and rain, and leads to melt conditions on the ice cap, fixating surface air temperatures to the melting point. The impact on winter accumulation results in even more negative mass balance estimates. Six years of glaciological measurements on mass balance stake transects are used with a glacier melt model to assess changes in melt water input to the coastal waters, glacier surface mass balance and the equilibrium line altitude. The average equilibrium line altitude (ELA) calculated from own glaciological observations for KGI over the time period 2010 - 2015 amounts to ELA=330±100 m. Published studies suggest rather stable condition slightly negative glacier mass balance until the mid 80's with an ELA of approx. 150 m. The calculated accumulation area ratio suggests rather dramatic changes in extension of the inland ice cap for the South Shetland Islands until an equilibrium with concurrent climate conditions is reached.

  7. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    PubMed Central

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  8. Working characteristics of variable intake valve in compressed air engine.

    PubMed

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  9. Spatial and Temporal Patterns in the Carbon Isotopic Signal of Leaf Wax Aerosols in Continental Air Masses: Linkages with Ecosystem Discrimination

    NASA Astrophysics Data System (ADS)

    Weber, J.; Conte, M. H.

    2006-12-01

    Temporal and spatial variations in the concentration and isotopic composition of atmospheric carbon dioxide can be used to estimate the relative magnitudes of the terrestrial and oceanic carbon sinks. An important model parameter is the terrestrial photosynthetic carbon isotopic fractionation of CO2 (Δ), yet estimating Δ over the large spatial scales required by models remains problematic. Epiculticular leaf waxes appear to closely reflect the plant's carbon isotopic discrimination; therefore, the ablated wax aerosols present in well-mixed continental air masses may be used as a proxy to estimate the magnitude of Δ integrated over large (subcontinental) spatial scales. Over the last several years, we have been conducting time-series studies of wax aerosol molecular and isotopic composition at strategically located sites (Maine, northern Alaska, Florida, Bermuda, Barbados) which receive continental air masses passing over major terrestrial biomes (northern temperate/ecotonal boreal forests, tundra, southern US pine/hardwood forests, North American and north African). In this presentation, we describe and contrast patterns of wax aerosol-derived estimates of Δ at these sites. In North American air masses, estimates of Δ range from 14.5-20.5 using the concentration-weighted average δ13C of wax n-acids and from 13.5-19.5 for the wax n-alcohols. Seasonal trends observed in the Florida (southern US) and Bermuda samples (mixed North American air masses) indicate maximum discrimination in early spring and minimum discrimination during the summer dry season. In northern US and high latitude air masses, seasonal trends are less pronounced but in general temporally offset with highest discrimination occurring during late summer. At Barbados, which is dominated by north African air masses passing over regions largely comprised of arid C4 grasslands, estimated Δ for the wax n-acids is significantly lower (14.0-15.5 per mil), consistent with a higher predominance of C4 plants in the aerosol source regions; however, the estimated Δ for the wax n-alcohols is roughly 2 per mil higher indicative of possible different weighting of vegetation sources. Interannual variability is also observed to some extent signifying that the wax aerosol signal of Δ is sensitive to year-to-year differences in environmental forcing (e.g. drought).

  10. Chemical Characterization of Ambient Coarse Particulate Matter in Rural Areas of Arizona Impacted by Significant Population Growth

    EPA Science Inventory

    Characterization of PMc is critical to the understanding of recently observed adverse health effects (e.g., asthma, reduced cardiac variability, etc) from coarse particles in ambient air. PMc mass an (PMc, particles between PM2.5 and PM10) in a rural area of increasing populati...

  11. Simulating and explaining passive air sampling rates for semi-volatile compounds on polyurethane foam passive samplers

    PubMed Central

    Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.

    2013-01-01

    Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599

  12. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  13. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  14. A clinical prediction model for prolonged air leak after pulmonary resection.

    PubMed

    Attaar, Adam; Winger, Daniel G; Luketich, James D; Schuchert, Matthew J; Sarkaria, Inderpal S; Christie, Neil A; Nason, Katie S

    2017-03-01

    Prolonged air leak increases costs and worsens outcomes after pulmonary resection. We aimed to develop a clinical prediction tool for prolonged air leak using pretreatment and intraoperative variables. Patients who underwent pulmonary resection for lung cancer/nodules (from January 2009 to June 2014) were stratified by prolonged parenchymal air leak (>5 days). Using backward stepwise logistic regression with bootstrap resampling for internal validation, candidate variables were identified and a nomogram risk calculator was developed. A total of 2317 patients underwent pulmonary resection for lung cancer/nodules. Prolonged air leak (8.6%, n = 200) was associated with significantly longer hospital stay (median 10 vs 4 days; P < .001). Final model variables associated with increased risk included low percent forced expiratory volume in 1 second, smoking history, bilobectomy, higher annual surgeon caseload, previous chest surgery, Zubrod score >2, and interaction terms for right-sided thoracotomy and wedge resection by thoracotomy. Wedge resection, higher body mass index, and unmeasured percent forced expiratory volume in 1 second were protective. Derived nomogram discriminatory accuracy was 76% (95% confidence interval [CI], 0.72-0.79) and facilitated patient stratification into low-, intermediate- and high-risk groups with monotonic increase in observed prolonged air leaks (2.0%, 8.9%, and 19.2%, respectively; P < .001). Patients at intermediate and high risk were 4.80 times (95% CI, 2.86-8.07) and 11.86 times (95% CI, 7.21-19.52) more likely to have prolonged air leak compared with patients at low risk. Using readily available candidate variables, our nomogram predicts increasing risk of prolonged air leak with good discriminatory ability. Risk stratification can support surgical decision making, and help initiate proactive, patient-specific surgical management. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Understanding Skill in EVA Mass Handling. Volume 2; Empirical Investigation

    NASA Technical Reports Server (NTRS)

    Riccio, Gary; McDonald, Vernon; Peters, Brian; Layne, Charles; Bloomberg, Jacob

    1997-01-01

    In this report we describe the details of our empirical protocol effort investigating skill in extravehicular mass handling using NASA's principal mass handling simulator, the precision air bearing floor. Contents of this report include a description of the necessary modifications to the mass handling simulator; choice of task, and the description of an operationally relevant protocol. Our independent variables are presented in the context of the specific operational issues they were designed to simulate. The explanation of our dependent variables focuses on the specific data processing procedures used to transform data from common laboratory instruments into measures that are relevant to a special class of nested control systems (discussed in Volume 1): manual interactions between an individual and the substantial environment. The data reduction is explained in the context of the theoretical foundation described in Volume 1. Finally as a preface to the presentation of the empirical data in Volume 3 of this report series, a set of detailed hypotheses is presented.

  16. Spray Characteristics of a Hybrid Twin-Fluid Pressure-Swirl Atomizer

    NASA Technical Reports Server (NTRS)

    Durham, M. J.; Sojka, P. E.; Ashmore, C. B.

    2004-01-01

    The spray performance of a fuel injection system applicable for use in main combustion chamber of an oxidizer-rich staged combustion (ORSC) cycles is presented. The experimental data reported here include mean drop size and drop size distribution, spray cone half-angle, and momentum rate (directly related to spray penetration). The maximum entropy formalism, MEF, method to predict drop size distribution is applied and compared to the experimental data. Geometric variables considered include the radius of the injector inlet orifice plate through which oxidizer flows (&) and the exposed length from the fuel inlet to the injector exit plane (L2). Operating conditions that were varied include the liquid mass flow rate and air mass flow rate. For orifices B and C there is a significant dependence of D3Z on both the air and liquid mass flow rates, as well as on L2. For the A orifice, the momentum rate of the air flow appears to exceed a threshold value above which a constant D32 is obtained. Using the MEF method, a semi-analytical process was developed to model the spray distribution using two input parameters (q = 0.4 and Dso). The momentum rate of the spray is directly related to the air and liquid mass flow rates. The cone half angle of the spray ranges from 25 to 17 degrees. The data resulting from this project will eventually be used to develop advanced rocket systems.

  17. Variable mass diffusion effects on free convection flow past an impulsively started infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Rushi Kumar, B.; Jayakar, R.; Vijay Kumar, A. G.

    2017-11-01

    An exact analysis of the problem of free convection flow of a viscous incompressible chemically reacting fluid past an infinite vertical plate with the flow due to impulsive motion of the plate with Newtonian heating in the presence of thermal radiation and variable mass diffusion is performed. The resulting governing equations were tackled by Laplace transform technique. Finally the effects of pertinent flow parameters such as the radiation parameter, chemical reaction parameter, buoyancy ratio parameter, thermal Grashof number, Schmidt number, Prandtl number and time on the velocity, temperature, concentration and skin friction for both aiding and opposing flows were examined in detail when Pr=0.71(conducting air) and Pr=7.0(water).

  18. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.

  19. Cold-air performance of free-power turbine designed for 112-kilowatt automotive gas-turbine engine. 1: Design Stator-vane-chord setting angle of 35 deg

    NASA Technical Reports Server (NTRS)

    Kofskey, M. G.; Nusbaum, W. J.

    1978-01-01

    A cold air experimental investigation of a free power turbine designed for a 112-kW automotive gas-turbine was made over a range of speeds from 0 to 130 percent of design equivalent speeds and over a range of pressure ratio from 1.11 to 2.45. Results are presented in terms of equivalent power, torque, mass flow, and efficiency for the design power point setting of the variable stator.

  20. Transport in the Subtropical Lowermost Stratosphere during CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; hide

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NO(y)) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations, and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and lastly by the extent of convective influence, potentially related to the latitude of convective injection [Dessler and Sherwuud, 2004]. We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and non-local events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  1. Transport in the Subtropical Lowermost Stratosphere during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Weinstock, Elliot M.; Oglesby, Robert J.; Sayres, David S.; Smith, Jessica B.; Anderson, James G.; Cooper, Owen R.; Wofsy, Steven C.; Xueref, Irene; Gerbig, Cristoph; hide

    2007-01-01

    We use in situ measurements of water vapor (H2O), ozone (O3), carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), and total reactive nitrogen (NOy) obtained during the CRYSTAL-FACE campaign in July 2002 to study summertime transport in the subtropical lowermost stratosphere. We use an objective methodology to distinguish the latitudinal origin of the sampled air masses despite the influence of convection, and we calculate backward trajectories to elucidate their recent geographical history. The methodology consists of exploring the statistical behavior of the data by performing multivariate clustering and agglomerative hierarchical clustering calculations and projecting cluster groups onto principal component space to identify air masses of like composition and hence presumed origin. The statistically derived cluster groups are then examined in physical space using tracer-tracer correlation plots. Interpretation of the principal component analysis suggests that the variability in the data is accounted for primarily by the mean age of air in the stratosphere, followed by the age of the convective influence, and last by the extent of convective influence, potentially related to the latitude of convective injection (Dessler and Sherwood, 2004). We find that high-latitude stratospheric air is the dominant source region during the beginning of the campaign while tropical air is the dominant source region during the rest of the campaign. Influence of convection from both local and nonlocal events is frequently observed. The identification of air mass origin is confirmed with backward trajectories, and the behavior of the trajectories is associated with the North American monsoon circulation.

  2. One hundred years of Arctic ice cover variations as simulated by a one-dimensional, ice-ocean model

    NASA Astrophysics Data System (ADS)

    Hakkinen, S.; Mellor, G. L.

    1990-09-01

    A one-dimensional ice-ocean model consisting of a second moment, turbulent closure, mixed layer model and a three-layer snow-ice model has been applied to the simulation of Arctic ice mass and mixed layer properties. The results for the climatological seasonal cycle are discussed first and include the salt and heat balance in the upper ocean. The coupled model is then applied to the period 1880-1985, using the surface air temperature fluctuations from Hansen et al. (1983) and from Wigley et al. (1981). The analysis of the simulated large variations of the Arctic ice mass during this period (with similar changes in the mixed layer salinity) shows that the variability in the summer melt determines to a high degree the variability in the average ice thickness. The annual oceanic heat flux from the deep ocean and the maximum freezing rate and associated nearly constant minimum surface salinity flux did not vary significantly interannually. This also implies that the oceanic influence on the Arctic ice mass is minimal for the range of atmospheric variability tested.

  3. Ross Ice Shelf airstream driven by polar vortex cyclone

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    The powerful air and ocean currents that flow in and above the Southern Ocean, circling in the Southern Hemisphere's high latitudes, form a barrier to mixing between Antarctica and the rest of the planet. Particularly during the austral winter, strong westerly winds isolate the Antarctic continent from heat, energy, and mass exchange, bolstering the scale of the annual polar ozone depletion and driving the continent's record-breaking low temperatures. Pushing through this wall of high winds, the Ross Ice Shelf airstream (RAS) is responsible for a sizable amount of mass and energy exchange from the Antarctic inland areas to lower latitudes. Sitting due south of New Zealand, the roughly 470,000-square-kilometer Ross Ice Shelf is the continent's largest ice shelf and a hub of activity for Antarctic research. A highly variable lower atmospheric air current, RAS draws air from the inland Antarctic Plateau over the Ross Ice Shelf and past the Ross Sea. Drawing on modeled wind patterns for 2001-2005, Seefeldt and Cassano identify the primary drivers of RAS.

  4. Tropospheric ozone long term trend observed by lidar and ECC ozonesondes at Observatoire de Haute Provence, Southern France.

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Gaudel, A.; Godin-Beekmann, S.

    2016-12-01

    Tropospheric ozone vertical profile measurements have been carried out at OHP (Observatoire de Haute Provence, 44°N, 6.7°E, 690 m) since 1991 using both UV DIAL (DIfferential Absorption Lidar) and ECC (Electrochemical Concentration Cell) ozonesondes. For the first time, ECC and lidar data measured at the same site, have been compared over a 24 year period. The comparison conducted reveals a bias between both measurement types (ECC - lidar) of the order of 0.6 ppbv. The measurements of both instruments have been however combined to decrease the impact of short-term atmospheric variability on the trend estimate. Air mass trajectories have been calculated for all the ozone observations available at OHP including ECMWF potential vorticity (PV) and humidity chnage along the trajectories. The interannual ozone variability shows a negligible trend in the mid troposphere, but a 0.36 ppbv/year significant positive ozone trend in the upper troposphere. The trends will be discussed using the variability of the meteorological parameters. Data clustering using PV and air mass trajectories is useful to identify the role of Stratosphere-Tropopshere Exchanges and long range transport of pollutants in the observed long term trends. In the lower troposphere, the interannual variability shows contrasted trends with an ozone decrease between 1998 and 2008, consistent with the NOx emission decrease, but a new period of ozone increase since 2008 which is not very well understood.

  5. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  6. A risk score to predict the incidence of prolonged air leak after video-assisted thoracoscopic lobectomy: An analysis from the European Society of Thoracic Surgeons database.

    PubMed

    Pompili, Cecilia; Falcoz, Pierre Emmanuel; Salati, Michele; Szanto, Zalan; Brunelli, Alessandro

    2017-04-01

    The study objective was to develop an aggregate risk score for predicting the occurrence of prolonged air leak after video-assisted thoracoscopic lobectomy from patients registered in the European Society of Thoracic Surgeons database. A total of 5069 patients who underwent video-assisted thoracoscopic lobectomy (July 2007 to August 2015) were analyzed. Exclusion criteria included sublobar resections or pneumonectomies, lung resection associated with chest wall or diaphragm resections, sleeve resections, and need for postoperative assisted mechanical ventilation. Prolonged air leak was defined as an air leak more than 5 days. Several baseline and surgical variables were tested for a possible association with prolonged air leak using univariable and logistic regression analyses, determined by bootstrap resampling. Predictors were proportionally weighed according to their regression estimates (assigning 1 point to the smallest coefficient). Prolonged air leak was observed in 504 patients (9.9%). Three variables were found associated with prolonged air leak after logistic regression: male gender (P < .0001, score = 1), forced expiratory volume in 1 second less than 80% (P < .0001, score = 1), and body mass index less than 18.5 kg/m 2 (P < .0001, score = 2). The aggregate prolonged air leak risk score was calculated for each patient by summing the individual scores assigned to each variable (range, 0-4). Patients were then grouped into 4 classes with an incremental risk of prolonged air leak (P < .0001): class A (score 0 points, 1493 patients) 6.3% with prolonged air leak, class B (score 1 point, 2240 patients) 10% with prolonged air leak, class C (score 2 points, 1219 patients) 13% with prolonged air leak, and class D (score >2 points, 117 patients) 25% with prolonged air leak. An aggregate risk score was created to stratify the incidence of prolonged air leak after video-assisted thoracoscopic lobectomy. The score can be used for patient counseling and to identify those patients who can benefit from additional intraoperative preventative measures. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  7. O3 and CO in New England: Temporal variations and relationships

    NASA Astrophysics Data System (ADS)

    Mao, Huiting; Talbot, Robert

    2004-11-01

    We examined seasonal and interannual variability in the mixing ratios of ozone (O3) and carbon monoxide (CO) and their relationships at a rural low-elevation site (24 m, 43.11°N, 70.95°W) and higher-elevation site (406 m, 43.75°N, 71.35°W) in New Hampshire, United States. The data were obtained over 2 years (2001-2003) by the Atmospheric Investigation, Regional Modeling, Analysis, and Prediction (AIRMAP) program at the University of New Hampshire. An analysis of the frequency distributions of O3 and CO grouped by wind speed and direction and over four time periods of the day showed that the most polluted air masses arrived from the southeasterly and westerly wind sectors during the local afternoon hours (1800-2300 UT, -5 hours for U.S. eastern standard time (EST)). In summer within this time window a well-defined positive O3-CO correlation with a slope ˜0.37 existed in these air masses. Applying this relationship together with the CO emission inventory and its temporal profile from the emission model SMOKE, we estimate that 370 Mmol d-1 of O3 are exported from the northeastern United States within this time window during summer. However, over 70% of the data were obtained under weak wind conditions (<2 m s-1) when CO and O3 exhibited a dispersed relationship. An analysis using the ratio NO/NOy and the mixing ratios of NOy revealed a dominance of photochemically aged air masses with significant NOy removal accompanying high levels of O3. This result implies that elevated O3 in southern New Hampshire can largely be attributed to long-range transport of air masses from outside the region. Furthermore, the O3-CO relationship in each season produced a smooth lower CO boundary, which appears to represent air masses with a composition reflecting the evolutionary stages of photochemical aging and progressive phases of transport.

  8. Comparative glacio-climatological analysis of mass balance variability along the geographical margin of Europe

    NASA Astrophysics Data System (ADS)

    Lehoczky, Annamária; Kern, Zoltán; Pongrácz, Rita

    2014-05-01

    Glacio-climatological studies recognise glacier mass balance changes as high-confident climate indicators. The climatic sensitivity of a glacier does not simply depend on regional climate variability but also influenced via large- and mesoscale atmospheric circulation patterns. This study focuses on recent changes in the mass balance using records from three border regions of Europe, and investigates the relationships between the seasonal mass balance components, regional climatic conditions, and distant atmospheric forcing. Since glaciers in different macro-climatological conditions (i.e., mid-latitudes or high-latitudes, dry-continental or maritime regions) may present strongly diverse mass balance characteristics, the three analysed regions were selected from different glacierised macroregions (using the database of the World Glacier Monitoring Service). These regions belong to the Caucasus Mountains (Central Europe macroregion), the Polar Ural (Northern Asia macroregion), and Svalbard (Arctic Islands macroregion). The analysis focuses on winter, summer, and annual mass balance series of eight glaciers. The climatic variables (atmospheric pressure, air temperature, precipitation) and indices of teleconnection patterns (e.g., North Atlantic Oscillation, Pacific Decadal Oscillation) are used from the gridded databases of the University of East Anglia, Climatic Research Unit and the National Oceanic and Atmospheric Administration, National Center for Environmental Prediction. However, the period and length of available mass balance data in the selected regions vary greatly (the first full record is in 1958, Polar Ural; the last is in 2010, Caucasus Mountains), a comparative analysis can be carried out for the period of 1968-1981. Since glaciers from different regions respond to large- and mesoscale climatic forcings differently, and because the mass balance of glaciers within a region often co-vary, our specific objectives are (i) to examine the variability and the integrative climatic signal in the averaged mass balance records of the selected regions; (ii) to analyse the possible coupling between the mass balance and climatic variables, including the dominant patterns of Northern Hemisphere climate variability; and (iii) to compare the main characteristics of the three regions. Furthermore, (iv) a short discussion is given considering the significant decreasing trend of the cumulative annual mass balances in every region under the detected climatic changes in the second half of the 20th century. Preliminary results suggest that the strongest teleconnection links could be between winter mass balance and winter NAO for the Polar Ural (r=0.46, p<0.05), and between annual mass balance and PDO for Svalbard (r=-0.43, p<0.05). Neither seasonal, nor annual mass balance records showed significant correlation with any of the examined circulation indices for the Caucasus.

  9. Measurements of dimethyl sulfide and H2S over the western North Atlantic and the tropical Atlantic

    NASA Technical Reports Server (NTRS)

    Andreae, T. W.; Andreae, M. O.; Bingemer, H. G.; Leck, C.

    1993-01-01

    Airborne measurements of DMS and H2S were made off the east coast of the United States and over the tropical Atlantic off Brazil. Samples were collected through a fluorinated ethylene propylene Teflon inlet manifold. Dimethyl sulfide (DMS) was preconcentrated onto gold wool and analyzed by gas chromatography/flame photometric detection. H2S was collected on AgNO3-impregnated filters and determined by fluorescence quenching. Use of a new scrubber material (cotton) to remove negative interference on DMS measurements was investigated. Comparison with a Na2CO3/Anakrom scrubber gave good overall agreement. Only under extreme conditions, e.g., on flight 9 (continental air mass, low humidity, high O3, and low DMS values) did Na2CO3 show noticeable loss of DMS compared to cotton. On most flights, especially in marine air masses with high humidity and relatively low O3, the results from both scrubbers agreed well with each other and with other instruments used during the intercalibration. Off the U.S. East Coast, DMS levels showed strong dependence on air mass origin with high values (up to 83 ppt) in marine tropical air masses and low values (10-20 ppt) in continental and polar air. Over the tropical Atlantic, DMS ranged over 20-100 ppt in the mixed layer. Nighttime values were a factor of 1.6-2.3 higher than daytime levels. DMS decreased with altitude to less than 1 ppt at 4000 m. H2S in the mixed layer off the U.S. East Coast ranged from 10 to 200 ppt. Significant influence from terrestrial and pollution sources was evident. H2S in air masses originating over the eastern seaboard was much higher than in continental polar air or over the remote tropical continents. In contrast, over the tropical Atlantic, concentrations were very low (5-10 ppt), typical of truly marine air. Night/day ratios were about 1.4. No significant geographical variability was seen in H2S levels over the tropical Atlantic. The correlation of atmospheric Rn-222 and H2S was significant, with both being higher off the U.S. East Coast than over the tropical Atlantic.

  10. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses.

    PubMed

    Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R

    2017-10-01

    A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.

  11. The Aeroflex: A Bicycle for Mobile Air Quality Measurements

    PubMed Central

    Elen, Bart; Peters, Jan; Van Poppel, Martine; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2013-01-01

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. PMID:23262484

  12. The Aeroflex: a bicycle for mobile air quality measurements.

    PubMed

    Elen, Bart; Peters, Jan; Poppel, Martine Van; Bleux, Nico; Theunis, Jan; Reggente, Matteo; Standaert, Arnout

    2012-12-24

    Fixed air quality stations have limitations when used to assess people's real life exposure to air pollutants. Their spatial coverage is too limited to capture the spatial variability in, e.g., an urban or industrial environment. Complementary mobile air quality measurements can be used as an additional tool to fill this void. In this publication we present the Aeroflex, a bicycle for mobile air quality monitoring. The Aeroflex is equipped with compact air quality measurement devices to monitor ultrafine particle number counts, particulate mass and black carbon concentrations at a high resolution (up to 1 second). Each measurement is automatically linked to its geographical location and time of acquisition using GPS and Internet time. Furthermore, the Aeroflex is equipped with automated data transmission, data pre-processing and data visualization. The Aeroflex is designed with adaptability, reliability and user friendliness in mind. Over the past years, the Aeroflex has been successfully used for high resolution air quality mapping, exposure assessment and hot spot identification. 

  13. Analysis of chosen urban bioclimatic conditions in Upper Silesian Industrial Region, Poland

    NASA Astrophysics Data System (ADS)

    Zimnol, Jan

    2013-04-01

    Due to the increasing urbanization, people spend more and more time in cities. Because of that fact during the last century the human bioclimatological approach had an important influence on the applied urban bioclimatology. The aim of the study was to analyze chosen thermal bioclimatic conditions in urban area of Upper Silesian Industrial Region in connection with the atmospheric circulation and air masses. The study was focused on the thermal conditions that are important for the bioclimatological research on human thermal comfort. They were the basis for making study on how to show the influence of the air masses and circulations types on frequency and variability of the chosen bioclimate indexes. That research was based on data (2004 - 2008) acquired by the Silesian University (Faculty of Earth Sciences) meteorological station located in the city of Sosnowiec (50°17'N, 19°08'E, h=263 m a.s.l.). The temperature measurements were made automatically every 10 minutes on the 2 meters above the ground level. Previous research showed that the station is a good representation of the local urban climate conditions in Upper Silesian Industrial Region. In the study the following air temperatures were taken into consideration: average day temperature, maximum day temperature, minimum day temperature and the average air temperature at 12 UTC. They were associated with atmospheric circulation types and masses typical for the region. Using the data mentioned above I conducted a classification to divide days into following objective categories: cool, cold, comfortable, hot, warm and very hot in the seasonal depiction. The final stage of the work was to find the answer to the following question: "When and how do the strong air masses and air circulations types modify bioclimatic conditions in the study area?" Answer to that question together with further results of the research will be presented on my poster.

  14. Restoring dry and moist forests of the inland northwestern U.S.

    Treesearch

    Theresa B. Jain; Russell T. Graham

    2005-01-01

    The complex topography of the inland northwestern U.S. (58.4 million ha) interacts with continental and maritime air masses to create a highly variable climate, which results in a variety of forest settings. Historically (1850 to 1900), approximately 20% of the area was covered by dry forests (Pinus ponderosa, Pseudotsuga menziesii), and an estimated 18% was covered by...

  15. Genotoxic effects following exposure to air pollution in street vendors from a high-traffic urban area.

    PubMed

    Domingues, Érica Prado; Silva, Guilherme Gomes; Oliveira, Andrei Barbassa; Mota, Lorrany Marins; Santos, Vanessa Santana Vieira; de Campos, Edimar Olegário; Pereira, Boscolli Barbosa

    2018-03-14

    Workers in several occupational environments are exposed to pollutants. Street vendors, for example, typically work in a high-traffic urban environment and are exposed to numerous air pollutants, including genotoxic substances emitted by motor vehicles. This study examined the genotoxic effects of exposure to air pollution. We conducted cytological analyses to assess frequencies of micronucleated (MN) and binucleated (BN) cells in a sample of exfoliated oral mucosa cells. We compared street vendors and control subjects in the city of Uberlândia, Minas Gerais, Brazil, and also collected quantitative information on exposure conditions of all test subjects, including concentrations of particulate matter. We found street vendors to exhibit higher frequencies of MN cells compared to the control group. We evaluated the effects of possible confounding variables on MN frequencies, namely the body mass index (BMI), age, as well as smoking and alcohol habits. Multiple linear regression analysis found no significant effects of any of those variables. Our results suggest that continued exposure to air pollution from traffic represents a major source of genotoxicity and raises concerns regarding disease prevention not only in street vendors but also other groups of people working in urban environments.

  16. Variability of aerosol vertical distribution in the Sahel

    NASA Astrophysics Data System (ADS)

    Cavalieri, O.; Cairo, F.; Fierli, F.; di Donfrancesco, G.; Snels, M.; Viterbini, M.; Cardillo, F.; Chatenet, B.; Formenti, P.; Marticorena, B.; Rajot, J. L.

    2010-12-01

    In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2) and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude). In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites. Summer is in fact characterized by extensive and fast convective phenomena. Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity. The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  17. Origin and variability in volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus)

    NASA Astrophysics Data System (ADS)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Stavroulas, Iasonas; Salameh, Thérèse; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnée, Dominique; Bonsang, Bernard; Savvides, Chrysanthos; Vrekoussis, Mihalis; Locoge, Nadine

    2017-09-01

    More than 7000 atmospheric measurements of over 60 C2 - C16 volatile organic compounds (VOCs) were conducted at a background site in Cyprus during a 1-month intensive field campaign held in March 2015. This exhaustive dataset consisted of primary anthropogenic and biogenic VOCs, including a wide range of source-specific tracers, and oxygenated VOCs (with various origins) that were measured online by flame ionization detection-gas chromatography and proton transfer mass spectrometry. Online submicron aerosol chemical composition was performed in parallel using an aerosol mass spectrometer. This study presents the high temporal variability in VOCs and their associated sources. A preliminary analysis of their time series was performed on the basis of independent tracers (NO, CO, black carbon), meteorological data and the clustering of air mass trajectories. Biogenic compounds were mainly attributed to a local origin and showed compound-specific diurnal cycles such as a daily maximum for isoprene and a nighttime maximum for monoterpenes. Anthropogenic VOCs as well as oxygenated VOCs displayed higher mixing ratios under the influence of continental air masses (i.e., western Asia), indicating that long-range transport significantly contributed to the VOC levels in the area. Source apportionment was then conducted on a database of 20 VOCs (or grouped VOCs) using a source receptor model. The positive matrix factorization and concentration field analyses were hence conducted to identify and characterize covariation factors of VOCs that were representative of primary emissions as well as chemical transformation processes. A six-factor PMF solution was selected, namely two primary biogenic factors (relative contribution of 43 % to the total mass of VOCs) for different types of emitting vegetation; three anthropogenic factors (short-lived combustion source, evaporative sources, industrial and evaporative sources; 21 % all together), identified as being either of local origin or from more distant emission zones (i.e., the south coast of Turkey); and a last factor (36 %) associated with regional background pollution (air masses transported both from the Western and Eastern Mediterranean regions). One of the two biogenic and the regional background factors were found to be the largest contributors to the VOC concentrations observed at our sampling site. Finally, a combined analysis of VOC PMF factors with source-apportioned organic aerosols (OAs) helped to better distinguish between anthropogenic and biogenic influences on the aerosol and gas phase compositions. The highest OA concentrations were observed when the site was influenced by air masses rich in semi-volatile OA (less oxidized aerosols) originating from the southwest of Asia, in contrast with OA factor contributions associated with the remaining source regions. A reinforcement of secondary OA formation also occurred due to the intense oxidation of biogenic precursors.

  18. Change in anthropometrics and aerobic fitness in Air Force cadets during 3 years of academy studies.

    PubMed

    Aandstad, Anders; Hageberg, Rune; Saether, Øystein; Nilsen, Rune O

    2012-01-01

    Favorable anthropometrical status and aerobic fitness levels are emphasized in Norwegian Air Force personnel. However, it is unknown how these variables develop in Air Force cadets. Thus, the main aim of the present study was to examine how anthropometrics and maximal oxygen uptake (VO2(max)) change among Norwegian Air Force cadets during 3 yr of Academy studies. There were 30 male cadets included in the study. Bodyweight, body mass index (BMI), estimated percent body fat, and VO2(max) were measured at entry and at the end of the first year of Academy studies. After the first year, 14 cadets left the Academy, while the remaining cadets were retested at the end of the second and third years. RESULTS63: At entry, mean (95% CI) bodyweight, BMI, percent body fat, and VO2(max) were 78.4 (75.2, 81.6) kg, 24.3 (23.5, 25.1) kg x m(-2), 17.8 (16.3, 19.3)%, and 4.48 (4.25, 4.72) L x min(-1), respectively. Percent body fat decreased significantly by 1.1 (0.2, 2.0) percentage points at the end of the first year, while the other variables did not change during the first year. Between entry and end of third year there was no change in any of the main outcome variables. Anthropometrical status and VO2(max) did not change in Norwegian Air Force cadets between entry and the end of 3 yr of Air Force Academy studies. From the 1- and 3-yr follow-up analysis, the only significant change was a small reduction in estimated percent body fat from entry to the end of the first year.

  19. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; hide

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  20. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  1. Greenland Ice Sheet Melt from MODIS and Associated Atmospheric Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Hall, Dorothy K.; Shuman, Christopher A.; Worthen, Denise L.; DiGirolamo, Nicolo E.

    2014-01-01

    Daily June-July melt fraction variations over the Greenland Ice Sheet (GIS) derived from the MODerate-resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500hPa height (from NCEPNCAR). Blocking activity with a range of time scales, from synoptic waves breaking poleward ( 5 days) to full-fledged blocks (5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the largest MODIS melt years (2002 and 2012), the area-average temperature anomaly of 2 standard deviations above the 14-year June-July mean, results in a melt fraction of 40 or more. Summer 2007 had the most blocking days, however atmospheric temperature anomalies were too small to instigate extreme melting.

  2. Utilizing adaptive wing technology in the control of a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Null, William R.; Wagner, Matthew G.; Shkarayev, Sergey V.; Jouse, Wayne C.; Brock, Keith M.

    2002-07-01

    Evolution of the design of micro air vehicles (MAVs) towards miniaturization has been severely constrained by the size and mass of the electronic components needed to control the vehicles. Recent research, experimentation, and development in the area of smart materials have led to the possibility of embedding control actuators, fabricated from smart materials, in the wing of the vehicle, reducing both the size and mass of these components. Further advantages can be realized by developing adaptive wing structures. Small size and mass, and low airspeeds, can lead to considerable buffeting during flight, and may result in a loss of flight control. In order to counter these effects, we are developing a thin, variable-cambered airfoil design with actuators embedded within the wing. In addition to reducing the mass and size of the vehicle or, conversely, increasing its available payload, an important benefit from the adaptive wing concept is the possibility of in-flight modification of the flight envelope. Reduced airspeeds, which are crucial during loiter, can be realized by an in-flight increase in wing camber. Conversely, decreases in camber provide for an airframe best suited for rapid ingress/egress and extension of the mission range.

  3. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broman, D.; Axelman, J.; Bandh, C.

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over watermore » and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.« less

  4. A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ancellet, G.; Menut, L.; Arnold, S. R.

    2006-03-01

    The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL) footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 5 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h-1, with a maximum ozone production of 0.4 ppbv h-1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.

  5. A Lagrangian analysis of the impact of transport and transformation on the ozone stratification observed in the free troposphere during the ESCOMPTE campaign

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ancellet, G.; Menut, L.; Arnold, S. R.

    2006-08-01

    The ozone variability observed by tropospheric ozone lidars during the ESCOMPTE campaign is analyzed by means of a hybrid-Lagrangian modeling study. Transport processes responsible for the formation of ozone-rich layers are identified using a semi-Lagrangian analysis of mesoscale simulations to identify the planetary boundary layer (PBL) footprint in the free troposphere. High ozone concentrations are related to polluted air masses exported from the Iberian PBL. The chemical composition of air masses coming from the PBL and transported in the free troposphere is evaluated using a Lagrangian chemistry model. The initial concentrations are provided by a model of chemistry and transport. Different scenarios are tested for the initial conditions and for the impact of mixing with background air in order to perform a quantitative comparison with the lidar observations. For this meteorological situation, the characteristic mixing time is of the order of 2 to 6 days depending on the initial conditions. Ozone is produced in the free troposphere within most air masses exported from the Iberian PBL at an average rate of 0.2 ppbv h-1, with a maximum ozone production of 0.4 ppbv h-1. Transport processes from the PBL are responsible for an increase of 13.3 ppbv of ozone concentrations in the free troposphere compared to background levels; about 45% of this increase is attributed to in situ production during the transport rather than direct export of ozone.

