Science.gov

Sample records for air masses due

  1. Assessment of the Losses Due to Self Absorption by Mass Loading on Radioactive Particulate Air Stack Sample Filters

    SciTech Connect

    Smith, Brian M.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2011-01-18

    This report discusses the effect of mass loading of a membrane filter on the self absorption of radioactive particles. A relationship between mass loading and percent loss of activity is presented. Sample filters were collected from Pacific Northwest National Laboratory (PNNL) facilities in order to analyze the current self absorption correction factor of 0.85 that is being used for both alpha and beta particles. Over an eighteen month period from February 2009 to July 2010, 116 samples were collected and analyzed from eight different building stacks in an effort coordinated by the Effluent Management group. Eleven unused filters were also randomly chosen to be analyzed in order to determine background radiation. All of these samples were collected and analyzed in order to evaluate the current correction factor being used.

  2. [Ear dysfunction due to air bag detonation?].

    PubMed

    Brehmer, D; Geidel, O; Hesse, G; Laubert, A

    2000-10-01

    Air bags are among the latest developments in extensive automobile safety systems. They successfully have saved the lives of car occupants in road accidents. Many additional injuries caused by air bags from minor to severe have been reported. With the help of two acceleration sensors, the electronic tuner amplifier records the vehicle's deceleration. This is the adequate trigger for air bag deployment, which creates an intense noise of up to 170 dB sound pressure level. This noise level can cause cochlear damage. We present two patients with otologic symptoms after spontaneous air bag deployment.

  3. Human health risks in megacities due to air pollution

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A. S.; Lelieveld, J.

    2010-11-01

    This study evaluates the health risks in megacities in terms of mortality and morbidity due to air pollution. A new spreadsheet model, Risk of Mortality/Morbidity due to Air Pollution (Ri-MAP), is used to estimate the excess numbers of deaths and illnesses. By adopting the World Health Organization (WHO) guideline concentrations for the air pollutants SO 2, NO 2 and total suspended particles (TSP), concentration-response relationships and a population attributable-risk proportion concept are employed. Results suggest that some megacities like Los Angeles, New York, Osaka Kobe, Sao Paulo and Tokyo have very low excess cases in total mortality from these pollutants. In contrast, the approximate numbers of cases is highest in Karachi (15,000/yr) characterized by a very high concentration of total TSP (˜670 μg m -3). Dhaka (7000/yr), Beijing (5500/yr), Karachi (5200/yr), Cairo (5000/yr) and Delhi (3500/yr) rank highest with cardiovascular mortality. The morbidity (hospital admissions) due to Chronic Obstructive Pulmonary Disease (COPD) follows the tendency of cardiovascular mortality. Dhaka and Karachi lead the rankings, having about 2100/yr excess cases, while Osaka-Kobe (˜20/yr) and Sao Paulo (˜50/yr) are at the low end of all megacities considered. Since air pollution is increasing in many megacities, and our database of measured pollutants is limited to the period up to 2000 and does not include all relevant components (e.g. O 3), these numbers should be interpreted as lower limits. South Asian megacities most urgently need improvement of air quality to prevent excess mortality and morbidity due to exceptionally high levels of air pollution. The risk estimates obtained from Ri-MAP present a realistic baseline evaluation for the consequences of ambient air pollution in comparison to simple air quality indices, and can be expanded and improved in parallel with the development of air pollution monitoring networks.

  4. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004 2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-10-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  5. Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004-2006

    NASA Astrophysics Data System (ADS)

    Wehner, B.; Birmili, W.; Ditas, F.; Wu, Z.; Hu, M.; Liu, X.; Mao, J.; Sugimoto, N.; Wiedensohler, A.

    2008-06-01

    The Chinese capital Beijing is one of the global megacities where the effects of rapid economic growth have led to complex air pollution problems that are not well understood. In this study, ambient particle number size distributions in Beijing between 2004 and 2006 are analysed as a function of regional meteorological transport. An essential result is that the particle size distribution in Beijing depends to large extent on the history of the synoptic scale air masses. A first approach based on manual back trajectory classification yielded differences in particulate matter mass concentration (PM1 and PM10) by a factor of two between four different air mass categories, including three main wind directions plus the case of stagnant air masses. A back trajectory cluster analysis refined these results, yielding a total of six trajectory clusters. Besides the large scale wind direction, the transportation speed of an air mass was found to play an essential role on the PM concentrations in Beijing. Slow-moving air masses were shown to be associated with an effective accumulation of surface-based anthropogenic emissions due to both, an increased residence time over densely populated land, and their higher degree of vertical stability. For the six back trajectory clusters, differences in PM1 mass concentrations by a factor of 3.5, in the mean air mass speed by a factor of 6, and in atmospheric visibility by a factor of 4 were found. The main conclusion is that the air quality in Beijing is not only degraded by anthropogenic aerosol sources from within the megacity, but also by sources across the entire Northwest China plain depending on the meteorological situation.

  6. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  7. Emittance growth due to negative-mass instability above transition

    SciTech Connect

    Ng, King-Yuen

    1994-08-01

    Due to space-charge effect, there is a growth of bunch emittance across transition as a result of negative-mass instability. The models of growth at cutoff frequency and growth from high-frequency Schottky noise are reviewed. The difficulties of performing reliable simulations are discussed. An intuitive self-bunching model for estimating emittance growth is presented.

  8. Evolution of Southern Hemisphere spring air masses observed by HALOE

    NASA Technical Reports Server (NTRS)

    Pierce, R. Bradley; Grose, William L.; Russell, James M., III; Tuck, Adrian F.

    1994-01-01

    The evolution of Southern Hemisphere air masses observed by the Halogen Occultation Experiment (HALOE) during September 21 through October 15, 1992, is investigated using isentropic trajectories computed from United Kingdom Meteorological Office (UKMO) assimilated winds and temperatures. Maps of constituent concentrations are obtained by accumulation of air masses from previous HALOE occultations. Lagged correlations between initial and subsequent HALOE observations of the same air mass are used to validate the air mass trajectories. High correlations are found for lag times as large as 10 days. Frequency distributions of the air mass constituent concentrations are used to examine constituent distributions in and around the Southern Hemisphere polar vortex.

  9. Air pollution effects due to deregulation of the electric industry

    NASA Astrophysics Data System (ADS)

    Davoodi, Khojasteh Riaz

    ) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.

  10. Where do the air masses between double tropopauses come from?

    NASA Astrophysics Data System (ADS)

    Parracho, A. C.; Marques, C. A. F.; Castanheira, J. M.

    2014-01-01

    An analysis of the origin of air masses that end up between double tropopauses (DT) in the subtropics and midlatitudes is presented. The double tropopauses were diagnosed in the ERA-Interim reanalysis (1979-2010), and the origin of air masses was analysed using the Lagrangian model FLEXPART. Different processes for the formation of double tropopauses (DT) have been suggested in the literature. Some studies have suggested that double tropopauses may occur as a response to the vertical profile of adiabatic heating, due to the residual meridional circulation, while others have put forward contradicting explanations. Whereas some studies have suggested that double tropopauses result from poleward excursions of the tropical tropopause over the extratropical one, others have argued that DTs develop in baroclinic unstable processes involving transport of air from high latitudes. In some regions, the DT structure has a semipermanent character which cannot be explained by excursions of the tropical tropopause alone. However, the results presented in this paper confirm that processes involving excursions of the tropical tropopause over the extratropical tropopause, which are therefore accompanied by intrusions of air from the tropical troposphere into the lower extratropical stratosphere, make a significant contribution for the occurrence of DTs in the subtropics and midlatitudes. Specifically, it is shown that the air between double tropopauses comes from equatorward regions, and has a higher percentage of tropospheric particles and a lower mean potential vorticity.

  11. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  12. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  13. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  14. Erroneous mass transit system and its tended relationship with motor vehicular air pollution (An integrated approach for reduction of urban air pollution in Lahore).

    PubMed

    Aziz, Amer; Bajwa, Ihsan Ullah

    2008-02-01

    Air pollution is threat to the lives of people living in big cities of Pakistan. In Lahore 1,250 people die annually because of air pollution. Mass transit system that can be put forth as solution to urban air pollution is contingent with right choice of system and its affiliation with motorized vehicles and nature of urban air pollution. Existing mass transit system in Lahore due to untrue operation causes surfeit discharge of motor vehicular carbon monoxide. Tended relationships of mass transit system with motorized vehicles and urban air pollution are quite noteworthy. The growing motor vehicles (a consequence of flawed public mass transit system) are potential source of urban air pollution. This paper attempts to highlight correlations and regression curves of existing mass transit system. Further it recommends a two facet approach for reduction of motor vehicular air pollution in Lahore.

  15. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  16. Temporal Geophysical Signatures Due to Contaminant Mass Remediation

    EPA Science Inventory

    Geophysical surveys acquired over a ten year period are used to document changes in bulk electrical conductivity associated with the attenuation of hydrocarbon contaminants at the former fire training facility (FT-02) Wurtsmith Air Force base (WAFB), Oscoda, MI, USA. Initial inv...

  17. Air Entrainment in a Liquid Cell due to Fiber Drawing

    NASA Astrophysics Data System (ADS)

    Simpkins, P. G.; Kuck, V. J.

    1997-11-01

    Preliminary observations of air entrainment into a liquid bath of viscous Newtonian fluid are described. The motion generated by an optical fiber moving vertically through the bath gives rise to a free surface that is cusp-like. Photomicrographs of the contact region, however, illustrate that the free surface profile becomes conical with a small included angle that is draw speed dependent. There is some evidence to suggest that tip-streaming ( Taylor, G. I. 1934 The Formation of Emulsions in Definable Fields of Flow. Proc. Roy. Soc. Lond. A146, 501-523.) footnote Sherwood, J. D. 1984 Tip Streaming from Slender Drops in a Nonlinear Extensional Flow. J. Fluid Mech. 144, 281-295. filaments of air emanate from the contact zone to give rise to minute ( 10mm) bubbles via Rayleigh-Taylor instability. Continuous operation after the onset of tip-streaming results in the creation of larger bubbles from the small ones via coalescence during recirculation in the bath. Eventually the occurrence of very large bubbles can lead to break out and the absence of any coating on the fiber.

  18. Air pollution and health risks due to vehicle traffic.

    PubMed

    Zhang, Kai; Batterman, Stuart

    2013-04-15

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed-volume relationship, the California Line Source Dispersion Model, an empirical NO2-NOx relationship, estimated travel time changes during congestion, and concentration-response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, "U" shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2-NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion must

  19. Air pollution and health risks due to vehicle traffic

    PubMed Central

    Zhang, Kai; Batterman, Stuart

    2014-01-01

    Traffic congestion increases vehicle emissions and degrades ambient air quality, and recent studies have shown excess morbidity and mortality for drivers, commuters and individuals living near major roadways. Presently, our understanding of the air pollution impacts from congestion on roads is very limited. This study demonstrates an approach to characterize risks of traffic for on- and near-road populations. Simulation modeling was used to estimate on- and near-road NO2 concentrations and health risks for freeway and arterial scenarios attributable to traffic for different traffic volumes during rush hour periods. The modeling used emission factors from two different models (Comprehensive Modal Emissions Model and Motor Vehicle Emissions Factor Model version 6.2), an empirical traffic speed–volume relationship, the California Line Source Dispersion Model, an empirical NO2–NOx relationship, estimated travel time changes during congestion, and concentration–response relationships from the literature, which give emergency doctor visits, hospital admissions and mortality attributed to NO2 exposure. An incremental analysis, which expresses the change in health risks for small increases in traffic volume, showed non-linear effects. For a freeway, “U” shaped trends of incremental risks were predicted for on-road populations, and incremental risks are flat at low traffic volumes for near-road populations. For an arterial road, incremental risks increased sharply for both on- and near-road populations as traffic increased. These patterns result from changes in emission factors, the NO2–NOx relationship, the travel delay for the on-road population, and the extended duration of rush hour for the near-road population. This study suggests that health risks from congestion are potentially significant, and that additional traffic can significantly increase risks, depending on the type of road and other factors. Further, evaluations of risk associated with congestion

  20. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY... for calculating emissions due to air conditioning leakage. This section describes procedures used...

  1. IMPLICATIONS OF MASS AND ENERGY LOSS DUE TO CORONAL MASS EJECTIONS ON MAGNETICALLY ACTIVE STARS

    SciTech Connect

    Drake, Jeremy J.; Cohen, Ofer; Yashiro, Seiji; Gopalswamy, Nat

    2013-02-20

    Analysis of a database of solar coronal mass ejections (CMEs) and associated flares over the period 1996-2007 finds well-behaved power-law relationships between the 1-8 A flare X-ray fluence and CME mass and kinetic energy. We extrapolate these relationships to lower and higher flare energies to estimate the mass and energy loss due to CMEs from stellar coronae, assuming that the observed X-ray emission of the latter is dominated by flares with a frequency as a function of energy dn/dE = kE {sup -{alpha}}. For solar-like stars at saturated levels of X-ray activity, the implied losses depend fairly weakly on the assumed value of {alpha} and are very large: M-dot {approx}5 Multiplication-Sign 10{sup -10} M{sub sun} yr{sup -1} and E-dot {approx}0.1 L{sub sun}. In order to avoid such large energy requirements, either the relationships between CME mass and speed and flare energy must flatten for X-ray fluence {approx}> 10{sup 31} erg, or the flare-CME association must drop significantly below 1 for more energetic events. If active coronae are dominated by flares, then the total coronal energy budget is likely to be up to an order of magnitude larger than the canonical 10{sup -3} L {sub bol} X-ray saturation threshold. This raises the question of what is the maximum energy a magnetic dynamo can extract from a star? For an energy budget of 1% of L {sub bol}, the CME mass loss rate is about 5 Multiplication-Sign 10{sup -11} M {sub Sun} yr{sup -1}.