  6. Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis

    NASA Astrophysics Data System (ADS)

    García-Yee, J. S.; Torres-Jardón, R.; Barrera-Huertas, H.; Castro, T.; Peralta, O.; García, M.; Gutiérrez, W.; Robles, M.; Torres-Jaramillo, J. A.; Ortínez-Álvarez, A.; Ruiz-Suárez, L. G.

    2018-03-01

    The role of the Tenango del Aire mountain pass, located southeast of the Mexico City Metropolitan Area (MCMA), in venting the city's air pollution has already been studied from a meteorological standpoint. To better understand the transport of gaseous air pollutants through the Tenango del Aire Pass (TAP), and its influence on the air quality of the MCMA, three mobile air quality monitoring units were deployed during a 31-day field campaign between February and March of 2011. Surface O3, NOx, and meteorological variables were continuously measured at the three sites. Vertical profiles of O3 and meteorological variables were also obtained at one of the sites using a tethered balloon. Days were classified as being under low pressure synoptic systems (LPS, 13 days), high pressure synoptic systems (HPS, 13 days), or as transition days (TR). The Mexican ozone standards at the Pass were not exceeded during LPS days, but were exceeded on almost all HPS days. A detailed analysis was performed using data from two typical days, one representative of LPS and the other of HPS. In both cases, morning vertical profiles of O3 showed a strong thermal inversion layer and near-surface O3 titration due to fresh NOx. In the LPS early morning, a single O3 layer of close to 45 ppb was observed from 150 to 700 magl. In the HPS early morning, 50 ppb was observed from 150 to 400 magl followed by a 400-m-thick layer with up to 80 ppb. These layers were the source of the morning increase of O3, with a simultaneous sharp decrease of NOx and CO as the mixing layer started to rise. During the LPS day, a southerly wind dominated throughout most of the daytime, with surface O3 lower than 60 ppb. The same was observed for the well-mixed midday and afternoon vertical profiles. Under HPS, northerly winds transported photochemically active air masses from the MCMA all morning, as observed by a smoother increase of Ox and O3, reaching 110 ppb of O3. Just after midday, the wind shifted back, carrying high-O3 (100-110 ppb) aged air masses until sunset. In addition, the midday and afternoon vertical profiles showed well-mixed high-O3 (100-110 ppb) mixing ratios. Analysis of Ox-NOx correlations was performed for these peri-urban and MCMA sites. A parallel analysis for the nearest urban air quality monitoring station in the MCMA was also done. A comparison allowed us to distinguish between photochemically active (VOC sensitive) or aged parcels (NOx sensitive) arriving at the TAP. Separating the correlations into time groups associated with wind direction changes allowed us to better distinguish between local, MCMA, or regional influence. The results are relevant to air quality management in the Mexico City megalopolis.

  7. Defining Winter and Identifying Synoptic Air Mass Change in the Northeast and Northern Plains U.S. since 1950

    NASA Astrophysics Data System (ADS)

    Chapman, C. J.; Pennington, D.; Beitscher, M. R.; Godek, M. L.

    2017-12-01

    Understanding and forecasting the characteristics of winter weather change in the northern U.S. is vital to regional economy, agriculture, tourism and resident life. This is especially true in the Northeast and Northern Plains where substantial changes to the winter season have already been documented in the atmospheric science and biological literature. As there is no single established definition of `winter', this research attempts to identify the winter season in both regions utilizing a synoptic climatological approach with air mass frequencies. The Spatial Synoptic Classification is used to determine the daily air mass/ weather type conditions since 1950 at 40 locations across the two regions. Annual frequencies are first computed as a baseline reference. Then winter air mass frequencies and departures from normal are calculated to define the season along with the statistical significance. Once the synoptic winter is established, long-term regional changes to the season and significance are explored. As evident global changes have occurred after 1975, an Early period of years prior to 1975 and a Late set for all years following this date are compared. Early and Late record synoptic changes are then examined to assess any thermal and moisture condition changes of the regional winter air masses over time. Cold to moderately dry air masses dominate annually in both regions. Northeast winters are also characterized by cold to moderate dry air masses, with coastal locations experiencing more Moist Polar types. The Northern Plains winters are dominated by cold, dry air masses in the east and cold to moderate dry air masses in the west. Prior to 1975, Northeast winters are defined by an increase in cooler and wetter air masses. Dry Tropical air masses only occur in this region after 1975. Northern Plains winters are also characterized by more cold, dry air masses prior to 1975. More Dry Moderate and Moist Moderate air masses have occurred since 1975. These results demonstrate that Northeast winters have air mass conditions that have become warmer and drier in recent decades. Additionally, Northern Plains winters have air mass setups that have become warmer and more moist since the mid 1970s.

  8. Integrated firn elevation change model for glaciers and ice caps

    NASA Astrophysics Data System (ADS)

    Saß, Björn; Sauter, Tobias; Braun, Matthias

    2016-04-01

    We present the development of a firn compaction model in order to improve the volume to mass conversion of geodetic glacier mass balance measurements. The model is applied on the Arctic ice cap Vestfonna. Vestfonna is located on the island Nordaustlandet in the north east of Svalbard. Vestfonna covers about 2400 km² and has a dome like shape with well-defined outlet glaciers. Elevation and volume changes measured by e.g. satellite techniques are becoming more and more popular. They are carried out over observation periods of variable length and often covering different meteorological and snow hydrological regimes. The elevation change measurements compose of various components including dynamic adjustments, firn compaction and mass loss by downwasting. Currently, geodetic glacier mass balances are frequently converted from elevation change measurements using a constant conversion factor of 850 kg m-³ or the density of ice (917 kg m-³) for entire glacier basins. However, the natural conditions are rarely that static. Other studies used constant densities for the ablation (900 kg m-³) and accumulation (600 kg m-³) areas, whereby density variations with varying meteorological and climate conditions are not considered. Hence, each approach bears additional uncertainties from the volume to mass conversion that are strongly affected by the type and timing of the repeat measurements. We link and adapt existing models of surface energy balance, accumulation and snow and firn processes in order to improve the volume to mass conversion by considering the firn compaction component. Energy exchange at the surface is computed by a surface energy balance approach and driven by meteorological variables like incoming short-wave radiation, air temperature, relative humidity, air pressure, wind speed, all-phase precipitation, and cloud cover fraction. Snow and firn processes are addressed by a coupled subsurface model, implemented with a non-equidistant layer discretisation. On our poster we present a general view on the model structure, the input data (model forcing) and finally, an exemplary test case with basic approaches of validation.

  9. Augmentation of Rocket Propulsion: Physical Limits

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1996-01-01

    Rocket propulsion is not ideal when the propellant is not ejected at a unique velocity in an inertial frame. An ideal velocity distribution requires that the exhaust velocity vary linearly with the velocity of the vehicle in an inertial frame. It also requires that the velocity distribution variance as a thermodynamic quantity be minimized. A rocket vehicle with an inert propellant is not optimal, because it does not take advantage of the propellant mass for energy storage. Nor is it logical to provide another energy storage device in order to realize variable exhaust velocity, because it would have to be partly unfilled at the beginning of the mission. Performance is enhanced by pushing on the surrounding because it increases the reaction mass and decreases the reaction jet velocity. This decreases the fraction of the energy taken away by the propellant and increases the share taken by the payload. For an optimal model with the propellant used as fuel, the augmentation realized by pushing on air is greatest for vehicles with a low initial/final mass ratio. For a typical vehicle in the Earth's atmosphere, the augmentation is seen mainly at altitudes below about 80 km. When drag is taken into account, there is a well-defined optimum size for the air intake. Pushing on air has the potential to increase the performance of rockets which pass through the atmosphere. This is apart from benefits derived from "air breathing", or using the oxygen in the atmosphere to reduce the mass of an on-board oxidizer. Because of the potential of these measures, it is vital to model these effects more carefully and explore technology that may realize their advantages.

  10. Quantifying the contribution of Long-Range Transport to PM, NOx, and SO2 loadings at a suburban site in the North-Western Indo Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Pawar, Harshita; Sachan, Himanshu; Garg, Saryu; Arya, Ruhani; Singh, Nitin Kumar; Sinha, Baerbel; Sinha, Vinayak

    2013-04-01

    We investigate the climatology of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.67°N, 76.73°E; 310 m amsl) through 3-day backtrajectories arriving at 20 m above ground level for the period August 2011-November 2012. IISER Mohali is a suburban site in the North-Western Indo Gangetic Basin. The trajectories are computed in ensemble mode twice daily with an arrival time of 2:30 pm local time (daytime) and 4:30 am local time (nighttime) using the HYSPLIT 4 model with the National Oceanic and Atmospheric Administration's GDAS file as meterological input data. Due to the close proximity of the site to the Himalayan mountain range the trajectory output is found to be very sensitive to the models input data. IISER Air Quality station is located in the IGB at an altitude of 310 m amsl approximately 20 km south west of the Shivalik hills, but the model terrain height for the site in the ensemble run output varies between 200 m amsl and 3500 m amsl for the GDAS dataset and 200 m amsl to 5000 m amsl for the reanalysis dataset. We conclude that the GDAS dataset performs better than than reanalysis dataset for our site and selected only those trajectories from the trajectory ensemble for cluster analysis, for which the terrain height in the model output was < 400 m amsl for IISER Mohali (in the IGB) and > 400 m amsl for Shimla (a site located at an altitude of 1000 m amsl in the mountains 60 km north east of Mohali). We subjected the trajectories to hierarchical, and non-hierarchical (K-means) clustering and found that the air mass transport to our station can be characterised by 10 distinct airflow patterns; 3 of which occur only during the monsoon season. For pre-monsoon season (March-June), post-monsoon season (Sept-Nov) and winter season (Dec-Feb), air mass transport to our site is predominantly from the west. Direct transport of north westerly air masses to our site is subdivided into three clusters (slow, medium and rapid) while other clusters are attributed to south westerly air currents or arise from the fact that westerly air masses are deflected and descend along the slope of the Himalayan mountain range and reach our site from the north or south-east. A local recirculation cluster is found to occur particularly during wintertime when stagnant conditions with windspeeds < 1 m/s can presist for several days. We find that several air pollutants measured at the IISER Mohali air quality station are significantly influenced by regional transport and long range transport during pre-monsoon (March-June) and post-monsoon (Sept-Nov) season. This is particularly true for PM10 where the highest loadings (730 μg/m3) are found in air masses with rapid air mass transport from a north western direction during pre-monsoon season. In medium and slow transport from the NW we observe 260 μg/m3 and 210 μg/m3 PM10 respectively. The lowest PM10 loading during pre-monsoon season are associated with local recirculation of air masses (170 μg/m3) and air masses with a long residence time over the eastern IGB (190μg/m3). For NOx, SO2 and CO the lowest concentrations are observed in air masses influenced by rapid long range transport from the NW (4.7, 2.6 and 220 ppbv respectively) while the highest NOx, SO2 and concentrations are observed in air masses transported with slow or medium speed from the NW (7.1, 5.2 and 380 ppbv respectively). During winter season local and regional sources are found to dominate over long range transport, with long range transport accounting for less than 30 % of the observed variablity in the chemical composition of the air masses. During monsoon season removal of pollutants through wet deposition dominates the measured concentrations. Acknowledgement: We thank the IISER Mohali Atmospheric Chemistry Facility for data and the Ministry of Human Resource Development (MHRD), India and IISER Mohali for funding the facility. Chinmoy Sarkar is acknowledged for technical support, SG thanks the Max Planck-DST India Partner Group on Tropospheric OH reactivity and VOCs for funding the research, H. Panwar, H. Sachan and N. K. Singh acknowledge the DST-INSPIRE Fellowship program and R. Arya thanks IISER Mohali for providing an IISER Summer Research Fellowship.

  11. Trace gas transport out of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the methane concentration (30-40ppb) is more obviously connected to the monsoon because it is much higher than the natural variability. Consequently methane is a very good tracer for the monsoon influenced air masses. Beside flights into the outflow of the Indian summer monsoon, there were also measurements of background concentrations in the upper troposphere in air not influenced by the monsoon. Profiles have shown that the high concentrations of trace gases are only observed in the upper troposphere. The high concentrations in the upper troposphere cannot be explained by vertical transport form local ground sources.

  12. Relationship between air mass type and emergency department visits for migraine headache across the Triangle region of North Carolina

    NASA Astrophysics Data System (ADS)

    Elcik, Christopher; Fuhrmann, Christopher M.; Mercer, Andrew E.; Davis, Robert E.

    2017-12-01

    An estimated 240 million people worldwide suffer from migraines. Because migraines are often debilitating, understanding the mechanisms that trigger them is crucial for effective prevention and treatment. Synoptic air mass types and emergency department (ED) visits for migraine headaches were examined over a 7-year period within a major metropolitan area of North Carolina to identify potential relationships between large-scale meteorological conditions and the incidence of migraine headaches. Barometric pressure changes associated with transitional air masses, or changing weather patterns, were also analyzed for potential relationships. Bootstrapping analysis revealed that tropical air masses (moist and dry) resulted in the greatest number of migraine ED visits over the study period, whereas polar air masses led to fewer. Moist polar air masses in particular were found to correspond with the fewest number of migraine ED visits. On transitional air mass days, the number of migraine ED visits fell between those of tropical air mass days and polar air mass days. Transitional days characterized by pressure increases exhibited a greater number of migraine ED visits than days characterized by pressure decreases. However, no relationship was found between migraine ED visits and the magnitude of barometric pressure changes associated with transitional air masses.

  13. The effect of mineral dust transport on PM10 concentrations and physical properties in Istanbul during 2007-2014

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Kaya, Nefel; Eşer, Övgü; Saltan, Şehnaz

    2017-11-01

    Mineral dust is the most significant source of natural particulate matter. In urban regions, where > 50% of the world population is currently living, local emissions of particulate matter are further aggravated by mineral dust loadings from deserts. The megacity of Istanbul is located in an area sensitive to local pollution due to transportation (i.e., private cars, public transportation, aircrafts, ships, heavy diesel trucks, etc.), industrial emissions, residential heating, and long-range transport from Europe, Asia, and deserts. In this work, the effect of desert dust transport on PM10 concentrations and physical properties was investigated for the period of 2007-2014 in the touristic area of Aksaray, Istanbul. The Dust Regional Atmospheric Model (DREAM8b) was used to predict dust loading in Istanbul during dust transport events. Variations on surface PM10 concentrations were investigated according to seasons and during dust transport events. Cluster analysis of air mass backward trajectories was useful to understand frequency analysis and air mass trajectory dependence of PM10 concentrations on dust loadings. The effect of desert dust transport on aerosol optical depths was also investigated. It was observed that PM10 concentrations exceeded the air quality standard of 50 μg m- 3 50% of the time during the study period. The largest number of exceedances in air quality standard occurred during the spring and winter seasons. Approximately 40-60% of the dust loading occurs during the spring. Desert dust and non-desert dust sources contribute to 22-72% and 48-81% of the ground-level PM10 concentrations in Aksaray, Istanbul during the study period. Averaged AOD observed during dust transport events in spring and summer ranged 0.35-0.55. Cluster analysis resolved over 82% the variability of individual air mass backward trajectories into 5 clusters. Overall, air masses arriving to Istanbul at 500 m are equally distributed into northern (52%) and southern (48%). Frequency analysis of PM10 concentrations with mean air mass backward trajectories showed that PM10 from local anthropogenic sources may be enhanced by long-range transport from the African Desert, Asian Desert, Arabian Peninsula, Russia, and Ukraine. The work presented here provides the first integrated assessment for evaluation of occurrence and quantification of the effect of dust transport to ground-level PM10 concentrations in Istanbul, which is helpful for human health prevention and implementation of air quality control measures.

  14. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  15. Frost Growth and Densification in Laminar Flow Over Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2011-01-01

    One-dimensional frost growth and densification in laminar flow over flat surfaces has been theoretically investigated. Improved representations of frost density and effective thermal conductivity applicable to a wide range of frost circumstances have been incorporated. The validity of the proposed model considering heat and mass diffusion in the frost layer is tested by a comparison of the predictions with data from various investigators for frost parameters including frost thickness, frost surface temperature, frost density and heat flux. The test conditions cover a range of wall temperature, air humidity ratio, air velocity, and air temperature, and the effect of these variables on the frost parameters has been exemplified. Satisfactory agreement is achieved between the model predictions and the various test data considered. The prevailing uncertainties concerning the role air velocity and air temperature on frost development have been elucidated. It is concluded that that for flat surfaces increases in air velocity have no appreciable effect on frost thickness but contribute to significant frost densification, while increase in air temperatures results in a slight increase the frost thickness and appreciable frost densification.

  16. The Spatial and Seasonal Variability in Fine Mineral Dust and Coarse Mass Concentrations at Remote Sites across the United States

    NASA Astrophysics Data System (ADS)

    Hand, J. L.; White, W. H.; Hyslop, N. P.; Schichtel, B. A.; Gill, T. E.

    2016-12-01

    Mineral dust influences air quality, visibility, health, hydrology, heterogeneous chemistry, biogeochemistry, ecology, and climate. The spatial and seasonal variability of fine (PM2.5) mineral dust (FD, mineral particles with diameters less than 2.5 µm) and coarse mass (CM, mass of particles with diameters between 2.5 and 10 µm) were characterized at over 160 rural and remote sites in the United States from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Monthly, seasonal, and annual means were computed for 2011 through 2014 to investigate the spatial and seasonal variability of FD and CM. Regions with significant FD included the Southwest in spring (≥ 50% contributions to PM2.5 mass) and in the Midwest, Midsouth, and Southeast regions in summer (20-30% of PM2.5 mass). The seasonality of FD and CM decoupled farther from local source regions suggesting long-range transport of FD or non-dust related CM. FD mineralogy was also explored and confirmed the seasonal and regional impacts of long-range transport. Temporal trends in FD from 2000-2014 revealed regions and seasons with significantly increased FD, especially the Southwest during spring months, the central United States during summer and fall, and the Southeast in summer—all regions that were associated with significant contributions of FD to PM2.5 mass. Positive trends in FD contrast negative trends in other major aerosol species over the same time periods, further enhancing the relative importance of FD to PM2.5 mass. Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and causal mechanisms for dust episodes in order to better inform resource management decisions.

  17. Influence of Beijing outflow on Volatile Organic Compounds (VOC) observed at a mountain site in North China Plain

    NASA Astrophysics Data System (ADS)

    Suthawaree, Jeeranut; Kato, Shungo; Pochanart, Pakpong; Kanaya, Yugo; Akimoto, Hajime; Wang, Zifa; Kajii, Yoshizumi

    2012-07-01

    In order to elucidate an impact of Beijing outflow on air quality in the mountainous area, measurement campaign was carried out in Mt. Mang, located 40 km north of Beijing in September 2007. Volatile Organic Compounds (VOC) observed at the site were mainly influenced by air masses arriving from urban areas. No significant impact of local emission was found. Correlation plots between selected VOC suggests several major emission sources as internal combustion, industrial emission, and coal, oil and biofuel burning. Air masses were classified into “polluted” (influence of Beijing and its satellite cities) and “clean” air mass by using backward trajectory analysis. Two air mass categories revealed significant different characteristics and mixing ratios. Reaction with OH is a major factor controlling mixing ratio of “clean” air mass while impact of dilution is also play important role on “polluted” air mass. Estimation of photochemical age of “polluted” air mass by assuming “clean” air mass for background mixing ratios reveals an averaged of 1.5-1.8 days.

  18. Improving the performance of air-conditioning systems in an ASEAN (Association of South East Asian Nations) climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, J.F.; Warren, M.L.

    1988-09-01

    This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings. To test the performance of different air conditioning system types and control options, whole building energy performance was simulated using DOE-2. The 5100 m/sup 2/ (50,000 ft/sup 2/)more » prototype office building module was previously used in earlier commercial building energy standards analysis for Malaysia and Singapore. In general, the weather pattern for ASEAN countries is uniform, with hot and humid air masses known as ''monsoons'' dictating the weather patterns. Since a concentration of cities occurs near the tip of the Malay peninsula, hourly temperature, humidity, and wind speed data for Kuala Lumpur was used for the analysis. Because of the absence of heating loads in ASEAN regions, we have limited air conditioning configurations to two pipe fan coil, constant volume, variable air volume, powered induction, and ceiling bypass configurations. Control strategies were varied to determine the conservation potential in both energy use and peak electric power demands. Sensitivities including fan control, pre-cooling and night ventilation, supply air temperature control, zone temperature set point, ventilation and infiltration, daylighting and internal gains, and system sizing were examined and compared with a base case which was a variable air volume system with no reheat or economizer. Comfort issues, such as over-cooling and space humidity, were also examined.« less

  19. On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin

    2013-04-01

    Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blijderveen, Maarten van; University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede; Bramer, Eddy A.

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of themore » used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.« less

  1. Air velocity distributions inside tree canopies from a variable-rate air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    A variable-rate, air assisted, five-port sprayer had been in development to achieve variable discharge rates of both liquid and air. To verify the variable air rate capability by changing the fan inlet diameter of the sprayer, air jet velocities impeded by plant canopies were measured at various loc...

  2. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  3. Modeling variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2015-11-01

    This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.

  4. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    PubMed

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  5. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  6. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  7. Effects of teleconnection patterns on the atmospheric routes, precipitation and deposition amounts in the north-eastern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Alarcón, Marta; Aguillaume, Laura; Àvila, Anna

    2014-06-01

    The North Atlantic Oscillation (NAO) has been identified as one of the atmospheric patterns which mostly influence the temporal evolution of precipitation and temperature in the Mediterranean area. Recently, the Western Mediterranean Oscillation (WeMO) has also been proposed to describe the precipitation variability in the eastern Iberian Peninsula. This paper examines whether the chemical signature and/or the chemical deposition amounts recorded over NE Iberian Peninsula are influenced by these climatic variability patterns. Results show a more relevant role of the WeMO compared to NAO in the deposition of either marine (Cl-, Na+, Mg2+) or anthropogenic pollutants (H+, NH4+, NO3- and SO42-). A cluster classification of provenances indicated that in winter (December to March) fast Atlantic air flows correspond to positive WeMO indices, while negative WeMOi are associated to Northeastern and Southwestern circulations. The negative phase of WeMO causes the entry of air masses from the Mediterranean into the Iberian Peninsula, that are enriched with marine ions and ions of anthropogenic origin (NH4+, NO3- and SO42-). For these later, this suggests the advection over the Mediterranean of polluted air masses from southern Europe and the scavenging and deposition of this pollution by precipitation during the WeMO negative phases. This will carry transboundary pollutants to the NE Iberian Peninsula. However, local pollutants may also contribute, as precipitation events from the Mediterranean and the Atlantic (associated to both WeMO phases) may incorporate emissions that accumulate locally during the winter anticyclonic episodes typical of the region.

  8. Variability of Aerosol and its Impact on Cloud Properties Over Different Cities of Pakistan

    NASA Astrophysics Data System (ADS)

    Alam, Khan

    Interaction between aerosols and clouds is the subject of considerable scientific research, due to the importance of clouds in controlling climate. Aerosols vary in time in space and can lead to variations in cloud microphysics. This paper is a pilot study to examine the temporal and spatial variation of aerosol particles and their impact on different cloud optical properties in the territory of Pakistan using the Moderate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite data and Multi-angle Imaging Spectroradiometer (MISR) data. We also use Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for trajectory analysis to obtain origin of air masses in order to understand the spatial and temporal variability of aerosol concentrations. We validate data of MODIS and MISR by using linear correlation and regression analysis, which shows that there is an excellent agreement between data of these instruments. Seasonal study of Aerosol Optical Depth (AOD) shows that maximum value is found in monsoon season (June-August) over all study areas. We analyze the relationships between aerosol optical depth (AOD) and some cloud parameters like water vapor (WV), cloud fraction (CF), cloud top temperature (CTT) and cloud top pressure (CTP). We construct the regional correlation maps and time series plots for aerosol and cloud parameters mandatory for the better understanding of aerosol-cloud interaction. Our analyses show that there is a strong positive correlation between AOD and water vapor in all cities. The correlation between AOD and CF is positive for the cities where the air masses are moist while the correlation is negative for cities where air masses are relatively dry and with lower aerosol abundance. It shows that these correlations depend on meteorological conditions. Similarly as AOD increases Cloud Top Pressure (CTP) is decreasing while Cloud Top Temperature (CTT) is increasing. Key Words: MODIS, MISR, HYSPLIT, AOD, CF, CTP, CTT

  9. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  10. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  11. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

    Treesearch

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar

    2007-01-01

    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  12. Air Mass Considerations in Fog Optical Modeling.

    DTIC Science & Technology

    1981-02-01

    Other microphysical quantities whi.-h are frequently used include the mean radius, the mode radius, and the liquid water content. All these quantities...Commerce .a~ il -’ ecommunications and Commander nr1~nAdministration Ja) Arm~y Comined Arms Center *,Y nn-l t n elecommunication Sciences, & Fort !-eav...Forecasting Selected Weather Variables (Emphasizinq Remote Means )," ASL-TR-O001, January 1978. 73. Heaps, Melvin G., "The 1979 Solar Eclipse and Validation

  13. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 405.

    DTIC Science & Technology

    1977-09-28

    Equilibrium Temperature at Earth’s Center 24 Equivalence in Plane Problem of Gravimetry with Variable Density of Masses 24 Prediction of Rock...circulation mechanisms can be regarded as models relating the distribution of tempera- ture, precipitation , cloud cover, etc. with the system of air...does the dura- tion of elementary circulation mechanisms have a direct relationship to a paucity of precipitation . Data for the period prior to 1918

  14. Aerosol optical extinction during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014 summertime field campaign, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Dingle, Justin H.; Vu, Kennedy; Bahreini, Roya; Apel, Eric C.; Campos, Teresa L.; Flocke, Frank; Fried, Alan; Herndon, Scott; Hills, Alan J.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Reeves, Mike; Richter, Dirk; Roscioli, Joseph R.; Shertz, Stephen; Stell, Meghan; Tanner, David; Tyndall, Geoff; Walega, James; Weibring, Petter; Weinheimer, Andrew

    2016-09-01

    Summertime aerosol optical extinction (βext) was measured in the Colorado Front Range and Denver metropolitan area as part of the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) campaign during July-August 2014. An Aerodyne cavity attenuated phase shift particle light extinction monitor (CAPS-PMex) was deployed to measure βext (at average relative humidity of 20 ± 7 %) of submicron aerosols at λ = 632 nm at 1 Hz. Data from a suite of gas-phase instrumentation were used to interpret βext behavior in various categories of air masses and sources. Extinction enhancement ratios relative to CO (Δβext / ΔCO) were higher in aged urban air masses compared to fresh air masses by ˜ 50 %. The resulting increase in Δβext / ΔCO for highly aged air masses was accompanied by formation of secondary organic aerosols (SOAs). In addition, the impacts of aerosol composition on βext in air masses under the influence of urban, natural oil and gas operations (O&G), and agriculture and livestock operations were evaluated. Estimated non-refractory mass extinction efficiency (MEE) values for different air mass types ranged from 1.51 to 2.27 m2 g-1, with the minimum and maximum values observed in urban and agriculture-influenced air masses, respectively. The mass distribution for organic, nitrate, and sulfate aerosols presented distinct profiles in different air mass types. During 11-12 August, regional influence of a biomass burning event was observed, increasing the background βext and estimated MEE values in the Front Range.

  15. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the anticyclone at its eastern flank. Back-trajectories and increased HCl mixing ratios indicate that the entrained air originates in the stratospherically influenced TL. Photochemical ageing of air masses in the ASMA additionally increases O3 in originally O3-poor, but CO-rich air. Simulated monthly mean trace gas distributions show decreased O3 in the ASMA centre only at the 100 hPa level in July and August, but at lower altitudes and in September the ASMA is dominated by increased O3. The combination of entrainment from the tropopause region, photochemistry and dynamical instabilities can explain the in situ observations, and might have a larger impact on the highly variable trace gas composition of the anticyclone than previously thought.

  16. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  17. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mercury in precipitation at an urbanized coastal zone of the Baltic Sea (Poland).

    PubMed

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Falkowska, Lucyna

    2014-11-01

    Wet deposition is an important source of metals to the sea. The temporal variability of Hg concentrations in precipitation, and the impact of air masses of different origins over the Polish coastal zone were assessed. Samples of precipitation were collected (August 2008-May 2009) at an urbanized coastal station in Poland. Hg analyses were conducted using CVAFS. These were the first measurements of Hg concentration in precipitation obtained in the Polish coastal zone. Since Poland was identified as the biggest emitter of Hg to the Baltic, these data are very important. In the heating and non-heating season, Hg concentrations in precipitation were similar. Hg wet deposition flux dominated in summer, when the production of biomass in the aquatic system was able to actively adsorb Hg. Input of metal to the sea was attributed to regional and distant sources. Maritime air masses, through transformation of Hg(0), were an essential vector of mercury in precipitation.

  19. Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the northeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Berresheim, H.; Andreae, T. W.; Kritz, M. A.; Bates, T. S.

    1988-01-01

    The vertical distributions, in temperate latitudes, of dimethylsulfide (DMS), SO2, radon, methanesulfonate (MSA), nonsea-salt sulfate (nss-sulfate), and aerosol Na(+), NH4(+), and NO(-) ions were determined in samples collected by an aircraft over the northeast Pacific Ocean during May 3-12, 1985. DMS was also determined in surface seawater. It was found that DMS concentrations, both in seawater and in the atmospheric boundary layer, were significantly lower than the values reported previously for subtropical and tropical regions, reflecting the seasonal variability in the temperate North Pacific. The vertical profiles of DMS, MSA, SO2, and nss-sulfate were found to be strongly dependent on the convective stability of the atmosphere and on air mass origin. Biogenic sulfur emissions could account for most of the sulfur budget in the boundary layer, while the long-range transport of continentally derived air masses was mainly responsible for the elevated levels of both SO2 and nss-sulfate in the free troposphere.

  20. CIELO-A GIS integrated model for climatic and water balance simulation in islands environments

    NASA Astrophysics Data System (ADS)

    Azevedo, E. B.; Pereira, L. S.

    2003-04-01

    The model CIELO (acronym for "Clima Insular à Escala Local") is a physically based model that simulates the climatic variables in an island using data from a single synoptic reference meteorological station. The reference station "knows" its position in the orographic and dynamic regime context. The domain of computation is a GIS raster grid parameterised with a digital elevation model (DEM). The grid is oriented following the direction of the air masses circulation through a specific algorithm named rotational terrain model (RTM). The model consists of two main sub-models. One, relative to the advective component simulation, assumes the Foehn effect to reproduce the dynamic and thermodynamic processes occurring when an air mass moves through the island orographic obstacle. This makes possible to simulate the air temperature, air humidity, cloudiness and precipitation as influenced by the orography along the air displacement. The second concerns the radiative component as affected by the clouds of orographic origin and by the shadow produced by the relief. The initial state parameters are computed starting from the reference meteorological station across the DEM transept until the sea level at the windward side. Then, starting from the sea level, the model computes the local scale meteorological parameters according to the direction of the air displacement, which is adjusted with the RTM. The air pressure, temperature and humidity are directly calculated for each cell in the computational grid, while several algorithms are used to compute the cloudiness, net radiation, evapotranspiration, and precipitation. The model presented in this paper has been calibrated and validated using data from some meteorological stations and a larger number of rainfall stations located at various elevations in the Azores Islands.

  1. Variability of hazardous air pollutants in an urban area

    NASA Astrophysics Data System (ADS)

    Spicer, Chester W.; Buxton, Bruce E.; Holdren, Michael W.; Smith, Deborah L.; Kelly, Thomas J.; Rust, Steven W.; Pate, Alan D.; Sverdrup, George M.; Chuang, Jane C.

    The variability of hazardous air pollutants (HAPs) is an important factor in determining human exposure to such chemicals, and in designing HAP measurement programs. This study has investigated the factors which contribute to HAP variability in an urban area. Six measurement sites separated by up to 12 km collected data with 3 h time resolution to examine spatial variability within neighborhoods and between neighborhoods. The measurements were made in Columbus, OH. The 3 h results also were used to study temporal variability, and duplicate samples collected at each site were used to determine the component of variability attributable to the measurement process. Hourly samples collected over 10 days at one site provided further insight into the temporal resolution needed to capture short-term peak concentrations. Measurements at the 6 spatial sites focused on 78 chemicals. Twenty-three of these species were found in at least 95% of the 3 h samples, and 39 chemicals were present at least 60% of the time. The relative standard deviations for most of these 39 frequently detected chemicals was 1.0 or lower. Variability was segmented into temporal, spatial, and measurement components. Temporal variation was the major contributor to HAP variability for 19 of the 39 frequently detected compounds, based on the 3 h data. Measurement imprecision contributed less than 25% for most of the volatile organic species, but 30% or more of the variability for carbonyl compounds, trace elements, and particle-bound extractable organic mass. Interestingly, the spatial component contributed less than 20% of the total variability for all the chemicals except sulfur. Based on the data with hourly resolution, peak to median ratios (hourly peak to 24 h median) averaged between 2 and 4 for most of the volatile organic compounds, but there were two species with peak to median ratios of about 10.

  2. Chemical mass balance source apportionment of TSP in a lignite-burning area of Western Macedonia, Greece

    NASA Astrophysics Data System (ADS)

    Samara, Constantini

    Total suspended particle mass concentrations (TSP) were determined in the Kozani-Ptolemais-Florina basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a 1-year period (November 2000-November 2001) at 10 receptor sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Particulate emissions were also collected from a variety of sources including fly ash, lignite dust, automobile traffic, domestic heating, and open-air burning of agricultural biomass and refuse, and analyzed for the same chemical components. Ambient and source chemical profiles were used for source identification and apportionment of TSP by employing a chemical mass balance (CMB) receptor model. Diesel burning in vehicular traffic and in the power plants for generator start up was found to be the major contributor to ambient TSP levels at all 10 sites. Other sources with significant contributions were domestic coal burning, vegetative burning (wood combustion and agricultural burns) and refuse open-air burning. Fly ash escaping the electrostatic precipitators of the power plants was a minor contributor to ambient TSP.

  3. The role of Amundsen-Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.

    2018-01-01

    Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.

  4. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  5. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  6. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3 in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed layer aerosol. Aerosol loading was found to be the predominant source accounting for 88 % on average of the measured spatial variability in extinction with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first-order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite/modelling assimilation products that are able to capture these components of the AOD-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day-to-day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015) that determined the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  7. The impact of Circulation Weather Types in Urban Air Quality in Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo

    2013-04-01

    It is now clear that emissions of the main air pollutants in Europe have declined significantly in recent decades (EEA, 2011). Nevertheless, many European countries (including Portugal) do not expect to comply with one (or more) pollutant emission ceilings and to air quality limit values, especially for particulate matter (PM), ground level ozone (O3) and nitrogen dioxide (NO2) (EEA, 2011). Consequently, and considering that air pollution (AP) plays a role as a major cause of human mortality and morbidity, exposure to pollutants remains a key environment-related health concern (EEA 2010). Thus, and to comply with the new limits, new strategies must be applied for air quality management. The main objective of this work is to present an objective classification of pre-defined and widely used CWTs affecting Portugal and, based on the most relevant patterns, provide a framework that is useful to characterise the occurrence of pollution episodes, namely its inter-annual and intra-annual variability, as well as the occurrence of extreme events. CWTs were determined using the simple Geostrophic approximation according to the methodology proposed by Trigo and DaCamara (2000). The interannual variability of the resulting CWTs was determined for the period with AP data (2002-2010) and the number of days for each CWT and season for the same period was accounted for. During this period, the most frequent CWTs were found to be the anticyclonic (A), the north (N) and the northeast (NE) types, accounting respectively for 34.7%, 10.9% and 14% of the days. However, higher-than average episodes tend to occur associated predominantly with situations characterized by a few less frequent CWTs, namely easterly (E), northeasterly (NE) and southeasterly (SE) types (that together contributed to less than one fourth of all observed days), are the ones which are associated to higher median and maximum concentrations of the three pollutants. Results obtained highlight the existence of strong links between the interannual variability of daily air quality and interannual variability of CWTs. Additionally, three specific extreme episodes were assessed in more detail including a comparison with results obtained with the HYSPLIT system model. In general, all the pollutants' extreme events occur associated predominantly with situations characterized by an Eastern component and advection of dry air masses.