  2. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  3. An investigation on cracking of glasspanes due to air overpressure

    SciTech Connect

    Prakash, A.J.; Nabiullah, M.; Dhar, B.B.

    1994-12-31

    The study is an approach made in simulating air overpressures induced by surface blasting from those produced during gallery blasting in the laboratory, and experiments conducted on a portable window with a view to establish the sound pressure level (SPL) for cracking of window glasspanes. Eight different strengths of commercial explosives normally being used in blasting practices, were fired in the cannon of explosive gallery. SPL recorded on the seventh channel of a digital seismograph (SINCO-6) provided with FFT facility, are compared with those produced from surface blastings conducted in different Indian geomining conditions. They are found to be similar in frequency characteristics. A model of portable window provided with two replaceable glass panes has been designed and fabricated for the experiment in the explosive gallery. Stresses developed on the glass panes and the SPL in different stages were monitored to study the threshold level of damage. The first crack has been observed in the glass panes at the SPL of 162.3 dB ({minus}3.97 Kpa) and in the 5--20 Hz frequency band.

  4. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Warme und Feuchte instationar Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  5. Moisture Risk in Unvented Attics Due to Air Leakage Paths

    SciTech Connect

    Prahl, D.; Shaffer, M.

    2014-11-01

    IBACOS completed an initial analysis of moisture damage potential in an unvented attic insulated with closed-cell spray polyurethane foam. To complete this analysis, the research team collected field data, used computational fluid dynamics to quantify the airflow rates through individual airflow (crack) paths, simulated hourly flow rates through the leakage paths with CONTAM software, correlated the CONTAM flow rates with indoor humidity ratios from Building Energy Optimization software, and used Wärme und Feuchte instationär Pro two-dimensional modeling to determine the moisture content of the building materials surrounding the cracks. Given the number of simplifying assumptions and numerical models associated with this analysis, the results indicate that localized damage due to high moisture content of the roof sheathing is possible under very low airflow rates. Reducing the number of assumptions and approximations through field studies and laboratory experiments would be valuable to understand the real-world moisture damage potential in unvented attics.

  6. Mass spectral peak distortion due to Fourier transform signal processing.

    PubMed

    Rockwood, Alan L; Erve, John C L

    2014-12-01

    Distortions of peaks can occur when one uses the standard method of signal processing of data from the Orbitrap and other FT-based methods of mass spectrometry. These distortions arise because the standard method of signal processing is not a linear process. If one adds two or more functions, such as time-dependent signals from a Fourier transform mass spectrometer and performs a linear operation on the sum, the result is the same as if the operation was performed on separate functions and the results added. If this relationship is not valid, the operation is non-linear and can produce unexpected and/or distorted results. Although the Fourier transform itself is a linear operator, the standard algorithm for processing spectra in Fourier transform-based methods include non-linear mathematical operators such that spectra processed by the standard algorithm may become distorted. The most serious consequence is that apparent abundances of the peaks in the spectrum may be incorrect. In light of these considerations, we performed theoretical modeling studies to illustrate several distortion effects that can be observed, including abundance distortions. In addition, we discuss experimental systems where these effects may manifest, including suggested systems for study that should demonstrate these peak distortions. Finally, we point to several examples in the literature where peak distortions may be rationalized by the phenomena presented here.

  7. Dirty air, dirty power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.; Padian, M.

    2004-06-15

    The Clean Air Task Force commissioned Abt Associates, the consulting firm relied upon by US EPA to assess the health benefits of many of the agency's air regulatory programs. The report documents the asthma attacks, hospitalisations, lost work and school days, and premature deaths linked to pollution from power plants. A first report was released in 2000. The 2004 report documents for the first time the number of heart attacks and lung cancer deaths that would be caused by power plants in 2010 and 2020. It compares the premature deaths that would result under the Bush administration's air pollution plan, the existing US Clean Air Act, and a proposal sponsored by Senator Jim Jeffords to strengthen the Clean Air Act. In general it was found that the administration's plan would produce the fewest benefits. The full study is available from the EPA, abstracted separately on the Coal Abstracts database. 65 refs., 2 apps.

  8. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  9. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  10. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  11. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    NASA Technical Reports Server (NTRS)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  12. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong

  13. Total-reflection X-ray fluorescence — a tool to obtain information about different air masses and air pollution

    NASA Astrophysics Data System (ADS)

    Schmeling, Martina

    2001-11-01

    Atmospheric aerosols are solid particles dissolved in air and change their chemical composition frequently depending on various parameters. In order to identify regional air circulation atmospheric aerosol filter samples were taken at Loyola University Chicago's Lake Shore Campus during the months of July and August 2000 with sampling times ranging between 1 and 2 h. The samples were digested in a microwave oven and analyzed by total-reflection X-ray fluorescence (TXRF) spectrometry. One diurnal variation comprising five consecutive sampling events was selected and discussed as well as 4 days experiencing different meteorology were compared to exemplify the variation in trace elemental concentration according to air mass movements and highlight the capability of total-reflection X-ray fluorescence analysis. It was found that due to changes in meteorological conditions particularly wind direction and wind speed, trace elemental compositions varied rapidly and could be used to distinguish between 'Lake Michigan air' and 'metropolitan Chicago air' on such short-term time scale like one hour. Back trajectory analysis was applied to support and corroborate the results. The outcome of this study clearly shows that total-reflection X-ray fluorescence is an optimal tool for analysis of atmospheric aerosols.

  14. Control of turbulent boundary layer through air blowing due to external-flow resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-07-01

    The possibility to control turbulent incompressible boundary layer using air blowing through a finely perforated wall presenting part of the streamlined flat-plate surface was examined. The control was exercised via an action on the state and characteristics of the near-wall flow exerted by controlled (through variation of external-pressure-flow velocity) blowing of air through an air intake installed on the idle side of the plate. A stable reduction of the local values of skin friction coefficient along the model, reaching 50 % at the end of the perforated area, has been demonstrated. The obtained experimental and calculated data are indicative of a possibility to model the process of turbulentboundary-layer control by air blowing due to external-flow resources.

  15. Microbial contamination of indoor air due to leakages from crawl space: a field study.

    PubMed

    Airaksinen, M; Pasanen, P; Kurnitski, J; Seppänen, O

    2004-02-01

    Mechanical exhaust ventilation system is typical in apartment buildings in Finland. In most buildings the base floor between the first floor apartments and crawl space is not air tight. As the apartments have lower pressure than the crawl space due to ventilation, contaminated air may flow from the crawl space to the apartments. The object of this study was to find out whether a potential air flow from crawl space has an influence on the indoor air quality. The results show that in most cases the concentration of fungal spores was clearly higher in the crawl space than inside the building. The size distribution of fungal spores depended on the fungal species. Correlation between the fungal spores in the crawl space and indoors varied with microbial species. Some species have sources inside the building, which confounds the possible relation between crawl pace and indoor concentrations. Some species, such as Acremonium, do not normally have a source indoors, but its concentration in the crawl space was elevated; our measurements showed also elevated concentrations of Acremonium in the air of the apartments. This consistent finding shows a clear linkage between fungal spores in the indoor air and crawl space. We conclude that a building with a crawl space and pressure difference over the base floor could be a potential risk for indoor air quality in the first floor apartments.

  16. Solar Wind Mass-Loading Due to Dust in the Vicinity of the Sun

    NASA Astrophysics Data System (ADS)

    Rasca, A.; Horanyi, M.

    2012-12-01

    Collisionless shocks due to mass-loading were first discussed to describe the solar wind flow around a cometary atmosphere, showing its choking effects on the flow. Recent observations have led to an increased interest in mass-loading occurring in the solar corona, due to sun-grazing comets and also due to collisional debris production by sunward migrating interplanetary dust particles. Using one-dimensional simulations with a hydrodynamic model we have shown the impact on the solar wind from abrupt mass-loading in the coronal region. Full three-dimensional MHD simulations using the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) accomplish more to mimic specific events applicable to modeling the mass-loaded coronal wind caused by the presence of a sun-grazing comet, for example.

  17. [Pulmonary edema due to venous air embolism during craniotomy: a case report].

    PubMed

    Ishida, Kumiko; Hishinuma, Miwako; Miyazawa, Mikiko; Tanaka, Toshiyuki; Iwasawa, Ken; Kitoh, Takeshi

    2008-10-01

    We present a 35-year-old healthy male patient who developed pulmonary edema (PE) probably due to venous air embolism during craniotomy in the semi-sitting position for arteriovenous malformation (AVM). Anesthesia was maintained with oxygen, nitrous oxide, propofol and fentanyl. During craniotomy, end-tidal carbon dioxide pressure decreased suddenly from 26 to 9 mmHg. Concurrently, a decrease in oxygen saturation from 99% to 91% occurred. There were no serious changes in blood pressure and heart rate. A "mill-wheel murmur" was confirmed. PE due to venous air embolism was suspected. The operation was discontinued and the patient was transferred to the intensive care unit. In the post-operative period, the patient developed PE and made a full recovery within a week. Four months later, the patient was scheduled again for surgical excision of AVM in the semi-sitting position in the same way as the first time. Anesthesia was maintained with oxygen, air, propofol and fentanyl. Transoesophageal echocardiography and pulmonary artery catheter were used. Saline was filled at the surgical site to prevent aspiration of air bubbles and surgical procedure was performed carefully without large vein injury and uneventfully. During neurosurgical intervention in the sitting position, special attention should be paid to entry of air bubbles into the venous system which may lead to PE.

  18. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  19. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    PubMed

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study.

  20. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  1. [Fire disaster due to deflagration of a propane gas-air mixture].

    PubMed

    Nadjem, Hadi; Vogt, Susanne; Simon, Karl-Heinz; Pollak, Stefan; Geisenberger, Dorothee; Kramer, Lena; Pircher, Rebecca; Perdekampl, Markus Große; Thierauf-Emberger, Annette

    2015-01-01

    On 26 Nov 2012, a serious fire occurred at Neustadt/Black Forest in which 14 persons in a sheltered workshop died and 10 other individuals were injured. The fire was caused by the unbridled escape of propane gas due to accidental disconnection of the screw fixing between a gas bottle and a catalytic heater. Deflagration of the propane gas-air mixture set the workshop facilities on fire. In spite of partly extensive burns the fatally injured victims could be rapidly identified. The results of the fire investigations at the scene and the autopsy findings are presented. Carboxyhemoglobin concentrations ranged between 8 and 56 % and signs of fire fume inhalation were present in all cases. Three victims had eardrum ruptures due to the sudden increase in air pressure during the deflagration.

  2. Systematic and Statistical Uncertainties in Simulated r-Process Abundances due to Uncertain Nuclear Masses

    NASA Astrophysics Data System (ADS)

    Surman, Rebecca; Mumpower, Matthew; McLaughlin, Gail

    Unknown nuclear masses are a major source of nuclear physics uncertainty for r-process nucleosynthesis calculations. Here we examine the systematic and statistical uncertainties that arise in r-process abundance predictions due to uncertainties in the masses of nuclear species on the neutron-rich side of stability. There is a long history of examining systematic uncertainties by the application of a variety of different mass models to r-process calculations. Here we expand upon such efforts by examining six DFT mass models, where we capture the full impact of each mass model by updating the other nuclear properties — including neutron capture rates, β -decay lifetimes, and β -delayed neutron emission probabilities — that depend on the masses. Unlike systematic effects, statistical uncertainties in the r-process pattern have just begun to be explored. Here we apply a global Monte Carlo approach, starting from the latest FRDM masses and considering random mass variations within the FRDM rms error. We find in each approach that uncertain nuclear masses produce dramatic uncertainties in calculated r-process yields, which can be reduced in upcoming experimental campaigns.

  3. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  4. Elevated concentrations of endotoxin in indoor air due to cigarette smoking.

    PubMed

    Sebastian, Aleksandra; Pehrson, Christina; Larsson, Lennart

    2006-05-01

    Exposure to environmental tobacco smoke (ETS) is an important worldwide public health issue. The present study demonstrates that cigarette smoke can be a major source of endotoxin (lipopolysaccharide, LPS) in indoor environments. Gas-chromatography/mass-spectrometry was used to determine 3-hydroxy fatty acids as markers of endotoxin in air-borne house dust in homes of smokers and non-smokers. Air concentrations of endotoxin were 4-63 times higher in rooms of smoking students than in identical rooms of non-smoking students. The fact that cigarette smoke contains large amounts of endotoxin may partly explain the high prevalence of respiratory disorders among smokers and may also draw attention to a hitherto neglected risk factor of ETS.

  5. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  6. Air Mass Frequency during Precipitation Events in the United States Northern Plains

    NASA Astrophysics Data System (ADS)

    Loveless, D. M.; Sharr, N. J.; Baum, A.; Contract, J. S.; DePasquale, R.; Godek, M. L.