  8. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  9. Exposure to wood smoke particles produces inflammation in healthy volunteers.

    PubMed

    Ghio, Andrew J; Soukup, Joleen M; Case, Martin; Dailey, Lisa A; Richards, Judy; Berntsen, Jon; Devlin, Robert B; Stone, Susan; Rappold, Ana

    2012-03-01

    Human exposure to wood smoke particles (WSP) impacts on human health through changes in indoor air quality, exposures from wild fires, burning of biomass and air pollution. This investigation tested the postulate that healthy volunteers exposed to WSP would demonstrate evidence of both pulmonary and systemic inflammation. Ten volunteers were exposed to filtered air and, 3 weeks or more later, WSP. Each exposure included alternating 15 min of exercise and 15 min of rest for a total duration of 2 h. Wood smoke was generated by heating an oak log on an electric element and then delivered to the exposure chamber. Endpoints measured in the volunteers included symptoms, pulmonary function tests, measures of heart rate variability and repolarisation, blood indices and analysis of cells and fluid obtained during bronchoalveolar lavage. Mean particle mass for the 10 exposures to air and WSP was measured using the mass of particles collected on filters and found to be below the detectable limit and 485±84 μg/m(3), respectively (mean±SD). There was no change in either symptom prevalence or pulmonary function with exposure to WSP. At 20 h after wood smoke exposure, blood tests demonstrated an increased percentage of neutrophils, and bronchial and bronchoalveolar lavage revealed a neutrophilic influx. We conclude that exposure of healthy volunteers to WSP may be associated with evidence of both systemic and pulmonary inflammation.

  10. [The analysis of the causes of variability of the relationship between leaf dry mass and area in plants].

    PubMed

    Vasfilov, S P

    2011-01-01

    The lamina dry mass: area ratio (LMA - Leaf Mass per Area) is a quite variable trait. Leaf dry mass consists of symplast mass (a set of all leaf protoplasts) and apoplast mass (a set of all cell walls in a leaf). The ratio between symplast and apoplast masses is positively related to any functional trait of leaf calculated per unit of dry mass. The value of this ratio is defined by cells size and their number per unit of leaf area, number of mesophyll cells layers and their differentiation between palisade and spongy ones, and also by density of cells packing. The LMA value is defined by leaf thickness and density. The extent and direction of variability in both leaf traits define the extent and direction of variability in LMA. Negative correlation between leaf thickness and density reduces the level of LMA variability. As a consequence of this correlation the following pattern emerges: the thinner a leaf, the denser it is. Changes in the traits that define the LMA value take place both within a species under the influence of environmental factors and between species that differ in leaf structure and functions. Light is the most powerful environmental factor that influences the LMA, increase in illumination leading to increase in LMA. This effect occurs during leaf growth at the expense of structural changes associated with the reduction of symplast/apoplast mass ratio. Under conditions of intense illumination, LMA may increase due to accumulation of starch. With regard to the majority of leaf functions, the mass of starch may be ascribed to apoplast. Starch accumulation in leaves is observed also under conditions of elevated CO2 concentration in the air. Under high illumination, however, LMA increases also due to increased apoplast contribution to leaf dry mass. Scarce mineral nutrition leads to LMA increase due to lowering of growth zones demands for phothosyntates and, therefore, to increase in starch content of leaves. High level of mineral nutrition during leaf growth period leads to LMA increase at the expense of mesophyll thickening where components of photosynthesis system are located. When additional environmental factors are involved, starch accumulation may be partly responsible for increase in LMA. LMA increase at the expense of starch accumulation, unlike that at the expense of mesophyll thickening, is accompanied by increased leaf density. Under conditions of water deficiency LMA increases, which in mature leaf may be caused by starch accumulation. LMA increase during leaf growth period under conditions of water deficiency is associated with decrease in the symplast/apoplast mass ratio.

  11. Atmospheric organochlorine pesticides in the western Canadian Arctic: Evidence of transpacific transport

    NASA Astrophysics Data System (ADS)

    Bailey, R.; Barrie, L. A.; Halsall, C. J.; Fellin, P.; Muir, D. C. G.

    2000-05-01

    Concentrations of hexachlorocyclohexanes (HCHs), chlordane, and dichlorodiphenyltrichloroethane (DDT) were measured in ambient air samples on a weekly basis between December 1992 and January 1995 at Tagish Yukon, Canada. In winter, unusually high air concentrations of HCHs, DDT, and chlordanes at Tagish were predominantly influenced by transpacific long-range atmospheric transport from eastern Asia that generally occurred within 5 days. HCH and heptachlor epoxide concentrations were correlated with the time that air spent over eastern Asia prior to arrival at Tagish. Chlordane and DDT, which also increase with transpacific transport, do not show a correlation with the time the upwind airshed included Asia as the composition of these pesticides in the atmosphere is affected by differences in usage patterns, application methods, variable composition of parent pesticides and metabolites in the soil, and rates of volatilization. Air masses originating from North America had the highest concentrations of HCHs and chlordanes when the 5-day upwind airshed included the western United States. Concentrations of HCHs may also be influenced by lindane usage in Canada.

  12. Linking Low-Frequency Large-Scale Circulation Patterns to Cold Air Outbreak Formation in the Northeastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Papritz, L.; Grams, C. M.

    2018-03-01

    The regional variability of wintertime marine cold air outbreaks (CAOs) in the northeastern North Atlantic is studied focusing on the role of weather regimes in modulating the large-scale circulation. Each regime is characterized by a typical CAO frequency anomaly pattern and a corresponding imprint in air-sea heat fluxes. Cyclonically dominated regimes, Greenland blocking and the Atlantic ridge regime are found to provide favorable conditions for CAO formation in at least one major sea of the study region; CAO occurrence is suppressed, however, by blocked regimes whose associated anticyclones are centered over northern Europe (European / Scandinavian blocking). Kinematic trajectories reveal that strength and location of the storm tracks are closely linked to the pathways of CAO air masses and, thus, CAO occurrence. Finally, CAO frequencies are also linked to the strength of the stratospheric polar vortex, which is understood in terms of associated variations in the frequency of weather regimes.

  13. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  14. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    PubMed

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  15. Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers

    NASA Technical Reports Server (NTRS)

    Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  16. Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers

    USGS Publications Warehouse

    Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed

    2013-01-01

    We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.

  17. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    PubMed

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  18. Turbulent mass flux closure modeling for variable density turbulence in the wake of an air-entraining transom stern

    NASA Astrophysics Data System (ADS)

    Hendrickson, Kelli; Yue, Dick

    2016-11-01

    This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.

  19. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  20. Field-calibrated model of melt, refreezing, and runoff for polar ice caps: Application to Devon Ice Cap

    NASA Astrophysics Data System (ADS)

    Morris, Richard M.; Mair, Douglas W. F.; Nienow, Peter W.; Bell, Christina; Burgess, David O.; Wright, Andrew P.

    2014-09-01

    Understanding the controls on the amount of surface meltwater that refreezes, rather than becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately for predicting their future contributions to global sea level change. We present a modified version of a physically based model that includes an energy balance routine and explicit calculation of near-surface meltwater refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution measurements of snow and firn densities across almost the entire elevation range of the ice cap for the summer of 2004 and subsequently validated with the same type of measurements obtained during the very different meteorological conditions of summer 2006. The model captures the spatial variability across the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years; however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that the sensitivity of the ice cap's surface mass balance to air temperature is itself dependent on air temperature.

  1. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind field expanded and the cloud pattern evolved into an atypical pattern.

  2. Postural sway and exposure to jet propulsion fuel 8 among US Air Force personnel.

    PubMed

    Maule, Alexis L; Heaton, Kristin J; Rodrigues, Ema; Smith, Kristen W; McClean, Michael D; Proctor, Susan P

    2013-04-01

    To determine whether short-term jet propulsion fuel 8 (JP-8) exposure is associated with balance measurements in JP-8-exposed air force personnel. As part of a larger neuroepidemiology study, balance tasks were completed by JP-8-exposed individuals (n = 37). Short-term JP-8 exposure was measured using personal breathing zone levels and urinary biomarkers. Multivariate linear regression analyses were conducted to examine the relationship between workday JP-8 exposure and postural sway. Balance control decreased as the task became more challenging. Workday exposure to JP-8, measured by either personal air or urinary metabolite levels, was not significantly related to postural sway. Increases in workday postural sway were associated with demographic variables, including younger age, being a current smoker, and higher body mass index. Results suggest that short-term workday JP-8 exposure does not significantly contribute to diminished balance control.

  3. Eurasian continental background and regionally polluted levels of ozone and CO observed in northeast Asia

    NASA Astrophysics Data System (ADS)

    Pochanart, Pakpong; Kato, Shungo; Katsuno, Takao; Akimoto, Hajime

    The roles of Eurasian/Siberian continental air masses transport and the impact of large-scale East Asian anthropogenic emissions on tropospheric ozone and carbon monoxide levels in northeast Asia were investigated. Seasonal behaviors of O 3 and CO mixing ratios in background continental (BC) air masses and regionally polluted continental (RPC) air masses were identified using trajectory analyses of Eurasian continental air masses and multi-year O 3 and CO data observed at Happo, a mountain site in Japan. RPC air masses show significantly higher O 3 and CO mixing ratios (annual average of 53.9±6.0 and 200±41 ppb, respectively) than BC air masses (44.4±3.6 and 167±17 ppb, respectively). Large scale anthropogenic emissions in East Asia are suggested to contribute about 10 ppb of photochemical O 3 and 32 ppb of CO at Happo. A comparative study of O 3 and CO observed at other sites, i.e., Oki Islands and Mondy in northeast Asia, showed similarities suggesting that O 3 mixing ratios in BC air masses at Happo could be representative for remote northeast Asia. However, CO mixing ratios in BC air masses at Happo are higher than the background level in Siberia. The overestimate is probably related to an increase in the CO baseline gradient between Siberia and the East Asia Pacific rim, and perturbations by sub-grid scale pollution transport and regional-scale boreal forest fires in Siberia when the background continental air masses are transported to Japan.

  4. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  5. MODELING OF HUMAN EXPOSURE TO IN-VEHICLE PM2.5 FROM ENVIRONMENTAL TOBACCO SMOKE

    PubMed Central

    Cao, Ye; Frey, H. Christopher

    2012-01-01

    Environmental tobacco smoke (ETS) is estimated to be a significant contributor to in-vehicle human exposure to fine particulate matter of 2.5 µm or smaller (PM2.5). A critical assessment was conducted of a mass balance model for estimating PM2.5 concentration with smoking in a motor vehicle. Recommendations for the range of inputs to the mass-balance model are given based on literature review. Sensitivity analysis was used to determine which inputs should be prioritized for data collection. Air exchange rate (ACH) and the deposition rate have wider relative ranges of variation than other inputs, representing inter-individual variability in operations, and inter-vehicle variability in performance, respectively. Cigarette smoking and emission rates, and vehicle interior volume, are also key inputs. The in-vehicle ETS mass balance model was incorporated into the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model to quantify the potential magnitude and variability of in-vehicle exposures to ETS. The in-vehicle exposure also takes into account near-road incremental PM2.5 concentration from on-road emissions. Results of probabilistic study indicate that ETS is a key contributor to the in-vehicle average and high-end exposure. Factors that mitigate in-vehicle ambient PM2.5 exposure lead to higher in-vehicle ETS exposure, and vice versa. PMID:23060732

  6. Comparison of Two Air Pollution Episodes over Northeast China in Winter 2016/17 Using Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Ma, Yanjun; Zhao, Hujia; Dong, Yunsheng; Che, Huizheng; Li, Xiaoxiao; Hong, Ye; Li, Xiaolan; Yang, Hongbin; Liu, Yuche; Wang, Yangfeng; Liu, Ningwei; Sun, Cuiyan

    2018-04-01

    This study analyzes and compares aerosol properties and meteorological conditions during two air pollution episodes in 19-22 (E1) and 25-26 (E2) December 2016 in Northeast China. The visibility, particulate matter (PM) mass concentration, and surface meteorological observations were examined, together with the planetary boundary layer (PBL) properties and vertical profiles of aerosol extinction coefficient and volume depolarization ratio that were measured by a ground-based lidar in Shenyang of Liaoning Province, China during December 2016-January 2017. Results suggest that the low PBL height led to poor pollution dilution in E1, while the high PBL accompanied by low visibility in E2 might have been due to cross-regional and vertical air transmission. The PM mass concentration decreased as the PBL height increased in E1 while these two variables were positively correlated in E2. The enhanced winds in E2 diffused the pollutants and contributed largely to the aerosol transport. Strong temperature inversion in E1 resulted in increased PM2.5 and PM10 concentrations, and the winds in E2 favoured the southwesterly transport of aerosols from the North China Plain into the region surrounding Shenyang. The large extinction coefficient was partially attributed to the local pollution under the low PBL with high ground-surface PM mass concentrations in E1, whereas the cross-regional transport of aerosols within a high PBL and the low PM mass concentration near the ground in E2 were associated with severe aerosol extinction at high altitudes. These results may facilitate better understanding of the vertical distribution of aerosol properties during winter pollution events in Northeast China.

  7. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.

  8. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  9. Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: Estimation of PM10 concentrations on a daily basis.

    PubMed

    Alam, Md Saniul; McNabola, Aonghus

    2015-05-01

    Estimation of daily average exposure to PM10 (particulate matter with an aerodynamic diameter<10 μm) using the available fixed-site monitoring stations (FSMs) in a city poses a great challenge. This is because typically FSMs are limited in number when considering the spatial representativeness of their measurements and also because statistical models of citywide exposure have yet to be explored in this context. This paper deals with the later aspect of this challenge and extends the widely used land use regression (LUR) approach to deal with temporal changes in air pollution and the influence of transboundary air pollution on short-term variations in PM10. Using the concept of multiple linear regression (MLR) modeling, the average daily concentrations of PM10 in two European cities, Vienna and Dublin, were modeled. Models were initially developed using the standard MLR approach in Vienna using the most recently available data. Efforts were subsequently made to (i) assess the stability of model predictions over time; (ii) explores the applicability of nonparametric regression (NPR) and artificial neural networks (ANNs) to deal with the nonlinearity of input variables. The predictive performance of the MLR models of the both cities was demonstrated to be stable over time and to produce similar results. However, NPR and ANN were found to have more improvement in the predictive performance in both cities. Using ANN produced the highest result, with daily PM10 exposure predicted at R2=66% for Vienna and 51% for Dublin. In addition, two new predictor variables were also assessed for the Dublin model. The variables representing transboundary air pollution and peak traffic count were found to account for 6.5% and 12.7% of the variation in average daily PM10 concentration. The variable representing transboundary air pollution that was derived from air mass history (from back-trajectory analysis) and population density has demonstrated a positive impact on model performance. The implications of this research would suggest that it is possible to produce a model of ambient air quality on a citywide scale using the readily available data. Most European cities typically have a limited FSM network with average daily concentrations of air pollutants as well as available meteorological, traffic, and land-use data. This research highlights that using these data in combination with advanced statistical techniques such as NPR or ANNs will produce reasonably accurate predictions of ambient air quality across a city, including temporal variations. Therefore, this approach reduces the need for additional measurement data to supplement existing historical records and enables a lower-cost method of air pollution model development for practitioners and policy makers.

  10. Analysis of multi-year near-surface ozone observations at the WMO/GAW "Concordia" station (75°06‧S, 123°20‧E, 3280 m a.s.l. - Antarctica)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, Paolo; Putero, Davide; Bonasoni, Paolo; Busetto, Maurizio; Calzolari, Francescopiero; Camporeale, Giuseppe; Grigioni, Paolo; Lupi, Angelo; Petkov, Boyan; Traversi, Rita; Udisti, Roberto; Vitale, Vito

    2018-03-01

    This work focuses on the near-surface O3 variability over the eastern Antarctic Plateau. In particular, eight years (2006-2013) of continuous observations at the WMO/GAW contributing station "Concordia" (Dome C-DMC: 75°06‧S, 123°20‧E, 3280 m) are presented, in the framework of the Italian Antarctic Research Programme (PNRA). First, the characterization of seasonal and diurnal O3 variability at DMC is provided. Then, for the period of highest data coverage (2008-2013), we investigated the role of specific atmospheric processes in affecting near-surface summer O3 variability, when O3 enhancement events (OEEs) are systematically observed at DMC (average monthly frequency peaking up to 60% in December). As deduced by a statistical selection methodology, these OEEs are affected by a significant interannual variability, both in their average O3 values and in their frequency. To explain part of this variability, we analyzed OEEs as a function of specific atmospheric variables and processes: (i) total column of O3 (TCO) and UV-A irradiance, (ii) long-range transport of air masses over the Antarctic Plateau (by Lagrangian back-trajectory analysis - LAGRANTO), (iii) occurrence of "deep" stratospheric intrusion events (by using the Lagrangian tool STLEFLUX). The overall near-surface O3 variability at DMC is controlled by a day-to-day pattern, which strongly points towards a dominating influence of processes occurring at "synoptic" scales rather than "local" processes. Even if previous studies suggested an inverse relationship between OEEs and TCO, we found a slight tendency for the annual frequency of OEEs to be higher when TCO values are higher over DMC. The annual occurrence of OEEs at DMC seems related to the total time spent by air masses over the Antarctic plateau before their arrival to DMC, suggesting the accumulation of photochemically-produced O3 during the transport, rather than a more efficient local production. Moreover, the identification of recent (i.e., 4-day old) stratospheric intrusion events by STEFLUX suggested only a minor influence (up to 3% of the period, in November) of "deep" events on the variability of near-surface summer O3 at DMC.

  11. Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE

    NASA Astrophysics Data System (ADS)

    Mazloff, Matthew R.; Boening, Carmen

    2016-04-01

    Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.

  12. Experimental Determination of Air Density Using a 1 kg Mass Comparator in Vacuum

    NASA Astrophysics Data System (ADS)

    Gläser, M.; Schwartz, R.; Mecke, M.

    1991-01-01

    The density of ambient air has been determined by a straightforward experimental method. The apparent masses of two artefacts having about the same mass and surface, but different well-known volumes, have been compared by using a 1 kg balance in vacuum and in air. The differences of apparent masses and volumes yield the air density with a relative uncertainty (1σ) of 5 × 10-5. From measurements made using a third artefact, surface sorption effects caused by the change between vacuum and air conditions gave a coefficient of about 0,2 μg cm-2.

  13. Parameter study for child injury mitigation in near-side impacts through FE simulations.

    PubMed

    Andersson, Marianne; Pipkorn, Bengt; Lövsund, Per

    2012-01-01

    The objective of this study is to investigate the effects of crash-related car parameters on head and chest injury measures for 3- and 12-year-old children in near-side impacts. The evaluation was made using a model of a complete passenger car that was impacted laterally by a barrier. The car model was validated in 2 crash conditions: the Insurance Institute for Highway Safety (IIHS) and the US New Car Assessment Program (NCAP) side impact tests. The Small Side Impact Dummy (SID-IIs) and the human body model 3 (HBM3) (Total HUman Model for Safety [THUMS] 3-year-old) finite element models were used for the parametric investigation (HBM3 on a booster). The car parameters were as follows: vehicle mass, side impact structure stiffness, a head air bag, a thorax-pelvis air bag, and a seat belt with pretensioner. The studied dependent variables were as follows: resultant head linear acceleration, resultant head rotational acceleration, chest viscous criterion, rib deflection, and relative velocity at head impact. The chest measurements were only considered for the SID-IIs. The head air bag had the greatest effect on the head measurements for both of the occupant models. On average, it reduced the peak head linear acceleration by 54 g for the HBM3 and 78 g for the SID-IIs. The seat belt had the second greatest effect on the head measurements; the peak head linear accelerations were reduced on average by 39 g (HBM3) and 44 g (SID-IIs). The high stiffness side structure increased the SID-IIs' head acceleration, whereas it had marginal effect on the HBM3. The vehicle mass had a marginal effect on SID-IIs' head accelerations, whereas the lower vehicle mass caused 18 g higher head acceleration for HBM3 and the greatest rotational acceleration. The thorax-pelvis air bag, vehicle mass, and seat belt pretensioner affected the chest measurements the most. The presence of a thorax-pelvis air bag, high vehicle mass, and a seat belt pretensioner all reduced the chest viscous criterion (VC) and peak rib deflection in the SID-IIs. The head and thorax-pelvis air bags have the potential to reduce injury measurements for both the SID-IIs and the HBM3, provided that the air bag properties are designed to consider these occupant sizes also. The seat belt pretensioner is also effective, provided that the lateral translation of the torso is managed by other features. The importance of lateral movement management is greater the smaller the occupant is. Light vehicles require interior restraint systems of higher performance than heavy vehicles do to achieve the same level of injury measures for a given side structure. Copyright © 2012 Taylor & Francis Group, LLC

  14. Microorganisms of the Upper Atmosphere

    PubMed Central

    Fulton, John D.; Mitchell, Roland B.

    1966-01-01

    The viable micropopulation found, at altitude over a city, in a land air mass was significantly higher than that found in a marine-influenced air mass. The percentage distribution of bacteria and fungi was approximately equal in both types of air masses. This indicates that, under the conditions of the experiment, the marine air mass was influenced by the land area over which it traveled during passage from its source to the sampling area. Activities taking place within the city significantly increased the micropopulation at altitude. This increase was quantitatively so small that it was not identifiable when the micropopulation moving into the city was high—as in a land air mass—but was recognizable when the micropopulation was low—as in a marine-influenced air mass. The modification of the micropopulation at altitude by temperature inversions was shown. PMID:5959858

  15. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  16. Influence of Madden-Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina

    2013-10-01

    Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.

  17. Comparison of Modeled Backscatter using Measured Aerosol Microphysics with Focused CW Lidar Data over Pacific

    NASA Technical Reports Server (NTRS)

    Srivastava, Vandana; Clarke, Antony D.; Jarzembski, Maurice A.; Rothermel, Jeffry

    1997-01-01

    During NASA's GLObal Backscatter Experiment (GLOBE) II flight mission over the Pacific Ocean in May-June 1990, extensive aerosol backscatter data sets from two continuous wave, focused CO2 Doppler lidars and an aerosol microphysics data set from a laser optical particle counter (LOPC) were obtained. Changes in aerosol loading in various air masses with associated changes in chemical composition, from sulfuric acid and sulfates to dustlike crustal material, significantly affected aerosol backscatter, causing variation of about 3 to 4 orders of magnitude. Some of the significant backscatter features encountered in different air masses were the low backscatter in subtropical air with even lower values in the tropics near the Intertropical Convergence Zone (ITCZ), highly variable backscatter in the ITCZ, mid-tropospheric aerosol backscatter background mode, and high backscatter in an Asian dust plume off the Japanese coast. Differences in aerosol composition and backscatter for northern and southern hemisphere also were observed. Using the LOPC measurements of physical and chemical aerosol properties, we determined the complex refractive index from three different aerosol mixture models to calculate backscatter. These values provided a well-defined envelope of modeled backscatter for various atmospheric conditions, giving good agreement with the lidar data over a horizontal sampling of approximately 18000 km in the mid-troposphere.

  18. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  19. Signature of a Sudden Stratospheric Warming in the near-ground 7Be flux.

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.

    2015-12-01

    We present here a study of the impact of one Sudden Stratospheric Warming (SSW) upon the atmospheric vertical dynamics based on 7Be measurements in near ground air, using both numerical and conceptual. In late September 2002, an unprecedented SSW event occurred in the southern hemisphere (SH), causing changes in the tropospheric circulation, ozone depletion and weakening of the polar jet in the mesosphere. There is an observational evidence suggesting that anomalies in the stratosphere play an important role in driving tropospheric weather producing tropospheric changes that can persists for up to 60 days in NH and up to about 90 days in the SH, as observed after the 2002 SSW (Thompson et al., 2005). Radioactive environmental techniques for tracing large-scale air-mass transport have been applied in studies of atmospheric dynamics for decades and they are becoming more and more precise due to the improvement of the instrumental sensitivity and associated modeling. Temporal variations of the cosmogenic 7Be concentration in the near-surface atmosphere can provide information on the air mass dynamics, precipitation patterns, stratosphere-troposphere coupling and cosmic ray variations. The present study is based on an analysis of 7Be concentration measured in near-ground air in the city of Angra dos Reis, Rio de Janeiro state, Brazil between 1987 and 2009. Using a simplified tropospheric 7Be model deposition based on a two-layer transport model, Pacini (2011) reported that the occurrence of strong downward air flux leave an imprint of the 3D motion of air masses to the near-ground air 7Be data in the studied region. In this work, we have further developed the two-layer model by adding one more layer: the lower stratosphere (LS). In normal conditions, the contribution of the LS 7Be to the near-ground isotopic variability would be very small. On the other hand, stratospheric source can be crucial for the SSW event, indicating that a strong stratospheric air intrusion happened after the SSW and induced a downward flux of stratospheric aerosols from the LS to the ground level lasting several months after the SSW peak, showing that its tropospheric consequences can be much larger than it is usually considered.

  20. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  1. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    PubMed

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  2. Large Eddy Simulations of the Vortex-Flame Interaction in a Turbulent Swirl Burner

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Elbaz, Ayman M.; Hernandez Perez, Francisco E.; Roberts, William L.; Im, Hong G.

    2017-11-01

    A series of swirl-stabilized partially premixed flames are simulated using large eddy simulation (LES) along with the flamelet/progress variable (FPV) model for combustion. The target burner has separate and concentric methane and air streams, with methane in the center and the air flow swirled through the tangential inlets. The flame is lifted in a straight quarl, leading to a partially premixed state. By fixing the swirl number and air flow rate, the fuel jet velocity is reduced to study flame stability as the flame approaches the lean blow-off limit. Simulation results are compared against measured data, yielding a generally good agreement on the velocity, temperature, and species mass fraction distributions. The proper orthogonal decomposition (POD) method is applied on the velocity and progress variable fields to analyze the dominant unsteady flow structure, indicating a coupling between the precessing vortex core (PVC) and the flame. The effects of vortex-flame interactions on the stabilization of the lifted swirling flame are also investigated. For the stabilization of the lifted swirling flame, the effects of convection, enhanced mixing, and flame stretching introduced by the PVC are assessed based on the numerical results. This research work was sponsored by King Abdullah University of Science and Technology (KAUST) and used computational resources at KAUST Supercomputing Laboratory.

  3. A Well-Mixed Computational Model for Estimating Room Air Levels of Selected Constituents from E-Vapor Product Use.

    PubMed

    Rostami, Ali A; Pithawalla, Yezdi B; Liu, Jianmin; Oldham, Michael J; Wagner, Karl A; Frost-Pineda, Kimberly; Sarkar, Mohamadi A

    2016-08-16

    Concerns have been raised in the literature for the potential of secondhand exposure from e-vapor product (EVP) use. It would be difficult to experimentally determine the impact of various factors on secondhand exposure including, but not limited to, room characteristics (indoor space size, ventilation rate), device specifications (aerosol mass delivery, e-liquid composition), and use behavior (number of users and usage frequency). Therefore, a well-mixed computational model was developed to estimate the indoor levels of constituents from EVPs under a variety of conditions. The model is based on physical and thermodynamic interactions between aerosol, vapor, and air, similar to indoor air models referred to by the Environmental Protection Agency. The model results agree well with measured indoor air levels of nicotine from two sources: smoking machine-generated aerosol and aerosol exhaled from EVP use. Sensitivity analysis indicated that increasing air exchange rate reduces room air level of constituents, as more material is carried away. The effect of the amount of aerosol released into the space due to variability in exhalation was also evaluated. The model can estimate the room air level of constituents as a function of time, which may be used to assess the level of non-user exposure over time.

  4. Associations between ozone and morbidity using the Spatial Synoptic Classification system

    PubMed Central

    2011-01-01

    Background Synoptic circulation patterns (large-scale tropospheric motion systems) affect air pollution and, potentially, air-pollution-morbidity associations. We evaluated the effect of synoptic circulation patterns (air masses) on the association between ozone and hospital admissions for asthma and myocardial infarction (MI) among adults in North Carolina. Methods Daily surface meteorology data (including precipitation, wind speed, and dew point) for five selected cities in North Carolina were obtained from the U.S. EPA Air Quality System (AQS), which were in turn based on data from the National Climatic Data Center of the National Oceanic and Atmospheric Administration. We used the Spatial Synoptic Classification system to classify each day of the 9-year period from 1996 through 2004 into one of seven different air mass types: dry polar, dry moderate, dry tropical, moist polar, moist moderate, moist tropical, or transitional. Daily 24-hour maximum 1-hour ambient concentrations of ozone were obtained from the AQS. Asthma and MI hospital admissions data for the 9-year period were obtained from the North Carolina Department of Health and Human Services. Generalized linear models were used to assess the association of the hospitalizations with ozone concentrations and specific air mass types, using pollutant lags of 0 to 5 days. We examined the effect across cities on days with the same air mass type. In all models we adjusted for dew point and day-of-the-week effects related to hospital admissions. Results Ozone was associated with asthma under dry tropical (1- to 5-day lags), transitional (3- and 4-day lags), and extreme moist tropical (0-day lag) air masses. Ozone was associated with MI only under the extreme moist tropical (5-day lag) air masses. Conclusions Elevated ozone levels are associated with dry tropical, dry moderate, and moist tropical air masses, with the highest ozone levels being associated with the dry tropical air mass. Certain synoptic circulation patterns/air masses in conjunction with ambient ozone levels were associated with increased asthma and MI hospitalizations. PMID:21609456

  5. High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Faïn, X.; Obrist, D.; Hallar, A. G.; McCubbin, I.; Rahn, T.

    2009-10-01

    The chemical cycling and spatiotemporal distribution of mercury in the troposphere is poorly understood. We measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate mercury (HgP) along with carbon monoxide (CO), ozone (O3), aerosols, and meteorological variables at Storm Peak Laboratory at an elevation of 3200 m a.s.l., in Colorado, from 28 April to 1 July 2008. The mean mercury concentrations were 1.6 ng m-3 (GEM), 20 pg m-3 (RGM) and 9 pg m-3 (HgP). We observed eight events of strongly enhanced atmospheric RGM levels with maximum concentrations up to 137 pg m-3. RGM enhancement events lasted for long time periods of 2 to 6 days showing both enriched level during daytime and nighttime when other tracers (e.g., aerosols) showed different representations of boundary layer air and free tropospheric air. During seven of these events, RGM was inversely correlated to GEM (RGM/GEM regression slope ~-0.1), but did not exhibit correlations with ozone, carbon monoxide, or aerosol concentrations. Relative humidity was the dominant factor affecting RGM levels with high RGM levels always present whenever relative humidity was below 40 to 50%. We conclude that RGM enhancements observed at Storm Peak Laboratory were not induced by pollution events and were related to oxidation of tropospheric GEM. High RGM levels were not limited to upper tropospheric or stratospherically influenced air masses, indicating that entrainment processes and deep vertical mixing of free tropospheric air enriched in RGM may lead to high RGM levels throughout the troposphere and into the boundary layer over the Western United States. Based on backtrajectory analysis and a lack of mass balance between RGM and GEM, atmospheric production of RGM may also have occurred in some distance allowing for scavenging and/or deposition of RGM prior to reaching the laboratory. Our observations provide evidence that the tropospheric pool of mercury is frequently enriched in divalent mercury, that high RGM levels are not limited to upper tropospheric air masses, but that the build-up of high RGM in the troposphere is limited to the presence of dry air.

  6. Large inter annual variation in air quality during the annual festival 'Diwali' in an Indian megacity.

    PubMed

    Parkhi, Neha; Chate, Dilip; Ghude, Sachin D; Peshin, Sunil; Mahajan, Anoop; Srinivas, Reka; Surendran, Divya; Ali, Kaushar; Singh, Siddhartha; Trimbake, Hanumant; Beig, Gufran

    2016-05-01

    A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620μg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390μg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters. Copyright © 2015. Published by Elsevier B.V.

  7. Satellite remote sensing of fine particulate air pollutants over Indian mega cities

    NASA Astrophysics Data System (ADS)

    Sreekanth, V.; Mahesh, B.; Niranjan, K.

    2017-11-01

    In the backdrop of the need for high spatio-temporal resolution data on PM2.5 mass concentrations for health and epidemiological studies over India, empirical relations between Aerosol Optical Depth (AOD) and PM2.5 mass concentrations are established over five Indian mega cities. These relations are sought to predict the surface PM2.5 mass concentrations from high resolution columnar AOD datasets. Current study utilizes multi-city public domain PM2.5 data (from US Consulate and Embassy's air monitoring program) and MODIS AOD, spanning for almost four years. PM2.5 is found to be positively correlated with AOD. Station-wise linear regression analysis has shown spatially varying regression coefficients. Similar analysis has been repeated by eliminating data from the elevated aerosol prone seasons, which has improved the correlation coefficient. The impact of the day to day variability in the local meteorological conditions on the AOD-PM2.5 relationship has been explored by performing a multiple regression analysis. A cross-validation approach for the multiple regression analysis considering three years of data as training dataset and one-year data as validation dataset yielded an R value of ∼0.63. The study was concluded by discussing the factors which can improve the relationship.

  8. Mass measurement of 1 kg silicon spheres to establish a density standard

    NASA Astrophysics Data System (ADS)

    Mizushima, S.; Ueki, M.; Fujii, K.

    2004-04-01

    Air buoyancy causes a significant systematic effect in precision mass determination of 1 kg silicon spheres. In order to correct this effect accurately, mass measurement of the silicon sphere was conducted using buoyancy artefacts; additionally, in order to stabilize atmospheric conditions, we used a vacuum chamber in which a mass comparator had been installed. The silicon sphere was also weighed in vacuum to verify the air buoyancy correction. Mass differences measured in air and in vacuum showed good agreement with each other in spite of the desorption effect from weight surfaces. Furthermore, the result of weighing under vacuum conditions demonstrated better repeatability than that obtained in air.

  9. Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Chow, Judith C; Schauer, James J; Zielinska, Barbara; Grosjean, Eric

    2004-05-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 2000 Cummins ISB 5.9L diesel engine coupled to a dynamometer and operated on a slightly modified heavy-duty Federal Test Procedure cycle. Exposures were conducted to one clean air control and four diesel exhaust levels maintained at four different dilution rates (300:1, 100:1, 30:1, 10:1) that yielded particulate mass concentrations of 30, 100, 300, and 1000 microg/m3. Exposures at the four dilutions were characterized for particle mass, particle size distribution (reported elsewhere), detailed chemical speciation of gaseous, semivolatile, and particle-phase inorganic and organic compounds. Target analytes included metals, inorganic ions and gases, organic and elemental carbon, alkanes, alkenes, aromatic and aliphatic acids, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAH), oxygenated PAH, nitrogenated PAH, isoprenoids, carbonyls, methoxyphenols, sugar derivatives, and sterols. The majority of the mass of material in the exposure atmospheres was gaseous nitrogen oxides and carbon monoxide, with lesser amounts of volatile organics and particle mass (PM) composed of carbon (approximately 90% of PM) and ions (approximately 10% of PM). Measured particle organic species accounted for about 10% of total organic particle mass and were mostly alkanes and aliphatic acids. Several of the components in the exposure atmosphere scaled in concentration with dilution but did not scale precisely with the dilution rate because of background from the rodents and scrubbed dilution air, interaction of animal derived emissions with diesel exhaust components, and day-to-day variability in the output of the engine. Rodent-derived ammonia reacted with exhaust to form secondary inorganic particles (at different rates dependent on dilution), and rodent respiration accounted for volatile organics (especially carbonyls and acids) in the same range as the diesel exhaust at the lowest exhaust exposure concentrations. Day-to-day variability in the engine output was implicated partially for differences of several components, including some of the particle bound organics. Though these observations have likely occurred in nearly all inhalation exposure atmospheres that contain complex mixtures of material, the speciations conducted here illustrate many of them for the first time.

  10. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  11. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  12. Greenland ice sheet melt from MODIS and associated atmospheric variability.

    PubMed

    Häkkinen, Sirpa; Hall, Dorothy K; Shuman, Christopher A; Worthen, Denise L; DiGirolamo, Nicolo E

    2014-03-16

    Daily June-July melt fraction variations over the Greenland ice sheet (GIS) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) (2000-2013) are associated with atmospheric blocking forming an omega-shape ridge over the GIS at 500 hPa height. Blocking activity with a range of time scales, from synoptic waves breaking poleward (<5 days) to full-fledged blocks (≥5 days), brings warm subtropical air masses over the GIS controlling daily surface temperatures and melt. The temperature anomaly of these subtropical air mass intrusions is also important for melting. Based on the years with the greatest melt (2002 and 2012) during the MODIS era, the area-average temperature anomaly of 2 standard deviations above the 14 year June-July mean results in a melt fraction of 40% or more. Though the summer of 2007 had the most blocking days, atmospheric temperature anomalies were too small to instigate extreme melting. Short-term atmospheric blocking over Greenland contributes to melt episodesAssociated temperature anomalies are equally important for the meltDuration and strength of blocking events contribute to surface melt intensity.

  13. The health of glaciers: Recent changes in glacier regime

    USGS Publications Warehouse

    Meier, M.F.; Dyurgerov, M.B.; McCabe, G.J.

    2003-01-01

    Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.

  14. The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV

    NASA Astrophysics Data System (ADS)

    Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying

    2018-06-01

    For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.

  15. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Paul Thomas

    2004-09-01

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. Themore » investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.« less

  16. Isolating Added Mass Load Components of CPAS Main Clusters

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.

  17. UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg

    2013-07-01

    It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identifymore » the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.« less

  18. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  19. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  20. First surface-based estimation of the aerosol indirect effect over a site in southeastern China

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Li, Zhanqing

    2018-02-01

    The deployment of the U.S. Atmospheric Radiation Measurement mobile facility in Shouxian from May to December 2008 amassed the most comprehensive set of measurements of atmospheric, surface, aerosol, and cloud variables in China. This deployment provided a unique opportunity to investigate the aerosol-cloud interactions, which are most challenging and, to date, have not been examined to any great degree in China. The relationship between cloud droplet effective radius (CER) and aerosol index (AI) is very weak in summer because the cloud droplet growth is least affected by the competition for water vapor. Mean cloud liquid water path (LWP) and cloud optical depth (COD) significantly increase with increasing AI in fall. The sensitivities of CER and LWP to aerosol loading increases are not significantly different under different air mass conditions. There is a significant correlation between the changes in hourly mean AI and the changes in hourly mean CER, LWP, and COD. The aerosol first indirect effect (FIE) is estimated in terms of relative changes in both CER (FIECER) and COD (FIECOD) with changes in AI for different seasons and air masses. FIECOD and FIECER are similar in magnitude and close to the typical FIE value of ˜ 0.23, and do not change much between summer and fall or between the two different air mass conditions. Similar analyses were done using spaceborne Moderate Resolution Imaging Spectroradiometer data. The satellite-derived FIE is contrary to the FIE estimated from surface retrievals and may have large uncertainties due to some inherent limitations.

  1. An assessment of the stray light in 25 years of Dobson total ozone data at Athens, Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Varotsos, C.; Cracknell, A. P.; Tzanis, C.; Neofytos, A.

    2015-07-01

    In this study, we investigated the susceptibility of the Dobson spectrophotometer No. 118 to stray light interference. In this regard, a series of total ozone content measurements were carried out in Athens, Greece for air-mass values (μ) extending up to μ = 5. The monochromatic-heterochromatic stray light derived by Basher's model was used in order to evaluate the specific instrumental parameters which determine if this instrument suffers from this problem or not. The results obtained indicate that the measurements made by the Dobson instrument of the Athens station for air mass values up to 2.5, underestimates the total ozone content by 3.5 DU in average, or about 1 % of the station's mean total ozone content (TOC). The comparison of the values of the same parameters measured 15 years ago with the present ones indicates the good maintenance of the Dobson spectrophotometer No. 118. This fact is of crucial importance because the variability of the daily total ozone observations collected by the Athens Dobson Station since 1989 has proved to be representative to the variability of the mean total ozone observed over the whole mid-latitude zone of the Northern Hemisphere. This stresses the point that the Athens total ozone station, being the unique Dobson station in south-eastern Europe, may be assumed as a ground truth station for the reliable conversion of the satellite radiance observations to total ozone measurements.

  2. Long term measurements of optical properties and their hygroscopic enhancement

    NASA Astrophysics Data System (ADS)

    Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.

    2014-11-01

    Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.

  3. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  4. Mobile measurements of air pollutants with an instrumented car in populated areas

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Scharifi, Emad; Fischer, Christian; Pohl, Tobias; Lange, Martin; Boehlke, Christoph

    2017-04-01

    Detailed mobile measurement of gases and fine particulate matter has been reported in the literature to be suitable to exhibit the air pollutants concentration in populated areas. This concentration is linked to the increase of number of cars, construction areas, industries and other emission sources. However, fixed measurement stations, mostly operated by environmental agencies, are limited in numbers and cannot cover a large area in monitoring. For this reason, to overcome this drawback, mobile measurements of the variability of gases (such as O3, NO, NO2) and particulate matter concentration were carried out during this study using an instrumented car. This car was able to deliver measurement results of all these compounds in a large area. The experimental results in this work demonstrate a large spatial variability of gases and fine particulate matters mainly depended on the traffic density and the location. These effects are especially obvious in the city core and the high traffic roads. In terms of fine particulate matter, this becomes evident for PM 10 and PM 2.5, where the mass and number concentration increases with arriving these zones.

  5. Contextual barriers to lifestyle physical activity interventions in Hong Kong.

    PubMed

    Eves, Frank F; Masters, Rich S W; McManus, Alison; Leung, Moon; Wong, Peggy; White, Mike J

    2008-05-01

    Increased lifestyle physical activity, for instance, use of active transport, is a current public health target. Active transport interventions that target stair climbing are consistently successful in English-speaking populations yet unsuccessful in Hong Kong. We report two further studies on active transport in the Hong Kong Chinese. Pedestrians on a mass transit escalator system (study 1) and in an air-conditioned shopping mall (study 2) were encouraged to take the stairs for their cardiovascular health by point-of-choice prompts. Observers coded sex, age, and walking on the mass transit system, with the additional variables of presence of children and bags coded in the shopping mall. In the first study, a 1-wk baseline was followed by 4 wk of intervention (N = 76,710) whereas in the second study (shopping mall) a 2-wk baseline was followed by a 2-wk intervention period (N = 18,257). A small but significant increase in stair climbing (+0.29%) on the mass transit system contrasted with no significant changes in the shopping mall (+0.09%). The active transport of walking on the mass transit system was reduced at higher rates of humidity and temperature, with steeper slopes for the effects of climate variables in men than in women. These studies confirm that lifestyle physical activity interventions do not have universal application. The context in which the behavior occurs (e.g., climate) may act as a barrier to active transport.

  6. Characterization of air profiles impeded by plant canopies for a variable-rate air-assisted sprayer

    USDA-ARS?s Scientific Manuscript database

    The preferential design for variable-rate orchard and nursery sprayers relies on tree structure to control liquid and air flow rates. Demand for this advanced feature has been incremental as the public demand on reduction of pesticide use. A variable-rate, air assisted, five-port sprayer had been in...

  7. Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany

    NASA Astrophysics Data System (ADS)

    Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.

    2013-12-01

    In the course of two field campaigns, size-segregated particle samples were collected at nine sites in Germany, including traffic, urban, rural, marine, and mountain sites. During the chemical characterisation of the samples some of them were found to contain an unknown substance that was later on identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the reaction of S(IV) (HSO3- or SO32-) with formaldehyde in the aqueous phase. Due to its stability, HMSA may can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the understanding of atmospheric sulphur chemistry. However, no HMSA data are available for atmospheric particles from Central Europe and even on a worldwide scale, data are scarce. Thus, the present study now provides a representative dataset with detailed information on HMSA concentrations in size-segregated Central European aerosol particles. HMSA mass concentrations in this dataset were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in high mass concentrations exceeding those of oxalic acid. In average over all 154 impactor runs, 31.5 ng m-3 HMSA were found in PM10, contributing 0.21% to the total mass. The results show that the particle diameter, the sampling location, the sampling season and the air mass origin impact the HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42-1.2 μm, at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulphate, oxalate and PM is found (R2 > 0.4). The results furthermore suggest that the fraction of HMSA in PM slightly decreases with increasing pH.

  8. Hydroxymethanesulfonic acid in size-segregated aerosol particles at nine sites in Germany

    NASA Astrophysics Data System (ADS)

    Scheinhardt, S.; van Pinxteren, D.; Müller, K.; Spindler, G.; Herrmann, H.

    2014-05-01

    In the course of two field campaigns, size-segregated particle samples were collected at nine sites in Germany, including traffic, urban, rural, marine and mountain sites. During the chemical characterisation of the samples some of them were found to contain an unknown substance that was later identified as hydroxymethanesulfonic acid (HMSA). HMSA is known to be formed during the reaction of S(IV) (HSO3- or SO32-) with formaldehyde in the aqueous phase. Due to its stability, HMSA can act as a reservoir species for S(IV) in the atmosphere and is therefore of interest for the understanding of atmospheric sulfur chemistry. However, no HMSA data are available for atmospheric particles from central Europe, and even on a worldwide scale data are scarce. Thus, the present study now provides a representative data set with detailed information on HMSA concentrations in size-segregated central European aerosol particles. HMSA mass concentrations in this data set were highly variable: HMSA was found in 224 out of 738 samples (30%), sometimes in high mass concentrations exceeding those of oxalic acid. On average over all 154 impactor runs, 31.5 ng m-3 HMSA was found in PM10, contributing 0.21% to the total mass. The results show that the particle diameter, the sampling location, the sampling season and the air mass origin impact the HMSA mass concentration. Highest concentrations were found in the particle fraction 0.42-1.2 μm, at urban sites, in winter and with eastern (continental) air masses, respectively. The results suggest that HMSA is formed during aging of pollution plumes. A positive correlation of HMSA with sulfate, oxalate and PM is found (R2 > 0.4). The results furthermore suggest that the fraction of HMSA in PM slightly decreases with increasing pH.

  9. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .

  11. Secondary Organic Aerosol Formation and Aging in a Flow Reactor in the Forested Southeast US during SOAS

    NASA Astrophysics Data System (ADS)

    Hu, W.; Palm, B. B.; Hacker, L.; Campuzano Jost, P.; Day, D. A.; de Sá, S. S.; Ayres, B. R.; Draper, D.; Fry, J.; Ortega, A. M.; Kiendler-Scharr, A.; Pajunoja, A.; Virtanen, A.; Krechmer, J.; Canagaratna, M. R.; Thompson, S.; Yatavelli, R. L. N.; Stark, H.; Worsnop, D. R.; Martin, S. T.; Farmer, D.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and Two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including isoprene derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.A major field campaign (Southern Oxidant and Aerosol Study, SOAS) was conducted in summer 2013 in a forested area in Centreville Supersite, AL (SEARCH network) in the southeast U.S. To investigate secondary organic aerosol (SOA) formation from biogenic volatile organic compounds (BVOCs), 3 oxidation flow reactors (OFR) were used to expose ambient air to oxidants and their output was analyzed by state-of-the-art gas and aerosol instruments including a High-Resolution Aerosol Mass Spectrometer (HR-AMS), a HR Proton-Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOFMS), and two HR-TOF Chemical Ionization Mass Spectrometers (HRToF-CIMS). Ambient air was exposed 24/7 to variable concentrations of each of the 3 main atmospheric oxidants (OH, NO3 radicals and O3) to investigate the oxidation of BVOCs (including ambient isoprene-derived epoxydiols, IEPOX) and SOA formation and aging. Effective OH exposures up to 1×1013 molec cm-3 s were achieved, equivalent to over a month of aging in the atmosphere. Multiple oxidation products from isoprene and monoterpenes including small gas-phase acids were observed in OH OFR. High SOA formation of up to 12 μg m-3 above ambient concentrations of 5 μg m-3 was observed under intermediate OH exposures, while very high OH exposures led to destruction of ~30% of ambient OA, indicating shifting contributions of functionalization vs. fragmentation, consistent with results from urban and terpene-dominated environments. The highest SOA enhancements were 3-4 times higher than ambient OA. More SOA is typically formed during nighttime when terpenes are higher and photochemistry is absent, and less during daytime when isoprene is higher, although the IEPOX pathway is suppressed in the OFR. SOA is also observed after exposure of ambient air to O3 or NO3, although the amounts and oxidation levels were lower than for OH. Formation of organic nitrates in the NO3 reaction will also be discussed.

  12. An experimental study on the design, performance and suitability of evaporative cooling system using different indigenous materials

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur

    2017-06-01

    The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.

  13. Isotope and methane dynamics above and below the Trade Wind Inversion at Ascension Island using UAVs

    NASA Astrophysics Data System (ADS)

    Brownlow, R.; Lowry, D.; Nisbet, E. G.; Fisher, R. E.; France, J.; Lanoisellé, M.; Thomas, R.; Richardson, T.; Greatwood, C.; Freer, J. E.; MacKenzie, A. R.

    2015-12-01

    Ascension Island (8oS, 14 oW) is a South Atlantic background site for atmospheric measurement. Royal Holloway, in collaboration with the UK Met Office, installed a Picarro 1301 CRDS in 2010 for continuous methane monitoring. This has high precision and accuracy, with a 6-gas calibration and target suite, to measure long term methane mole fraction. Regular flask sampling is also carried out for NOAA and RHUL (co-located), to measure δ13CCH4 isotopic trends.Ascension Island experiences near-constant SE Trade winds below the Trade Wind Inversion (TWI), with air from the remote S. Atlantic. In flask samples and in continuous monitoring at the Airhead location, atmospheric methane mole fraction has been increasing since 2007 whilst the δ13CCH4 isotope record has shifted to more depleted values. Above the normally well-defined TWI (1200 - 1800m altitude), variable tropical air masses pass over Ascension. This air last mixed with the boundary layer over Africa or South America. Field work undertaken in September 2014 and July 2015, in collaboration with U. Bristol and U. Birmingham, using UAVs (octocopters) collected samples with Tedlar bags or aluminium flasks from different heights above and below the TWI. The maximum altitude reached was 2700masl. Sample bags were immediately analysed on Ascension for CH4 mole fraction using the Picarro CRDS and subsequently analysed at RHUL for δ13CCH4 using continuous-flow gas chromatography/isotope-ratio mass spectrometry (CF-GC/IRMS). The TWI was clearly identified by an increase in CH4 mole fraction above the TWI. Back trajectory analysis was used to distinguish the origins of the air masses, with air above showing inputs from the land surfaces of equatorial and southern Africa, and from southern S. America.The campaigns have extended the envelope of altitudes accessed by micro-UAVs for atmospheric science, demonstrating their utility for probing the remote free troposphere and for penetrating the TWI. Sampling at Ascension is able to measure both the deep S. Atlantic air and also the air that has been mixed by convective systems in the equatorial and southern savannah tropics. Biomass burning plumes in southern hemisphere winter may also be accessible. Ascension is thus potentially a measurement site of global significance.

  14. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    NASA Astrophysics Data System (ADS)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  15. Long-term real-time chemical characterization of submicron aerosols at Montsec (Southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Querol, X.; Alastuey, A.

    2014-11-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the Western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An Aerosol Chemical Speciation Monitor (ACSM) was co-located with other on-line and off-line PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time for this region. Seasonal trends in PM1 components are attributed to variations in: evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reserve strata at relatively high altitudes. Sporadically, MSC is affected by air masses from North Africa. The combination of all these atmospheric processes at local, regional and continental scales results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly oxygenated organic aerosol (OOA), with two different types: semi-volatile (SV-OOA) and low-volatile (LV-OOA), and both showed marked diurnal cycles regardless of the air mass origin, especially SV-OOA. This different diurnal variation compared to inorganic aerosols suggested that OA components at MSC are not only associated with anthropogenic and long-range-transported secondary OA (SOA), but also with recently-produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. Moreover, in winter sporadic long-range transport from mainland Europe is observed and leads to less marked diurnal patterns. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources of SOA at remote sites.

  16. On the Influence of Air Mass Origin on Low-Cloud Properties in the Southeast Atlantic

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik; Hollmann, Rainer; Schwarz, Katharina

    2017-10-01

    This study investigates the impact of air mass origin and dynamics on cloud property changes in the Southeast Atlantic (SEA) during the biomass burning season. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget and thus prominent in climate system research. In this study, the thermodynamically stable SEA stratocumulus cover is observed not only as the result of local environmental conditions but also as connected to large-scale meteorology by the often neglected but important role of spatial origins of air masses entering this region. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a Hybrid Single-Particle Lagrangian Integrated Trajectory cluster analysis is conducted linking satellite observations of cloud properties (Spinning-Enhanced Visible and Infrared Imager), information on aerosol species (Monitoring Atmospheric Composition and Climate), and meteorological context (ERA-Interim reanalysis) to air mass clusters. It is found that a characteristic pattern of air mass origins connected to distinct synoptical conditions leads to marked cloud property changes in the southern part of the study area. Long-distance air masses are related to midlatitude weather disturbances that affect the cloud microphysics, especially in the southwestern subdomain of the study area. Changes in cloud effective radius are consistent with a boundary layer deepening and changes in lower tropospheric stability (LTS). In the southeastern subdomain cloud cover is controlled by a generally higher LTS, while air mass origin plays a minor role. This study leads to a better understanding of the dynamical drivers behind observed stratocumulus cloud properties in the SEA and frames potentially interesting conditions for aerosol-cloud interactions.

  17. Characteristics of the NO-NO2-O3 system in different chemical regimes during the MIRAGE-Mex field campaign

    NASA Astrophysics Data System (ADS)

    Shon, Z.-H.; Madronich, S.; Song, S.-K.; Flocke, F. M.; Knapp, D. J.; Anderson, R. S.; Shetter, R. E.; Cantrell, C. A.; Hall, S. R.; Tie, X.

    2008-12-01

    The NO-NO2 system was analyzed in different chemical regimes/air masses based on observations of reactive nitrogen species and peroxy radicals made during the intensive field campaign MIRAGE-Mex (4 to 29 March 2006). The air masses were categorized into 5 groups based on combinations of macroscopic observations, geographical location, meteorological parameters, models, and observations of trace gases: boundary layer (labeled as "BL"), biomass burning ("BB"), free troposphere (continental, "FTCO" and marine, "FTMA"), and Tula industrial complex ("TIC"). In general, NO2/NO ratios in different air masses are near photostationary state. Analysis of this ratio can be useful for testing current understanding of tropospheric chemistry. The ozone production efficiency (OPE) for the 5 air mass categories ranged from 4.5 (TIC) to 8.5 (FTMA), consistent with photochemical aging of air masses exiting the Mexico City Metropolitan Area.

  18. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  19. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A

    2008-07-01

    Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.

  20. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  1. Ventilation potential during the emissions survey in Toluca Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.

    2017-12-01

    During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.

  2. Numerical Investigations of Subduction of Eighteen Degree Water in the Subtropical Northwest Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Zhai, P.; He, R.

    2016-02-01

    Mode waters are upper-ocean water masses with nearly uniform water properties over a thickness of a few hundred meters. Subduction of mode waters plays an important role in changing atmospheric and oceanic long-term variability because they store "memory" of wintertime air-sea interaction. In this study, we investigated dynamic processes associated with subduction of the Eighteen Degree Water (EDW, the principal mode water) in the subtropical Northwest Atlantic during January to June 2007. Numerical simulations of the temporal and spatial evolutions of EDW were performed using both uncoupled (ocean only) and air-sea coupled configurations and results were contrasted. We find the coupled simulation produced deeper mixed layer depth, stronger eddy kinetic energy, and larger subduction areas than their counterparts in the uncoupled ocean simulation. In both configurations, mesoscale eddies enhance the total subduction and eddy-induced subduction has the same order as the mean component. Resolving strong air-sea coupling and mesoscale eddies is therefore important for understanding EDW dynamics.

  3. Aerosol optical properties over the midcontinental United States

    NASA Technical Reports Server (NTRS)

    Halthore, Rangasayi N.; Markham, Brian L.; Ferrare, Richard A.; Aro, Theo. O.

    1992-01-01

    Solar and sky radiation measurements were analyzed to obtain aerosol properties such as the optical thickness and the size distribution. The measurements were conducted as part of the First International Satellite Land Surface Climatology Project Field Experiment during the second intensive field campaign (IFC) from June 25 to July 14, 1987, and the fifth IFC from July 25 to August 12, 1989, on the Konza Prairie near Manhattan, Kansas. Correlations with climatological and meteorological parameters show that during the period of observations in 1987, two types of air masses dominated the area: an air mass with low optical thickness and low temperature air associated with a northerly breeze, commonly referred to as the continental air, and an air mass with a higher optical thickness and higher temperature air associated with a southerly wind which we call 'Gulf air'. The size distributions show a predominance of the larger size particles in 'Gulf air'. Because of the presence of two contrasting air masses, correlations with parameters such as relative humidity, specific humidity, pressure, temperature, and North Star sky radiance reveal some interesting aspects. In 1989, clear distinctions between continental and Gulf air cannot be made; the reason for this will be discussed.

  4. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; van Oldenborgh, Geert Jan; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard

    2015-04-01

    Situated in northwestern Europe, the North Sea region is under influence of air masses from subtropical to arctic origin, and thus exhibits significant natural climate variability. As the land areas surrounding the North Sea are densely populated, climate change is an important issue in terms of e.g. coastal protection, fishery and trade. This study is part of the NOSCCA initiative (North Sea Region Climate Change Assessment) and presents observed variability and changes in atmospheric parameters during the last roughly 200 years. Circulation patterns show considerable decadal variability. In recent decades, a northward shift of storm tracks and increased cyclonic activity has been observed. There is also an indication of increased persistence of weather types. The wind climate is dominated by large multidecadal variability, and no robust long-term trends can be identified in the available datasets. There is a clear positive trend in near-surface temperatures, in particular during spring and winter. Over the region as a whole, no clear long-term precipitation trends are visible, although regional indications exist for an increased risk of extreme precipitation events.

  5. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  6. A longitudinal study of mortality and air pollution for São Paulo, Brazil.

    PubMed

    Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q

    2002-09-01

    We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.

  7. Qualitative Description of Obscuration Factors in Central Europe

    DTIC Science & Technology

    1980-09-01

    parameters have been made for years, but optical parameters are more difficult to observe and a complete data base is Oil lacking. 7he four users of...visibility also restrict ground-to-air operations to the extent that visual sighting of aircraft or targets cannot be made from the ground. If moderate...has been made to relate air mass characteristics to E-O systems behavior. An air mass is defined as a mass of air with approximately the same 4

  8. Spatial clustering and meteorological drivers of summer ozone in Europe

    NASA Astrophysics Data System (ADS)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central-southern Europe and 45-66% in the north. Thus, the regionalisation carried out in this work has allowed establishing clear distinctions between the meteorological drivers of ozone in northern Europe and in the rest of the continent. These drivers are consistent across the different time scales examined (extremes, day-to-day and interannual), which gives confidence in the robustness of the results.

  9. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    NASA Astrophysics Data System (ADS)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  10. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000-2005) and its relationship to mass balance

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.

    2006-01-01

    Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.

  11. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  12. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  13. On the association between synoptic circulation and wildfires in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Papadopoulos, A.; Paschalidou, A. K.; Kassomenos, P. A.; McGregor, G.

    2014-02-01

    In the present paper cluster analysis of 2-month air mass back-trajectories for three contrasting fire and non-fire events is conducted (high, low, and zero burnt area). The large fire event displays an air mass history dissimilar to other events whereby a 39-day period of warm and dry chiefly northerly anticyclonic conditions is evident, before a week of warmer predominantly southwesterly cyclonic activity, immediately prior to ignition. The pressure level of these anticyclonic air masses is above 800 hPa for more than 75 % of the trajectory length; this region is above the principal moisture transport regime of 800 hPa altitude. Analysis of variance on the mean rate of change of potential temperature identified weak statistically significant differences between two air mass pairs regarding the large fire: anticyclonic and cyclonic air masses in both cases ( p = 0.038 and p = 0.020). Such regularity of type and occurrence, approach pressure levels and statistically significant differences are not evident for the small and non-fire event air masses. Such understanding is expected to permit appropriate steps to be undertaken including superior prediction and improved suppression strategy.

  14. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts

    PubMed Central

    Lee, Hyung Joo; Gent, Janneane F.; Leaderer, Brian P.; Koutrakis, Petros

    2011-01-01

    To protect public health from PM2.5 air pollution, it is critical to identify the source types of PM2.5 mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM2.5 source types and quantify the source contributions to PM2.5 in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM2.5 mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM2.5. Due to sparse ground-level PM2.5 monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM2.5 monitors is more reliable than using data from the nearest central monitor. PMID:21429560

  15. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  16. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus <1% at other sites). Averaged annually, the largest single source above background of methane at Darwin is long-range transport, mainly from Southeast Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  17. A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models

    PubMed Central

    Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-01-01

    A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386

  18. A Meteorological Overview of the TC4 Mission

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Selkirk, H. B.; Starr, D. O.; Rosenlof, K.; Newman, P. F.

    2010-01-01

    The TC4 mission in Central America during summer 2007 examined convective transport into the tropical Upper Troposphere/Lower Stratosphere (UTLS) and the evolution of cirrus clouds. The tropical tropopause layer (TTL) circulation is dominated by the Asian monsoon anticyclone and westward winds that stretch from the western Pacific into the Atlantic. During TC4, TTL westward flow over Central America was stronger than normal. Incidence of cold clouds over the Central American region was the third lowest out of 34 years sampled. The major factor was an incipient La Nina, specifically anomalously cold temperatures off the Pacific Coast of South America. Weakness in the low level Caribbean jet caused a shift in the coldest clouds from the Caribbean to the Pacific side of Central America. The character of tropopause temperature variability was that of upward propagating waves generated by local and nonlocal convection. These waves produced tropopause temperature variations of 3 K, with peak-to-peak variations of 8 K. At low levels in Central America, flow from the Sahara desert predominated; further south, the air came from the Amazon region. Convectively influenced air in the upper troposphere came from Central America, the northern Amazon region, the Atlantic ITCZ, and the North American monsoon. In the TTL, Asian and African convection affected the observed air masses. North of 10N in the Central American TTL, African and Asian convection may have contributed as much to the air masses as Central and South American convection. South of 8N, Asian and African convection had far less impact.

  19. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-08-01

    Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter seasons; the fraction of days during which the NAAQS of 100 μg m-3 for the 24 h average PM10 was exceeded, varied between 48 % during the monsoon and 98 % during the post-monsoon season. Long-range transport was responsible for both, bringing air masses with a significantly lower fraction of exceedance days from the eastern IGP and air masses with a moderate increase in the fraction of exceedance days from the west (source regions: Arabia, Thar Desert, Middle East and Afghanistan). In order to bring PM mass loadings into compliance with the NAAQS and to reduce the number of exceedance days, mitigation of regional combustion sources in the NW-IGP needs to be given highest priority.

  20. Biogenic Volatile Organic Compounds (BVOCs) and their oxidation products at two Mediterranean background sites

    NASA Astrophysics Data System (ADS)

    Debevec, Cecile; Sauvage, Stephane; Gros, Valerie; Sciare, Jean; Pikridas, Michael; Dusanter, Sebastien; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Sarda-Esteve, Roland; Baisnee, Dominique; Vasiliadou, Emily; Savvides, Chrysanthos; Kalogridis, Cerise; Michoud, Vincent; Locoge, Nadine

    2017-04-01

    In the framework of the ChArMEx (Chemistry Aerosol Mediterranean Experiments) program, this work aims at providing a better characterization of the sources and fate of VOCs impacting the Mediterranean region as well as conducting a parallel between organic aerosol and gas phase composition. To reach these objectives, on-line measurements of a large number of VOCs were conducted by flame ionization detection/gas chromatography and proton transfer reaction mass spectrometry at two Mediterranean receptor sites, Cape Corsica in summer 2013 and the Cyprus Atmospheric Observatory (CAO) in March 2015. Additionally, off-line air samples were collected on cartridges. On-line submicron aerosol chemical composition was performed in parallel with an aerosol mass spectrometer. VOCs Sources were identified using positive matrix factorization (PMF) tool and discussed in previous studies (Michoud et al., submitted, Debevec et al., submitted). This work focuses on BVOCs measured at these sampling sites (especially on their levels, speciation, variability and processes). Different speciation of monoterpenes was noticed at these sites. Even if monoterpenes were mainly composed of β-pinene at both sites (34 % - 38 % of the total monoterpenes mass concentration), α-terpinene was observed in higher proportion at Cape Corsica (21 %) than CAO (2 %) while lower proportion of α-pinene was measured (Cape Corsica: 24 %, CAO: 35 %). Biogenic sources were found to be significant contributors to the VOCs concentrations observed at these sampling sites (Cape Corsica: 20%, CAO: 36 %) but have shown different variabilities. At Cape Corsica, a primary and a secondary biogenic factor were identified, both correlating with air temperature and exhibiting a clear diurnal profile. At CAO, two different biogenic factors were identified with distinct diurnal profiles, the first one driven by isoprene was correlated with air temperature and the second one, driven by monoterpenes, showed maxima during nighttime. This nocturnal variability could be driven by nighttime emissions, chemical decay or dynamical processes; all these assumptions will be discussed here. From PMF factors identified, measured oxygenated VOCs were apportioned among their potential different origins (either biogenic or anthropogenic and either primary or secondary). Finally, a parallel between organic aerosol and gas phase composition was conducted to better highlight the relationship between the two phases. The diurnal variability of secondary organic aerosol appeared to be influenced by biogenic contributions. References. Debevec, C., Sauvage, S., Gros, V., Sciare, J., Pikridas, M., Stavroulas, I., Salameh, T., Leonardis, T., Gaudion, V., Depelchin, L., Fronval, I., Sarda-Esteve, R., Baisnee, D., Bonsang, B., Savvides, C., Vrejoussis, M. and Locoge, N.: Origin and variability of volatile organic compounds observed at an Eastern Mediterranean background site (Cyprus), submitted to ACPD. Michoud, V., Sciare, J., Sauvage, S., Dusanter, S., Leonardis, T., Gros, V., Kalogridis, A.-C., Zannoni, N., Féron, A., Petit, J.-E., Creen, V., Baisnée, D., Sarda-Estève, R., Bonnaire, N., Marchand, N., DeWitt, H. L., Pey, J., Colomb, A., Gheussi, F., Szidat, S., Stavroulas, I., Borbon, A. and Locoge, N.: Organic carbon at a remote site of the western Mediterranean Basin: composition, sources and chemistry during the ChArMEx SOP2 field experiment, submitted to ACPD.

  1. Mixing and ageing in the polar lower stratosphere in winter 2015-2016

    NASA Astrophysics Data System (ADS)

    Krause, Jens; Hoor, Peter; Engel, Andreas; Plöger, Felix; Grooß, Jens-Uwe; Bönisch, Harald; Keber, Timo; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Oelhaf, Hermann

    2018-05-01

    We present data from winter 2015-2016, which were measured during the POLSTRACC (The Polar Stratosphere in a Changing Climate) aircraft campaign between December 2015 and March 2016 in the Arctic upper troposphere and lower stratosphere (UTLS). The focus of this work is on the role of transport and mixing between aged and potentially chemically processed air masses from the stratosphere which have midlatitude and low-latitude air mass fractions with small transit times originating at the tropical lower stratosphere. By combining measurements of CO, N2O and SF6 we estimate the evolution of the relative contributions of transport and mixing to the UTLS composition over the course of the winter. We find an increasing influence of aged stratospheric air partly from the vortex as indicated by decreasing N2O and SF6 values over the course of the winter in the extratropical lower and lowermost stratosphere between Θ = 360 K and Θ = 410 K over the North Atlantic and the European Arctic. Surprisingly we also found a mean increase in CO of (3.00 ± 1.64) ppbV from January to March relative to N2O in the lower stratosphere. We show that this increase in CO is consistent with an increased mixing of tropospheric air as part of the fast transport mechanism in the lower stratosphere surf zone. The analysed air masses were partly affected by air masses which originated at the tropical tropopause and were quasi-horizontally mixed into higher latitudes. This increase in the tropospheric air fraction partly compensates for ageing of the UTLS due to the diabatic descent of air masses from the vortex by horizontally mixed, tropospheric-influenced air masses. This is consistent with simulated age spectra from the Chemical Lagrangian Model of the Stratosphere (CLaMS), which show a respective fractional increase in tropospheric air with transit times under 6 months and a simultaneous increase in aged air from upper stratospheric and vortex regions with transit times longer than 2 years. We thus conclude that the lowermost stratosphere in winter 2015-2016 was affected by aged air from the upper stratosphere and vortex region. These air masses were significantly affected by increased mixing from the lower latitudes, which led to a simultaneous increase in the fraction of young air in the lowermost Arctic stratosphere by 6 % from January to March 2016.

  2. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  3. Water, ice, and meteorological measurements at South Cascade Glacier, Washington, 1986-1991 balance years

    USGS Publications Warehouse

    Krimmel, Robert M.

    2000-01-01

    Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.

  4. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  5. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  6. High Spatial Resolution of Atmospheric Particle Mixing State and Its Links to Particle Evolution in a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.

    2017-12-01

    Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.

  7. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  8. SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses

    DOE PAGES

    Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...

    2017-10-30

    A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less

  9. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    PubMed

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  10. Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon-222 and Back Trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Choi, T.; Park, S.-J.; Williams, A. G.; Hong, S.-B.; Tositti, L.; Griffiths, A. D.; Crawford, J.; Pereira, E.