    2013-12-01

    Since 1980, numerous billion-dollar disasters have affected the Northern Plains of the United States, including nine droughts and four floods. Given the region's large agricultural sector, the ability to accurately forecast the frequency and quantity of precipitation events here is imperative as it has a major impact on the economy of states in the region. The atmospheric environment present during precipitation events can largely be described by the presiding air mass conditions since air masses characterize a multitude of meteorological variables at one time over a large region. Therefore, understanding the relationship between air masses and rainfall episodes can contribute to improved precipitation forecasts. The goal of this research is to add knowledge to current understandings of the factors responsible for precipitation in the Northern Plains through an assessment of synoptic air mass conditions. The Spatial Synoptic Classification is used to categorize 30 years of daily air mass types across the region and daily precipitation is acquired from the United States Historical Climatological Network at stations in close proximity. Air mass frequencies are then analyzed for all regional precipitation events and rainfall categories are developed based on precipitation quantity. Both annual and seasonal air mass frequencies are assessed at the time of precipitation events. Additionally, air mass frequencies are obtained for positive and negative phases of the Pacific/North American Pattern to examine the influence of a teleconnection forcing factor on the air mass types responsible for producing precipitation quantities. Results indicate that the Transitional (TR) air mass, associated with changing air mass conditions commonly related to passing fronts, is not the leading producer of rainfall in the region. The TR is generally responsible for only 10-20% of regional precipitation, which often is classed in a heavy rainfall category. All moist air mass varieties are

  7. Improving Hydrological Models by Applying Air Mass Boundary Identification in a Precipitation Phase Determination Scheme

    NASA Astrophysics Data System (ADS)

    Feiccabrino, James; Lundberg, Angela; Sandström, Nils

    2013-04-01

    Many hydrological models determine precipitation phase using surface weather station data. However, there are a declining number of augmented weather stations reporting manually observed precipitation phases, and a large number of automated observing systems (AOS) which do not report precipitation phase. Automated precipitation phase determination suffers from low accuracy in the precipitation phase transition zone (PPTZ), i.e. temperature range -1° C to 5° C where rain, snow and mixed precipitation is possible. Therefore, it is valuable to revisit surface based precipitation phase determination schemes (PPDS) while manual verification is still widely available. Hydrological and meteorological approaches to PPDS are vastly different. Most hydrological models apply surface meteorological data into one of two main PPDS approaches. The first is a single rain/snow threshold temperature (TRS), the second uses a formula to describe how mixed precipitation phase changes between the threshold temperatures TS (below this temperature all precipitation is considered snow) and TR (above this temperature all precipitation is considered rain). However, both approaches ignore the effect of lower tropospheric conditions on surface precipitation phase. An alternative could be to apply a meteorological approach in a hydrological model. Many meteorological approaches rely on weather balloon data to determine initial precipitation phase, and latent heat transfer for the melting or freezing of precipitation falling through the lower troposphere. These approaches can improve hydrological PPDS, but would require additional input data. Therefore, it would be beneficial to link expected lower tropospheric conditions to AOS data already used by the model. In a single air mass, rising air can be assumed to cool at a steady rate due to a decrease in atmospheric pressure. When two air masses meet, warm air is forced to ascend the more dense cold air. This causes a thin sharp warming (frontal

  8. Increased biomass burning due to the economic crisis in Greece and its adverse impact on wintertime air quality in Thessaloniki.

    PubMed

    Saffari, Arian; Daher, Nancy; Samara, Constantini; Voutsa, Dimitra; Kouras, Athanasios; Manoli, Evangelia; Karagkiozidou, Olga; Vlachokostas, Christos; Moussiopoulos, Nicolas; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2013-01-01

    The recent economic crisis in Greece resulted in a serious wintertime air pollution episode in Thessaloniki. This air quality deterioration was mostly due to the increased price of fuel oil, conventionally used as a source of energy for domestic heating, which encouraged the residents to burn the less expensive wood/biomass during the cold season. A wintertime sampling campaign for fine particles (PM2.5) was conducted in Thessaloniki during the winters of 2012 and 2013 in an effort to quantify the extent to which the ambient air was impacted by the increased wood smoke emissions. The results indicated a 30% increase in the PM2.5 mass concentration as well as a 2-5-fold increase in the concentration of wood smoke tracers, including potassium, levoglucosan, mannosan, and galactosan. The concentrations of fuel oil tracers (e.g., Ni and V), on the other hand, declined by 20-30% during 2013 compared with 2012. Moreover, a distinct diurnal variation was observed for wood smoke tracers, with significantly higher concentrations in the evening period compared with the morning. Correlation analysis indicated a strong association between reactive oxygen species (ROS) activity and the concentrations of levoglucosan, galactosan, and potassium, underscoring the potential impact of wood smoke on PM-induced toxicity during the winter months in Thessaloniki.

  9. Stridor due to an innominate artery compression and posterior mediastinal mass in a pediatric patient.

    PubMed

    Abraham, Edwin; Parray, Tariq; Poteet-Schwartz, Kim

    2012-06-01

    There are many causes for stridor in a pediatric patient. We present an interesting case of a pediatric patient who had stridor due to an innominate artery compression and posterior mediastinal mass. We discuss the anesthetic complication and management of patients with stridor.

  10. Assessment of the status of work zone air environment due to opencast coal mining.

    PubMed

    Ghose, M K; Majee, S R

    2002-07-01

    In India coal production will have to be increased to meat the energy demand at a very high rate. By 2000 AD the cool production from opencast (O/C) mining will rise to 250 Mt. which will be about 70%of the total coal production. The increasing trend of O/C mining leads to cause air pollution problem. A survey was conducted to assess the status of work zone air envimment due to opencast coal mining in Jharia Coalfield. Keeping in view of place of dust generation air quality monitoring stations were selected. Methodology adapted for sampling and analysis of air pollutants have been described. Four season data revealed that maximum concentration of SPM was observed at dragline section and the next high concentration was at haul roads. At all the locations SPM and RPM concentrations exceeded the permissible limits specified by Indian Pollution Control Board. Shift wise and location wise analysis for getting higher concentration of SO2 and NOx, have been discussed. Wind velocity and directions, mixing heights, ventilation coefficient of the area have been analyzed. Huge dust generation creates vision problem to HEMM operators. The methodology adopted may be utilised on industrial scale for various sites.

  11. A determination of character and frequency changes in air masses using a spatial synoptic classification

    NASA Astrophysics Data System (ADS)

    Kalkstein, Laurence S.; Sheridan, Scott C.; Graybeal, Daniel Y.

    1998-09-01

    Of the numerous climate change studies which have been performed, few of these have analyzed recent trends using an air mass-based approach. The air mass approach is superior to simple trend analysis, as it can identify patterns which may be too subtle to influence the entire climate record. The recently-developed spatial synoptic classification (SSC) is thus used to identify trends over the contiguous United States for summer and winter seasons from 1948 to 1993. Both trends in air mass frequency and character have been assessed.The most noteworthy trend in frequency is a decline in air mass transitional days (TR) during both seasons. In winter, decreases of up to 1% per decade are noted in parts of the central U.S. Other notable trends include a decrease in moist tropical (MT) air in winter, and an increase in MT in summer over the southeastern states.Numerous national and local air mass character changes have been uncovered. A large overall upward trend in cloudiness is noted in summer. All air masses feature an overnight increase, yet afternoon cloudiness increases are generally limited to the three dry air masses. Also in summer, a significant warming and increase in dew point of MT air has occurred at many locales. The most profound winter trend is a large decrease in dew point (up to 1.5°C per decade) in the dry polar (DP) air mass over much of the eastern states.

  12. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Zhang, Yuqiang; Anenberg, Susan C.; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven; Skeie, Ragnhild; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, I. A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2013-09-01

    Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (-20 000 to 27 000) deaths yr-1 due to ozone and 2200 (-350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

  13. Measurement of HOx• production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (•OH and HO2 •) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOx• production rate in indoor air caused by radon decay. Average HOx• production rate was found to be (4.31±0.07) x 105 HOx• per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx•)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx•] formed from the radiolysis procedure. This G value implies that HOx• produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOx• production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for •OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial •OH produced from the photolysis of O3/H2O.

  14. Microbial air quality in mass transport buses and work-related illness among bus drivers of Bangkok Mass Transit Authority.

    PubMed

    Luksamijarulkul, Pipat; Sundhiyodhin, Viboonsri; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2004-06-01

    The air quality in mass transport buses, especially air-conditioned buses may affect bus drivers who work full time. Bus numbers 16, 63, 67 and 166 of the Seventh Bus Zone of Bangkok Mass Transit Authority were randomly selected to investigate for microbial air quality. Nine air-conditioned buses and 2-4 open-air buses for each number of the bus (36 air-conditioned buses and 12 open-air buses) were included. Five points of in-bus air samples in each studied bus were collected by using the Millipore A ir Tester Totally, 180 and 60 air samples collected from air-conditioned buses and open-air buses were cultured for bacterial and fungal counts. The bus drivers who drove the studied buses were interviewed towards histories of work-related illness while working. The results revealed that the mean +/- SD of bacterial counts in the studied open-air buses ranged from 358.50 +/- 146.66 CFU/m3 to 506 +/- 137.62 CFU/m3; bus number 16 had the highest level. As well as the mean +/- SD of fungal counts which ranged from 93.33 +/- 44.83 CFU/m3 to 302 +/- 294.65 CFU/m3; bus number 166 had the highest level. Whereas, the mean +/- SD of bacterial counts in the studied air-conditioned buses ranged from 115.24 +/- 136.01 CFU/m3 to 244.69 +/- 234.85 CFU/m3; bus numbers 16 and 67 had the highest level. As well as the mean +/- SD of fungal counts which rangedfrom 18.84 +/- 39.42 CFU/m3 to 96.13 +/- 234.76 CFU/m3; bus number 166 had the highest level. When 180 and 60 studied air samples were analyzed in detail, it was found that 33.33% of the air samples from open-air buses and 6.11% of air samples from air-conditioned buses had a high level of bacterial counts (> 500 CFU/m3) while 6.67% of air samples from open-air buses and 2.78% of air samples from air-conditioned buses had a high level of fungal counts (> 500 CFU/m3). Data from the history of work-related illnesses among the studied bus drivers showed that 91.67% of open-air bus drivers and 57.28% of air-conditioned bus drivers had

  15. Fine particles (PM2.5) in ambient air of Lucknow city due to fireworks on Diwali festival.

    PubMed

    Barman, S C; Singh, Ramesh; Negi, M P S; Bhargava, S K

    2009-09-01

    People burn crackers world over on different occasions in different countries to express their happiness. Fireworks in large amounts aggravate the level of air pollutants and cause significant short-term air quality degradation with possible impact on human health. Fine particles (PM2.5 < or = 2.5 microm), which may pose detrimental effects on human health and ecosystems were monitored in a residential area of Lucknow city to assess the elevated level due to bursting of firecrackers during Diwali festival. The 24 hr mean PM2.5 of normal day, pre Diwali day, Diwali day and post Diwali day was found to be 124, 154, 352 and 174 microg m(-3) respectively and much above the US-EPA limit (65 microg m(-3)). The 12 hr mean concentration of PM2.5 on Diwali night (591 microg m(-3)) increased 3.9 fold than the respective night of normal day (159 microg m(-3)) and was significantly higher (p<0.01) than normal day and pre and post Diwali night. Mean comparison showed that Diwali day was significantly (p<0.01) different from others (except post Diwali day) and for this high accumulation during night time, after fireworks (suspension) was found to be more responsible than the period of lighting of crackers (formation). This study indicated that there is high accumulation of PM2.5 generated due to fireworks on Diwali festival which remains suspended in the air for up to 20 hr During this period, extra mass burden of 289 microg m(-3) equivalent to 1.9 normal day (of this study) was imposed in the environment. The short-term high accumulation of PM2.5 is a matter of serious concern for city dwellers as it can penetrate deep into the lungs and cause many respiratory and cardiovascular diseases.

  16. A framework for assessing risk reduction due to DNAPL mass removal from low permeability soils

    SciTech Connect

    Freeze, R.A.; McWhorter, D.B.

    1996-08-01

    Many emerging remediation technologies are designed to remove contaminant mass from source zones at DNAPL sites in response to regulatory requirements. There is often concern in the regulated community as to whether mass removal actually reduces risk, or whether the small risk reductions achieved warrant the large costs incurred. This paper sets out a framework for quantifying the degree to which risk is reduced as mass is removed from shallow, saturated, low-permeability, dual-porosity, DNAPL source zones. Risk is defined in terms of meeting an alternate concentration level (ACL) at a compliance well in an aquifer underlying the source zone. The ACL is back-calculated from a carcinogenic health-risk characterization at a downstream water-supply well. Source-zone mass-removal efficiencies are heavily dependent on the distribution of mass between media (fractures, matrix) and phases (dissolved, sorbed, free product). Due to the uncertainties in currently-available technology performance data, the scope of the paper is limited to developing a framework for generic technologies rather than making risk-reduction calculations for specific technologies. Despite the qualitative nature of the exercise, results imply that very high mass-removal efficiencies are required to achieve significant long-term risk reduction with technology, applications of finite duration. 17 refs., 7 figs., 6 tabs.

  17. RADIOLOGICAL RELEASES DUE TO AIR AND SILICA DUST ACTIVATION IN EMPLACEMENT DRIFTS

    SciTech Connect

    J.S. Tang

    2003-05-07

    The purpose of this calculation is to determine the quantity and significance of annual Monitored Geologic Repository (MGR) subsurface normal radiological releases due to neutron activation of air and silica dust in emplacement drifts. This calculation includes the following items: (1) Calculate activation of ventilation airflow through emplacement drifts to quantify radioactive gaseous releases; and (2) Calculate the bounding potential activated silica dust concentration and releases. The sources of silica dust may arise from air supply to emplacement drifts as well as host rock around emplacement drifts. For this calculation, the source of dust is conservatively assumed to be the host rock (Assumption 3.6), which is subject to long-term neutron exposure resulting in saturated radioactivity. The scope of this calculation is limited to releases from activated air and silica dust only, excluding natural radioactive releases such as radon or releases from defective waste packages (breached or contaminated). This work supports the repository ventilation system design and Preclosure Safety Analysis. This includes MGR items classified as Quality Level 1, for example, the Uncanistered Spent Nuclear Fuel Waste Package (CRWMS M&O [Civilian Radioactive Waste Management and Operation Contractor] 1999a, page 7). Therefore, this calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE [U.S. Department of Energy] 2003). The performance of the calculation and development of this document are carried out in accordance with AP-3.12Q, ''Design Calculation and Analyses'' and LP-3.30Q-BSC, ''Hazards Analysis System''.