    2017-12-01

    We report on the first summer of high-sensitivity radon measurements from a two-filter detector at Jang Bogo Station (Terra Nova Bay) and contrast them with simultaneous observations at King Sejong Station (King George Island). King Sejong radon concentrations were characteristic of a marine baseline station (0.02-0.3 Bq m-3), whereas Jang Bogo values were highly variable (0.06-5.2 Bq m-3), mainly due to emissions from exposed coastal ground (estimated mean flux 0.09-0.11 atoms cm-2 s-1) and shallow atmospheric mixing depths. For wind speeds of ≤3.5 m s-1 the influence of local radon emissions became increasingly more prominent at both sites. A cluster analysis of back trajectories from King Sejong (62°S) revealed a fairly even distribution between air masses that had passed recently over South America, the Southern Ocean, and Antarctica, whereas at Jang Bogo (75°S) 80% of events had recently passed over the Ross Ice Shelf and West Antarctica, 12% were synoptically forced over Cape Adare, and 8% were associated with subsidence over the Antarctic interior and katabatic flow to the station. When cross-checked against radon concentrations, only half of the back trajectories ending at Jang Bogo that had indicated distant contact with nonpolar southern hemisphere continents within the past 10 days showed actual signs of terrestrial influence. A simple-to-implement technique based on high-pass filtered absolute humidity is developed to distinguish between predominantly katabatic, oceanic, and near-coastal air masses for characterization of trace gas and aerosol measurements at coastal East Antarctic sites.

  11. Evaluation of comfort in bedridden older adults using an air-cell mattress with an automated turning function: measurement of parasympathetic activity during night sleep.

    PubMed

    Futamura, Megumi; Sugama, Junko; Okuwa, Mayumi; Sanada, Hiromi; Tabata, Keiko

    2008-12-01

    This study objectively evaluated the degree of comfort in bedridden older adults using an air-cell mattress with an automated turning mechanism. The sample included 10 bedridden women with verbal communication difficulties. The high frequency (HF) components of heart rate variability, which reflect parasympathetic nervous activity, were compared for the manual and automated turning periods. No significant differences in the HF component were observed in 5 of the participants. Significant increases in the HF component associated with automated turning were observed in 3 participants; however, the two participants with the lowest body mass index values exhibited a significant reduction in the HF component during the automated turning period. The results revealed that comfort might not be disturbed during the automated turning period.

  12. Particulate Air Pollution, Ambulatory Heart Rate Variability, and Cardiac Arrhythmia in Retirement Community Residents with Coronary Artery Disease

    PubMed Central

    Longhurst, John; Tjoa, Thomas; Sioutas, Constantinos; Delfino, Ralph J.

    2013-01-01

    Background: Decreased heart rate variability (HRV) has been associated with future cardiac morbidity and mortality and is often used as a marker of altered cardiac autonomic balance in studies of health effects of airborne particulate matter. Fewer studies have evaluated associations between air pollutants and cardiac arrhythmia. Objectives: We examined relationships between cardiac arrhythmias, HRV, and exposures to airborne particulate matter. Methods: We measured HRV and arrhythmia with ambulatory electrocardiograms in a cohort panel study for up to 235 hr per participant among 50 nonsmokers with coronary artery disease who were ≥ 71 years of age and living in four retirement communities in the Los Angeles, California, Air Basin. Exposures included hourly outdoor gases, hourly traffic-related and secondary organic aerosol markers, and daily size-fractionated particle mass. We used repeated measures analyses, adjusting for actigraph-derived physical activity and heart rate, temperature, day of week, season, and community location. Results: Ventricular tachycardia was significantly increased in association with increases in markers of traffic-related particles, secondary organic carbon, and ozone. Few consistent associations were observed for supraventricular tachycardia. Particulates were significantly associated with decreased ambulatory HRV only in the 20 participants using ACE (angiotensin I–converting enzyme) inhibitors. Conclusions: Although these data support the hypothesis that particulate exposures may increase the risk of ventricular tachycardia for elderly people with coronary artery disease, HRV was not associated with exposure in most of our participants. These results are consistent with previous findings in this cohort for systemic inflammation, blood pressure, and ST segment depression. Citation: Bartell SM, Longhurst J, Tjoa T, Sioutas C, Delfino RJ. 2013. Particulate air pollution, ambulatory heart rate variability, and cardiac arrhythmia in retirement community residents with coronary artery disease. Environ Health Perspect 121:1135–1141; http://dx.doi.org/10.1289/ehp.1205914 PMID:23838152

  13. Frost Growth and Densification on a Flat Surface in Laminar Flow with Variable Humidity

    NASA Technical Reports Server (NTRS)

    Kandula, M.

    2012-01-01

    Experiments are performed concerning frost growth and densification in laminar flow over a flat surface under conditions of constant and variable humidity. The flat plate test specimen is made of aluminum-6031, and has dimensions of 0.3 mx0.3 mx6.35 mm. Results for the first variable humidity case are obtained for a plate temperature of 255.4 K, air velocity of 1.77 m/s, air temperature of 295.1 K, and a relative humidity continuously ranging from 81 to 54%. The second variable humidity test case corresponds to plate temperature of 255.4 K, air velocity of 2.44 m/s, air temperature of 291.8 K, and a relative humidity ranging from 66 to 59%. Results for the constant humidity case are obtained for a plate temperature of 263.7 K, air velocity of 1.7 m/s, air temperature of 295 K, and a relative humidity of 71.6 %. Comparisons of the data with the author's frost model extended to accommodate variable humidity suggest satisfactory agreement between the theory and the data for both constant and variable humidity.

  14. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.

  15. Ice particle mass-dimensional parameter retrieval and uncertainty analysis using an Optimal Estimation framework applied to in situ data

    NASA Astrophysics Data System (ADS)

    Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien

    2015-04-01

    The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.

  16. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  17. Seasonal variation of benzo(a)pyrene in the Spanish airborne PM10. Multivariate linear regression model applied to estimate BaP concentrations.

    PubMed

    Callén, M S; López, J M; Mastral, A M

    2010-08-15

    The estimation of benzo(a)pyrene (BaP) concentrations in ambient air is very important from an environmental point of view especially with the introduction of the Directive 2004/107/EC and due to the carcinogenic character of this pollutant. A sampling campaign of particulate matter less or equal than 10 microns (PM10) carried out during 2008-2009 in four locations of Spain was collected to determine experimentally BaP concentrations by gas chromatography mass-spectrometry mass-spectrometry (GC-MS-MS). Multivariate linear regression models (MLRM) were used to predict BaP air concentrations in two sampling places, taking PM10 and meteorological variables as possible predictors. The model obtained with data from two sampling sites (all sites model) (R(2)=0.817, PRESS/SSY=0.183) included the significant variables like PM10, temperature, solar radiation and wind speed and was internally and externally validated. The first validation was performed by cross validation and the last one by BaP concentrations from previous campaigns carried out in Zaragoza from 2001-2004. The proposed model constitutes a first approximation to estimate BaP concentrations in urban atmospheres with very good internal prediction (Q(CV)(2)=0.813, PRESS/SSY=0.187) and with the maximal external prediction for the 2001-2002 campaign (Q(ext)(2)=0.679 and PRESS/SSY=0.321) versus the 2001-2004 campaign (Q(ext)(2)=0.551, PRESS/SSY=0.449). Copyright 2010 Elsevier B.V. All rights reserved.

  18. Chinese Soot on a Vietnamese Soup

    NASA Astrophysics Data System (ADS)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  19. Snails, stable iostopes, and southwestern desert paleoclimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, S.E.; Whelan, J.F.; Forester, R.M.

    1995-09-01

    Modern and fossil molluscs (snails) occur in many localities in and semi-arid regions throughout the desert southwest. Live terrestrial snails are found under rocks and in forest litter and aquatic taxa inhabit springs, seeps, and/or wetlands. Molluscs uptake local water during their growing season (spring and summer) and incorporate its delta 180 signature into their shells. Preliminary 180 analysis of modem shells from the southern Great Basin indicates that the shells probably reflect meteoric water 180 values during the growing season. This provides a way to estimate the delta 180 value of precipitation and, thereby, the source of the moisture-bearingmore » air masses. Significant 180 variability in shells analyzed include geographic location, elevation, taxonomy, and habitat (terrestrial, spring, or wetland). We found a rough inverse correlation with elevation in modem shells from the Spring Range in southern Nevada. The delta 180 values of modem and fossil shells are also very different; modem values in this location are much higher than those from nearby late Pleistocene-age molluscs suggesting that the Pleistocene summers were variously colder and wetter than today or less evaporative (more humid). Assuming shell material directly reflects the 180 of the growing-season environment, comparison of modem and fossil shell delta 180 values can potentially identify changes in air-mass moisture sources and can help to define seasonal precipitation change through time. Comprehension and quantification of community and isotopic variability in modem gastropods is required to create probabilistic valid transfer functions with fossil materials. Valid inferences about past environmental conditions can then be established with known confidence limits.« less

  20. Nonequilibrium air radiation (Nequair) program: User's manual

    NASA Technical Reports Server (NTRS)

    Park, C.

    1985-01-01

    A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.

  1. Determinants of indoor and personal exposure to PM 2.5 of indoor and outdoor origin during the RIOPA study

    NASA Astrophysics Data System (ADS)

    Meng, Qing Yu; Spector, Dalia; Colome, Steven; Turpin, Barbara

    2009-12-01

    Effects of physical/environmental factors on fine particle (PM 2.5) exposure, outdoor-to-indoor transport and air exchange rate ( AER) were examined. The fraction of ambient PM 2.5 found indoors ( F INF) and the fraction to which people are exposed ( α) modify personal exposure to ambient PM 2.5. Because F INF, α, and AER are infrequently measured, some have used air conditioning (AC) as a modifier of ambient PM 2.5 exposure. We found no single variable that was a good predictor of AER. About 50% and 40% of the variation in F INF and α, respectively, was explained by AER and other activity variables. AER alone explained 36% and 24% of the variations in F INF and α, respectively. Each other predictor, including Central AC Operation, accounted for less than 4% of the variation. This highlights the importance of AER measurements to predict F INF and α. Evidence presented suggests that outdoor temperature and home ventilation features affect particle losses as well as AER, and the effects differ. Total personal exposures to PM 2.5 mass/species were reconstructed using personal activity and microenvironmental methods, and compared to direct personal measurement. Outdoor concentration was the dominant predictor of (partial R2 = 30-70%) and the largest contributor to (20-90%) indoor and personal exposures for PM 2.5 mass and most species. Several activities had a dramatic impact on personal PM 2.5 mass/species exposures for the few study participants exposed to or engaged in them, including smoking and woodworking. Incorporating personal activities (in addition to outdoor PM 2.5) improved the predictive power of the personal activity model for PM 2.5 mass/species; more detailed information about personal activities and indoor sources is needed for further improvement (especially for Ca, K, OC). Adequate accounting for particle penetration and persistence indoors and for exposure to non-ambient sources could potentially increase the power of epidemiological analyses linking health effects to particulate exposures.

  2. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3]. This dataset provides comprehensive monthly statistics on the wind meteorological regime at the stations of interest in a given range of altitudes. Based on long-term source observational data, the dataset is assumed being representative up to date, which allowed us to estimate monthly pollutant fluxes for the years 2006-2008 over segments of the Russian border and its whole [4]. In the current phase of our study, we calculate the inter-annual variations in the transboundary pollutant fluxes for 2000-2012 using longer-term EANET data and transient changes in air mass fluxes derived from the meteorological wind fields from ERA INTERIM re-analysis [5]. We gauge similar average air transport terms and dynamics from the statistical and reanalysis data, which bolsters our earlier findings. The reanalysis data, being naturally more variable, convolutes the variations in net air fluxes and pollutant concentrations into several episodes we emphasise, in addition to the integral pollutant transfer terms we estimate. At last, we discuss on the possibility of climate change effect on the flux strength and dynamics together with regional air quality tendencies in North-East Asia countries. References: Izrael, Yu.A., et al.: Monitoring of the Transboundary Air Pollution Transport. Gidrometeoizdat, Leningrad, 303 p., 187 (in Russian). Akimoto H., et al.: Periodic Report of the State of Acid Deposition in East Asia. Part I: Regional Assessment. EANET-UNEP/RRC.AP-ADORC, 258 p., 2006. Brukhan, F.F.: Aeroclimatic Characteristics of the Mean Winds over USSR (ed. Ignatjushina E.N.). Gidrometeoizdat, Moscow, 54 p., 1984 (in Russian). Gromov S.A., et al.: First-order evaluation of transboundary pollution fluxes in areas of EANET stations in Eastern Siberia and the Russian Far East. EANET Science Bulletin, vol. 3, pp. 195-203, 2013. Dee, D. P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quart. J. Royal Met. Soc., 137, 553-597, doi: 10.1002/qj.828, 2011.

  3. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  4. Development and Application of Hyperspectral Infrared Ozone Retrieval Products for Operational Meteorology

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2015-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive cyclogenesis and hurricane force wind events. Currently, forecasters at WPC/OPC are evaluating the Air Mass RGB imagery in conjunction with the AIRS total column ozone to aid forecasting cyclogenesis and high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. To address this limitation, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air on the Air Mass RGB. This presentation describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the Air Mass RGB product for the unique forecast challenges WPC/OPC face. Additionally examples of CrIS ozone and anomaly products will be shown to further demonstrate the utility and capability of JPSS in forecasting unique events.

  5. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the major trajectories of air mass from 2006 to 2009 originated from the southwest direction of the receptor, but in 2005, the air mass appeared to be locally originated.

  6. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    NASA Astrophysics Data System (ADS)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2002-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  7. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    NASA Astrophysics Data System (ADS)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  8. Analysis and validation of ozone variability observed by lidar during the ESCOMPTE-2001 campaign

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Ravetta, F.

    2005-03-01

    An ozone lidar was successfully operated as a ground-based instrument during the ESCOMPTE experiment in June/July 2001. Ozone profiles were measured between 0.5 and 5 km. Moreover, simultaneous measurements of the lidar scattering ratio (SR) at 316 nm diagnosed the diurnal evolution of the PBL top. Comparison of this data set with in-situ measurements by ultralight aircraft (ULM) and balloon soundings supports the existence of well-defined layers over the whole altitude range. Differences between measurements techniques are not due to instrumental inaccuracies but point towards the existence of ozone plumes with sharp horizontal gradients. This is indeed supported by aircraft horizontal cross-section available twice a day at two different levels in the planetary boundary layer (PBL) and the free troposphere. Analysis of the ozone data set has shown a good correlation between surface meteorological conditions, surface ozone measurements and lidar ozone profiles in the PBL. Observed ozone maxima or minima are linked either to sea breeze circulation bringing polluted air masses over the lidar or synoptic flows bringing air with background O 3 values into the region. The observed variability of the ozone field is very large over the whole altitude range. Although it is the result of local temporal variability and advection of spatial inhomogenities, the latter proved to be an important contribution.

  9. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  10. A travel mode comparison of commuters' exposures to air pollutants in Barcelona

    NASA Astrophysics Data System (ADS)

    de Nazelle, Audrey; Fruin, Scott; Westerdahl, Dane; Martinez, David; Ripoll, Anna; Kubesch, Nadine; Nieuwenhuijsen, Mark

    2012-11-01

    Daily commutes may contribute disproportionately to overall daily inhalations of urban air contaminants. Understanding factors that explain variability of exposures during travel, and especially differences across transportation modes, is essential to accurately assess health impacts of traffic emissions and to develop effective mitigating measures. We evaluated exposures and inhaled doses of air pollution and assessed factors that contributed to their variability in different travel modes in Barcelona. Black carbon (BC), ultrafine particles (UFP), carbon monoxide (CO), fine particle mass (PM2.5) and carbon dioxide (CO2) were measured and compared across walk, bike, bus, and car modes for a total of 172 trips made on two different round trip routes. On average, the car mode experienced highest concentrations for all contaminants. In pairwise t-tests between concurrent mode runs, statistically significant differences were found for cars compared to walking and biking. Car-to-walk or car-to-bike concentration ratios ranged from 1.3 for CO2 to 25 for CO and were 2-3 for PM2.5, BC, and UFP. In multivariate analyses, travel mode explained the greatest variability in travel exposures, from 8% for PM2.5 to 70% for CO. Different modal patterns emerged when estimating daily inhaled dose, with active commuters' two to three times greater total inhalation volume during travel producing about equal UFP and BC daily inhaled doses to car commuters and 33-50% higher UFP and BC doses compared to bus commuters. These findings, however, are specific to the bike and pedestrian lanes in this study being immediately adjacent to the roadways measured. Dedicated bike or pedestrian routes away from traffic would lead to lower active travel doses.

  11. Butterfly Sprint Swimming Technique, Analysis of Somatic and Spatial-Temporal Coordination Variables

    PubMed Central

    Stanula, Arkadiusz; Krężałek, Piotr; Ostrowski, Andrzej; Kaca, Marcin; Głąb, Grzegorz

    2017-01-01

    Abstract The aim of this study was to investigate somatic properties and force production of leg extensor muscles measured in the countermovement jump test (CMJ), as well as to analyse kinematic variables of sprint surface butterfly swimming. Thirty-four male competitive swimmers were recruited with an average age of 19.3 ± 1.83 years. Their average body height (BH) was 183.7 ± 5.93 cm, body fat content 10.8 ± 2.64% and body mass (BM) 78.3 ± 5.0 kg. Length measurements of particular body segments were taken and a counter movement jump (CMJ) as well as an all-out 50 m butterfly speed test were completed. The underwater movements of the swimmers’ bodies were recorded with a digital camera providing side-shots. We registered a significant relationship between body mass (r = 0.46), lean body mass (r = 0.48) and sprint surface butterfly swimming (VSBF). The anaerobic power measured in the CMJ test, total body length (TBL) as well as upper and lower extremity length indices did not influence swimming speed significantly. The temporal entry-kick index (the time ratio between the first kick and arm entry) significantly influenced VSBF (r = -0.45). Similarly, medium power of the coefficient was indicated between a) stroke rate kinematics (SR), b) duration of the first leg kick (LP1), c) air phase duration of arm recovery (Fly-arm), and VSBF (r = 0.40; r = 0.40 and r = 0.41, respectively). The entry-kick temporal index showed that, in the butterfly cycle, an appropriately early executed initial kick when compared to arm entry was associated with a longer arm propulsion phase, which in turn was associated with minimizing resistive gliding phases and enabled relatively longer and less resistive air arm recovery (higher value of the fly-arm index). The higher value of SR kinematic was another important element of the best butterfly results in this study. PMID:29339985

  12. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  13. Lidar Measurements of Wind, Moisture and Boundary Layer Evolution in a Dryline During IHOP2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhien; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David

    2003-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air -mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents groundbased measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International BO Project (IHOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of IHOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  14. Lidar Measurements of Wind, Moisture, and Boundary Layer Evolution in a Dry Line during 1HOP 2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhe-In; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David; Palm, Stephen

    2002-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These . variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air-mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International H2O Project (MOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of MOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  15. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of aerosols while the natural ones are of lower severity due to low temperatures endemic for the Arctic Ocean areas. For doing the assessment of the air mass components chemical formulation samples of water soluble fraction of the atmospheric aerosol underwent chemical analysis. Sum of main ions within the aerosol composition varied from 0.23 to 16.2 mkg/m3. Minimum ion concentrations are defined in the aerosol sampled over the Chukotka sea surface at still. Chemical composition of the Beringov and Chukotka sea aerosol was dominated by impurities of sea origin coming from the ocean with air mass. Ion sum increased concentrations were observed in the Pevek area (Eastern Siberia Sea). Aerosol chemical composition building was impacted by air mass coming from the shore. Maximum concentrations of the bespoken components are seen in the aerosol sampled during stormy weather. Increase of wind made it for raising into the air of the sea origin particles. Ingestion of sprays onto the filter was eliminated by covering the sample catcher with a special protective hood. This completed survey is indicative of favourable state of atmosphere in the arctic resource of the Russian Arctic Eastern Section during Summer-Autumn season of 2013. The job is done under financial support of project. 23 Programs of fundamental research of the RAS Presidium, Partnership Integration Project, SB RAS. 25.

  16. Hybrid Modeling Approach to Estimate Exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA).

    PubMed

    Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard

    2016-11-15

    A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.

  17. Detection of deep stratospheric intrusions by cosmogenic 35S

    PubMed Central

    Su, Lin; Shaheen, Robina; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-01-01

    The extent to which stratospheric intrusions on synoptic scales influence the tropospheric ozone (O3) levels remains poorly understood, because quantitative detection of stratospheric air has been challenging. Cosmogenic 35S mainly produced in the stratosphere has the potential to identify stratospheric air masses at ground level, but this approach has not yet been unambiguously shown. Here, we report unusually high 35S concentrations (7,390 atoms m−3; ∼16 times greater than annual average) in fine sulfate aerosols (aerodynamic diameter less than 0.95 µm) collected at a coastal site in southern California on May 3, 2014, when ground-level O3 mixing ratios at air quality monitoring stations across southern California (43 of 85) exceeded the recently revised US National Ambient Air Quality Standard (daily maximum 8-h average: 70 parts per billion by volume). The stratospheric origin of the significantly enhanced 35S level is supported by in situ measurements of air pollutants and meteorological variables, satellite observations, meteorological analysis, and box model calculations. The deep stratospheric intrusion event was driven by the coupling between midlatitude cyclones and Santa Ana winds, and it was responsible for the regional O3 pollution episode. These results provide direct field-based evidence that 35S is an additional sensitive and unambiguous tracer in detecting stratospheric air in the boundary layer and offer the potential for resolving the stratospheric influences on the tropospheric O3 level. PMID:27655890

  18. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    NASA Astrophysics Data System (ADS)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  19. Dynamics of water mass in the Central Siberia permafrost zone based on gravity survey from the grace satellites

    NASA Astrophysics Data System (ADS)

    Im, S. T.; Kharuk, V. I.

    2015-12-01

    The GRACE gravimetric survey is applied to analyze the equivalent water mass anomalies (EWMAs) in the permafrost zone of Central Siberia. Variations in EWMAs are related to precipitation, air temperature, potential evapotranspiration, and soil composition (drainage conditions). The EWMA dynamics demonstrates two periods. The period of 2003-2008 is characterized by a positive trend. The one of 2008-2012 shows a decrease in the trend with a simultaneous increase by 30-70% of EWMA dispersion in the background of growth (up to 40%) of precipitation variability. The rate of water mass increment demonstrates a positive correlation with the sand and gravel contents in soil ( r = 0.72) and a negative one with clay content ( r =-0.69 to-0.77). For Taimyr Peninsula, there is a deficit of residual water mass (~250 mm for the period of 2012-2013) indicating the deeper thawing of permafrost soils. In the Central Siberian Plateau, the indicator of more intensive permafrost thawing (and that of an increase in active layer thickness) is a considerable trend of water mass increase (2003-2008). The increasing trend of the largest Siberian rivers (Yenisei and Lena) is revealed in the period of 2003-2012.

  20. Super-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Measurements of ozone and nonmethane hydrocarbons at Chichi-jima island, a remote island in the western Pacific: long-range transport of polluted air from the Pacific rim region

    NASA Astrophysics Data System (ADS)

    Kato, Shungo; Pochanart, Pakpong; Kajii, Yoshizumi

    Chichi-jima island is located in the Pacific about 1000 km from the Japanese main island and is an ideal remote observatory from which to assess the long-range transport of polluted air from East Asia. The ozone concentration was measured from August 1997 to August 1998. Owing to the air mass change, the seasonal variation of ozone shows a distinct character: low concentration (about 13 ppbv) for the maritime air mass during the summer, and high concentration (about 40 ppbv) for the continental air mass during the winter. To assess the contribution of the long-range transport of polluted air during winter, nonmethane hydrocarbons were also measured in December 1999. Using backward trajectory analysis, the transport time of the air mass from the source area in the Pacific rim region was calculated for each sample. The concentration of hydrocarbons shows a clear negative correlation against the transport time. This analysis clearly shows the transport of polluted air, emitted in East Asia, to the Pacific during the winter. The plots of suitable hydrocarbon pairs showed that the decrease of hydrocarbon concentrations during winter is mainly caused by the mixing with clean background air.

  2. Settlement with Amherst, Mass., Company Reduces Emissions to Air

    EPA Pesticide Factsheets

    Under the terms of a recent settlement with the U.S. Environmental Protection Agency (EPA), John S. Lane and Son, Inc. (JS Lane), a sand and gravel company in Amherst, Mass., has taken steps to reduce air pollution, as required by the Clean Air Act (CAA).

  3. 40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...)(i) by demonstrating that mass emissions per mass product are less than or equal to the level...

  4. Characterization of Emissions of Volatile Organic Compounds from Interior Alkyd Paint.

    PubMed

    Fortmann, Roy; Roache, Nancy; Chang, John C S; Guo, Zhishi

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m 3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.

  5. Characterization of emissions of volatile organic compounds from interior alkyd paint.

    PubMed

    Fortmann, R; Roache, N; Chang, J C; Guo, Z

    1998-10-01

    Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9-C12); C8-C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variable, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.

  6. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  7. Identifying the production process of new physics at colliders; symmetric or asymmetric?

    NASA Astrophysics Data System (ADS)

    Lim, Sung Hak

    2016-06-01

    We propose a class of kinematic variables, which is a smooth generalization of min-max type mass variables such as the Cambridge- M T 2 and M 2, for measuring a mass spectrum of intermediate resonances in a semi-invisibly decaying pair production. While kinematic endpoints of min-max type mass variables are only sensitive to a heavier resonance mass, kinematic endpoints of new variables are sensitive to all masses. These new mass variables can be used to resolve a mass spectrum, so that if the true mass spectrum is asymmetric, then the kinematic endpoints are separate while the endpoints are the same for the symmetric true mass spectrum. We demonstrate the behavior of kinematic endpoint of these new variables in pair production of two-body and three-body decays with one invisible particle.

  8. Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts.

    PubMed

    Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Karssenberg, Derek; Houthuijs, Danny; van den Brink, Carolien; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard

    2017-07-01

    Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM 10 , PM 2.5 , PM 2.5-10 , PM 2.5 absorbance, OP DTT, OP ESR and NO 2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate aerosol pointing to a significant organic contribution to all air mass aerosol properties.

  10. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to non-sea salt sulfate increased ca. 50% which suggested that automobile exhaust emission increased. In addition, the concentration of soil-originated components such as iron and aluminum increased ca. 2.6 times and ca. 3.0 times, suggesting a probable desertification. We also report the calculated background concentrations of water-soluble chemical components and acid-digested metals at Okinawa, Japan.

  11. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were highest in marine tropical air - even higher than in continental air. MSA was present at twice the concentrations of previously-reported concentrations at the same location and the same season. Both continental and marine air exhibited aerosol GFs significantly less than ammonium sulphate and even less in terms of sea salt aerosol pointing to a significant organic contribution to all air mass aerosol properties.

  12. Subtropical air masses over eastern Canada: Their links to extreme precipitation

    NASA Astrophysics Data System (ADS)

    Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad

    2017-04-01

    We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this expression for precipitation rate to study the extreme precipitation events in Montreal that are associated with these same cases of extreme warm, moist air masses, and their physical impacts on the precipitation rate. Implications of this air mass modulation on precipitation rate are discussed in the context of longer-term global climate change.

  13. Effect of magnetic field on seed germination and seedling growth of sunflower

    NASA Astrophysics Data System (ADS)

    Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.

    2012-07-01

    The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.

  14. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass concentrations and an increase in nitrate aerosol mass due to an increase in available NH3 for NOx to form aerosol. However, the rate of new particle formation increases due to a decrease in the condensation on pre-existing particles, so the effect of reduced SO2 on CCN is partly compensated. Controlling primary or precursor emissions of carbonaceous aerosols appears less effective in improving air quality, although it shows strong effects on marine CCN, which would constitute a detrimental effect on climate. Any policy decisions related to particulate matter, air quality and climate need to account for such couplings.

  15. Influence of open vegetation fires on black carbon and ozone variability in the southern Himalayas (NCO-P, 5079 m a.s.l.).

    PubMed

    Putero, D; Landi, T C; Cristofanelli, P; Marinoni, A; Laj, P; Duchi, R; Calzolari, F; Verza, G P; Bonasoni, P

    2014-01-01

    We analysed the variability of equivalent black carbon (BC) and ozone (O3) at the global WMO/GAW station Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.) in the southern Himalayas, for evaluating the possible contribution of open vegetation fires to the variability of these short-lived climate forcers/pollutants (SLCF/SLCP) in the Himalayan region. We found that 162 days (9% of the data-set) were characterised by acute pollution events with enhanced BC and O3 in respect to the climatological values. By using satellite observations (MODIS fire products and the USGS Land Use Cover Characterization) and air mass back-trajectories, we deduced that 56% of these events were likely to be affected by emissions from open fires along the Himalayas foothills, the Indian Subcontinent and the Northern Indo-Gangetic Plain. These results suggest that open fire emissions are likely to play an important role in modulating seasonal and inter-annual BC and O3 variability over south Himalayas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014

    NASA Astrophysics Data System (ADS)

    Herenz, Paul; Wex, Heike; Henning, Silvia; Bjerring Kristensen, Thomas; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank

    2018-04-01

    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90 nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (NCN). Generally, NCN ranged from 20 to 500 cm-3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cm-3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter κ of the CCN was determined to be 0.23 on average and variations in κ were largely attributed to measurement uncertainties. Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.

  17. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  18. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  19. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  20. 40 CFR 63.1320 - PET and polystyrene affected sources-reporting provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers... with § 63.1316 by demonstrating that mass emissions per mass product are less than or equal to the...

  1. 40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Boat... content, percent by mass Typical organic HAP, percent by mass Aliphatic (Mineral Spirits 135, Mineral...

  2. Variable volume combustor with an air bypass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  3. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  4. VOLATILIZATION OF ALKYLBENZENES FROM WATER.

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1985-01-01

    Volatilization is a physical process of importance in determining the fate of many organic compounds in streams and rivers. This process is frequently described by the conceptual-two-film model. The model assumes uniformly mixed water and air phases separated by thin films of water and air in which mass transfer is by molecular diffusion. Mass-transfer coefficients for the water and air films are related to an overall mass-transfer coefficient for volatilization through the Henry's law constant.

  5. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  6. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, Aron M; Wilbert, Stefan; Jessen, Wilko

    This paper introduces a concept for global tilted irradiance (GTI) subordinate standard spectra to supplement the current standard spectra used in solar photovoltaic applications as defined in ASTM G173 and IEC60904. The proposed subordinate standard spectra correspond to atmospheric conditions and tilt angles that depart significantly from the main standard spectrum, and they can be used to more accurately represent various local conditions. For the definition of subordinate standard spectra cases with an elevation 1.5 km above sea level, the question arises whether the air mass should be calculated including a pressure correction or not. This study focuses on themore » impact of air mass used in standard spectra, and it uses data from 29 locations to examine which air mass is most appropriate for GTI and direct normal irradiance (DNI) spectra. Overall, it is found that the pressure-corrected air mass of 1.5 is most appropriate for DNI spectra. For GTI, a non-pressure-corrected air mass of 1.5 was found to be more appropriate.« less

  7. Cloud Condensation Nuclei Measurements in Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Hudson, J. G.; Simpson, J.

    2002-01-01

    The first measurements of cloud condensation nuclei (CCN) within and around tropical cyclones were made with the Desert Research Institute (DRI) CCN spectrometer (Hudson 1909) from a NOAA P-3 Hurricane Hunter aircraft throughout the 2001 season. Two penetrations of the closed eye of Hurricane Erin off the northeast US coast on Sept. 10 showed concentrations consistently well in excess of 1000 per cubic cm at approximately 1.4% supersaturation. Simultaneous condensation nuclei (CN--total particle) concentrations were consistently well in excess of 2000 per cubic cm throughout these closed eye penetrations. These within eye measurements at 4 km altitude for exceeded CCN and CN measurements just outside of the storm at similar altitudes--300 and 600 per cubic cm respectively. These CCN and CN concentrations within this closed eye were far above concentrations in maritime air masses; they are characteristic of continental or polluted air masses. Although there was a possibility that Saharan duct may have gotten into this storm these sub tenth micrometer particles are much too small and much too numerous to be dust. Such high concentrations may have originated from European air pollution, which may have been transported by similar airflow patterns to those that carry Saharan dust across the Atlantic. These high concentrations may be a manifestation of descending air that brings higher concentrations that are often characteristic of the upper troposphere (Clarke and Kapustin 2002). Later in the month measurements in Humberto showed highly variable CCN and CN concentrations that ranged from lots than 5 per cubic cm to more than 1000 per Cubic cm over km scale distances within and around the open eye of this tropical storm/hurricane. These very low concentrations suggest strong cloud scavenging.

  8. Sex differences in the thermoregulation and evaporative water loss of a heterothermic bat, Lasiurus cinereus, during its spring migration

    USGS Publications Warehouse

    Cryan, P.M.; Wolf, B. O.

    2003-01-01

    This study quantifies sex differences in thermoregulation and water loss of a small (20-35 g) insectivorous heterothermic mammal, the hoary bat Lasiurus cinereus, during its spring migration. We measured body temperature, metabolic rate and evaporative water loss, and calculated wet thermal conductance, for bats exposed to air temperatures ranging from 0 to 40°C for periods of 2-5 h. Pregnant females maintained normothermic body temperatures (35.7±0.7°C; mean ± s.e.m.) independent of air temperature. In contrast, males became torpid during the majority (68%) of exposures to air temperatures <25°C. The thermal neutral zone (TNZ) ranged between approximately 30°C and 34°C in both sexes and, within the TNZ, females had lower mass-specific metabolic rates (6.1±0.2 mW g-1) than males (9.0±0.9 mW g-1). Wet thermal conductance values in torpid bats (0.7±0.5 mW g-1 deg.-1) were lower than those of normothermic individuals (1.1±0.3 mW g-1 deg.-1). Mass-specific rates of evaporative water loss in males were consistently higher than in females at most air temperatures and rates of water loss in torpid bats were 63±6% of normothermic values. These results suggest that male and pregnant female L. cinereus employ different thermoregulatory strategies during their spring migration. Females defend normothermic body temperatures, presumably to expedite embryonic growth, while males use torpor, presumably to minimize energy and water deficits. These variable thermoregulatory strategies may reflect continental differences in the summer distribution of the sexes.

  9. Prediction of alpha factor values for fine pore aeration systems.

    PubMed

    Gillot, S; Héduit, A

    2008-01-01

    The objective of this work was to analyse the impact of different geometric and operating parameters on the alpha factor value for fine bubble aeration systems equipped with EPDM membrane diffusers. Measurements have been performed on nitrifying plants operating under extended aeration and treating mainly domestic wastewater. Measurements performed on 14 nitrifying plants showed that, for domestic wastewater treatment under very low F/M ratios, the alpha factor is comprised between 0.44 and 0.98. A new composite variable (the Equivalent Contact Time, ECT) has been defined and makes it possible for a given aeration tank, knowing the MCRT, the clean water oxygen transfer coefficient and the supplied air flow rate, to predict the alpha factor value. ECT combines the effect on mass transfer of all generally accepted factors affecting oxygen transfer performances (air flow rate, diffuser submergence, horizontal flow). (c) IWA Publishing 2008.

  10. Markers for Chinese and Korean Air Masses: Halocarbons and Other Trace Gases Measured During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Blake, N. J.; Blake, D. R.; Meinardi, S.; Simpson, I. J.; Hughes, S.; Barletta, B.; Fleming, L.; Vizenor, N.; Schroeder, J.; Emmons, L. K.; Knote, C. J.

    2017-12-01

    The UC-Irvine Whole Air Sampler (WAS) collected a total of 2650 samples aboard the NASA DC-8 aircraft in support of the May-June 2016 field deployment phase of the KORUS-AQ mission: An International Cooperative Air Quality Field Study in Korea. Here we employ our trace gas measurements, along with CAM-chem tracers and back-trajectories to identify source regions during KORUS-AQ, with a focus on air masses which indicate Chinese and/or Korean origin. During KORUS-AQ we flew mostly over and around the Korean Peninsula with the intent of characterising Korean sources, but Chinese influence was observed offshore near the surface of the West Sea during several KORUS-AQ flights - in accord with forecast predictions from CAM-chem model runs. Unlike previous missions in the Asian region such as TRACE-P (2001), we found that halon-1211 (H-1211) is no longer a useful indicator of air masses from China because of production decline. By contrast, mixing ratios of the long-lived halocarbons carbon tetrachloride (CCl4) and chlorofluorocarbon-113 (CFC-113) were more strongly enhanced in air masses intercepted from China compared to Korea. We will use these tracers, the shorter-lived halocarbons, dichloromethane (CH2Cl2) and methyl chloride (CH3Cl), as well as the sulfur gas carbonyl sulfide (COS) and others, to characterize different regional air mass origins and their sources.

  11. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  13. Evaluation of automotive mass airflow sensors for animal environment research and control

    USDA-ARS?s Scientific Manuscript database

    Mass air flow is an important parameter to consider in animal research applications, especially for the generation of heat and moisture production data. The high flow rates and low operating pressures in animal research facilities present a unique and costly challenge for measurement of mass air fl...

  14. Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts.

    PubMed

    Lee, Hyung Joo; Gent, Janneane F; Leaderer, Brian P; Koutrakis, Petros

    2011-05-01

    To protect public health from PM(2.5) air pollution, it is critical to identify the source types of PM(2.5) mass and chemical components associated with higher risks of adverse health outcomes. Source apportionment modeling using Positive Matrix Factorization (PMF), was used to identify PM(2.5) source types and quantify the source contributions to PM(2.5) in five cities of Connecticut and Massachusetts. Spatial and temporal variability of PM(2.5) mass, components and source contributions were investigated. PMF analysis identified five source types: regional pollution as traced by sulfur, motor vehicle, road dust, oil combustion and sea salt. The sulfur-related regional pollution and traffic source type were major contributors to PM(2.5). Due to sparse ground-level PM(2.5) monitoring sites, current epidemiological studies are susceptible to exposure measurement errors. The higher correlations in concentrations and source contributions between different locations suggest less spatial variability, resulting in less exposure measurement errors. When concentrations and/or contributions were compared to regional averages, correlations were generally higher than between-site correlations. This suggests that for assigning exposures for health effects studies, using regional average concentrations or contributions from several PM(2.5) monitors is more reliable than using data from the nearest central monitor. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  16. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  17. Observed characteristics of dust storm events over the western United States using meteorological, satellite, and air quality measurements

    NASA Astrophysics Data System (ADS)

    Lei, H.; Wang, J. X. L.

    2014-08-01

    To improve dust storm identification over the western United States, historical dust events measured by air quality and satellite observations are analyzed based on their characteristics in data sets of regular meteorology, satellite-based aerosol optical depth (AOD), and air quality measurements. Based on the prevailing weather conditions associated with dust emission, dust storm events are classified into the following four typical types: (1) The key feature of cold front-induced dust storms is their rapid process with strong dust emissions. (2) Events caused by meso- to small-scale weather systems have the highest levels of emissions. (3) Dust storms caused by tropical disturbances show a stronger air concentration of dust and last longer than those in (1) and (2). (4) Dust storms triggered by cyclogenesis last the longest. In this paper, sample events of each type are selected and examined to explore characteristics observed from in situ and remote-sensing measurements. These characteristics include the lasting period, surface wind speeds, areas affected, average loading on ground-based optical and/or air quality measurements, peak loading on ground-based optical and/or air quality measurements, and loading on satellite-based aerosol optical depth. Based on these analyses, we compare the characteristics of the same dust events captured in different data sets in order to define the dust identification criteria. The analyses show that the variability in mass concentrations captured by in situ measurements is consistent with the variability in AOD from stationary and satellite observations. Our analyses also find that different data sets are capable of identifying certain common characteristics, while each data set also provides specific information about a dust storm event. For example, the meteorological data are good at identifying the lasting period and area impacted by a dust event; the ground-based air quality and optical measurements can capture the peak strength well; aerosol optical depth (AOD) from satellite data sets allows us to better identify dust-storm-affected areas and the spatial extent of dust. The current study also indicates that the combination of in situ and satellite observations is a better method to fill gaps in dust storm recordings.

  18. Changes in the chemistry of small Irish lakes.

    PubMed

    Burton, Andrew W; Aherne, Julian

    2012-03-01

    A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.

  19. Heat Pump Clothes Dryer Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model tomore » simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.« less

  20. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  1. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  2. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  3. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  4. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  5. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  6. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  7. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  8. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  9. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  10. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  11. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  12. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  13. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  14. 40 CFR Table 3 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  15. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  16. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  17. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  18. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  19. 40 CFR 63.4550 - By what date must I conduct the initial compliance demonstration?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating of Plastic Parts and... next 12 months. You must determine the mass of organic HAP emissions and mass of coating solids used...

  20. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  1. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  2. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  3. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  4. 40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins... mass emissions per mass product are less than or equal to the level specified in § 63.1316(b)(1)(i) (i...

  5. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  6. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  7. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  9. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  10. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  11. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  12. 40 CFR Table 4 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  13. 40 CFR 63.1319 - PET and polystyrene affected sources-recordkeeping provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins... mass emissions per mass product are less than or equal to the level specified in § 63.1316(b)(1)(i) (i...

  14. 40 CFR Table 7 to Subpart Kkkk of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  15. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  16. 40 CFR Table 5 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  17. 40 CFR Table 4 to Subpart Rrrr of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  18. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Printing, Coating...

  19. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  20. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  1. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  2. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  3. 40 CFR Table 4 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  4. 40 CFR Table 4 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  5. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  6. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  7. 40 CFR Table 3 to Subpart IIIi of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  8. 40 CFR Table 5 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  9. 40 CFR Table 4 to Subpart Oooo of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  10. 40 CFR Table 6 to Subpart Qqqq of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants...

  11. 40 CFR Table 3 to Subpart Mmmm of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants for Surface Coating...

  12. 40 CFR Table 3 to Subpart Pppp of... - Default Organic HAP Mass Fraction for Solvents and Solvent Blends

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...

  13. 40 CFR Table 4 to Subpart Nnnn of... - Default Organic HAP Mass Fraction for Petroleum Solvent Groups a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Default Organic HAP Mass Fraction for... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Surface Coating of...

  14. Air Pollution and Autonomic and Vascular Dysfunction in Patients With Cardiovascular Disease: Interactions of Systemic Inflammation, Overweight, and Gender

    PubMed Central

    Huang, Wei; Zhu, Tong; Pan, Xiaochuan; Hu, Min; Lu, Shou-En; Lin, Yong; Wang, Tong; Zhang, Yuanhang; Tang, Xiaoyan

    2012-01-01

    The authors conducted a 2-year follow-up of 40 cardiovascular disease patients (mean age = 65.6 years (standard deviation, 5.8)) who underwent repeated measurements of cardiovascular response before and during the 2008 Beijing Olympics (Beijing, China), when air pollution was strictly controlled. Ambient levels of particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), black carbon, nitrogen dioxide, sulfur dioxide, ozone, and carbon monoxide were measured continuously, with validation of concurrent real-time measurements of personal exposure to PM2.5 and carbon monoxide. Linear mixed-effects models were used with adjustment for individual risk factors, time-varying factors, and meteorologic effects. Significant heart rate variability reduction and blood pressure elevation were observed in association with exposure to air pollution. Specifically, interquartile-range increases of 51.8 µg/m3, 2.02 µg/m3, and 13.7 ppb in prior 4-hour exposure to PM2.5, black carbon, and nitrogen dioxide were associated with significant reductions in the standard deviation of the normal-to-normal intervals of 4.2% (95% confidence interval (CI): 1.9, 6.4), 4.2% (95% CI: 1.8, 6.6), and 3.9% (95% CI: 2.2, 5.7), respectively. Greater heart rate variability declines were observed among subjects with C-reactive protein values above the 90th percentile, subjects with a body mass index greater than 25, and females. The authors conclude that autonomic and vascular dysfunction may be one of the mechanisms through which air pollution exposure can increase cardiovascular disease risk, especially among persons with systemic inflammation and overweight. PMID:22763390

  15. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics

    PubMed Central

    Choi, Sanghun; Hoffman, Eric A.; Wenzel, Sally E.; Tawhai, Merryn H.; Yin, Youbing; Castro, Mario

    2013-01-01

    The purpose of this work was to explore the use of image registration-derived variables associated with computed tomographic (CT) imaging of the lung acquired at multiple volumes. As an evaluation of the utility of such an imaging approach, we explored two groups at the extremes of population ranging from normal subjects to severe asthmatics. A mass-preserving image registration technique was employed to match CT images at total lung capacity (TLC) and functional residual capacity (FRC) for assessment of regional air volume change and lung deformation between the two states. Fourteen normal subjects and thirty severe asthmatics were analyzed via image registration-derived metrics together with their pulmonary function test (PFT) and CT-based air-trapping. Relative to the normal group, the severely asthmatic group demonstrated reduced air volume change (consistent with air trapping) and more isotropic deformation in the basal lung regions while demonstrating increased air volume change associated with increased anisotropic deformation in the apical lung regions. These differences were found despite the fact that both PFT-derived TLC and FRC in the two groups were nearly 100% of predicted values. Data suggest that reduced basal-lung air volume change in severe asthmatics was compensated by increased apical-lung air volume change and that relative increase in apical-lung air volume change in severe asthmatics was accompanied by enhanced anisotropic deformation. These data suggest that CT-based deformation, assessed via inspiration vs. expiration scans, provides a tool for distinguishing differences in lung mechanics when applied to the extreme ends of a population range. PMID:23743399

  16. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chung-Te; Chuang, Ming-Tung; Lin, Neng-Huei; Wang, Jia-Lin; Sheu, Guey-Rong; Chang, Shuenn-Chin; Wang, Sheng-Hsiang; Huang, Hill; Chen, Horng-Wen; Liu, Yuan-Liang; Weng, Guo-Hau; Lai, Hsin-Yo; Hsu, Shao-Peng

    2011-10-01

    Biomass burning (BB) in Southeast Asia (Indochina and southern China) occurs frequently in March and April every year. The burning plume is ordinarily transported eastward by the prevailing westerly, further affecting downstream air quality in East Asia. In this study, atmospheric aerosols were collected at the downstream Lulin Atmospheric Background Station (LABS, 2862 m a.s.l., central Taiwan) from April 2003 to April 2009. Results show that monthly means of PM2.5 were highest during the BB period, especially in March. The PM2.5 mean for BB activity was 17.5 μg m-3, while the daily PM2.5 mean can sometimes be above 40 μg m-3. The background PM2.5 level in free troposphere of the West Pacific was at 3.7 ± 1.8 μg m-3. This mean is roughly the same regardless of the air masses moving from China, Pacific Ocean, and South China Sea toward LABS. In addition, the highest PM2.5 level occurred in 2004, making it the most active year of BB for the whole observation period. Greater amounts of nitrate and potassium ions were observed in the PM2.5 collected during the BB period compared to the non-BB (NBB) period. Linear regression analysis on PM2.5 water-soluble ions shows a moderate correlation (R2 = 0.59) between non-sea-salt potassium and nitrate ions during the BB period. Furthermore, for all trajectory source origins, ammonium ion had the best correlation (R2 = 0.84) with non-sea-salt sulfate when the air masses were influenced by anthropogenic sources during the NBB period. The enhancement ratios of nitrate ion during the BB period could reach 6.7 and 9.7 relative to air masses from the BB source region and from the pristine area during the NBB period, respectively. During the study period, ammonia gas was found to be insufficient to neutralize sulfuric and nitric gases. Therefore, most aerosols were more acidic than basic. Our long-term observation of atmospheric aerosols with inter-annual variability is valuable in providing data for verifying BB source inventory and model performance in East Asia.

  17. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    PubMed

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  19. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses

    NASA Astrophysics Data System (ADS)

    Gunsch, Matthew J.; Schmidt, Stephanie A.; Gardner, Daniel J.; Bondy, Amy L.; May, Nathaniel W.; Bertman, Steven B.; Pratt, Kerri A.; Ault, Andrew P.

    2018-04-01

    Growth of freshly nucleated particles is an important source of cloud condensation nuclei (CCN) and has been studied within a variety of environments around the world. However, there remains uncertainty regarding the sources of the precursor gases leading to particle growth, particularly in isoprene-rich forests. In this study, particle growth events were observed from the 14 total events (31% of days) during summer measurements (June 24 - August 2, 2014) at the Program for Research on Oxidants PHotochemistry, Emissions, and Transport (PROPHET) tower within the forested University of Michigan Biological Station located in northern Michigan. Growth events were observed within long-range transported air masses from urban areas, air masses impacted by wildfires, as well as stagnant, forested/regional air masses. Growth events observed during urban-influenced air masses were prevalent, with presumably high oxidant levels, and began midday during periods of high solar radiation. This suggests that increased oxidation of biogenic volatile organic compounds (BVOCs) likely contributed to the highest observed particle growth in this study (8 ± 2 nm h-1). Growth events during wildfire-influenced air masses were observed primarily at night and had slower growth rates (3 ± 1 nm h-1). These events were likely influenced by increased SO2, O3, and NO2 transported within the smoke plumes, suggesting a role of NO3 oxidation in the production of semi-volatile compounds. Forested/regional air mass growth events likely occurred due to the oxidation of regionally emitted BVOCs, including isoprene, monoterpenes, and sesquiterpenes, which facilitated multiday growth events also with slower rates (3 ± 2 nm h-1). Intense sulfur, carbon, and oxygen signals in individual particles down to 20 nm, analyzed by transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDX), suggest that H2SO4 and secondary organic aerosol contributed to particle growth. Overall, aerosol growth was frequently observed in a range of air masses (urban, wildfire, forested) and oxidant conditions (day vs. night), with rates ranging from 0.8 to 10.2 nm h-1.

  20. An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle

    NASA Astrophysics Data System (ADS)

    Waung, Timothy S.

    Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.

  1. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  2. Blowing Snow Sublimation at a High Altitude Alpine Site and Effects on the Surface Boundary Layer

    NASA Astrophysics Data System (ADS)

    Vionnet, V.; Guyomarc'h, G.; Sicart, J. E.; Deliot, Y.; Naaim-Bouvet, F.; Bellot, H.; Merzisen, H.

    2017-12-01

    In alpine terrain, wind-induced snow transport strongly influences the spatial and temporal variability of the snow cover. During their transport, blown snow particles undergo sublimation with an intensity depending on atmospheric conditions (air temperature and humidity). The mass loss due to blowing snow sublimation is a source of uncertainty for the mass balance of the alpine snowpack. Additionally, blowing snow sublimation modifies humidity and temperature in the surface boundary layer. To better quantify these effects in alpine terrain, a dedicated measurement setup has been deployed at the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps, Cryobs-Clim network) since winter 2015/2016. It consists in three vertical masts measuring the near-surface vertical profiles (0.2-5 m) of wind speed, air temperature and humidity and blowing snow fluxes and size distribution. Observations collected during blowing snow events without concurrent snowfall show only a slight increase in relative humidity (10-20%) and near-surface saturation is never observed. Estimation of blowing snow sublimation rates are then obtained from these measurements. They range between 0 and 5 mmSWE day-1 for blowing snow events without snowfall in agreement with previous studies in different environments (North American prairies, Antarctica). Finally, an estimation of the mass loss due to blowing snow sublimation at our experimental site is proposed for two consecutive winters. Future use of the database collected in this study includes the evaluation of blowing snow models in alpine terrain.

  3. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    PubMed

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  4. Identify the dominant variables to predict stream water temperature

    NASA Astrophysics Data System (ADS)

    Chien, H.; Flagler, J.

    2016-12-01

    Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.

  5. The influence of body mass index and outdoor temperature on the autonomic response to eating in healthy young Japanese women.

    PubMed

    Okada, Masahiro; Kakehashi, Masayuki

    2014-01-01

    The influences of body weight and air temperature on the autonomic response to food intake have not been clarified. We measured heart rate variability before and after lunch, as well as the effects of outdoor temperature and increased body mass index (BMI), in healthy young Japanese women. We studied 55 healthy young female university students. Heart rate variability was measured before lunch, immediately after lunch, 30 min after lunch, and 1 h after lunch to determine any correlations between heart rate variability, outdoor temperature, and BMI. In addition, multiple regression analysis was performed to elucidate the relationship between heart rate variability and outdoor temperature before and after lunch. A simple slope test was conducted to show the relationship between the low-to-high frequency ratio (1 h after lunch) and outdoor temperature. Subjects were divided into a low BMI group (range: 16.6-20.3) and a high BMI group (range: 20.4-32.9). The very low frequency component of heart rate variability, an index of thermoregulatory vasomotor control exerted by the sympathetic nervous system, was significantly diminished after lunch in the high BMI group (P < 0.01). A significant decrease in the low-to-high frequency (LF/HF) ratio, which represents the balance between the parasympathetic and sympathetic nervous systems, was evident in the low BMI group after lunch, indicating parasympathetic system dominance (P = 0.001). In addition, a significant association was found between the LF/HF ratio and outdoor temperature after lunch with a lower BMI (P = 0.002), but this association disappeared with higher BMIs. Autonomic responses to eating showed clear differences according to BMI, indicating that the sensitivity of the autonomic nervous system may change with increases in BMI.

  6. Temporal variability of selected air toxics in the United States

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Hafner, Hilary R.; Chinkin, Lyle R.; Charrier, Jessica G.

    Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990-2005, 1995-2005, and 2000-2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.

  7. Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic).

    PubMed

    Lewandowska, A U; Bełdowska, M; Witkowska, A; Falkowska, L; Wiśniewska, K

    2018-08-15

    PM1 aerosols were collected at the coastal station in Gdynia between 1st January and 31st December 2012. The main purpose of the study was to determine the variability in concentrations of mercury Hg(p), organic carbon (OC) and elemental carbon (EC) in PM1 aerosols under varying synoptic conditions in heating and non-heating periods. Additionally, sources of origin and bonds of mercury with carbon species were identified. The highest concentrations of Hg(p), OC and EC were found during the heating period. Then all analyzed PM1 components had a common, local origin related to the consumption of fossil fuels for heating purposes under conditions of lower air temperatures and poor dispersion of pollutants. Long periods without precipitation also led to the increase in concentration of all measured PM1 compounds. In heating period mercury correlated well with elemental carbon and primary and secondary organic carbon when air masses were transported from over the land. At that time, the role of transportation was of minor importance. In the non-heating period, the concentration of all analyzed compounds were lower than in the heating period, which could be associated with the reduced influence of combustion processes, higher precipitation and, in the case of mercury, also the evaporation of aerosols at higher air temperatures. However, when air masses were transported from over the sea or from the port/shipyard areas the mercury concentration increased significantly. In the first case higher air humidity, solar radiation and ozone concentration as well as the presence of marine aerosols could further facilitate the conversion of gaseous mercury into particulate mercury and its concentration increase. In the second case Hg(p) could be adsorbed on particles rich in elemental carbon and primary organic carbon emitted from ships. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage

    NASA Technical Reports Server (NTRS)

    Kaufman, Harold R; Koffel, William K

    1952-01-01

    The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.

  9. Climatology of winter transition days for the contiguous USA, 1951-2007

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Davis, Robert E.

    2011-01-01

    In middle and high latitudes, climate change could impact the frequency and characteristics of frontal passages. Although transitions between air masses are significant features of the general circulation that influence human activities and other surface processes, they are much more difficult to objectively identify than single variables like temperature or even extreme events like fires, droughts, and floods. The recently developed Spatial Synoptic Classification (SSC) provides a fairly objective means of identifying frontal passages. In this research, we determine the specific meteorological patterns represented by the SSC's Transition category, a "catch-all" group that attempts to identify those days that cannot be characterized as a single, homogeneous air mass type. The result is a detailed transition climatology for the continental USA. We identify four subtypes of the Transition category based on intra-day sea level pressure change and dew point temperature change. Across the contiguous USA, most transition days are identified as cold fronts and warm fronts during the winter season. Among the two less common subtypes, transition days in which the dew point temperature and pressure both rise are more frequently observed across the western states, and days in which both variables fall are more frequently observed in coastal regions. The relative frequencies of wintertime warm and cold fronts have changed over the period 1951-2007. Relative cold front frequency has significantly increased in the Northeast and Midwest regions, and warm front frequencies have declined in the Midwest, Rocky Mountain, and Pacific Northwest regions. The overall shift toward cold fronts and away from warm fronts across the northern USA arises from a combination of an enhanced ridge over western North America and a northward shift of storm tracks throughout the mid-latitudes. These results are consistent with projections of climate change associated with elevated greenhouse gas concentrations.

  10. Atmospheric sulfur cycling in the Southeastern Pacific - longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Yang, M.; Huebert, B. J.; Blomquist, B. W.; Howell, S. G.; Shank, L. M.; McNaughton, C. S.; Clarke, A. D.; Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Coffman, D. J.; Bates, T. S.; Quinn, P. K.; Zagorac, N.; Bandy, A. R.; de Szoeke, S. P.; Zuidema, P. D.; Tucker, S. C.; Brewer, W. A.; Benedict, K. B.; Collett, J. L.

    2011-01-01

    Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO2) and non-sea-salt sulfate aerosols (SO42). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship Ronald H. Brown and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W) to a remote marine region (85° W). While SO42- and SO2 concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (~800 and 80 pptv, respectively), their concentrations rapidly decreased offshore (~100and 25 pptv). Compared to the "mass" entrainment fluxes of SO42- and SO2 from the free troposphere (0.5 ± 0.3 and 0.3 ± 0.2 μmoles m-2 day-1), the sea-to-air DMS flux (3.8 ± 0.1 μmoles m-2 day-1) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO2 removal and in situ SO42- production. Surface SO42- loading in the remote region displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and then decaying for the rest of the time. We theorize that the increase in SO42- was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO42-.

  11. Concentration and variability of ice nuclei in the subtropical maritime boundary layer

    NASA Astrophysics Data System (ADS)

    Welti, André; Müller, Konrad; Fleming, Zoë L.; Stratmann, Frank

    2018-04-01

    Measurements of the concentration and variability of ice nucleating particles in the subtropical maritime boundary layer are reported. Filter samples collected in Cabo Verde over the period 2009-2013 are analyzed with a drop freezing experiment with sensitivity to detect the few rare ice nuclei active at low supercooling. The data set is augmented with continuous flow diffusion chamber measurements at temperatures below -24 °C from a 2-month field campaign in Cabo Verde in 2016. The data set is used to address the following questions: what are typical concentrations of ice nucleating particles active at a certain temperature? What affects their concentration and where are their sources? Concentration of ice nucleating particles is found to increase exponentially by 7 orders of magnitude from -5 to -38 °C. Sample-to-sample variation in the steepness of the increase indicates that particles of different origin, with different ice nucleation properties (size, composition), contribute to the ice nuclei concentration at different temperatures. The concentration of ice nuclei active at a specific temperature varies over a range of up to 4 orders of magnitude. The frequency with which a certain ice nuclei concentration is measured within this range is found to follow a lognormal distribution, which can be explained by random dilution during transport. To investigate the geographic origin of ice nuclei, source attribution of air masses from dispersion modeling is used to classify the data into seven typical conditions. While no source could be attributed to the ice nuclei active at temperatures higher than -12 °C, concentrations at lower temperatures tend to be elevated in air masses originating from the Sahara.

  12. STOCHASTIC DESCRIPTION OF SUBGRID POLLUTANT VARIABILITY IN CMAQ

    EPA Science Inventory

    This paper describes a tool for investigating and describing fine scale spatial variability in model concentration fields with the goal of improving the use of air quality models for driving exposure modeling to assess human risk to hazardous air pollutants or air toxics. Region...

  13. Clean Air Markets - Part 75 Emissions Monitoring Policy Manual

    EPA Pesticide Factsheets

    Learn about monitoring mass sulfur dioxide and mass carbon dioxide emissions, nitrogen oxide emission rate, and heat input by units affected by the Acid Rain Program and the Clean Air Interstate Rule.

  14. Combining Airborne and Lidar Measurements for Attribution of Aerosol Layers

    NASA Astrophysics Data System (ADS)

    Nikandrova, A.; Väänänen, R.; Tabakova, K.; Kerminen, V. M.; O'Connor, E.

    2016-12-01

    The aim of this work was to identify discrete aerosol layers and diagnose their origin, investigate the strength of mixing within the free-troposphere and with the boundary layer (BL), and understand the impact that mixing has on local and long-range transport of aerosol. For these purposes we combined airborne in-situ aerosol measurements with data obtained by a High Spectral Resolution Lidar (HSRL). The HSRL was deployed in Hyytiälä, Southern Finland, from January to September 2014 as a part of the US DoE ARM (Atmospheric Radiation Measurement) Mobile Facility during the BAECC (Biogenic Aerosols - Effects on Cloud and Climate) Campaign. Two airborne campaigns took place in April and August 2014 during the BAECC campaign. The vertical profile of backscatter coefficient from the HSRL was used to diagnose the location and depth of significant aerosol layers in the atmosphere. Frequently, in addition to the BL, one or two tropospheric layers were identified. In-situ measurements of the aerosol size distribution in these layers were obtained from a Scanning Mobility Particle Sizer (SMPS) and Optical Particle Sizer (OPS), that were installed on board the aircraft; these measurements were combined to cover sizes ranging from 10 nm to 10 µm. As expected, the highest number concentration of aerosol particles at all size ranges was found predominantly in the BL. Many upper layers had size distributions with a similar shape to that in the BL but with overall lower concentrations attributed to dilution of particles into a large volume of air. Hence, these layers were likely of very similar origin to the air in the BL and presumably were the result of lofted residual layers. Intervening layers however, could contain markedly different distribution shapes, which could be attributed to both different air mass origins, and different ambient relative humidity. Potential for mixing between two discreet elevated layers was often seen as a thin interface layer, which exhibited a combination of properties from both layers. Strong turbulent mixing ensured lower variability in the size distribution in the BL on short timescales, with more variability seen in the free troposphere. 96-hour back trajectories from multiple altitudes were used to diagnose the air mass origin of each discrete layer.

  15. Method and apparatus for igniting an in situ oil shale retort

    DOEpatents

    Burton, Robert S.; Rundberg, Sten I.; Vaughn, James V.; Williams, Thomas P.; Benson, Gregory C.

    1981-01-01

    A technique is provided for igniting an in situ oil shale retort having an open void space over the top of a fragmented mass of particles in the retort. A conduit is extended into the void space through a hole in overlying unfragmented formation and has an open end above the top surface of the fragmented mass. A primary air pipe having an open end above the open end of the conduit and a liquid atomizing fuel nozzle in the primary air pipe above the open end of the primary air pipe are centered in the conduit. Fuel is introduced through the nozzle, primary air through the pipe, and secondary air is introduced through the conduit for vortical flow past the open end of the primary air pipe. The resultant fuel and air mixture is ignited for combustion within the conduit and the resultant heated ignition gas impinges on the fragmented mass for heating oil shale to an ignition temperature.

  16. Sorption of atmospheric gases by bulk lithium metal

    DOE PAGES

    Hart, C. A.; Skinner, C. H.; Capece, A. M.; ...

    2016-01-01

    Lithium conditioning of plasma facing components has enhanced the performance of several fusion devices. Elemental lithium will react with air during maintenance activities and with residual gases (H 2O, CO, CO 2) in the vacuum vessel during operations. We have used a mass balance (microgram sensitivity) to measure the mass gain of lithium samples during exposure of a ~1 cm 2 surface to ambient and dry synthetic air. For ambient air, we found an initial mass gain of several mg/h declining to less than 1 mg/h after an hour and decreasing by an order of magnitude after 24 h. Amore » 9 mg sample achieved a final mass gain corresponding to complete conversion to Li 2CO 3 after 5 days. Exposure to dry air resulted in a 30 times lower initial rate of mass gain. The results have implications for the chemical state of lithium plasma facing surfaces and for safe handling of lithium coated components.« less

  17. Characteristics of vertical air motion in isolated convective clouds

    DOE PAGES

    Yang, Jing; Wang, Zhien; Heymsfield, Andrew J.; ...

    2016-08-11

    The vertical velocity and air mass flux in isolated convective clouds are statistically analyzed using aircraft in situ data collected from three field campaigns: High-Plains Cumulus (HiCu) conducted over the midlatitude High Plains, COnvective Precipitation Experiment (COPE) conducted in a midlatitude coastal area, and Ice in Clouds Experiment-Tropical (ICE-T) conducted over a tropical ocean. The results show that small-scale updrafts and downdrafts (<  500 m in diameter) are frequently observed in the three field campaigns, and they make important contributions to the total air mass flux. The probability density functions (PDFs) and profiles of the observed vertical velocity are provided. The PDFsmore » are exponentially distributed. The updrafts generally strengthen with height. Relatively strong updrafts (>  20 m s −1) were sampled in COPE and ICE-T. The observed downdrafts are stronger in HiCu and COPE than in ICE-T. The PDFs of the air mass flux are exponentially distributed as well. The observed maximum air mass flux in updrafts is of the order 10 4 kg m −1 s −1. The observed air mass flux in the downdrafts is typically a few times smaller in magnitude than that in the updrafts. Since this study only deals with isolated convective clouds, and there are many limitations and sampling issues in aircraft in situ measurements, more observations are needed to better explore the vertical air motion in convective clouds.« less

  18. Weather types and strokes in the Augsburg region (Southern Germany)

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Ertl, Michael; Giemsa, Esther; Jacobeit, Jucundus; Naumann, Markus; Seubert, Stefanie

    2017-04-01

    Strokes are one of the leading causes of morbidity and mortality worldwide and the main reason for longterm care dependency in Germany. Concerning the economical impact on patients and healthcare systems it is of particular importance to prevent this disease as well as to improve the outcome of the affected persons. Beside the primary well-known risk factors like hypertension, cigarette smoking, physical inactivity and others, also weather seems to have pronounced influence on the occurrence and frequency of strokes. Previous studies most often focused on effects of singular meteorological variables like ambient air temperature, air pressure or humidity. An advanced approach is to link the entire suite of daily weather elements classified to air mass- or weather types to cerebrovascular morbidity or mortality. In a joint pilot study bringing together climatologists, environmental scientists and physicians from the University of Augsburg and the clinical centre Augsburg, we analysed relationships between singular meteorological parameters as well as combined weather effects (e.g. weather types) and strokes in the urban area of Augsburg and the surrounding rural region. A total of 17.501 stroke admissions to Neurological Clinic and Clinical Neurophysiology at Klinikum Augsburg between 2006 and 2015 are classified to either "ischaemic" (16.354) or "haemorrhagic" (1.147) subtype according to etiology (based on the International Classification of Diseases - 10th Revision). Spearman correlations between daily frequencies of ischaemic and haemorrhagic strokes and singular atmospheric parameters (T, Tmin, Tmax, air pressure, humidity etc.) measured at the DWD (German weather service) meteorological station at Augsburg Muehlhausen are rather low. However, higher correlations are achieved when considering sub-samples of "homogenous weather conditions" derived from synoptic circulation classifications: e.g. within almost all of 10 types arising from a classification of central European mean sea level pressure fields into "Großwettertypes" (Beck 2000) the relationships between meteorological variables and stroke frequencies are increasing. Mainly temperature variables (Tmin, Tmax, Tmean) appear to be important particularly in winter and summer. Moreover distinct correlations of similar magnitude are obtained with other variables like wind speed or precipitation for specific weather types (e.g. westerly type). In how far these initial findings do really point to additional health impacts beyond temperature effects is subject of ongoing work.

  19. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  20. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.

    2011-06-01

    Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.

  1. Tropospheric ozone over Siberia in spring 2010: long-range transport of biomass burning and anthropogenic emissions, stratospheric intrusion and remote boundary layer influence

    NASA Astrophysics Data System (ADS)

    Berchet, A.; Paris, J.-D.; Ancellet, G.; Law, K.; Stohl, A.; Nédélec, P.; Arshinov, M. Yu; Belan, B. D.; Ciais, P.

    2012-04-01

    Atmospheric pollution, including tropospheric ozone, has an adverse effect on humans and their environment. The Siberian air shed covers about 10% of Earth's land surface. Therefore, it can contribute significantly to the global tropospheric ozone budget due, in the region, to vast deposition losses on the boreal forest vegetation in the atmospheric surface layer on the one hand, and in-situ photochemical production from ozone precursors emitted by Siberian terrestrial ecosystems, and the influx of stratospheric ozone to the troposphere on the other hand. We have identified and characterized factors that influenced the tropospheric ozone budget over Siberia during spring 2010 by analyzing in-situ measurements of ozone, carbon dioxide, carbon monoxide, and methane mixing ratios collected by continuous analyzers during an intensive airborne measurement campaign of the YAK-AEROSIB Project, carried out between 15 and 18 April 2010. The observations, spanning over 3000 km and stretching from 800 to 6700 m above ground level, were analyzed using the Lagrangian model FLEXPART to simulate backward air mass transport. The analysis of trace gas variability and simulated origin of air masses origins showed that biomass burning and anthropogenic activity expectedly increased carbon monoxide and dioxide concentrations. Also, such plumes coming from east and west of West Siberian plain and from North-Eastern China were shown to increase ozone mixing ratio owing to photochemical processes taking place along the transport route. In the case of low ozone mixing ratios observed over a large area (800x200km) in the upper troposphere above 5500 m the air masses transported to the region under study were likely influenced by an Arctic ozone depletion event transported to lower latitudes and advected to the upper troposphere. The stratospheric source of ozone to the troposphere was observed directly in a well-defined stratospheric intrusion. Numerical simulations of this event suggest an input of 2.56 x 107 kg of ozone associated to a regional downward flux of 9.75 x 1010 molecules·cm-2·s-1.

  2. Geochemistry of aerosols from an urban site, Varanasi, in the Eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Zirzov, Felix; Singh, Sunita; Mehra, Manisha; Nanad Tripathi, Sachichida

    2016-04-01

    PM2.5 aerosol samples were collected from an urban site, Varanasi, in the eastern Indo-Gangetic Plain on weekly basis during 19 March to 29 May 2015 (n=12), along with daily samples (n=8) during 11 to 18 March 2015 to study the geochemical and morphological features of aerosols. Samples were collected with a low volume sampler (Leckel GmbH, Germany) on the terrace of the Institute of Environment and Sustainable Development building, located in the Banaras Hindu University campus in the southern part of the city. Samples were analyzed for element concentration by Inductively Coupled Plasma Mass Spectrometry and particle morphology by Scanning Electron Microscope. PM2.5 concentration ranged between 22.3 and 70.5 μgm-3 in daily samples, whereas those varied between 52.0 and 106 μgm-3 in weekly samples. Lead, potassium, aluminum, zinc and iron have conspicuously higher concentrations with Pb concentration exceeding above the annual limit of 50 ngm-3 in four samples. First results show a trend of corresponding concentrations of chemical elements originated from anthropogenic and geogenic sources. The biogenic particles are a minor fraction of the total particulate aerosols. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory analysis of air parcels indicate that the air mass for the low loaded days originate from eastern directions including the region of the gulf of Bengal, where as high aerosols concentrations in cases of air masses arriving from north-western direction transporting the air pollutants from the Gangetic Plain towards Varanasi. Black carbon (BC) concentration, measured using an microaethalometer (AE-51), exhibit a strong variability (4.4 to 8.4 μg m-3) in the University campus which are ˜20-40% lower than those measured in the Varanasi city. The carbon content was found to be high with soot particles constituting the largest part in these samples and exist as single particle as well as attachment to other particles. The Cluster analysis shows a mixture of geogenic and anthropogenic emission sources, though their contribution could not be quantified in the present study. Thus further investigations are started with continuous aerosol sampling in Varanasi.