  18. Dynamic analysis of a BLDC motor with mechanical and electromagnetic interaction due to air gap variation

    NASA Astrophysics Data System (ADS)

    Im, Hyungbin; Yoo, Hong Hee; Chung, Jintai

    2011-04-01

    In this study, the dynamic behaviors of a BLDC motor are analyzed, when the motor undergoes mechanical and electromagnetic interaction due to an air gap variation between the stator and rotor. When considering the air gap variation caused by the translational motion of the rotor relative to the stator, the kinetic and potential energies, Rayleigh dissipation function, and the magnetic coenergy are expressed in terms of the rotor displacements and stator currents. With these energies and function, new equations of motion are derived using Lagrange's equation. The equations for the proposed model are nonlinear equations in which the displacements and currents are coupled. The time responses for the displacements and currents are computed for the proposed and previous models. Furthermore, the effects of rotor eccentricity are also investigated. It is found that, when the air gap varies with time, the time responses for the proposed and previous models have small differences in the stator currents, electromagnetic torques, and rotating speeds. However, the time responses have large differences in the rotor displacements. Therefore, this paper claims that the proposed model describes the dynamic behaviors of the motor more accurately than the previous model. It is also shown that rotor eccentricity increases the stator current period and the electromagnetic torque, while it decreases the rotating speed of the rotor.

  19. Impacts on ambient air quality due to flaring activities in one of Oman's oilfields.

    PubMed

    Abdul-Wahab, Sabah; Ali, Sappurd; Sardar, Sabir; Irfan, Naseem

    2012-01-01

    This work was conducted to assess the impacts on workplace and ambient air quality due to release of sulfur dioxide (SO(2)) into the atmosphere at Al-Noor production station, located in southern desert of Sultanate of Oman. The SO(2) is released because of oxidation of H(2)S to SO(2) on flaring of H(2)S rich off gas at the Al-Noor. In the first phase of the study, CALPUFF modeling system was used to predict the ground level concentrations of SO(2) emissions from the flare stacks. The evaluation of the modeling system was carried out by comparing the predicted results with that of the measured. In the second stage of the study, the estimated results were compared with the air quality standards/guidelines set by Omani regulatory authorities as well as by World Health Organization (WHO). It was concluded on the basis of current study that the sensitive individuals in the workplace of the Al-Noor could experience adverse health effects due to short-term exposure of SO(2).

  20. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis.

    PubMed

    Giannopoulos, G; Larcher, M; Casadei, F; Solomos, G

    2010-01-15

    Terrorist attacks in New York have shocked the world community showing clearly the vulnerability of air transport in such events. However, the terrorist attacks in Madrid and London showed that land mass transport infrastructure is equally vulnerable in case of similar attacks. The fact that there has not been substantial investment in the domain of risk analysis and evaluation of the possible effects due to such events in land mass transportation infrastructure leaves large room for new developments that could eventually fill this gap. In the present work using the finite element code EUROPLEXUS there has been a large effort to perform a complete study of the land mass infrastructure in case of explosion events. This study includes a train station, a metro station and a metro carriage providing thus valuable simulation data for a variety of different situations. For the analysis of these structures it has been necessary to apply a laser scanning method for the acquisition of geometrical data, to improve the simulation capabilities of EUROPLEXUS by adding failure capabilities for specific finite elements, to implement new material models (e.g. glass), and to add new modules that achieve data post-processing for the calculation of fatal and non-fatal injuries risk. The aforementioned improvements are explained in the present work with emphasis in the newly developed risk analysis features of EUROPLEXUS.

  1. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  2. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  3. Occupational exposure to particulate air pollution and mortality due to ischaemic heart disease and cerebrovascular disease

    PubMed Central

    Torén, Kjell; Bergdahl, Ingvar A; Nilsson, Tohr; Järvholm, Bengt

    2007-01-01

    Objectives A growing number of epidemiological studies are showing that ambient exposure to particulate matter air pollution is a risk factor for cardiovascular disease; however, whether occupational exposure increases this risk is not clear. The aim of the present study was to examine whether occupational exposure to particulate air pollution increases the risk for ischaemic heart disease and cerebrovascular disease. Methods The study population was a cohort of 176 309 occupationally exposed Swedish male construction workers and 71 778 unexposed male construction workers. The definition of exposure to inorganic dust (asbestos, man‐made mineral fibres, dust from cement, concrete and quartz), wood dust, fumes (metal fumes, asphalt fumes and diesel exhaust) and gases and irritants (organic solvents and reactive chemicals) was based on a job‐exposure matrix with focus on exposure in the mid‐1970s. The cohort was followed from 1971 to 2002 with regard to mortality to ischaemic heart disease and cerebrovascular disease. Relative risks (RR) were obtained by the person‐years method and from Poisson regression models adjusting for baseline values of blood pressure, body mass index, age and smoking habits. Results Any occupational particulate air pollution was associated with an increased risk for ischemic heart disease (RR 1.13, 95% CI 1.07 to 1.19), but there was no increased risk for cerebrovascular disease (RR 0.97, 95% CI 0.88 to 1.07). There was an increased risk for ischaemic heart disease and exposure to inorganic dust (RR 1.07, 95% CI 1.03 to 1.12) and exposure to fumes (RR 1.05, 95% CI 1.00 to 1.10), especially diesel exhaust (RR 1.18, 95% CI 1.13 to 1.24). There was no significantly increased risk for cerebrovascular disease and exposure to inorganic dust, fumes or wood dust. Conclusions Occupational exposure to particulate air pollution, especially diesel exhaust, among construction workers increases the risk for ischaemic heart disease. PMID

  4. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    SciTech Connect

    Pescatore, C.; Sullivan, T.M.

    1992-02-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated.

  5. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  6. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy.

    PubMed

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A

    2016-12-14

    Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM2.5) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (rS>0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).Journal of Exposure Science and Environmental Epidemiology advance online publication, 14 December 2016; doi:10.1038/jes.2016.66.

  7. Soft X-ray radiation due to a nanosecond diffuse discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2010-02-01

    A source of soft X-rays with an effective photon energy of 9 keV and a subnanosecond pulse width is built around a gas diode filled with atmospheric-pressure air and a UAEB-150 generator. A collector placed behind a grounded mesh electrode detects an electron beam and a pulse with positive polarity, the latter being due to an electric field surrounding the mesh. It is shown that the intensity of soft X-rays from the gas-diode-based source depends on the material of a massive potential anode; namely, it grows with an increase in the atomic number of the cathode material. In the case of a tantalum anode, X-ray photons with an effective energy of 9 and 17 keV contribute to the exposure dose.

  8. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  9. Path Integral Computation of Quantum Free Energy Differences Due to Alchemical Transformations Involving Mass and Potential.

    PubMed

    Pérez, Alejandro; von Lilienfeld, O Anatole

    2011-08-09

    Thermodynamic integration, perturbation theory, and λ-dynamics methods were applied to path integral molecular dynamics calculations to investigate free energy differences due to "alchemical" transformations. Several estimators were formulated to compute free energy differences in solvable model systems undergoing changes in mass and/or potential. Linear and nonlinear alchemical interpolations were used for the thermodynamic integration. We find improved convergence for the virial estimators, as well as for the thermodynamic integration over nonlinear interpolation paths. Numerical results for the perturbative treatment of changes in mass and electric field strength in model systems are presented. We used thermodynamic integration in ab initio path integral molecular dynamics to compute the quantum free energy difference of the isotope transformation in the Zundel cation. The performance of different free energy methods is discussed.

  10. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  11. Excitation of the earth's polar motion due to mass variations in major hydrological reservoirs

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong

    1988-01-01

    The polar motion excitation caused by variations in major natural lakes, the impoundment in artificial reservoirs, and the depletion of a major groundwater aquifer is calculated. It is found that the annual water mass variation in natural lakes contributes a significant fraction in the total hydrological excitation of the annual wobble and that the hydrological reservoirs have been negligible in the Chandler wobble excitation. It is also shown that the contribution of hydrological reservoirs to the total secular polar drift has been negligible in the century due to fortuitous cancellation among reservoirs.

  12. Impact of maritime air mass trajectories on the Western European coast urban aerosol.

    PubMed

    Almeida, S M; Silva, A I; Freitas, M C; Dzung, H M; Caseiro, A; Pio, C A

    2013-01-01

    Lisbon is the largest urban area in the Western European coast. Due to this geographical position the Atlantic Ocean serves as an important source of particles and plays an important role in many atmospheric processes. The main objectives of this study were to (1) perform a chemical characterization of particulate matter (PM2.5) sampled in Lisbon, (2) identify the main sources of particles, (3) determine PM contribution to this urban area, and (4) assess the impact of maritime air mass trajectories on concentration and composition of respirable PM sampled in Lisbon. During 2007, PM2.5 was collected on a daily basis in the center of Lisbon with a Partisol sampler. The exposed Teflon filters were measured by gravimetry and cut into two parts: one for analysis by instrumental neutron activation analysis (INAA) and the other by ion chromatography (IC). Principal component analysis (PCA) and multilinear regression analysis (MLRA) were used to identify possible sources of PM2.5 and determine mass contribution. Five main groups of sources were identified: secondary aerosols, traffic, calcium, soil, and sea. Four-day backtracking trajectories ending in Lisbon at the starting sampling time were calculated using the HYSPLIT model. Results showed that maritime transport scenarios were frequent. These episodes were characterized by a significant decrease of anthropogenic aerosol concentrations and exerted a significant role on air quality in this urban area.

  13. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  14. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  15. Efficient modelling of gravity effects due to topographic masses using the Gauss-FFT method

    NASA Astrophysics Data System (ADS)

    Wu, Leyuan

    2016-04-01

    We present efficient Fourier-domain algorithms for modelling gravity effects due to topographic masses. The well-known Parker's formula originally based on the standard fast Fourier transform (FFT) algorithm is modified by applying the Gauss-FFT method instead. Numerical precision of the forward and inverse Fourier transforms embedded in Parker's formula and its extended forms are significantly improved by the Gauss-FFT method. The topographic model is composed of two major aspects, the geometry and the density. Versatile geometric representations, including the mass line model, the mass prism model, the polyhedron model and smoother topographic models interpolated from discrete data sets using high-order splines or pre-defined by analytical functions, in combination with density distributions that vary both laterally and vertically in rather arbitrary ways following exponential or general polynomial functions, now can be treated in a consistent framework by applying the Gauss-FFT method. The method presented has been numerically checked by space-domain analytical and hybrid analytical/numerical solutions already established in the literature. Synthetic and real model tests show that both the Gauss-FFT method and the standard FFT method run much faster than space-domain solutions, with the Gauss-FFT method being superior in numerical accuracy. When truncation errors are negligible, the Gauss-FFT method can provide forward results almost identical to space-domain analytical or semi-numerical solutions in much less time.

  16. Fatal postpartum air embolism due to uterine inversion and atonic hemorrhage.

    PubMed

    Banaschak, Sibylle; Janßen, Katharina; Becker, Katrin; Friedrich, Krischan; Rothschild, Markus A

    2014-01-01

    We report a case of a 19-year-old woman who developed a persistent uterine hemorrhage after spontaneous delivery of a healthy child. Emergency laparotomy was indicated and then begun under stable circulatory conditions. Cardiac arrest occurred during the course of massive manual compression and packing of the uterus. After successful resuscitation, a supracervical hysterectomy was performed. During the suturing of the remaining cervix, a second cardiac arrest followed. The procedure was completed under constant external heart massage. Resuscitation was terminated due to the persistence of widened pupils. An autopsy was ordered by the public prosecutor as the manner of death was declared to be unascertained. An X-ray and a CT scan prior to the autopsy showed extensive gas embolism in both arterial and venous vessels extending from the pelvic region to the head. During the autopsy, gas was collected by aspirometer from the right ventricle of the heart. The autopsy showed no additional relevant findings, and gas analysis confirmed the suspicion of air embolism. The histological examination of the excised uterus especially in the corpus/fundus revealed an edema of the local smooth muscle cells and dilated vessels showing no sign of thrombogenesis. Upon evaluation of the clinical records, it became evident that, in addition to uterine atony, there had been a complete uterine inversion. This inversion was manually repositioned. After this maneuver, manual compression was performed. The air embolism, thus, was a complication of the manual repositioning of the uterine inversion. There is no evidence for other possible entries of the detected gas. In order to perform an effective exploration, the availability of all clinical records should be mandatory for medico-legal investigations of unexpected postpartum deaths.

  17. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  18. Death, Disease, and Dirty Power. Mortality and health damage due to air pollution from power plants

    SciTech Connect

    Schneider, Conrad G.

    2000-10-01

    The Clean Air Task Force, on behalf of the Clear the Air campaign, commissioned Abt Associates to quantify the health impacts of fine particle air pollution, commonly known as soot, from power plants, as well as the expected benefits (avoidable deaths, hospitalizations, etc.) of policies that would reduce fine particle pollution from power plants. The health effects analyzed include death, hospitalizations, emergency room visits, asthma attacks, and a variety of lesser respiratory symptoms. This report summarizes the findings of the Abt Associates study, reviews the contribution of power plants to fine particle pollution, and discusses policies that will reduce power plant fine particle pollution and thus save thousands of lives. Key findings include: Fine particle pollution from US power plants cuts short the lives of over 30,000 people each year. In more polluted areas, fine particle pollution can shave several years off its victims' lives. Hundreds of thousands of Americans suffer from asthma attacks, cardiac problems and upper and lower respiratory problems associated with fine particles from power plants. The elderly, children, and those with respiratory disease are most severely impacted by fine particle pollution from power plants. Metropolitan areas with large populations near coal-fired power plants feel their impacts most acutely - their attributable death rates are much higher than in areas with few or no coal-fired power plants. Power plants outstrip all other polluters as the largest source of sulfates - the major component of fine particle pollution - in the US Approximately two-thirds (over 18,000) of the deaths due to fine particle pollution from power plants could be avoided by implementing policies that cut power plant sulfur dioxide and nitrogen oxide pollution 75 percent below 1997 emission levels. Fine particle pollution is responsible for increased risk of death and shortened life spans. Abt Associates' findings are based on a body of well

  19. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    SciTech Connect

    Yoo, Jong Hyun

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  20. Cerebral Venous Air Embolism due to a Hidden Skull Fracture Secondary to Head Trauma

    PubMed Central

    Hosaka, Ai; Yamaguchi, Tetsuto; Yamamoto, Fumiko; Shibagaki, Yasuro

    2015-01-01

    Cerebral venous air embolism is sometimes caused by head trauma. One of the paths of air entry is considered a skull fracture. We report a case of cerebral venous air embolism following head trauma. The patient was a 55-year-old man who fell and hit his head. A head computed tomography (CT) scan showed the air in the superior sagittal sinus; however, no skull fractures were detected. Follow-up CT revealed a fracture line in the right temporal bone. Cerebral venous air embolism following head trauma might have occult skull fractures even if CT could not show the skull fractures. PMID:26693366

  1. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  2. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Perliski, Lori M.; Solomon, Susan

    1993-01-01

    The interpretation of UV-visible twilight absorption measurements of atmospheric chemical constituents is dependent on how well the optical path, or air mass factor, of light collected by the spectrometer is understood. A simple single scattering model and a Monte Carlo radiative transfer scheme have been developed to study the effects of multiple scattering, aerosol scattering, surface albedo and refraction on air mass factors for scattered light observations. At fairly short visible wavelengths (less than about 450 nm), stratospheric air mass factors are found to be relatively insensitive to multiple scattering, surface albedo and refraction, as well as aerosol scattering by background aerosols. Longer wavelengths display greater sensitivity to refraction and aerosol scattering. Tropospheric air mass factors are found to be highly dependent on aerosol scattering, surface albedo and, at long visible wavelengths (about 650 nm), refraction. Absorption measurements of NO2 and O4 are shown to support these conclusions.

  3. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  4. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  5. Transfer of mass from Io to Europa and beyond due to cometary impacts

    NASA Astrophysics Data System (ADS)

    Alvarellos, José Luis; Zahnle, Kevin J.; Dobrovolskis, Anthony R.; Hamill, Patrick

    2008-04-01

    We simulate the production and orbital evolution of escaping ejecta due to cometary impacts on Io. The model includes the four Galilean satellites, Amalthea, Thebe, Jupiter's gravitational moments, Saturn and the Sun. Five scenarios are examined: an impact at the apex, the sub-jovian point, the anti-jovian point, the antapex, and at the south pole of Io. We estimate that on average a cometary impact injects thrice its mass (in the form of Io surface material) into jovicentric orbit. The majority of the escaping debris comes back to Io, but a sizeable fraction (between 5.0 and 8.7%) manages to reach Europa, and a smaller fraction Ganymede (between 1.5 and 4.6%). Smaller fractions reached Amalthea Thebe, Callisto, and Jupiter itself. For million year time scales, the mass transfer to Europa is estimated as 1.8-3.1×10 g/Myr. The median time for transfer of ejecta from Io to Europa is ˜56 years.

  6. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans.

    PubMed

    Luksamijarulkul, Pipat; Arunchai, Nongphon; Luksamijarulkul, Soavalug; Kaewboonchoo, Orawan

    2005-07-01

    The air quality in air-conditioned mass transport buses may affect bus drivers' health. In-bus air quality improvement with the voluntary participation of bus drivers by opening the exhaust ventilation fans in the bus was implemented in the Seventh Bus Zone of Bangkok Mass Transit Authority. Four bus numbers, including bus numbers 16, 63, 67 and 166, were randomly selected to investigate microbial air quality and to observe the effect of opening the exhaust ventilation fans in the bus. With each bus number, 9 to 10 air-conditioned buses (total, 39 air-conditioned buses) were included. In-bus air samples were collected at 5 points in each studied bus using the Millipore Air Tester. A total of 195 air samples were cultured for bacterial and fungal counts. The results reveal that the exhaust ventilation fans of 17 air-conditioned buses (43.6%) were opened to ventilate in-bus air during the cycle of the bus route. The means +/- SD of bacterial counts and fungal counts in the studied buses with opened exhaust ventilation fans (83.8 +/- 70.7 and 38.0 +/- 42.8 cfu/m3) were significantly lower than those in the studied buses without opened exhaust ventilation fans (199.6 +/- 138.8 and 294.1 +/- 178.7 cfu/m3), p < 0.0005. All the air samples collected from the studied buses with opened exhaust ventilation fans were at acceptable levels (< 500 cfu/m3) compared with 4.6% of the air samples collected from the studied buses without opened exhaust ventilation fans, which had high levels (> 500 cfu/m3). Of the studied buses with opened exhaust ventilation fans (17 buses), the bacterial and fungal counts after opening the exhaust ventilation fans (68.3 +/- 33.8 and 28.3 +/- 19.3 cfu/m3) were significantly lower than those before opening the exhaust ventilation fans (158.3 +/- 116.9 and 85.3 +/- 71.2 cfu/m3), p < 0.005.

  7. Analysis of tropospheric scintillation due to clear-air and meteorological elements on slant microwave links

    NASA Astrophysics Data System (ADS)

    Yang, Ruike; Wu, ZhenSen; Li, Yingle

    2003-04-01

    Analysis of log-amplitude scintillation due to troposphere clear-air turbulent and meteorological parameters variation is shown at microwaves (MW) on slant paths, based on ITU-R turbulence atmosphere structure parameter, temperature and relative humidity along vertical path. Comparisons of Karasawa model based on the data obtained from a low-elevation microwave propagation experiment and ITU-R Recommendation model prediction results with evaluation results are shown and discussed. The results show that although the relative humidity effected on optical refractive index of a cell is not principally element at optical wave band, at microwave and millimeter-wave band, the relative humidity and temperature is the major factor impacted on log-amplitude scintillation. Hence, the variations of temperature and relative humidity with height, which can be obtained by experiment (or test) and weather observation method is important for low-elevation satellite communication and microwave remote sensing. A atmosphere structure constant Cn2 model, which varies with height, is presented based on ITU-R and Karasawa amplitude scintillation model, existing ITU-R Cn2 model for optical and meteorologic measured relative humidity and temperature data, at 10~30GHz. In this Cn2 model it is considered that relative humidity and temperature varies with height. The log-amplitude scintillation deviation calculated in terms of the Cn2 model based on humidity and temperature vertical profile compare with values predicted by means of ITU-R and Ortgies model applied to Italsat channels. It is emerged that the calculation results based on the Cn2 model agree almost with prediction results by ITU-R and Ortgies model at 10~30GHz and there is an advantage that relative humidity and temperature varied with height has be considered in the Cn2 model. Therefore, it is shown that the Cn2 model is usable and is more practical.

  8. Recurrent tense pneumoperitoneum due to air influx via abdominal wall stoma of a PEG tube.

    PubMed

    Vijayakrishnan, Rajakrishnan; Adhikari, Deep; Anand, Curuchi P

    2010-07-28

    A 70 years old male on ventilatory and circulatory support for sepsis and non ST segment elevation myocardial infarction developed abdominal distension 14 d after placement of a percutaneous endoscopic gastrostomy tube for enteral feeding. Radiography revealed free air in the abdomen and gastrograffin (G) study showed no extravasation into the peritoneum. The G tube was successfully repositioned with mechanical release of air. Imaging showed complete elimination of free air but the patient had a recurrence of pneumoperitoneum. Mechanical release of air with sealing of the abdominal wound was performed. Later, the patient was restarted on tube feeding with no complications. This case demonstrates a late complication of pneumoperitoneum with air leakage from the abdominal wall stoma.

  9. Monolithic mass sensor fabricated using a conventional technology with attogram resolution in air conditions

    NASA Astrophysics Data System (ADS)

    Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; Pérez-Murano, F.; Fraxedas, J.; Esteve, J.; Barniol, N.

    2007-07-01

    Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10-11g/cm2Hz equivalent to 0.9ag/Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10-17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.

  10. Peroxy radicals and ozone photochemistry in air masses undergoing long-range transport

    NASA Astrophysics Data System (ADS)

    Parker, A. E.; Monks, P. S.; Jacob, M. J.; Penkett, S. A.; Lewis, A. C.; Stewart, D. J.; Whalley, L. K.; Methven, J.; Stohl, A.

    2009-09-01

    Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.

  11. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007–2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12–3.06%), 3.45% (95% CI: 1.30–5.66%) and 2.35% (95% CI: 0.42–4.32%) increase of COPD mortality over a lag of 0–15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02–9.58%), 12.71% (95% CI: 5.03–19.85%) and 13.38% (95% CI: 2.67–22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  12. The burden of COPD mortality due to ambient air pollution in Guangzhou, China.

    PubMed

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-19

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007-2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m(3) in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12-3.06%), 3.45% (95% CI: 1.30-5.66%) and 2.35% (95% CI: 0.42-4.32%) increase of COPD mortality over a lag of 0-15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02-9.58%), 12.71% (95% CI: 5.03-19.85%) and 13.38% (95% CI: 2.67-22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  13. A Synoptic Air Mass Approach to Defining Southwest U.S. Summer Duration and Change

    NASA Astrophysics Data System (ADS)

    Morrill, C.; Wachtel, C. J.; Godek, M. L.

    2015-12-01

    As the past decade was the warmest in the 110-year active record, and future Southwest warming is expected to be most intense in the summer season, it is important to have an updated atmospheric definition of what constitutes a Southwest summer. This is particularly true given the intensity of current drought conditions and that summers may be changing. Using weather-type data from the Spatial Synoptic Classification, this research aims to synoptically define the summer season in the Southwest since 1950. The Southwest is spatially described here by sub-region and 28 air mass stations within are chosen for air mass analysis. Daily air mass frequencies are examined to determine the dominant and less prevalent types annually and seasonally, from May to September. Then, frequencies in the middle of summer are compared to those in the seasonal fringe months to explore the possibility of a synoptic shift in the timing of the region's summer season. Finally, to further scrutinize how regional air mass frequencies have changed with time, the data are subdivided and evaluated for the 'Early record' (years prior to 1975) and 'Modern record' (post 1975). Frequency departures are tested for practical and statistical significance to characterize the strength of summer season variability. Results indicate that Dry Moderate air masses are the most common annually and in summer. Moist and transitional air masses tend to less frequent throughout the Southwest; however, frequencies vary greatly by sub-region. Wet and dry conditions are observed in accordance with the monsoon in some sub-regions, but not throughout the region. Significant changes in sub-regional air mass tendencies are identified that show the Early record experienced cooler air mass conditions (fewer tropical types and more moderate and cool types) than the Modern record. From a long-term synoptic air mass perspective, typical Southwest summers likely last from May to August. However, in the Modern record May

  14. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    PubMed Central

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-01-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007–2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12–3.06%), 3.45% (95% CI: 1.30–5.66%) and 2.35% (95% CI: 0.42–4.32%) increase of COPD mortality over a lag of 0–15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02–9.58%), 12.71% (95% CI: 5.03–19.85%) and 13.38% (95% CI: 2.67–22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou. PMID:27195597

  15. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia

    PubMed Central

    Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.

    2016-01-01

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality. PMID:27848989

  16. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G. B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D. V.

    2016-11-01

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153–17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  17. Dynamic water behaviour due to one trapped air pocket in a laboratory pipeline apparatus

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Karadžić, U.; Tijsseling, A.

    2016-11-01

    Trapped air pockets may cause severe operational problems in hydropower and water supply systems. A locally isolated air pocket creates distinct amplitude, shape and timing of pressure pulses. This paper investigates dynamic behaviour of a single trapped air pocket. The air pocket is incorporated as a boundary condition into the discrete gas cavity model (DGCM). DGCM allows small gas cavities to form at computational sections in the method of characteristics (MOC). The growth of the pocket and gas cavities is described by the water hammer compatibility equation(s), the continuity equation for the cavity volume, and the equation of state of an ideal gas. Isentropic behaviour is assumed for the trapped gas pocket and an isothermal bath for small gas cavities. Experimental investigations have been performed in a laboratory pipeline apparatus. The apparatus consists of an upstream end high-pressure tank, a horizontal steel pipeline (total length 55.37 m, inner diameter 18 mm), four valve units positioned along the pipeline including the end points, and a downstream end tank. A trapped air pocket is captured between two ball valves at the downstream end of the pipeline. The transient event is initiated by rapid opening of the upstream end valve; the downstream end valve stays closed during the event. Predicted and measured results for a few typical cases are compared and discussed.

  18. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia.