  3. Uncertainty analysis on simple mass balance model to calculate critical loads for soil acidity.

    PubMed

    Li, Harbin; McNulty, Steven G

    2007-10-01

    Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Specifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BC(w); 49%) and acid neutralizing capacity (46%), whereas the most critical parameters were BC(w) base rate (62%), soil depth (20%), and soil temperature (11%). Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments of CAL.

  4. Variability in Pesticide Deposition and Source Contributions to Snowpack in Western US National Parks

    PubMed Central

    Hageman, Kimberly J.; Hafner, William D.; Campbell, Donald H.; Jaffe, Daniel A; Landers, Dixon H.; Simonic, Staci L. Massey

    2010-01-01

    Fifty-six seasonal snowpack samples were collected at remote alpine, sub-arctic, and arctic sites in eight Western US national parks during three consecutive years (2003–2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfan, and γ-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, α-HCH, chlordane, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intra-park replicate samples, and 59% for inter-annual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in US national parks is due to pesticide use in North America. PMID:20499934

  5. Variability in pesticide deposition and source contributions to snowpack in western U.S. National Parks

    USGS Publications Warehouse

    Hageman, Kimberly J.; Hafner, William D.; Campbell, Donald H.; Jaffe, Daniel A.; Landers, Dixon H.; Massey Simonich, Staci L.

    2010-01-01

    Fifty-six seasonal snowpack samples were collected at remote alpine, subarctic, and arctic sites in eight Western U.S. national parks during three consecutive years (2003−2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfans, and γ-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, α-HCH, chlordanes, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intrapark replicate samples, and 59% for interannual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories, and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in U.S. national parks is due to regional pesticide use in North America.

  6. Variability in pesticide deposition and source contributions to snowpack in Western U.S. national parks.

    PubMed

    Hageman, Kimberly J; Hafner, William D; Campbell, Donald H; Jaffe, Daniel A; Landers, Dixon H; Simonich, Staci L Massey

    2010-06-15

    Fifty-six seasonal snowpack samples were collected at remote alpine, subarctic, and arctic sites in eight Western U.S. national parks during three consecutive years (2003-2005). Four current-use pesticides (CUPs) (dacthal (DCPA), chlorpyrifos, endosulfans, and gamma-hexachlorocyclohexane (HCH)) and four historic-use pesticides (HUPs) (dieldrin, alpha-HCH, chlordanes, and hexachlorobenzene (HCB)) were commonly measured at all sites, during all years. The mean coefficient of variation for pesticide concentrations was 15% for site replicate samples, 41% for intrapark replicate samples, and 59% for interannual replicate samples. The relative pesticide concentration profiles were consistent from year to year but unique for individual parks, indicating a regional source effect. HUP concentrations were well-correlated with regional cropland intensity when the effect of temperature on snow-air partitioning was considered. The mass of individual CUPs used in regions located one-day upwind of the parks was calculated using air mass back trajectories, and this was used to explain the distribution of CUPs among the parks. The percent of the snowpack pesticide concentration due to regional transport was high (>75%) for the majority of pesticides in all parks. These results suggest that the majority of pesticide contamination in U.S. national parks is due to regional pesticide use in North America.

  7. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  8. Atmospheric particulate measurements in Norfolk, Virginia

    NASA Technical Reports Server (NTRS)

    Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.

    1975-01-01

    Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.

  9. On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.

    2001-06-01

    Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.

  10. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  11. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa, Japan.

  12. A Prospective Study of Adolescent Eating in the Absence of Hunger and Body Mass and Fat Mass Outcomes

    PubMed Central

    Pickworth, Courtney K.; Brady, Sheila M.; Courville, Amber B.; Bernstein, Shanna; Schvey, Natasha A.; Demidowich, Andrew P.; Galescu, Ovidiu; Yanovski, Susan Z.; Tanofsky-Kraff, Marian; Yanovski, Jack A.

    2015-01-01

    Objective Eating in the absence of hunger (EAH) refers to the consumption of palatable foods in a sated state. It has been proposed that EAH promotes excess weight gain in youth; yet, there are limited prospective data to support this hypothesis. We examined whether EAH at baseline predicted increases in body mass (BMI and BMIz) and fat mass (kg) 1 year later among adolescent boys and girls. Design and Methods EAH was assessed as adolescents’ consumption of palatable snack foods following eating to satiety from an ad libitum lunch buffet. Parents also completed a questionnaire about their children's EAH. Body composition was assessed using air displacement plethysmography. Results Of 196 adolescents assessed for EAH at baseline, 163 (83%) were re-evaluated 1 year later. Accounting for covariates, which included respective baseline values for each dependent variable, race, height, age, sex, and pubertal stage, there were no significant associations between baseline observed or parent-reported EAH and change in adolescent BMI, BMIz or fat mass. Results did not differ by sex, child weight status, or maternal weight status. Conclusions We found no evidence to support the hypothesis that EAH is a unique endophenotype for adolescent weight or fat gain. PMID:26052830

  13. Exposure to Household Air Pollution from Biomass-Burning Cookstoves and HbA1c and Diabetic Status among Honduran Women.

    PubMed

    Rajkumar, Sarah; Clark, Maggie L; Young, Bonnie N; Benka-Coker, Megan L; Bachand, Annette M; Brook, Robert D; Nelson, Tracy L; Volckens, John; Reynolds, Stephen J; L'Orange, Christian; Good, Nicholas; Koehler, Kirsten; Africano, Sebastian; Osorto Pinel, Anibal B; Peel, Jennifer L

    2018-06-13

    Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle-income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross-sectional study of 142 women (72 with traditional stoves and 70 with cleaner-burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24-hour average kitchen and personal fine particulate matter [PM 2.5 ] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio [PR] per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (versus normal HbA1c) for all pollutant measures (e.g., PR per 84 μg/m 3 increase in personal PM 2.5 , 1.49; 95% confidence interval [CI], 1.11 - 2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Mesoscale numerical modeling of meteorological events in a strong topographic gradient in the northeastern part of Mexico

    NASA Astrophysics Data System (ADS)

    Pineda-Martinez, Luis F.; Carbajal, Noel

    2009-08-01

    A series of numerical experiments were carried out to study the effect of meteorological events such as warm and cold air masses on climatic features and variability of a understudied region with strong topographic gradients in the northeastern part of Mexico. We applied the mesoscale model MM5. We investigated the influence of soil moisture availability in the performance of the model under two representative events for winter and summer. The results showed that a better resolution in land use cover improved the agreement among observed and calculated data. The topography induces atmospheric circulation patterns that determine the spatial distribution of climate and seasonal behavior. The numerical experiments reveal regions favorable to forced convection on the eastern side of the mountain chains Eastern Sierra Madre and Sierra de Alvarez. These processes affect the vertical and horizontal structure of the meteorological variables along the topographic gradient.

  15. Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone

    NASA Technical Reports Server (NTRS)

    Comiso, J. C.; Sullivan, C. W.

    1986-01-01

    The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Richen; Guo, Hanqi; Yuan, Xiaoru

    Most of the existing approaches to visualize vector field ensembles are to reveal the uncertainty of individual variables, for example, statistics, variability, etc. However, a user-defined derived feature like vortex or air mass is also quite significant, since they make more sense to domain scientists. In this paper, we present a new framework to extract user-defined derived features from different simulation runs. Specially, we use a detail-to-overview searching scheme to help extract vortex with a user-defined shape. We further compute the geometry information including the size, the geo-spatial location of the extracted vortexes. We also design some linked views tomore » compare them between different runs. At last, the temporal information such as the occurrence time of the feature is further estimated and compared. Results show that our method is capable of extracting the features across different runs and comparing them spatially and temporally.« less

  17. North Atlantic sea-level variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip

    2014-05-01

    Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that multi-decadal to centennial changes in wind and air pressure are more important than mass flux from land-based ice as drivers of North Atlantic sea-level variability during the last millennium.

  18. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.

  19. Centrifugal study of zone of influence during air-sparging.

    PubMed

    Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng

    2011-09-01

    Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.

  20. Speed tracking control of pneumatic motor servo systems using observation-based adaptive dynamic sliding-mode control

    NASA Astrophysics Data System (ADS)

    Chen, Syuan-Yi; Gong, Sheng-Sian

    2017-09-01

    This study aims to develop an adaptive high-precision control system for controlling the speed of a vane-type air motor (VAM) pneumatic servo system. In practice, the rotor speed of a VAM depends on the input mass air flow, which can be controlled by the effective orifice area (EOA) of an electronic throttle valve (ETV). As the control variable of a second-order pneumatic system is the integral of the EOA, an observation-based adaptive dynamic sliding-mode control (ADSMC) system is proposed to derive the differential of the control variable, namely, the EOA control signal. In the ADSMC system, a proportional-integral-derivative fuzzy neural network (PIDFNN) observer is used to achieve an ideal dynamic sliding-mode control (DSMC), and a supervisor compensator is designed to eliminate the approximation error. As a result, the ADSMC incorporates the robustness of a DSMC and the online learning ability of a PIDFNN. To ensure the convergence of the tracking error, a Lyapunov-based analytical method is employed to obtain the adaptive algorithms required to tune the control parameters of the online ADSMC system. Finally, our experimental results demonstrate the precision and robustness of the ADSMC system for highly nonlinear and time-varying VAM pneumatic servo systems.

  1. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  2. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    DOE PAGES

    Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong

    2017-11-15

    Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less

  3. Atmospheric tides on Venus. III - The planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, A. R.

    1983-01-01

    Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.

  4. Survey of quantitative data on the solar energy and its spectra distribution

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  5. Short-term variability of gamma radiation at the ARM Eastern North Atlantic facility (Azores).

    PubMed

    Barbosa, S M; Miranda, P; Azevedo, E B

    2017-06-01

    This work addresses the short-term variability of gamma radiation measured continuously at the Eastern North Atlantic (ENA) facility located in the Graciosa island (Azores, 39N; 28W), a fixed site of the Atmospheric Radiation Measurement programme (ARM). The temporal variability of gamma radiation is characterized by occasional anomalies over a slowly-varying signal. Sharp peaks lasting typically 2-4 h are coincident with heavy precipitation and result from the scavenging effect of precipitation bringing radon progeny from the upper levels to the ground surface. However the connection between gamma variability and precipitation is not straightforward as a result of the complex interplay of factors such as the precipitation intensity, the PBL height, the cloud's base height and thickness, or the air mass origin and atmospheric concentration of sub-micron aerosols, which influence the scavenging processes and therefore the concentration of radon progeny. Convective precipitation associated with cumuliform clouds forming under conditions of warming of the ground relative to the air does not produce enhancements in gamma radiation, since the drop growing process is dominated by the fast accretion of liquid water, resulting in the reduction of the concentration of radionuclides by dilution. Events of convective precipitation further contribute to a reduction in gamma counts by inhibiting radon release from the soil surface and by attenuating gamma rays from all gamma-emitting elements on the ground. Anomalies occurring in the absence of precipitation are found to be associated with a diurnal cycle of maximum gamma counts before sunrise decreasing to a minimum in the evening, which are observed in conditions of thermal stability and very weak winds enabling the build-up of near surface radon progeny during the night. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Interannual variability of March snow mass over Northern Eurasia and its relation to the concurrent and preceding surface air temperature, precipitation and atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Ye, Kunhui

    2018-06-01

    The interannual variability of March snow water equivalent (SWE) in Northern Eurasia and its influencing factors are studied. The surface air temperature (SAT) and precipitation are the dominant factors for the snow accumulation in northern Europe and the remaining region, respectively. The strongest contribution of SAT to snow accumulation is mainly found in those months with moderate mean SAT. The strongest contribution of precipitation is not collocated with the climatological maxima in precipitation. The leading mode of March SWE variability is obtained and characterized by a spatial dipole. Anomalies in atmospheric water vapor divergence, storm activity and the associated atmospheric circulation can explain many of the associated precipitation and SAT features. Anomalies in autumn Arctic sea ice concentration (SIC) over the Barents Sea and Kara Sea (B/K Sea) and a dipole pattern of November snow cover (SC) in Eurasia are also observed. The atmospheric circulation anomalies that resemble a negative phase of North Atlantic Oscillation (NAO)/Arctic Oscillation (AO) are strongly projected onto the wintertime atmospheric circulation. Both observations and model experiment support that the autumn B/K Sea SIC has some impacts on the autumn and AO/NAO-like wintertime atmospheric circulation patterns. The dipole pattern of November Eurasian SC seems to be strongly forced by the autumn B/K Sea SIC and its feedback to the atmospheric circulation is important. Therefore, the impacts of autumn B/K Sea SIC on the autumn/wintertime atmospheric circulation and thus the March SWE variability may be modulated by both constructive and destructive interference of autumn Eurasian SC.

  7. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland.

    PubMed

    Siudek, Patrycja

    2016-12-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  8. Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012

    NASA Astrophysics Data System (ADS)

    Müller, Stefan; Hoor, Peter; Bozem, Heiko; Gute, Ellen; Vogel, Bärbel; Zahn, Andreas; Bönisch, Harald; Keber, Timo; Krämer, Martina; Rolf, Christian; Riese, Martin; Schlager, Hans; Engel, Andreas

    2016-08-01

    The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.

  9. Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models.

    PubMed

    Li, Lianfa; Laurent, Olivier; Wu, Jun

    2016-02-05

    Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.

  10. Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study.

    PubMed

    Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O

    2014-10-30

    Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an important supplement to state air quality monitoring programs.

  11. Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 Global Change Expedition

    NASA Astrophysics Data System (ADS)

    Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young

    1990-09-01

    Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.

  12. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also contain single pollution plumes that perturb the background tracer distribution. These plumes could be traced back to biomass burning or flaring in remote regions, as well as local ship emissions within the measurement region.

  13. Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-01-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 mass. The declining trend of PM2.5 mass (0.4 μg m-3 yr-1) was related to lower levels of SO42- (0.2 μg m-3 yr-1) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 yr-1) was attributed to the spatial variability of NH3 in Midwest. The annual variation of biomass burning particles was associated with wildland fires in southeast and northwest US that are sensitive to climate changes. The four regions within 500 km from the receptor site, the Gulf Coast and southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its sources originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries along the coast. This approach allowed for quantitatively assessing the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities and shipping emissions to influence air quality in urban areas located more than 1000 km away from the sources.

  14. Modeling Spatial and Temporal Variability of Residential Air Exchange Rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. Th...

  15. PM2.5, oxidant defence and cardiorespiratory health: a review.

    PubMed

    Weichenthal, Scott A; Godri-Pollitt, Krystal; Villeneuve, Paul J

    2013-05-04

    Airborne fine particle mass concentrations (PM2.5) are used for ambient air quality management worldwide based in part on known cardiorespiratory health effects. While oxidative stress is generally thought to be an important mechanism in determining these effects, relatively few studies have specifically examined how oxidant defence may impact susceptibility to particulate air pollution. Here we review studies that explore the impact of polymorphisms in anti-oxidant related genes or anti-oxidant supplementation on PM2.5-induced cardiorespiratory outcomes in an effort to summarize existing evidence related to oxidative stress defence and the health effects of PM2.5. Recent studies of PM-oxidative burden were also examined. In total, nine studies were identified and reviewed and existing evidence generally suggests that oxidant defence may modify the impact of PM2.5 exposure on various health outcomes, particularly heart rate variability (a measure of autonomic function) which was the most common outcome examined in the studies reviewed. Few studies examined interactions between PM2.5 and oxidant defence for respiratory outcomes, and in general studies focused primarily on acute health effects. Therefore, further evaluation of the potential modifying role of oxidant defence in PM2.5-induced health effects is required, particularly for chronic outcomes. Similarly, while an exposure metric that captures the ability of PM2.5 to cause oxidative stress may offer advantages over traditional mass concentration measurements, little epidemiological evidence is currently available to evaluate the potential benefits of such an approach. Therefore, further evaluation is required to determine how this metric may be incorporated in ambient air quality management.

  16. Intercontinental transport of biomass burning pollutants over the Mediterranean Basin during the summer 2014 ChArMEx-GLAM airborne campaign

    NASA Astrophysics Data System (ADS)

    Brocchi, Vanessa; Krysztofiak, Gisèle; Catoire, Valéry; Guth, Jonathan; Marécal, Virginie; Zbinden, Régina; El Amraoui, Laaziz; Dulac, François; Ricaud, Philippe

    2018-05-01

    The Gradient in Longitude of Atmospheric constituents above the Mediterranean basin (GLAM) campaign was set up in August 2014, as part of the Chemistry and Aerosol Mediterranean Experiment (ChArMEx) project. This campaign aimed to study the chemical variability of gaseous pollutants and aerosols in the troposphere along a west-east transect above the Mediterranean Basin (MB). In the present work, we focus on two biomass burning events detected at 5.4 and 9.7 km altitude above sea level (a.s.l.) over Sardinia (from 39°12' N-9°15' E to 35°35' N-12°35' E and at 39°30' N-8°25' E, respectively). Concentration variations in trace gas carbon monoxide (CO), ozone (O3) and aerosols were measured thanks to the standard instruments on board the Falcon 20 aircraft operated by the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) and the Spectromètre InfraRouge In situ Toute Altitude (SPIRIT) developed by LPC2E. Twenty-day backward trajectories with Lagrangian particle dispersion model FLEXPART (FLEXible PARTicle) help to understand the transport processes and the origin of the emissions that contributed to this pollution detected above Sardinia. Biomass burning emissions came (i) on 10 August from the North American continent with air masses transported during 5 days before arriving over the MB, and (ii) on 6 August from Siberia, with air masses travelling during 12 days and enriched in fire emission products above Canada 5 days before arriving over the MB. In combination with the Global Fire Assimilation System (GFAS) inventory and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite fire locations, FLEXPART reproduces well the contribution of those fires to CO and aerosols enhancements under adjustments of the injection height to 10 km in both cases and application of an amplification factor of 2 on CO GFAS emissions for the 10 August event. The chemistry transport model (CTM) MOCAGE is used as a complementary tool for the case of 6 August to confirm the origin of the emissions by tracing the CO global atmospheric composition reaching the MB. For this event, both models agree on the origin of air masses with CO concentrations simulated with MOCAGE lower than the observed ones, likely caused by the coarse model horizontal resolution that yields the dilution of the emissions and diffusion during transport. In combination with wind fields, the analysis of the transport of the air mass documented on 6 August suggests the subsidence of CO pollution from Siberia towards North America and then a transport to the MB via fast jet winds located at around 5.5 km in altitude. Finally, using the ratio ΔO3 / ΔCO, the plume age can be estimated and the production of O3 during the transport of the air mass is studied using the MOCAGE model.

  17. Snow and glaciers in the tropics: the importance of snowfall level and snow line altitude in the Peruvian Cordilleras

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Rohrer, Mario; Huggel, Christian; Salzmann, Nadine; Montoya, Nilton; Endries, Jason; Perry, Baker

    2016-04-01

    The snow line altitude, defined as the line separating snow from ice or firn surfaces, is among the most important parameters in the glacier mass and energy balance of tropical glaciers, since it determines net shortwave radiation via surface albedo. Therefore, hydroglaciological models require estimations of the melting layer during precipitation events, as well as parameterisations of the transient snow line. Typically, the height of the melting layer is implemented by simple air temperature extrapolation techniques, using data from nearby meteorological stations and constant lapse rates. Nonetheless, in the Peruvian mountain ranges, stations at the height of glacier tongues (>5000 m asl.) are scarce and the extrapolation techniques must use data from distant and much lower elevated stations, which need prior careful validation. Thus, reliable snowfall level and snow line altitude estimates from multiple data sets are necessary. Here, we assemble and analyse data from multiple sources (remote sensing, in-situ station data, reanalysis data) in order to assess their applicability in estimating both, the melting layer and snow line altitude. We especially focus on the potential of radar bright band data from TRMM and CloudSat satellite data for its use as a proxy for the snow/rain transition height. As expected for tropical regions, the seasonal and regional variability in the snow line altitude is comparatively low. During the course of the dry season, Landsat satellite as well as webcam images show that the transient snow line is generally increasing, interrupted by light snowfall or graupel events with low precipitation amounts and fast decay rates. We show limitations and possibilities of different data sources as well as their applicability to validate temperature extrapolation methods. Further on, we analyse the implications of the relatively low variability in seasonal snow line altitude on local glacier mass balance gradients. We show that the snow line altitude - ranging within only few hundreds of meters within one year - determines the observed high mass balance gradients. An increase in air temperature by for example 1°C during precipitation events may have even stronger impacts on glacier mass balances of tropical glacier than it would have on those of mid-latitude glaciers. This is an important reason for the high sensitivity of tropical glaciers on past and current climatic changes.

  18. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  19. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  20. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  1. Impacts of Long-Range Transport of Metals from East Asia in Bulk Aerosols Collected at the Okinawa Archipelago, Japan

    NASA Astrophysics Data System (ADS)

    A, Sotaro; S, Yuka; I, Moriaki; N, Fumiya; H, Daishi; A, Takemitsu; T, Akira

    2010-05-01

    Economy of East Asia has been growing rapidly, and atmospheric aerosols discharged from this region have been transported to Japan. Okinawa island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km of south Korea. Its location in Asian is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air mass which has been affected by anthropogenic activities. Therefore, Okinawa region is suitable area for studying impacts of air pollutants from East Asia. We simultaneously collected bulk aerosol samples by using the same type of high volume air samplers at Cape Hedo Atmospheric Aerosol Monitoring Station (CHAAMS, Okinawa island), Kume island (ca. 160 km south-west of CHAAMS), and Minami-Daitou island (ca. 320 km south-east of CHAAMS). We determined the concentrations of acid-digested metals using atomic absorption spectrometer and inductively-coupled plasma mass spectrometry (ICP-MS). We report and discuss spatial and temporal distribution of metals in the bulk atmospheric aerosols collected at CHAAMS, Kume island and Minami-Daitou island during June, 2008 to June 2009. We also determined 'background' concentration of metals in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume island and Minami-Daitou island to elucidate the influence of the transport processes and distances from Asian continent on metal concentrations.

  2. Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA

    USGS Publications Warehouse

    Nelson, Sarah J.; Webster, Katherine E.; Loftin, Cynthia S.; Weathers, Kathleen C.

    2013-01-01

    Major ion and mercury (Hg) inputs to terrestrial ecosystems include both wet and dry deposition (total deposition). Estimating total deposition to sensitive receptor sites is hampered by limited information regarding its spatial heterogeneity and seasonality. We used measurements of throughfall flux, which includes atmospheric inputs to forests and the net effects of canopy leaching or uptake, for ten major ions and Hg collected during 35 time periods in 1999–2005 at over 70 sites within Acadia National Park, Maine to (1) quantify coherence in temporal dynamics of seasonal throughfall deposition and (2) examine controls on these patterns at multiple scales. We quantified temporal coherence as the correlation between all possible site pairs for each solute on a seasonal basis. In the summer growing season and autumn, coherence among pairs of sites with similar vegetation was stronger than for site-pairs that differed in vegetation suggesting that interaction with the canopy and leaching of solutes differed in coniferous, deciduous, mixed, and shrub or open canopy sites. The spatial pattern in throughfall hydrologic inputs across Acadia National Park was more variable during the winter snow season, suggesting that snow re-distribution affects net hydrologic input, which consequently affects chemical flux. Sea-salt corrected calcium concentrations identified a shift in air mass sources from maritime in winter to the continental industrial corridor in summer. Our results suggest that the spatial pattern of throughfall hydrologic flux, dominant seasonal air mass source, and relationship with vegetation in winter differ from the spatial pattern of throughfall flux in these solutes in summer and autumn. The coherence approach applied here made clear the strong influence of spatial heterogeneity in throughfall hydrologic inputs and a maritime air mass source on winter patterns of throughfall flux. By contrast, vegetation type was the most important influence on throughfall chemical flux in summer and autumn.

  3. Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX-NA

    NASA Astrophysics Data System (ADS)

    Choi, Yonghoon; Vay, Stephanie A.; Vadrevu, Krishna P.; Soja, Amber J.; Woo, Jung-Hun; Nolf, Scott R.; Sachse, Glen W.; Diskin, Glenn S.; Blake, Donald R.; Blake, Nicola J.; Singh, Hanwant B.; Avery, Melody A.; Fried, Alan; Pfister, Leonhard; Fuelberg, Henry E.

    2008-04-01

    High resolution in situ measurements of atmospheric CO2 were made from the NASA DC-8 aircraft during the Intercontinental Chemical Transport Experiment-North America (INTEX-NA) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). During the summer of 2004, eighteen flights comprising 160 h of measurements were conducted within a region bounded by 27 to 53°N and 36 to 139°W over an altitude range of 0.15 to 12 km. These large-scale surveys provided the opportunity to examine the characteristics of the atmospheric CO2 signal over sparsely sampled areas of North America and adjacent ocean basins. The observations showed a high degree of variability (≤18%) due to the myriad source and sink processes influencing the air masses intercepted over the INTEX-NA sampling domain. Surface fluxes had strong effects on continental scale concentration gradients. Clear signatures of CO2 uptake were seen east of the Mississippi River, notably a persistent CO2 deficit in the lowest 2-3 km. When combining the airborne CO2 measurements with LANDSAT and MODIS data products, the lowest CO2 mixing ratios observed during the campaign (337 ppm) were tied to mid-continental agricultural fields planted in corn and soybeans. We used simultaneous measurements of CO, O3, C2Cl4, C2H6, C2H2 and other unique chemical tracers to differentiate air mass types. Coupling these distinct air mass chemical signatures with transport history permitted identification of convection, stratosphere-troposphere exchange, long-range transport from Eastern Asia, boreal wildfires, and continental outflow as competing processes at multiple scales influencing the observed concentrations. Our results suggest these are important factors contributing to the large-scale distribution in CO2 mixing ratios thus these observations offer new constraints in the computation of the North American carbon budget.

  4. The Thermal Circulation on Kilimanjaro, Tanzania and its Relevance to Summit Ice-Field Mass Balance.

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.; Duane, W. J.

    2008-12-01

    It is well known that mountains create their own climates. On Kilimanjaro, which is the tallest free standing mountain in Africa, the intense tropical sunlight generates a strong diurnal mountain circulation which transports moisture up the mountain during the day and back downslope at night. This process has strong consequences for development of cloud cover, precipitation, and hence ice-field mass balance on the summit crater. We compare surface climate (temperature, moisture and wind) measured at ten elevations on Kilimanjaro, with equivalent observations in the free atmosphere from NCEP/NCAR reanalysis data for September 2004 to July 2008. There are no simple temporal trends over this period in either surface of free- air data. Correlations between daily surface and free air temperatures are greatest below 2500 metres, meaning that synoptic (inter-diurnal) variability is the major control here. In contrast, temperatures and moisture on the higher slopes above treeline (about 3000 m) are strongly decoupled from the free atmosphere, showing intense heating/cooling by day/night (more than 5°C). The sparsely vegetated upper slopes are the focus for the most intense heating and upslope winds develop by mid-morning. The forest on the lower slopes acts as a moisture source, with large vapour pressure excesses reported (5 mb) which move upslope reaching the crater in the afternoon before subsiding downslope at night. The montane thermal circulation is more effective at upslope moisture transport during January as compared with July. Fluctuations in upper air flow strength and direction (at 500 mb) surprisingly have limited influence on the strength of surface heating and upslope moisture advection. This finding suggests that local changes in surface characteristics such as deforestation could have a strong influence on the mountain climate and the summit ice fields on Kilimanjaro, and make mass-balance somewhat divorced from larger-scale advective changes associated with global warming.

  5. Peroxy Radicals Observed in a Forested Environment with Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Mauldin, L.; Nowak, J. B.

    2017-12-01

    Observations of peroxy radicals were made using time-of-flight chemical ionization mass spectrometry (ToF-CIMS) during the PROPHET-AMOS (Program for Research on Oxidants, Photochemistry, Emissions and Transport - Atmospheric Measurements of Oxidants in Summer) campaign in summer 2016 at the University of Michigan Biological Station (UMBS) in the northern lower peninsula of Michigan. The environment is one of high isoprene productivity and generally low NOx, depending on the origin of air masses that are sampled, and has been the subject of several comprehensive atmospheric observational studies. The ToF-CIMS was configured to measure OH, HO2+RO2, and extremely oxygenated volatile organic compounds (ELVOCs) in a cycle of about 5 minutes for each. This presentation examines the time- and chemical coordinate-dependent behavior of the peroxy radicals, and compares the observations with models that are constrained by observations of the controlling variables. The results are used to estimate factors such as the photochemical production rate of ozone and other atmospheric oxidation parameters for this remote forest site.

  6. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  7. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Nikolaou, Panayiota; Stavroulas, Iasonas; Kouvarakis, Giorgos; Weber, Rodney; Nenes, Athanasios; Kanakidou, Maria; Mihalopoulos, Nikolaos

    2016-04-01

    Particle water (liquid water content, LWC) and aerosol pH are important parameters of the aerosol phase, affecting heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition, and atmospheric fluxes of nutrients to ecosystems. Few measurements of in situ LWC and pH, however, exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity, and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg) and organic (Worg) components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between June and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict the pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope = 0.92, R2 = 0.8, n = 5201 points). Based on the scattering measurements, a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH)) within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10-15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 µg m-3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with organics, Worg, was equal to 0.56 ± 0.37 µg m-3; thus, organics contributed about 27.5 % to the total aerosol water, mostly during early morning, late evening, and nighttime hours.

    The aerosol was found to be highly acidic with calculated aerosol pH varying from 0.5 to 2.8 throughout the study period. Biomass burning aerosol presented the highest values of pH in the submicron fraction and the lowest values in total water mass concentration. The low pH values observed in the submicron mode and independently of air mass origin could increase nutrient availability and especially P solubility, which is the nutrient limiting sea water productivity of the eastern Mediterranean.

  8. Particle water and pH in the Eastern Mediterranean: sources variability and implications for nutrients availability

    NASA Astrophysics Data System (ADS)

    Nikolaou, P.; Bougiatioti, A.; Stavroulas, I.; Kouvarakis, G.; Nenes, A.; Weber, R.; Kanakidou, M.; Mihalopoulos, N.

    2015-10-01

    Particle water (LWC) and aerosol pH drive the aerosol phase, heterogeneous chemistry and bioavailability of nutrients that profoundly impact cloud formation, atmospheric composition and atmospheric fluxes of nutrients to ecosystems. Few measurements of in-situ LWC and pH however exist in the published literature. Using concurrent measurements of aerosol chemical composition, cloud condensation nuclei activity and tandem light scattering coefficients, the particle water mass concentrations associated with the aerosol inorganic (Winorg) and organic (Worg) components are determined for measurements conducted at the Finokalia atmospheric observation station in the eastern Mediterranean between August and November 2012. These data are interpreted using the ISORROPIA-II thermodynamic model to predict pH of aerosols originating from the various sources that influence air quality in the region. On average, closure between predicted aerosol water and that determined by comparison of ambient with dry light scattering coefficients was achieved to within 8 % (slope = 0.92, R2 = 0.8, n = 5201 points). Based on the scattering measurements a parameterization is also derived, capable of reproducing the hygroscopic growth factor (f(RH)) within 15 % of the measured values. The highest aerosol water concentrations are observed during nighttime, when relative humidity is highest and the collapse of the boundary layer increases the aerosol concentration. A significant diurnal variability is found for Worg with morning and afternoon average mass concentrations being 10-15 times lower than nighttime concentrations, thus rendering Winorg the main form of particle water during daytime. The average value of total aerosol water was 2.19 ± 1.75 μg m-3, contributing on average up to 33 % of the total submicron mass concentration. Average aerosol water associated with organics, Worg, was equal to 0.56 ± 0.37 μg m-3, thus organics contributed about 27.5 % to the total aerosol water, mostly during early morning, late evening and nighttime hours. The aerosol was found to be highly acidic with calculated aerosol pH varying from 0.5 to 2.8 throughout the study period. Biomass burning aerosol presented the highest values of pH in the submicron fraction and the lowest values in total water mass concentration. The low pH values observed in the submicron mode and independently of air masses origin could increase nutrient availability and especially P solubility, which is the nutrient limiting sea water productivity of the eastern Mediterranean.

  9. Extratropical Stratosphere-Troposphere Mass Exchange

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2004-01-01

    Understanding the exchange of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the exchange of mass between the stratosphere and the troposphere. While the exchange of mass is not the same as the exchange of constituents, you can t get the constituent exchange right if you have the mass exchange wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass exchange for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of air is the amount of air in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric air and tropospheric air. This is an important result for understanding the chemistry of the lower stratosphere.

  10. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  11. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    PubMed

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.

  12. Identification of PM10 air pollution origins at a rural background site

    NASA Astrophysics Data System (ADS)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  13. Radiant heat transfer from flames in a single tubular turbojet combustor / Leonard Topper

    NASA Technical Reports Server (NTRS)

    Topper, Leonard

    1952-01-01

    An experimental investigation of thermal radiation from the flame of a single tubular turbojet-engine combustor to the combustor liner is presented. The effects of combustor inlet-air pressure, air mass flow, and fuel-air ratio on the radiant intensity and the temperature and emissivity of the flame are reported. The total radiation of the "luminous" flames (containing incandescent soot particles) was much greater (4 to 21 times) than the "nonluminous" molecular radiation. The intensity of radiation from the flame increased rapidly with an increase in combustor inlet-air pressure; it was affected to a lesser degree by variations in fuel-air ratio and air mass flow.

  14. Assessment of air pollution of settlement areas in Ulaanbaatar city, Mongolia

    NASA Astrophysics Data System (ADS)

    Ch, Sonomdagva; Ch, Byambatseren; Batdelger, B.

    2017-05-01

    The purpose of this study is to analyses mass concentration varied by its measurement of air pollution in Ulaanbaatar city, Mongolia. Ulaanbaatar city will have been increasing air pollution due to rapidly expanding vehicular population, growing industrial sector in last 10 years ago. In addition, people use to heat the carbon from 10 month in every year. This becomes a base cause of air pollution in Ulaanbaatar. We studied a change of mass concentration an air pollution elements in Ulaanbaatar, Mongolia. To research work, we used information that based on data of my measurements of air pollution and Metropolitan air quality agency until 2006 to 2016. This research important result is air pollution levels are limited to the areas around Ulaanbaatar areas are the most polluted in the center of city are the least polluted areas whereas Tolgoit, Sapporo, 1st Khoroolol, Amgalan, Shar Khad are moderately polluted and the areas around Baruun 4 zam, Factory, Zaisan, Nisekh are normally polluted. The results of pollution are illustrated four zones. By dividing the polluted areas into such zones, we are trying to make it easier to take preventive measures against the pollution itself and protective measures for safeguarding the health of mass population.

  15. Preliminary Axial Flow Turbine Design and Off-Design Performance Analysis Methods for Rotary Wing Aircraft Engines. Part 2; Applications

    NASA Technical Reports Server (NTRS)

    Chen, Shu-cheng, S.