    PubMed

    Crippa, P; Castruccio, S; Archer-Nicholls, S; Lebron, G B; Kuwata, M; Thota, A; Sumin, S; Butt, E; Wiedinmyer, C; Spracklen, D V

    2016-11-16

    Vegetation and peatland fires cause poor air quality and thousands of premature deaths across densely populated regions in Equatorial Asia. Strong El-Niño and positive Indian Ocean Dipole conditions are associated with an increase in the frequency and intensity of wildfires in Indonesia and Borneo, enhancing population exposure to hazardous concentrations of smoke and air pollutants. Here we investigate the impact on air quality and population exposure of wildfires in Equatorial Asia during Fall 2015, which were the largest over the past two decades. We performed high-resolution simulations using the Weather Research and Forecasting model with Chemistry based on a new fire emission product. The model captures the spatio-temporal variability of extreme pollution episodes relative to space- and ground-based observations and allows for identification of pollution sources and transport over Equatorial Asia. We calculate that high particulate matter concentrations from fires during Fall 2015 were responsible for persistent exposure of 69 million people to unhealthy air quality conditions. Short-term exposure to this pollution may have caused 11,880 (6,153-17,270) excess mortalities. Results from this research provide decision-relevant information to policy makers regarding the impact of land use changes and human driven deforestation on fire frequency and population exposure to degraded air quality.

  19. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  20. Technology Solutions Case Study: Overcoming Comfort Issues Due to Reduced Flow Room Air Mixing

    SciTech Connect

    2015-03-01

    Energy efficiency upgrades reduce heating and cooling loads on a house. With enough load reduction and if the HVAC system warrants replacement, the HVAC system is often upgraded with a more efficient, lower capacity system that meets the loads of the upgraded house. In this project, IBACOS studied when HVAC equipment is downsized and ducts are unaltered to determine conditions that could cause a supply air delivery problem and to evaluate the feasibility of modifying the duct systems using minimally invasive strategies to improve air distribution.

  1. United States Air Force Role in Mass Atrocity Response Operations

    DTIC Science & Technology

    2012-05-17

    commands establish “off- the-shelf” plans for genocide-prone hot-spots around the world . These plans are crucial for two reasons. First , due to the...prevent or stop the occurrence of genocide. However, at the turn of the millennium, a movement was afoot in the world to change their policies. In... first case of genocide appeared in an international criminal tribunal.8 This 47- year void of action in the prevention or punishment of genocide was

  2. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  3. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  4. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Akyüz, Mehmet

    2008-05-01

    A gas chromatography-mass spectrometry (GC-MS) method has been proposed for the simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters (PMs). The method includes collection of the particulate matters (PM2.5 and PM10) using dichotomous Partisol 2025 sampler followed by extraction of the compounds into acidic solution, and pre-concentration of the compounds by percolating the air samples through the acidic solution, then ion-pair extraction of amines with bis-2-ethylhexylphosphate and derivatisation with isobutyl chloroformate prior to their GC-MS analysis in both electron impact and positive and negative ion chemical ionisation mode as their isobutyloxycarbonyl (isoBOC) derivatives. In the present study, ambient air and airborne particulate samples collected in Zonguldak province during summer and winter times of 2006-2007 were analysed for aliphatic and aromatic amines by the proposed method and the method was shown to be suitable for the simultaneous determination of these compounds at the levels of pg m-3 in air and airborne particulate samples. The seasonal distributions of bioactive amines in concentrations in ambient air and airborne PMs were evaluated as they are significant for the estimation of their effects on the environment and human health. The concentration levels of water soluble amines fluctuate significantly within a year with higher means and peak concentrations, probably due to the increased emissions from coal-fired domestic and central heating, in the winter times compared to the summer times. The results indicated that the relative amine content in particulates modulates with molecular mass and time of the year and the relative amine content especially in fine fractions of inhalable airborne particulates increases with the molecular mass of species but decreases with temperature.

  5. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  6. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    PubMed

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  7. Investigation of air pollution and regional climate change due to anthropogenic aerosols

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo

    2016-10-01

    Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. In particular, large cities in East Asia have experienced numerous heavy haze episodes. Atmospheric aerosol distributions in East Asia are complex, being influenced by both natural phenomena and human activity, with urban areas in particular being dominated by fine anthropogenic aerosols released from diesel-powered vehicles and industrial activity. In Japan, air pollution levels have been reduced; nevertheless, in recent years, there is increasing concern regarding air pollution caused by fine particulate matter. The origins of air pollution were examined, focusing on the comparison between aerosol properties observed from satellites and that on the ground. Because of their short life spans, concentrations of anthropogenic aerosols are highest over the source regions, and as a result, the climatic impacts of anthropogenic aerosols are also found to be most pronounced in these regions. In this study, aerosol impacts on climate are assessed by numerical model simulations. The direct effects of aerosols include reduced solar radiation, and hence a decrease in surface temperatures. In addition to these changes in the radiation budget, aerosols have a significant potential to change cloud and precipitation fields. These climatic responses to aerosols can manifest far from their source regions with high industrial activities.

  8. Numerical Simulation of Air Mass Modification Over the East China Sea during the Winter Season

    NASA Astrophysics Data System (ADS)

    Hsu, Wu-Ron

    Air mass modification over the East China Sea during cold air outbreaks in the winter season was simulated by utilizing a high-resolution numerical model. The model includes most of the major physical processes, such as, surface exchange of heat and moisture between water and air; condensation and evaporation; and vertical turbulent transfer of heat, moisture, and momentum. The simulated convective boundary layer (CBL) consists of a surface layer, a subcloud layer, and a cloud layer. It is capped by an inversion with strong temperature and moisture gradients. Mesoscale cellular convection (MCC) embedded within the convective layer moves along with the mean wind. The average aspect ratio of the cells is 17.5, which agrees with observed aspect ratios for convective cells over the East China Sea. The upward convective motion correlates very well with the appearance of clouds, higher temperature, and higher moisture content in the CBL. The effects of diabatic heating were found to be very important in driving the thermal convection. Without the release of latent heat, the convective layer would be very shallow, and the convective motion would be greatly suppressed. Even though the formulation and dissipation of a cloud is associated with the movement of the resolvable scale MCC, the vertical transport of heat and moisture is achieved mainly by the unresolvable turbulent eddies. The distribution of specific humidity during the passage of the surface front reveals the moisture being pushed upward along the frontal surface as observed. The cold and dry air behind the cold front is quickly modified by strong convection over the warm water surface, especially over the Kuroshio Current. A cloud-free region exists near the coast where the CBL is too shallow for clouds to develop. A layer of stratocumulus forms downstream from the cloud-free region. The depth of the CBL increases toward the Kuroshio Current due to strong heat and moisture fluxes from the water surface. The CBL

  9. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  10. Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities.

    PubMed

    Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit

    2014-02-01

    Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer.

  11. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  12. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-03-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimated the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization. We carried out high-resolution global model calculations to resolve urban and industrial regions in greater detail compared to previous work. We applied a health impact function to estimate premature mortality for people of 30 yr and older, using parameters derived from epidemiological cohort studies. Our results suggest that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have previously been underestimated. We calculate a global respiratory mortality of about 773 thousand yr-1 (YLL ≈ 5.2 million yr-1), 186 thousand yr-1 by lung cancer (YLL ≈ 1.7 million yr-1) and 2.0 million yr-1 by cardiovascular disease (YLL ≈ 14.3 million yr-1). The global mean per capita mortality caused by air pollution is about 0.1 % yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  13. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  14. Measurement of Planet Masses with Transit Timing Variations Due to Synodic “Chopping” Effects

    NASA Astrophysics Data System (ADS)

    Deck, Katherine M.; Agol, Eric

    2015-04-01

    Gravitational interactions between planets in transiting exoplanetary systems lead to variations in the times of transit that are diagnostic of the planetary masses and the dynamical state of the system. Here we show that synodic “chopping” contributions to these transit timing variations (TTVs) can be used to uniquely measure the masses of planets without full dynamical analyses involving direct integration of the equations of motion. We present simple analytic formulae for the chopping signal, which are valid (generally \\lt 10% error) for modest eccentricities e≲ 0.1. Importantly, these formulae primarily depend on the mass of the perturbing planet, and therefore the chopping signal can be used to break the mass/free-eccentricity degeneracy, which can appear for systems near first-order mean motion resonances. Using a harmonic analysis, we apply these TTV formulae to a number of Kepler systems, which had been previously modeled with full dynamical analyses. We show that when chopping is measured, the masses of both planets can be determined uniquely, in agreement with previous results, but without the need for numerical orbit integrations. This demonstrates how mass measurements from TTVs may primarily arise from an observable chopping signal. The formula for chopping can also be used to predict the number of transits and timing precision required for future observations, such as those made by TESS or PLATO, in order to infer planetary masses through analysis of TTVs.

  15. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  16. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  17. Modeling Study on Air Quality Improvement due to Mobile Source Emission control Plan in Seoul Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Sunwoo, Y.; Hwang, I.; Song, S.; Sin, J.; Kim, D.

    2015-12-01

    A very high population and corresponding high number of vehicles in the Seoul Metropolitan Area (SMA) are aggravating the air quality of this region. The Korean government continues to make concerted efforts to improve air quality. One of the major policies that the Ministry of Environment of Korea enforced is "The Special Act for Improvement of Air Quality in SMA" and "The 1st Air Quality Management Plan of SMA". Mobile Source emission controls are an important part of the policy. Thus, it is timely to evaluate the air quality improvement due to the controls. Therefore, we performed a quantitative analysis of the difference in air quality using the Community Multiscale Air Quality (CMAQ) model and December, 2011 was set as the target period to capture the impact of the above control plans. We considered four fuel-type vehicle emission scenarios and compared the air quality improvement differences between them. The scenarios are as follows: no-control, gasoline vehicle control only, diesel vehicle control only, and control of both; utilizing the revised mobile source emissions from the Clean Air Policy Support System (CAPSS), which is the national emission inventory reflecting current policy.In order to improve the accuracy of the modeling data, we developed new temporal allocation coefficients based on traffic volume observation data and spatially reallocated the mobile source emissions using vehicle flow survey data. Furthermore, we calculated the PM10 and PM2.5 emissions of gasoline vehicles which is omitted in CAPSS.The results of the air quality modeling shows that vehicle control plans for both gasoline and diesel lead to a decrease of 0.65ppb~8.75ppb and 0.02㎍/㎥~7.09㎍/㎥ in NO2 and PM10 monthly average concentrations, respectively. The large percentage decreases mainly appear near the center of the metropolis. However, the largest NO2 decrease percentages are found in the northeast region of Gyeonggi-do, which is the province that surrounds the

  18. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  19. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-07-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimate the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization (WHO). This is based upon high-resolution global model calculations that resolve urban and industrial regions in greater detail compared to previous work. Results indicate that 69% of the global population is exposed to an annual mean anthropogenic PM2.5 concentration of >10 μg m-3 (WHO guideline) and 33% to > 25 μg m-3 (EU directive). We applied an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global respiratory mortality of about 773 thousand/year (YLL ≈ 5.2 million/year), 186 thousand/year by lung cancer (YLL ≈ 1.7 million/year) and 2.0 million/year by cardiovascular disease (YLL ≈ 14.3 million/year). The global mean per capita mortality caused by air pollution is about 0.1% yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  20. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  1. Toward a better understanding of the impact of mass transit air pollutants on human health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern mass transit systems, based on roads, rail, water, and air, generate toxic airborne pollutants throughout the developed world. This has become one of the leading concerns about the use of modern transportation, particularly in densely-populated urban areas where their use is enormous and inc...

  2. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  3. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  4. Dose-response functions for the soiling of heritage materials due to air pollution exposure.

    PubMed

    Watt, John; Jarrett, David; Hamilton, Ron

    2008-08-01

    A set of materials (Portland limestone, white painted steel, white plastic and polycarbonate filter material) was exposed at locations in London, Athens and Krakow. Regular measurements of reflectance were taken over a period of twelve months. Co-located measurements of PM(10) concentrations were available. Based on these results, the relationship between soiling (measured as loss of reflectance) and ambient PM(10) concentrations was quantified leading to the development of dose-response functions for the soiling of materials. The results for limestone revealed too much scatter for a prediction to be made. Implications for air quality management and for the conservation of cultural heritage buildings are considered, including public acceptability and economic factors.

  5. Turbulent heat and mass transfers across a thermally stratified air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1986-01-01

    Rates of heat and mass transfer across an air-water interface were measured in a wind-wave research facility, under various wind and thermal stability conditions (unless otherwise noted, mass refers to water vapor). Heat fluxes were obtained from both the eddy correlation and the profile method, under unstable, neutral, and stable conditions. Mass fluxes were obtained only under unstable stratification from the profile and global method. Under unstable conditions the turbulent Prandtl and Schmidt numbers remain fairly constant and equal to 0.74, whereas the rate of mass transfer varies linearly with bulk Richardson number. Under stable conditions the turbulent Prandtl number rises steadily to a value of 1.4 for a bulk Richardson number of about 0.016. Results of heat and mass transfer, expressed in the form of bulk aerodynamic coefficients with friction velocity as a parameter, are also compared with field data.

  6. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  7. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink.

    PubMed

    Xavier, L J P; da Costa, D R; Chaves, A; Pereira, J M; Farias, G A

    2016-12-21

    We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term [Formula: see text] is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or [Formula: see text] valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

  8. Electronic confinement in graphene quantum rings due to substrate-induced mass radial kink

    NASA Astrophysics Data System (ADS)

    Xavier, L. J. P.; da Costa, D. R.; Chaves, A.; Pereira, J. M., Jr.; Farias, G. A.

    2016-12-01

    We investigate localized states of a quantum ring confinement in monolayer graphene defined by a circular mass-related potential, which can be induced e.g. by interaction with a substrate that breaks the sublattice symmetry, where a circular line defect provides a change in the sign of the induced mass term along the radial direction. Electronic properties are calculated analytically within the Dirac-Weyl approximation in the presence of an external magnetic field. Analytical results are also compared with those obtained by the tight-binding approach. Regardless of its sign, a mass term Δ is expected to open a gap for low-energy electrons in Dirac cones in graphene. Both approaches confirm the existence of confined states with energies inside the gap, even when the width of the kink modelling the mass sign transition is infinitely thin. We observe that such energy levels are inversely proportional to the defect line ring radius and independent on the mass kink height. An external magnetic field is demonstrated to lift the valley degeneracy in this system and easily tune the valley index of the ground state in this system, which can be polarized on either K or {{K}\\prime} valleys of the Brillouin zone, depending on the magnetic field intensity. Geometrical changes in the defect line shape are considered by assuming an elliptic line with different eccentricities. Our results suggest that any defect line that is closed in a loop, with any geometry, would produce the same qualitative results as the circular ones, as a manifestation of the topologically protected nature of the ring-like states investigated here.

  9. Ion beam induced surface patterns due to mass redistribution and curvature-dependent sputtering

    NASA Astrophysics Data System (ADS)

    Bobes, Omar; Zhang, Kun; Hofsäss, Hans

    2012-12-01

    Recently it was reported that ion-induced mass redistribution would solely determine nano pattern formation on ion-irradiated surfaces. We investigate the pattern formation on amorphous carbon thin films irradiated with Xe ions of energies between 200 eV and 10 keV. Sputter yield as well as number of displacements within the collision cascade vary strongly as function of ion energy and allow us to investigate the contributions of curvature-dependent erosion according to the Bradley-Harper model as well as mass redistribution according to the Carter-Vishnyakov model. We find parallel ripple orientations for an ion incidence angle of 60° and for all energies. A transition to perpendicular pattern orientation or a rather flat surface occurs around 80° for energies between 1 keV and 10 keV. Our results are compared with calculations based on both models. For the calculations we extract the shape and size of Sigmund's energy ellipsoid (parameters a, σ, μ), the angle-dependent sputter yield, and the mean mass redistribution distance from the Monte Carlo simulations with program SDTrimSP. The calculated curvature coefficients Sx and Sy describing the height evolution of the surface show that mass redistribution is dominant for parallel pattern formation in the whole energy regime. Furthermore, the angle where the parallel pattern orientation starts to disappear is related to curvature-dependent sputtering. In addition, we investigate the case of Pt erosion with 200 eV Ne ions, where mass redistribution vanishes. In this case, we observe perpendicular ripple orientation in accordance with curvature-dependent sputtering and the predictions of the Bradley-Harper model.

  10. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  11. MISR Aerosol Air Mass Type Mapping over Mega-City: Validation and Applications

    NASA Astrophysics Data System (ADS)

    Patadia, F.; Kahn, R. A.

    2010-12-01

    Most aerosol air-quality monitoring in mega-city environments is done from scattered ground stations having detailed chemical and optical sampling capabilities. Satellite instruments such as the Multi-angle Imaging SpectroRadiometer (MISR) can retrieve total-column Aerosol Optical Depth (AOD), along with some information about particle microphysical properties. Although the particle property information from MISR is much less detailed than that obtained from the ground sampling stations, the coverage is extensive, making it possible to put individual surface observations into the context of regional aerosol air mass types. This paper presents an analysis of MISR aerosol observations made coincident with aircraft and ground-based instruments during the INTEX-B field campaign. These detailed comparisons of satellite aerosol property retrievals against dedicated field measurements provide the opportunity to validate the retrievals quantitatively at a regional level, and help to improve aerosol representation in retrieval algorithms. Validation of MISR retrieved AOD and other aerosol properties over the INTEX-B study region in and around Mexico City will be presented. MISR’s ability to distinguish among aerosol air mass types will be discussed. The goal of this effort is to use the MISR aerosol property retrievals for mapping both aerosol air mass type and AOD gradients in mega-city environments over the decade-plus that MISR has made global observations.

  12. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn Charles

    1999-12-01

    -7, 10-5, and 10-5 respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10-5, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  13. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  14. Source areas and trajectories of nucleating air masses within and near the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Németh, Z.; Salma, I.

    2014-04-01

    Particle number size distributions were measured by differential mobility particle sizer in the diameter range of 6-1000 nm in the near-city background and city centre of Budapest continuously for two years. The city is situated in the middle part of the Carpathian Basin, which is a topographically discrete unit in the southeast Central Europe. Yearly mean nucleation frequencies and uncertainties for the near-city background and city centre were (28+6/-4) % and (27+9/-4) %, respectively. Total numbers of days with continuous and uninterrupted growth process were 43 and 31, respectively. These events and their properties were utilised to investigate if there are any specific tracks and/or separable source regions for the nucleating air masses within or near the basin. Local wind speed and direction data indicated that there seem to be differences between the nucleation and growth intervals and non-nucleation days. For further analysis, backward trajectories were generated by a simple air parcel trajectory model. Start and end time parameters of the nucleation, and end time parameter of the particle growth were derived by a standardized procedure based on examining the channel contents of the contour plots. These parameters were used to specify a segment on each air mass trajectory that is associated with the track of the nucleating air mass. The results indicated that the nucleation events happened in the continental boundary layer mostly within the Carpathian Basin but the most distant trajectories originated outside of the basin. The tracks of the nucleating air masses were predominantly associated with NW and SE geographical fields, while the source areas that could be separated were frequently situated in the NW and NE quarters. Many of them were within or close to large forested territories. The results also emphasize that the new particle formation and growth phenomenon that occurs in the region influences larger territories than the Carpathian Basin.

  15. Seasonal air and water mass redistribution effects on LAGEOS and Starlette

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roberto; Wilson, Clark R.

    1987-01-01

    Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.

  16. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.

  17. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  18. Estimating How Often Mass Extinctions Due to Impacts Occur on the Earth

    NASA Technical Reports Server (NTRS)

    Buratti, Bonnie J.

    2013-01-01

    This hands-on, inquiry based activity has been taught at JPL's summer workshop "Teachers Touch the Sky" for the past two decades. Students act as mini-investigators as they gather and analyze data to estimate how often an impact large enough to cause a mass extinction occurs on the Earth. Large craters are counted on the Moon, and this number is extrapolated to the size of the Earth. Given the age of the Solar System, the students can then estimate how often large impacts occur on the Earth. This activity is based on an idea by Dr. David Morrison, NASA Ames Research Center.

  19. Severe pneumonia due to Nocardia otitidiscaviarum identified by mass spectroscopy in a cotton farmer

    PubMed Central

    Liu, Chen; Feng, Mei; Zhu, Jing; Tao, Ye; Kang, Mei; Chen, Lei

    2017-01-01

    Abstract Rationale: Nocardia species are aerobic saprophytic bacilli. Among Nocardia species, Nocardia otitidiscaviarum (N otitidiscaviarum) is rarely reported in pulmonary infection. Patient concerns: We reported a case of N otitidiscaviarum pneumonia in a cotton farmer. Diagnoses: N otitidiscaviarum pneumonia was identified by mass spectroscopy. Interventions: Combined treatments (amikacin, imipenem and trimethoprim-sulfamethoxazole) were administered after identification of N otitidiscaviarum. Outcomes: The patient eventually died from severe respiratory insufficiency in the hospital. Lessons: Early precise diagnosis and prompt combined therapy are of vital importance in severe Nocardia pulmonary infection. PMID:28353613

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Mixing of stratospheric and tropospheric air-masses detected with CRISTA-NF during AMMA

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Guenther, G.; Hoffmann, L.; Konopka, P.; Riese, M.

    2009-04-01

    CRISTA-NF (CRyogenic Infrared Spectrometers and Telescopes for the Atmosphere - New Frontiers) is an infrared limb sounding instrument installed onbord the high-flying research aircraft M55-Geophysica and took part in the AMMA-SCOUT measurement campaign in Summer 2006. During the test flight on 29th of July 2006, CRISTA-NF detected a sharp boundary between ozone rich air over northernItaly and ozone poor air over southern Italy and the Mediterranean Sea. The structure is also clearly visible in the HNO3 distribution. The air mass boundary extends from about 10km altitude to the thermal tropopause at about 16km altitude with indication for mixing in the lower part of this altitude range. This is supported by enhanced values of PAN and water vapour found. The observed structure is also visible in the CLaMS (Chemical Lagrangian Model of the Stratosphere) ozone distribution but hardly resolved in ECMWF forecast data. Backward trajectories show that the ozone rich air is originated westwards, between 40 and 60oN while the ozone poor air is coming from the south-east, at about 0-20oN and has a younger age of air. In the presentation details of the CRISTA-NF measurements and retrieval procedures as well as the origin of the trace gas structures will be discussed.

  2. A Rare Case of an Early Postoperative Obstructive Ileus in a Young Female Patient due to a Residual Trichobezoar Mass

    PubMed Central

    Christopoulos, P.; Ross-Thriepland, S.; McCarthy, H.; Day, C. S.; Sasi, W.

    2016-01-01

    Trichobezoar is a rare cause of small bowel obstruction, whereby a mass forms most commonly in the stomach and duodenum of young females, from ingestion of hair, a condition known as trichophagia. We present a case of recurrent small bowel obstruction due to a residual hair mass that was removed surgically in a young female patient who had a laparotomy and gastrotomy for removal of a large gastric trichobezoar just two weeks prior to the current admission. This case illustrates the importance of a thorough inspection of the whole bowel to ensure that no residual bezoars remain after surgery. PMID:27148464

  3. Mass extinction of the marine biota at the Ordovician-Silurian transition due to environmental changes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2014-11-01

    The terminal Ordovician was marked by one of five great mass extinction events of the Phanerozoic (445.6-443.0 Ma ago), when up to 86% of the marine species became extinct. The rapid onset of the continental glaciation on Gondwana determined by its position in the South Pole area; the cooling; the hydrodynamic changes through the entire water column in the World Ocean; and the corresponding sea level fall, which was responsible for the reduction of shelf areas and shallow-water basins, i.e., the main ecological niche of the Ordovician marine biota, were main prerequisites of the stress conditions. Similar to other mass extinction events, these processes were accompanied by volcanism, impact events, a corresponding reduction of the photosynthesis and bioproductivity, the destruction of food chains, and anoxia. The appearance and development of terrestrial plants and microphytoplankton, which consumed atmospheric carbon dioxide, thus, diminishing the greenhouse effect and promoting the transition of the climatic system to the glacial mode, played a unique role in that period.

  4. Time-Variable Gravity Signal Due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Au, A. Y.; Cox, C. M.

    2002-01-01

    Cox and Chao [2002] reported the detection of a large anomaly in the form of a positive "jump" in the time series of Earth's lowest-degree gravity harmonic J2, or the dynamic oblateness, during 1998. This prompted us to examine the mass redistribution in the global oceans. We report here a seesaw of the sea-surface height (SSH) in the extratropic north + south Pacific basins -- the leading (nonseasonal) EOF/PC mode in SSH derived from the 10-year TOPEX/Poseidon altimetry data in the extratropic Pacific region. The mode underwent a step-like jump with time evolution that match remarkably well with the observed J2 anomaly. However, the magnitude is several times too small to explain the observed J2, even if assuming the SSH jump was all mass-induced (as opposed to any steric effect which causes no time-variable gravity signal). If one accepts the notion that this extratropic Pacific seesaw is part of the geophysical process that produced the observed 1998 J2 anomaly, then this finding suggests strong geophysical connection of the interannual-to-decadal variation of J2 with the Pacific Decadal Oscillation (PDO), as the time series of the above EOF/PC mode is actually a formally defined PDO Index series.

  5. Dose perturbations due to contrast medium and air in MammoSite registered treatment: An experimental and Monte Carlo study

    SciTech Connect

    Cheng, C.-W.; Mitra, R.; Allen Li, X.; Das, Indra J.

    2005-07-15

    In the management of early breast cancer, a partial breast irradiation technique called MammoSite registered (Proxima Therapeutic Inc., Alpharetta, GA) has been advocated in recent years. In MammoSite, a balloon implanted at the surgical cavity during tumor excision is filled with a radio-opaque solution, and radiation is delivered via a high dose rate brachytherapy source situated at the center of the balloon. Frequently air may be introduced during placement of the balloon and/or injection of the contrast solution into the balloon. The purpose of this work is to quantify as well as to understand dose perturbations due to the presence of a high-Z contrast medium and/or an air bubble with measurements and Monte Carlo calculations. In addition, the measured dose distribution is compared with that obtained from a commercial treatment planning system (Nucletron PLATO system). For a balloon diameter of 42 mm, the dose variation as a function of distance from the balloon surface is measured for various concentrations of a radio-opaque solution (in the range 5%-25% by volume) with a small volume parallel plate ion chamber and a micro-diode detector placed perpendicular to the balloon axis. Monte Carlo simulations are performed to provide a basic understanding of the interaction mechanism and the magnitude of dose perturbation at the interface near balloon surface. Our results show that the radio-opaque concentration produces dose perturbation up to 6%. The dose perturbation occurs mostly within the distances <1 mm from the balloon surface. The Plato system that does not include heterogeneity correction may be sufficient for dose planning at distances {>=}10 mm from the balloon surface for the iodine concentrations used in the MammoSite procedures. The dose enhancement effect near the balloon surface (<1 mm) due to the higher iodine concentration is not correctly predicted by the Plato system. The dose near the balloon surface may be increased by 0.5% per cm{sup 3} of air

  6. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  7. LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY

    SciTech Connect

    Bovy, Jo; Dvorkin, Cora

    2013-05-01

    We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses are believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.