    2009-01-01

    In this paper, preliminary studies on two turbine engine applications relevant to the tilt-rotor rotary wing aircraft are performed. The first case-study is the application of variable pitch turbine for the turbine performance improvement when operating at a substantially lower shaft speed. The calculations are made on the 75 percent speed and the 50 percent speed of operations. Our results indicate that with the use of the variable pitch turbines, a nominal (3 percent (probable) to 5 percent (hypothetical)) efficiency improvement at the 75 percent speed, and a notable (6 percent (probable) to 12 percent (hypothetical)) efficiency improvement at the 50 percent speed, without sacrificing the turbine power productions, are achievable if the technical difficulty of turning the turbine vanes and blades can be circumvented. The second casestudy is the contingency turbine power generation for the tilt-rotor aircraft in the One Engine Inoperative (OEI) scenario. For this study, calculations are performed on two promising methods: throttle push and steam injection. By isolating the power turbine and limiting its air mass flow rate to be no more than the air flow intake of the take-off operation, while increasing the turbine inlet total temperature (simulating the throttle push) or increasing the air-steam mixture flow rate (simulating the steam injection condition), our results show that an amount of 30 to 45 percent extra power, to the nominal take-off power, can be generated by either of the two methods. The methods of approach, the results, and discussions of these studies are presented in this paper.

  16. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.

  17. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  18. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tong, Cheuk Hei Marcus; Yim, Steve Hung Lam; Rothenberg, Daniel; Wang, Chien; Lin, Chuan-Yao; Chen, Yongqin David; Lau, Ngar Cheung

    2018-05-01

    Air pollution is an increasingly concerning problem in many metropolitan areas due to its adverse public health and environmental impacts. Vertical atmospheric conditions have strong effects on vertical mixing of air pollutants, which directly affects surface air quality. The characteristics and magnitude of how vertical atmospheric conditions affect surface air quality, which are critical to future air quality projections, have not yet been fully understood. This study aims to enhance understanding of the annual and seasonal sensitivities of air pollution to both surface and vertical atmospheric conditions. Based on both surface and vertical meteorological characteristics provided by 1994-2003 monthly dynamic downscaling data from the Weather and Research Forecast Model, we develop generalized linear models (GLMs) to study the relationships between surface air pollutants (ozone, respirable suspended particulates, and sulfur dioxide) and atmospheric conditions in the Pearl River Delta (PRD) region. Applying Principal Component Regression (PCR) to address multi-collinearity, we study the contributions of various meteorological variables to pollutants' concentration levels based on the loading and model coefficient of major principal components. Our results show that relatively high pollutant concentration occurs under relatively low mid-level troposphere temperature gradients, low relative humidity, weak southerly wind (or strong northerly wind) and weak westerly wind (or strong easterly wind). Moreover, the correlations vary among pollutant species, seasons, and meteorological variables at various altitudes. In general, pollutant sensitivity to meteorological variables is found to be greater in winter than in other seasons, and the sensitivity of ozone to meteorology differs from that of the other two pollutants. Applying our GLMs to anomalous air pollution episodes, we find that meteorological variables up to mid troposphere (∼700 mb) play an important role in influencing surface air quality, pinpointing the significant and unique associations between meteorological variables at higher altitudes and surface air quality.

  19. Relationship of Muscle Mass Determined by DEXA with Spirometric Results in Healthy Individuals.

    PubMed

    Martín Holguera, Rafael; Turrión Nieves, Ana Isabel; Rodríguez Torres, Rosa; Alonso, María Concepción

    2017-07-01

    Muscle mass maybe a determining factor in the variability of spirometry results in individuals of the same sex and age who have similar anthropometric characteristics. The aim of this study was to determine the association between spirometric results from healthy individuals and their muscle mass assessed by dual energy X-ray absorptiometry (DEXA). A sample of 161 women and 144 men, all healthy non-smokers, was studied. Ages ranged from18 to77years. For each subject, spirometry results and total and regional lean mass values obtained by full body DEXA were recorded. A descriptive analysis of the variables and a regression analysis were performed to study the relationship between spirometric variables and lean body mass, correcting for age and body mass index (BMI). In both sexes all muscle mass variables correlated positively and significantly with spirometric variables, and to a greater extent in men. After partial adjustment of correlations by age and BMI, the factor which best explains the spirometric variables is the total lean body mass in men, and trunk lean body mass in women. In men, muscle mass in the lower extremities is most closely associated with spirometric results. In women, it is the muscle mass of the trunk. In both sexes muscle mass mainly affects FEV 1 . Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China - Part 2: The roles of anthropogenic emissions and climate variability

    NASA Astrophysics Data System (ADS)

    Xu, Wanyun; Xu, Xiaobin; Lin, Meiyun; Lin, Weili; Tarasick, David; Tang, Jie; Ma, Jianzhong; Zheng, Xiangdong

    2018-01-01

    Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994-2013 has increased significantly by 0.2-0.3 ppbv yr-1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ˜ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr-1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO), the East Asian summer monsoon (EASM), and the sunspot cycle. Our results suggest that the 2-3-, 3-7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.

  1. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Tracing anthropogenic aerosol Fe sources in the North Atlantic Ocean using dissolved Fe isotope ratios

    NASA Astrophysics Data System (ADS)

    Conway, T. M.; Shelley, R.; Aguilar-Islas, A. M.; Landing, W. M.; Mahowald, N. M.; John, S.

    2016-02-01

    Supply of iron (Fe) to the surface ocean from atmospheric deposition plays a vital role in marine biogeochemical cycles, especially in Fe-limited areas or regions close to dust sources. However, large uncertainties remain over the fluxes, solubility and bioavailability of Fe supplied by aerosol dust. Additionally, aerosol Fe is likely to consist of a mixture of natural and anthropogenic (urban, biomass burning and combustion) components, which may have very different solubilities in seawater [e.g. 1]. To constrain soluble Fe supply to the oceans, it is thus vitally important to understand the relative contributions of different types of aerosol Fe, their solubilities and spatial distributions. Stable Fe isotopes (δ56Fe) may offer a way to discriminate between different dust sources [2], because of differential fractionation during a range of chemical processes. In this study, we measured δ56Fe in North Atlantic marine aerosols collected during two US GEOTRACES GA03 cruises (Lisbon to Woods Hole via Cape Verde, 2010-11) and we present δ56Fe measurements (relative to IRMM-014) from both the bulk aerosol (HF-HNO3 digested) and the water-soluble (10s ultrapure water leach) fractions. Aerosols collected from different air-masses (Saharan, European and N. American) allowed us to investigate the variability in δ56Fe due to different regional dust sources. The bulk phase was characterized by near-crustal δ56Fe values of +0.1±0.2‰, indicating the dominance of mineral dust. In contrast, the water-soluble fraction showed great variability; aerosols from European and North American air-masses were very isotopically light (-1.2±0.2‰ and -1.1±0.7‰) while those from Saharan air-masses were crustal (+0.1‰). Comparison of this data with isotope-informed model predictions of soluble Fe from mineral and anthropogenic sources (combustion, biofuels and biomass burning) [1], suggests that the data is consistent with mixing of either 1) Fe from mineral dust (+0.1‰) and a distinctly light anthropogenic Fe (-1.6‰), or 2) Fe from crustal mineral dust, isotopically heavy combustion Fe (+0.1 to +0.3‰), and biomass Fe that is both isotopically light (-1.6‰) and very soluble (>50%). [1] Luo, C. et al. (2008), Glob. Biogeochem. Cyc., 22, GB1012. [2] Mead, C. et al. (2013), Geophys. Res. Lett., 40, 5722-5727.

  3. Assessing Spatial and Temporal Variability of VOCs and PM-Components in Outdoor Air during the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Exposure models for air pollutants often adjust for effects of the physical environment (e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions. Yet attempts are seldom made to attribute variability in observed outdoor air measurements to spe...

  4. A comparison of personal exposure to air pollutants in different travel modes on national highways in India.

    PubMed

    Kolluru, Soma Sekhara Rao; Patra, Aditya Kumar; Sahu, Satya Prakash

    2018-04-01

    People often travel a long distance on highways to the nearest city for professional/business activities. However, relatively few publications on passenger exposure to pollutants on highways in India or elsewhere are available. The aim of this study was to examine the contribution of different travel modes to passengers' pollutant exposure for a long distance travel on a national highway in India. We measured PM 2.5 and CO exposure levels of the passengers over 200km on a national highway using two portable air monitors, EVM-7 and EPAM-5000. Personal concentration exposures and per min-, per hour-, per trip- and round trip mass exposures for three travel modes were calculated for 9 trips. Association between pollutants and weather variables were evaluated using levels Spearman correlation. ANOVA was carried out to evaluate the influence of travel mode, the timing of trips, temperature and RH on personal exposures. On an average, PM 2.5 personal concentration exposure levels were highest in the car (85.41±61.85μgm -3 ), followed by the bus (75.08±55.39μgm -3 ) and lowest in the car (ac) (54.43±34.09μgm -3 ). In contrast, CO personal exposure was highest in the car (ac) (1.81±1.3ppm). Travel mode explained the highest variability for CO (18.1%), CO 2 (9.9%), PM 2.5 (1.2%) exposures. In-city mass exposures were higher than trip averages; PM 2.5 :1.21-1.22, 1.13-1.19 and 1.03-1.28 times; CO: 1.20-1.57, 1.37-2.10 and 1.76-2.22 times for bus, car and car (ac) respectively. Traveling by car (ac) results in the lowest PM 2.5 exposures, although it exposes the passenger to high CO level. Avoiding national highways passing through cities can reduce up to 25% PM 2.5 and 50% CO mass exposures. This information can be useful for increasing environmental awareness among the passengers and for framing better pollution control strategies on highways. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had symptoms of work-related illnesses, p = 0.0185.

  6. Influence of ozone and meteorological parameters on levels of polycyclic aromatic hydrocarbons in the air

    NASA Astrophysics Data System (ADS)

    Pehnec, Gordana; Jakovljević, Ivana; Šišović, Anica; Bešlić, Ivan; Vađić, Vladimira

    2016-04-01

    Concentrations of ten polycyclic aromatic hydrocarbons (PAHs) in the PM10 particle fraction were measured together with ozone and meteorological parameters at an urban site (Zagreb, Croatia) over a one-year period. Data were subjected to regression analysis in order to determine the relationship between the measured pollutants and selected meteorological variables. All of the PAHs showed seasonal variations with high concentrations in winter and autumn and very low concentrations during summer and spring. All of the ten PAHs concentrations also correlated well with each other. A statistically significant negative correlation was found between the concentrations of PAHs and ozone concentrations and concentrations of PAHs and temperature, as well as a positive correlation between concentrations of PAHs and PM10 mass concentration and relative humidity. Multiple regression analysis showed that concentrations of PM10 and ozone, temperature, relative humidity and pressure accounted for 43-70% of PAHs variability. Concentrations of PM10 and temperature were significant variables for all of the measured PAH's concentrations in all seasons. Ozone concentrations were significant for only some of the PAHs, particularly 6-ring PAHs.

  7. Seasonal Mixed Layer Heat Budget in the Southeast Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Scannell, H. A.; McPhaden, M. J.

    2016-12-01

    We analyze a mixed layer heat budget at 6ºS, 8ºE from a moored buoy of the Prediction and Research Moored Array in the Atlantic (PIRATA) to better understand the causes of seasonal mixed layer temperature variability in the southeast tropical Atlantic. This region is of interest because it is susceptible to warm biases in coupled global climate models and has historically been poorly sampled. Previous work suggests that thermodynamic changes in both latent heat loss and absorbed solar radiation dominate mixed layer properties away from the equator in the tropical Atlantic, while advection and entrainment are more important near the equator. Changes in mixed layer salinity can also influence temperature through the formation of barrier layers and density gradients. Freshwater flux from the Congo River, migration of the Intertropical Convergence Zone and advection of water masses are considered important contributors to mixed layer salinity variability in our study region. We analyze ocean temperature, salinity and meteorological data beginning in 2013 using mooring, Argo, and satellite platforms to study how seasonal temperature variability in the mixed layer is influenced by air-sea interactions and ocean dynamics.

  8. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.

    PubMed

    Allen, Vivian; Paxton, Heather; Hutchinson, John R

    2009-09-01

    Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.

  9. Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity

    NASA Astrophysics Data System (ADS)

    Gunthe, S. S.; King, S. M.; Rose, D.; Chen, Q.; Roldin, P.; Farmer, D. K.; Jimenez, J. L.; Artaxo, P.; Andreae, M. O.; Martin, S. T.; Pöschl, U.

    2009-02-01

    Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. We have measured and characterized CCN at water vapor supersaturations in the range of S=0.10-0.82% in pristine tropical rainforest air during the AMAZE-08 campaign in central Amazonia. The effective hygroscopicity parameters describing the influence of chemical composition on the CCN activity of aerosol particles varied in the range of κ=0.05-0.45. The overall median value of κ≍0.15 was only half of the value typically observed for continental aerosols in other regions of the world. Aitken mode particles were less hygroscopic than accumulation mode particles (κ≍0.1 at D≍50 nm; κ≍0.2 at D≍200 nm). The CCN measurement results were fully consistent with aerosol mass spectrometry (AMS) data, which showed that the organic mass fraction (Xm,org) was on average as high as ~90% in the Aitken mode (D≤100 nm) and decreased with increasing particle diameter in the accumulation mode (~80% at D≍200 nm). The κ values exhibited a close linear correlation with Xm,org and extrapolation yielded the following effective hygroscopicity parameters for organic and inorganic particle components: κorg≍0.1 which is consistent with laboratory measurements of secondary organic aerosols and κinorg≍0.6 which is characteristic for ammonium sulfate and related salts. Both the size-dependence and the temporal variability of effective particle hygroscopicity could be parameterized as a function of AMS-based organic and inorganic mass fractions (κp=0.1 Xm,org+0.6 Xm,inorg), and the CCN number concentrations predicted with κp were in fair agreement with the measurement results. The median CCN number concentrations at S=0.1-0.82% ranged from NCCN,0.10≍30 cm-3 to NCCN,0.82≍150 cm-3, the median concentration of aerosol particles larger than 30 nm was NCN,30≍180 cm-3, and the corresponding integral CCN efficiencies were in the range of NCCN,0.10/NCN,30≍0.1 to NCCN,0.82/NCN,30≍0.8. Although the number concentrations and hygroscopicity parameters were much lower, the integral CCN efficiencies observed in pristine rainforest air were similar to those in highly polluted mega-city air. Moreover, model calculations of NCCN,S with a global average value of κ=0.3 led to systematic overpredictions, but the relative deviations exceeded ~50% only at low water vapor supersaturation (0.1%) and low particle number concentrations (≤100 cm-3). These findings confirm earlier studies suggesting that aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the information and parameterizations presented in this paper should enable efficient description of the CCN properties of pristine tropical rainforest aerosols in detailed process models as well as in large-scale atmospheric and climate models.

  10. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  11. Incorporating wind availability into land use regression modelling of air quality in mountainous high-density urban environment.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2017-08-01

    Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transboundary transport of anthropogenic sulfur in PM2.5 at a coastal site in the Sea of Japan as studied by sulfur isotopic ratio measurement.

    PubMed

    Inomata, Yayoi; Ohizumi, Tsuyoshi; Take, Naoko; Sato, Keiichi; Nishikawa, Masataka

    2016-05-15

    Sulfur isotopic ratios (δ(34)S) in size separated aerosol particles (PM2.5 and coarse particles) were measured at Niigata-Maki facing the Sea of Japan. Non-sea salt δ(34)S (δ(34)Snss) in PM2.5 showed seasonal variations with relatively high values in winter (1.0-3.9‰ in spring, 2.8-4.5‰ in summer, 1.3-4.5‰ in autumn, 3.7-5.7‰ in winter). Taking into consideration air mass transport routes, δ(34)Snss in the air masses which originated in the Asian continent and were transported over the Sea of Japan to the monitoring sites were higher than those values for air masses which were transported over the Japanese islands after leaving the Asian continent for each season. Considering that the δ(34)Snss in sulfuric acid derived from domestic emissions in Japan are lower than those of δ(34)Snss in coal, the lower δ(34)Snss for the air mass transported over the Japanese islands suggest that sulfuric acid in PM2.5 modified the δ(34)Snss due to aerosol mixing with sulfuric acid in Japan. Material balance calculations suggested that the relative contribution of transboundary transport in winter was also higher than for other seasons (40-75% in spring, 51-63% in summer, 45-73% in autumn, and 53-81% in winter). In particular, the contribution to the air masses which were transported directly from the Asian continent was relatively large (75% in spring, 59% in autumn, 78% in winter) in comparison with that for the air masses which were transported over Japan. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aerosol Airmass Type Mapping Over the Urban Mexico City Region From Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Patadia, F.; Kahn, R. A.; Limbacher, J. A.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2013-01-01

    Using Multi-angle Imaging SpectroRadiometer (MISR) and sub-orbital measurements from the 2006 INTEX-B/MILAGRO field campaign, in this study we explore MISR's ability to map different aerosol air mass types over the Mexico City metropolitan area. The aerosol air mass distinctions are based on shape, size and single scattering albedo retrievals from the MISR Research Aerosol Retrieval algorithm. In this region, the research algorithm identifies dust-dominated aerosol mixtures based on non-spherical particle shape, whereas spherical biomass burning and urban pollution particles are distinguished by particle size. Two distinct aerosol air mass types based on retrieved particle microphysical properties, and four spatially distributed aerosol air masses, are identified in the MISR data on 6 March 2006. The aerosol air mass type identification results are supported by coincident, airborne high-spectral-resolution lidar (HSRL) measurements. Aerosol optical depth (AOD) gradients are also consistent between the MISR and sub-orbital measurements, but particles having single-scattering albedo of approx. 0.7 at 558 nm must be included in the retrieval algorithm to produce good absolute AOD comparisons over pollution-dominated aerosol air masses. The MISR standard V22 AOD product, at 17.6 km resolution, captures the observed AOD gradients qualitatively, but retrievals at this coarse spatial scale and with limited spherical absorbing particle options underestimate AOD and do not retrieve particle properties adequately over this complex urban region. However, we demonstrate how AOD and aerosol type mapping can be accomplished with MISR data over complex urban regions, provided the retrieval is performed at sufficiently high spatial resolution, and with a rich enough set of aerosol components and mixtures.

  14. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  15. Aerobic landfill bioreactor

    DOEpatents

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  16. The impact of Southern Atlantic moisture source in the precipitation regime of Sahel and Brazilian Nordeste using lagrangian models

    NASA Astrophysics Data System (ADS)

    Drumond, A.; Nieto, R.; Gimeno, L.; Ambrizzi, T.; Trigo, R.

    2009-04-01

    The socio-economical problems related to the severe droughts observed over Brazilian "Nordeste" and Sahel are well known nowadays. Several studies have showed that the precipitation regimes over these regions are influenced by the Inter Tropical Convergence Zone (ITCZ) variability, which can be related with the climatic variations observed in the South and North Tropical Atlantic basins. However, a climatological detailed assessment of the annual cycle of the oceanic moisture contribution to both these regions is still needed in order to get a better understanding of their precipitation regimes and variability. To answer this question, a climatological seasonal analysis of the moisture supply from the South Atlantic to the precipitation in the "Nordeste" and Sahel was performed using a new Lagrangian method of diagnosis which identifies the humidity contributions to the moisture budget over a region. The applied methodology computes budgets of evaporation minus precipitation by calculating changes in the specific humidity along forward-trajectories for the following 10 days. In order to take into account distinct regional contributions we have divided the South Atlantic basin in several latitudinal bands (with a 5° width), and all air-masses residing over each region were tracked forward using the available 5-year dataset (2000-2004). For the Sahel, the preliminary results suggest that the oceanic band northwards 10 degrees south acts as a moisture source for the precipitation along the year and its contribution reaches the maximum during the austral winter, probably related to the ITCZ annual migration over the region. On the other hand, the precipitation over "Nordeste" can be better related to air masses emanating from the oceanic bands between 10 and 20 degrees south. However the response over the region is very heterogeneous spatially and temporally probably due to the high variability of the local climate characteristics. In order to clarify dynamically the origin of the moisture that reaches the semi-arid "Nordeste", a backward-trajectories analysis is being conducted and the results will be presented elsewhere.

  17. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  18. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  19. High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles

    DTIC Science & Technology

    2013-08-01

    MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air

  20. The Resistance of Spheres in Wind Tunnels and In Air

    NASA Technical Reports Server (NTRS)

    Bacon, D L; Reid, E G

    1924-01-01

    To supplement the standardization tests now in progress at several laboratories, a broad investigation of the resistance of spheres in wind tunnels and free air has been carried out by the National Advisory Committee for Aeronautics. The subject has been classed in aerodynamic research, and in consequence there is available a great mass of data from previous investigations. This material was given careful consideration in laying out the research, and explanation of practically all the disagreement between former experiments has resulted. A satisfactory confirmation of Reynolds law has been accomplished, the effect of means of support determined, the range of experiment greatly extended by work in the new variable density wind tunnel, and the effects of turbulence investigated by work in the tunnels and by towing and dropping tests in free air. It is concluded that the erratic nature of most of the previous work is due to support interference and differing turbulence conditions. While the question of support has been investigated thoroughly, a systematic and comprehensive study of the effects of scale and quality of turbulence will be necessary to complete the problem, as this phase was given only general treatment.

  1. Short-term variability of mineral dust, metals and carbon emission from road dust resuspension

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Schaap, Martijn; Denier van der Gon, Hugo A. C.; Pandolfi, Marco; Alastuey, Andrés; Keuken, Menno; Querol, Xavier

    2013-08-01

    Particulate matter (PM) pollution in cities has severe impact on morbidity and mortality of their population. In these cities, road dust resuspension contributes largely to PM and airborne heavy metals concentrations. However, the short-term variation of emission through resuspension is not well described in the air quality models, hampering a reliable description of air pollution and related health effects. In this study we experimentally show that the emission strength of resuspension varies widely among road dust components/sources. Our results offer the first experimental evidence of different emission rates for mineral dust, heavy metals and carbon fractions due to traffic-induced resuspension. Also, the same component (or source) recovers differently in a road in Barcelona (Spain) and a road in Utrecht (The Netherlands). This finding has important implications on atmospheric pollution modelling, mostly for mineral dust, heavy metals and carbon species. After rain events, recoveries were generally faster in Barcelona rather than in Utrecht. The largest difference was found for the mineral dust (Al, Si, Ca). Tyre wear particles (organic carbon and zinc) recovered faster than other road dust particles in both cities. The source apportionment of road dust mass provides useful information for air quality management.

  2. Variability of the subtropical mode water in the Southwest Pacific

    NASA Astrophysics Data System (ADS)

    Fernandez, Denise; Sutton, Philip; Bowen, Melissa

    2017-09-01

    The variability of Subtropical Mode Water (STMW) in the Southwest Pacific is investigated using a 28 year-long time series (1986-2014) of high-resolution expendable bathythermograph data north of New Zealand (PX06) and a shorter time series, the Roemmich-Gilson monthly Argo optimal interpolation for the 2004-2014 period. The variability in STMW inventories is compared to the variability in air-sea heat fluxes, mixed layer depths and transport of the East Auckland Current (EAUC) to assess both the atmospheric and oceanic roles influencing the formation and decay of STMW. The STMW north of New Zealand has a short lifespan with little persistence of the water mass from 1 year to the next one. Deeper mixed layers and negative anomalies in surface heat fluxes are correlated with increased formation of STMW. The heat content of the STMW layer is anticorrelated with inventories, particularly during the El Niño years. This suggests that large volumes of STMW are coincident with cooler conditions in the prior winter and less oceanic heat storage. There is significant seasonal and interannual variability in STMW inventories, however there are no trends in STMW properties, including its core layer temperature over the last decade. The variability of the winter EAUC transport is highly correlated with the STMW inventories and thermocline depth in the following spring, suggesting ocean dynamics deepen the thermocline and precondition for deeper mixed layers.

  3. Weight gain as a barrier to smoking cessation among military personnel.

    PubMed

    Russ, C R; Fonseca, V P; Peterson, A L; Blackman, L R; Robbins, A S

    2001-01-01

    To assess the relationships between active-duty military status, military weight standards, concern about weight gain, and anticipated relapse after smoking cessation. Cross-sectional study. Hospital-based tobacco cessation program. Two hundred fifty-two enrollees, of 253 eligible, to a tobacco cessation program in 1999 (135 men, 117 women; 43% on active duty in the military). Independent variables included gender, body mass index (weight/height2), and military status. Dependent variables included about weight gain with smoking cessation and anticipated relapse. In multivariate regression analyses that controlled for gender and body mass index, active-duty military status was associated with an elevated level of concern about weight gain (1.9-point increase on a 10-point scale; 95% confidence interval [CI], 1.0- to 2.8-point increase), as well as higher anticipated relapse (odds ratio [OR] = 3.6; 95% CI, 1.3 to 9.8). Among subjects who were close to or over the U.S. Air Force maximum allowable weight for height, the analogous OR for active-duty military status was 6.9 (p = .02). Occupational weight standards or expectations may pose additional barriers for individuals contemplating or attempting smoking cessation, as they do among active-duty military personnel. These barriers are likely to hinder efforts to decrease smoking prevalence in certain groups.

  4. CHEMICAL MASS BALANCE MODEL: EPA-CMB8.2

    EPA Science Inventory

    The Chemical Mass Balance (CMB) method has been a popular approach for receptor modeling of ambient air pollutants for over two decades. For the past few years the U.S. Environmental Protection Agency's Office of Research and Development (ORD) and Office of Air Quality Plannin...

  5. Environmental variability facilitates coexistence within an alcid community at sea

    USGS Publications Warehouse

    Haney, J. Christopher; Schauer, Amy E.S.

    1994-01-01

    We examined coexistence at sea among 7 taxa of diving, wing-propelled seabirds (Alcidae) in the genera Aethia, Uria, Cepphus, and Fratercula. Species abundances were measured simultaneously with a suite of environmental factors in the northern Bering Sea, Alaska, USA; data from 260 adjacent and non-adjacent sites occupied by alcids foraging offshore near breeding colonies were then subjected to principal component analysis (PCA). We used PCA to group redundant environmental descriptors, to identify orthogonal axes for constructing a multi-dimensional niche, and to differentiate species associations within niche dimensions from species associations among niche dimensions. Decomposition of the correlation matrix for 22 environmental and 7 taxonomic variables with PCA gave 14 components (10 environmental and 4 species interactions) that retained 90% of the original available variance. Alcid abundances (all species) were most strongly correlated with axes representing tidal stage, a time-area interaction (due to sampling layout), water masses, and a temporal or intra-seasonal trend partially associated with weather changes. Axes representing tidal stage, 2 gradients in macro-habitat (Anadyr and Bering Shelf Water masses), the micro-habitat of the sea surface, and an air-sea interaction were most important for detecting differences among species within niche dimensions. Contrary to assumptions of competition, none of 4 compound variables describing primarily species-interactions gave strong evidence for negative associations between alcid taxa sharing similar body sizes and feeding requirements. This exploratory analysis supports the view that alcids may segregate along environmental gradients at sea. But in this community, segregation was unrelated to foraging distance from colonies, in part because foraging 'substrate' was highly variable in structure, location, and area1 extent. We contend that coexistence within this seabird group is facilitated via expanded niche dimensions created from a complex marine environment.

  6. Spatiotemporal variability of light-absorbing carbon concentration in a residential area impacted by woodsmoke.

    PubMed

    Krecl, Patricia; Johansson, Christer; Ström, Johan

    2010-03-01

    Residential wood combustion (RWC) is responsible for 33% of the total carbon mass emitted in Europe. With the new European targets to increase the use of renewable energy, there is a growing concern that the population exposure to woodsmoke will also increase. This study investigates observed and simulated light-absorbing carbon mass (MLAC) concentrations in a residential neighborhood (Lycksele, Sweden) where RWC is a major air pollution source during winter. The measurement analysis included descriptive statistics, correlation coefficient, coefficient of divergence, linear regression, concentration roses, diurnal pattern, and weekend versus weekday concentration ratios. Hourly RWC and road traffic contributions to MLAC were simulated with a Gaussian dispersion model to assess whether the model was able to mimic the observations. Hourly mean and standard deviation concentrations measured at six sites ranged from 0.58 to 0.74 microg m(-3) and from 0.59 to 0.79 microg m(-3), respectively. The temporal and spatial variability decreased with increasing averaging time. Low-wind periods with relatively high MLAC concentrations correlated more strongly than high-wind periods with low concentrations. On average, the model overestimated the observations by 3- to 5-fold and explained less than 10% of the measured hourly variability at all sites. Large residual concentrations were associated with weak winds and relatively high MLAC loadings. The explanation of the observed variability increased to 31-45% when daily mean concentrations were compared. When the contribution from the boilers within the neighborhood was excluded from the simulations, the model overestimation decreased to 16-71%. When assessing the exposure to light-absorbing carbon particles using this type of model, the authors suggest using a longer averaging period (i.e., daily concentrations) in a larger area with an updated and very detailed emission inventory.

  7. Mass and heat transfer model of Tubular Solar Still

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Amimul; Fukuhara, Teruyuki

    2010-07-15

    In this paper, a new mass and heat transfer model of a Tubular Solar Still (TSS) was proposed incorporating various mass and heat transfer coefficients taking account of the humid air properties inside the still. The heat balance of the humid air and the mass balance of the water vapor in the humid air were formulized for the first time. As a result, the proposed model enabled to calculate the diurnal variations of the temperature, water vapor density and relative humidity of the humid air, and to predict the hourly condensation flux besides the temperatures of the water, cover andmore » trough, and the hourly evaporation flux. The validity of the proposed model was verified using the field experimental results carried out in Fukui, Japan and Muscat, Oman in 2008. The diurnal variations of the calculated temperatures and water vapor densities had a good agreement with the observed ones. Furthermore, the proposed model can predict the daily and hourly production flux precisely. (author)« less

  8. Improved Satellite Techniques for Monitoring and Forecasting the Transition of Hurricanes to Extratropical Storms

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch

    2014-01-01

    The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.

  9. Dependence of Halo Bias and Kinematics on Assembly Variables

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoju; Zheng, Zheng

    2018-06-01

    Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.

  10. Measurements of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) at selected urban, rural and remote sites

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, Louis J.

    1989-01-01

    PAN and PPN were measured in a series of eight field studies performed at urban, rural and remote locations in the contiguous U.S. during 1983-1985. Seven of the eight studies were performed in the winter/spring period, a period of sparsely available data. Nearly 2000 air samples were analyzed during these studies. Mean PAN and PPN levels in the range of 45-1600 ppt (max. 7.9 ppb) and 5-230 ppt (max. 0.9 ppb), respectively, were measured. Despite a great deal of observed variability, PAN and PPN showed virtually identical behavior at all sites and in all seasons, supporting the view that these nitrogenous compounds are produced and destroyed by very similar mechanisms. On the average PPN concentrations were about 8 percent (range 3-14 percent) of PAN values. It is inferred that PPN/PAN ratio is highest in urban areas and declines as polluted air masses are transported over long distances.

  11. Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain).

    PubMed

    Castell, Nuria; Mantilla, Enrique; Millan, Millan M

    2008-01-01

    Ozone dynamics in our study area (Castellon, Spain) is both strongly bound to the mesoscale circulations that develop under the effect of high insolation (especially in summer) and conditioned by the morphological characteristics of the Western Mediterranean Basin. In this work we present a preliminary analysis of ozone time series on five locations in Castellon for the period 1997-2003. We study their temporal and spatial variations at different scales: daily, weekly, seasonally and interannually. Because both the O3 concentration and its temporal variation depend on the topographic location of the observing station, they can show large differences within tens of kilometer. We also contrast the variation in the ozone concentration with the variations found for meteorological variables such as radiation, temperature, relative humidity and recirculation of the air mass. The link between elevated ozone concentrations and high values of the recirculation factor (r=0.7-0.9) shown the importance of recirculating flows on the local air pollution episodes.

  12. Physical Activity and Blood Lead Concentration in Korea: Study Using the Korea National Health and Nutrition Examination Survey (2008-2013).

    PubMed

    Rhie, Jeongbae; Lee, Hye-Eun

    2016-06-01

    Physical activity normally has a positive influence on health, however it can be detrimental in the presence of air pollution. Lead, a heavy metal with established adverse health effects, is a major air pollutant. We evaluated the correlation between blood lead concentration and physical activity using data collected from the Korea National Health and Nutrition Examination Survey. Multivariate logistic regression analysis was performed after dividing participants according to whether they were in the top 25% in the distribution of blood lead concentration (i.e., ≥ 2.76 µg/dL), with physical activity level as an independent variable and adjusting for factors such as age, sex, drinking, smoking, body mass index, region, and occupation. The high physical activity group had greater odds of having a blood lead concentration higher than 2.76 µg/dL (odds ratio 1.29, 95% CI 1.11-1.51) compared to the low physical activity group. Furthermore, blood lead concentration is correlated with increasing physical activity.

  13. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures.

    PubMed

    Liu, Faye F; Peng, Cheng; Escher, Beate I; Fantino, Emmanuelle; Giles, Cindy; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2013-10-15

    Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Relationships between Atmospheric Transport Regimes and PCB Concentrations in the Air at Zeppelin, Spitsbergen.

    PubMed

    Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad

    2017-09-05

    Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.

  15. Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.

    2001-12-01

    Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.

  16. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-08-01

    Micrometer ml Milliliter MS Mass Spectrometry MW Molecular Weight MΩ Mega-ohm NAS Naval Air Station 6 NASNI Naval Air Station North Island...feasibility studies. ..........42 Table 5-2 Compounds screened in the laboratory for IS2 sampling ......................................44 Table 5-3 Mass ...concentration data is derived directly from the mass of analyte recovered from the sorbent cartridge and the known volume of water processed. This

  17. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  18. Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Ripoll, A.; Minguillón, M. C.; Pey, J.; Jimenez, J. L.; Day, D. A.; Sosedova, Y.; Canonaco, F.; Prévôt, A. S. H.; Querol, X.; Alastuey, A.

    2015-03-01

    Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols (particles with an aerodynamic diameter of less than 1 μm) from a continental background site (Montsec, MSC, 1570 m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011-April 2012). An aerosol chemical speciation monitor (ACSM) was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here, for the first time, for this region. Seasonal trends in PM1 components are attributed to variations in evolution of the planetary boundary layer (PBL) height, air mass origin, and meteorological conditions. In summer, the higher temperature and solar radiation increases convection, enhancing the growth of the PBL and the transport of anthropogenic pollutants towards high altitude sites. Furthermore, the regional recirculation of air masses over the WMB creates a continuous increase in the background concentrations of PM1 components and causes the formation of reservoir layers at relatively high altitudes. The combination of all these atmospheric processes results in a high variability of PM1 components, with poorly defined daily patterns, except for the organic aerosols (OA). OA was mostly composed (up to 90%) of oxygenated organic aerosol (OOA), split in two types: semivolatile (SV-OOA) and low-volatility (LV-OOA), the rest being hydrocarbon-like OA (HOA). The marked diurnal cycles of OA components regardless of the air mass origin indicates that they are not only associated with anthropogenic and long-range-transported secondary OA (SOA) but also with recently produced biogenic SOA. Very different conditions drive the aerosol phenomenology in winter at MSC. The thermal inversions and the lower vertical development of the PBL leave MSC in the free troposphere most of the day, being affected by PBL air masses only after midday, when the mountain breezes transport emissions from the adjacent valleys and plains to the top of the mountain. This results in clear diurnal patterns of both organic and inorganic concentrations. OA was also mainly composed (71%) of OOA, with contributions from HOA (5%) and biomass burning OA (BBOA; 24%). Moreover, in winter sporadic long-range transport from mainland Europe is observed. The results obtained in the present study highlight the importance of SOA formation processes at a remote site such as MSC, especially in summer. Additional research is needed to characterize the sources and processes of SOA formation at remote sites.

  19. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less

  20. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. Potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol-humidity relationship.

Top