  8. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE < 1.1 m s-1), however there was great sensitivity in SWE simulated by the snow models to the driving windflow simulation used. Specifically, there were distinct differences in the magnitude and location of snow drifts from all snow models that depended on the windflow scheme. When compared to measurements from airborne LiDAR, snow surveys, and automated snow depth

  9. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  10. Toward a better understanding of the impact of mass transit air pollutants on human health.

    PubMed

    Kim, Ki-Hyun; Kumar, Pawan; Szulejko, Jan E; Adelodun, Adedeji A; Junaid, Muhammad Faisal; Uchimiya, Minori; Chambers, Scott

    2017-05-01

    Globally, modern mass transport systems whether by road, rail, water, or air generate airborne pollutants in both developing and developed nations. Air pollution is the primary human health concern originating from modern transportation, particularly in densely-populated urban areas. This review will specifically focus on the origin and the health impacts of carbonaceous traffic-related air pollutants (TRAP), including particulate matter (PM), volatile organic compounds (VOCs), and elemental carbon (EC). We conclude that the greatest current challenge regarding urban TRAP is understanding and evaluating the human health impacts well enough to set appropriate pollution control measures. Furthermore, we provide a detailed discussion regarding the effects of TRAP on local environments and pedestrian health in low and high traffic-density environments.

  11. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  12. Variation of annual effective dose due to radon level in indoor air in Marwar region of Rajasthan, India

    SciTech Connect

    Rani, Asha; Mittal, Sudhir; Mehra, Rohit

    2015-08-28

    In the present work, indoor radon and thoron measurements have been carried out from different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India using RAD7, a solid state alpha detector. The radon and thoron concentration in indoor air varies from 8.75 to 61.25 Bq m{sup −3} and 32.7 to 147.2 Bq m{sup −3} with the mean value of 32 and 73 Bq m{sup −3} respectively. The observed indoor radon concentration values are well below the action level recommended by International Commission on Radiological Protection (200-300 Bq m{sup −3}) and Environmental Protection Agency (148 Bq m{sup −3}). The survey reveals that the thoron concentration values in the indoor air are well within the International Commission on Radiological Protection (2005). The calculated total annual effective dose due to radon level in indoor air varies from 0.22 to 1.54 mSv y{sup −1} with the mean value of 0.81 mSv y{sup −1} which is less than even the lower limit of action level 3-10 mSv y{sup −1} recommended by International Commission on Radiological Protection (2005)

  13. Reduced Arctic air pollution due to decreasing European and North American emissions

    NASA Astrophysics Data System (ADS)

    Mackie, Anna R.; Palmer, Paul I.; Barlow, James M.; Finch, Douglas P.; Novelli, Paul; Jaeglé, Lyatt

    2016-07-01

    Atmospheric transport of midlatitude pollutant emissions to the Arctic can result in disproportionate impacts on the receptor region. We use carbon monoxide (CO), a tracer of incomplete combustion, to study changes in pollutant transport to the Arctic. Using a wavelet transform, we spectrally decompose CO mole fraction measurements from three Arctic sites (Alert, Barrow, and Zeppelin) collected by NOAA over the past 20-25 years. We show that CO concentrations have decreased by -1.0 to -1.2 ppb/yr. We find that the dampened seasonal cycle (-1.2 to -2.3 ppb/yr) is mostly due to a reduction in peak concentrations (-1.5 to -2.4 ppb/yr), which we attribute to reduced source emissions. We find no evidence to support a persistent increase in hydroxyl radical concentration. Using the GEOS-Chem global 3-D chemistry transport model, we show that observed decreases are consistent with reductions in fossil fuel usage from Europe and North America.

  14. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  15. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  16. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity.

    PubMed

    Bugbee, B; Monje, O; Tanner, B

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  17. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  18. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  19. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  20. Is thermal scanner losing its bite in mass screening of fever due to SARS?

    PubMed

    Ng, Eddie Y K

    2005-01-01

    Severe acute respiratory syndrome (SARS) is a highly infectious disease caused by a coronavirus. Screening to detect a potential SARS infected person plays an important role in preventing the spread of SARS. The use of infrared thermal imaging cameras has been proposed as a noninvasive, speedy, cost effective and fairly accurate means for mass blind screening of potential SARS infected persons. Infrared thermography provides a digital image showing temperature patterns. This has been previously utilized in the detection of inflammation and nerve dysfunctions. It is believed that IR cameras can potentially be used to detect subjects with fever, the cardinal symptom of SARS, and avian influenza. The accuracy of the infrared system can, however, be affected by human, environmental, and equipment variables. It is also limited by the fact that the thermal imager measures the skin temperature and not the core body temperature. As known, the body determines a temperature as its so-called "set point" at any one time during the body temperature regulation. Fever happens if the hypothalamus detects pyrogens and then raises the set point. The time course of a typical fever can be divided into three stages. When the fever initiates, the body attempts to raise its temperature but vasoconstriction occurs to prevent heat loss through the skin. With this reason, some individuals at this stage of fever (at the rising slope and immediately after fever begins or falling slope after the fever breaks) will not be detected by the scanner if it is not designed to detect subject at the plateau of the fever (with her/his high core temperature) in particular. This paper aims to study the effectiveness of infrared systems for its application in mass blind screening to detect subjects with elevated body temperature. For this application, it is critical for thermal imagers to be able to identify febrile from normal subjects accurately. Minimizing the number of false positive and false negative

  1. Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information

    SciTech Connect

    Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael; O'Malley, Mark

    2009-03-18

    ignores the benefits of diversity. In real power systems, operators are required to balance only the net variations of all loads and all generators, not the output of individual loads or generators; doing otherwise would ensure an enormous amount of unnecessary investment and operating costs. As a result, detailed studies that aggregate the variability of all loads and generators to the system level find that the amount of operating reserves required to reliably integrate variable resources into the grid are on the order of 10% of the nameplate capacity of the variable generators, even when upto25%of gross demand is being met by variable generation. The authors implicit assumption that incremental operating reserves must be 100% of the nameplate capacity of the variable generation, and be available at all times to directly counter that variability, excludes the option of decommitting conventional units when the load net of variable generation is low. In real power systems, generation response to wind variation can typically be met by a combination of committed units, each operating at a relatively efficient point of their fuel curves. In the Supporting Information, we conceptually demonstrate that the CO{sub 2} and NO{sub x} efficiency penalty found by the authors can be significantly reduced by considering the unit commitment decision with just five plants. Real systems often have tens to hundreds of plants that can be committed and decommitted over various time frames. Ignoring the flexibility of the unit commitment decision therefore leads to unsupportable results. Anumber of analyses of the fuel savings and CO{sub 2} emission benefits of variable generation have considered realistic operating reserve requirements and unit commitment decisions in models that include the reduction in part load efficiency of conventional plants. The efficiency penalty due to the variability of wind in four studies considered by Gross et al. is negligible to 7%, for up to a 20% wind

  2. Time-Variable Gravity Signal due to Extratropic Pacific Water Mass Redistribution

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Boy, J. -P.; Cox, C. M.; Au, A. Y.

    2003-01-01

    Using the satellite-laser-ranging (SLR) data, Cox and Chao [2002] reported the detection of a large post-1998 anomaly (in the form of a positive jump) in the time series of Earth s lowest-degree gravity harmonic 52, or the dynamic oblateness. Among several groups now examining the mass redistribution in the global geophysical fluids in search of the cause(s), we report here a temporally coinciding anomalies found in the extratropic north + south Pacific basins. Clearly seen in the leading EOFPC mode for extratropic Pacific, these anomalies occurred in sea-surface height, sea-surface temperature, and temperature- and salinity-depth profiles. We based our analysis on two different data sources: TOPEX/Poseidon altimetry, and the ECCO ocean general circulation model output assimilating T/P data. The magnitude of these changes, when converted to equivalent J2 change, appears to be a few times too small to explain the observed J2 directly. These findings, and the fact that the anomalies occurred following the strong 1997-98 El Nino, suggest strong geophysical connection of the interannual-to-decadal variation of 52 with the Pacific Decadal Oscillation (PDO) and the ultimate global-change processes that cause PDO. More work is underway, and additional independent data sources are examined, paying close attention to the fact that the J2 anomaly has been reversing back to normal since 2001. These include: (1) cryospheric contributions (melting of glaciers and ice sheets); (2) land hydrological contributions; (3) polar sea influences ( e g , via deep flow); (4) fluid flow in Earth's core; (5) time-variable gravity signals from SLR in higher harmonic degree/order, including J3,J4, (2,1), and (2,2) coefficients, considering their lower signal-to-noise ratios; (6) Earth rotation data in terms of length-of-day and polar motion.

  3. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  4. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  5. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  6. Source apportionment and the role of meteorological conditions in the assessment of air pollution exposure due to urban emissions

    NASA Astrophysics Data System (ADS)

    Schäfer, K.; Elsasser, M.; Arteaga-Salas, J. M.; Gu, J.; Pitz, M.; Schnelle-Kreis, J.; Cyrys, J.; Emeis, S.; Prevot, A. S. H.; Zimmermann, R.

    2014-01-01

    As particulate matter (PM) impacts human health, knowledge about its composition, exposure and source apportionment is required. A study of the urban atmosphere in the case of Augsburg, Germany, during winter (31 January-12 March 2010) is thus presented here. Investigations were performed on the basis of aerosol mass spectrometry and further air pollutants and meteorological measurements, including mixing layer height. Organic matter was separated by source apportionment of PM1 with positive matrix factorization (PMF) in three factors: OOA - oxygenated organic aerosol (secondary organic factor), HOA - hydrocarbon-like organic aerosol (traffic factor or primary organic factor) and WCOA - wood combustion organic aerosol (wood combustion factor), which extend the information from black carbon (BC) measurements. PMF was also applied to the particle size distribution (PSD) data of PM2.5 to determine different source profiles and we assigned them to the particle sources: nucleation aerosol, fresh traffic aerosol, aged traffic aerosol, stationary combustion aerosol and secondary aerosol. Ten different temporal phases were identified on the basis of weather characteristics and aerosol composition and used for correlations of all air pollutants and meteorological parameters. While source apportionment from both organic PM composition and PSD agree and show that the main emission sources of PM exposure are road traffic as well as stationary and wood combustion, secondary aerosol factor concentrations are very often the highest ones. The hierarchical clustering analysis with the Ward method of cross-correlations of each air pollutant and PM component and of the correlations of each pollutant with all meteorological parameters provided two clusters: "secondary pollutants of PM1 and fine particles" and "primary pollutants (including CO and benzene) and accumulation mode particles". The dominant meteorological influences on pollutant concentrations are wind speed and mixing

  7. Crustal Rebound due to Lake Mass Changes Measured by InSAR: Constraints on Lithosphere Rheology

    NASA Astrophysics Data System (ADS)

    Doin, M. P.; Twardzik, C.; Cavalié, O.; Lasserre, C.

    2015-12-01

    SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. Here, we relate ground motion around the lake Mead (Nevada, USA) and lake Siling Co (Tibet, China) measured by InSAR to water loading in order to constrain the rheology of the lithosphere.Lake Mead, an artificial reservoir, has been filled with water in 1935. We analyzed ~500 interferograms based on 62 ERS images and on 40 ENVISAT images acquired between 1992 and 2010. Interferograms are inverted to solve for the time series of ground motion in the lake Mead area. Temporal smoothing allows to reduce the turbulent atmospheric delays. Spatio-temporal series of the deformation from 1992 to 2010 show a broad subsidence pattern correlated with lake level from 1992 to 2010. We model the deformation, taking into account the water and sediment loading history of the lake since 1935. The two-layer visco-elastic model proposed by Kaufmann and Amelung (2000), with a mantle viscosity of 1018 Pa s, adjusts well the data up to 2001, but overpredicts the deformation after 2001. We will discuss the models that could explain the deformation evolution. The Siling Co lake is the largest endorheic lake in Central Tibet. In 1972-1999 its water level remained stable, while it increased by about 1.0~m/yr in the period 2000-2006. The increased rate gradually stepped down to 0.2~m/yr in 2007-2011. We analysed 107 ERS and Envisat SAR images during the period 1992-2011. The deformation amplitude closely follows the lake level temporal evolution, except that subsidence continues in 2008-2011, while the lake level stagnated. This temporal evolution suggests a non elastic relaxation process taking place at a decade time-scale. Phase delay maps are used to constrain possible layered visco-elastic rheological models. An elastic model could partly explain the observed subsidence rate if elastic moduli are about twice lower than those extracted from Vp/Vs profiles. The surface

  8. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  9. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  10. Electrochemical Surface Potential due to Classical Point Charge Models Drives Anion Adsorption to the Air-Water Interface

    SciTech Connect

    Baer, Marcel D.; Stern, Abraham C.; Levin, Yan; Tobias, Douglas J.; Mundy, Christopher J.

    2012-06-07

    Herein, we present research that suggests that the underlying physics that drive simple empirical models of anions (e.g. point charge, no polarization) to the air-water interface, with water described by SPC/E, or related partial charge models is different than when both ions and water are modeled with quantum mechanical based interactions. Specifically, we will show that the driving force of ions to the air-water interface for point charge models results from both cavitation and the negative electrochemical surface potential. We will demonstrate that we can fully characterize the role of the free energy due to the electrochemical surface potential computed from simple empirical models and its role in ionic adsorption within the context of dielectric continuum theory (DCT). Our research suggests that a significant part of the electrochemical surface potential in empirical models appears to be an artifact of the failure of point charge models in the vicinity of a broken symmetry. This work was supported by the U.S. Department of Energy‘s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle.

  11. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  12. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 2

    NASA Technical Reports Server (NTRS)

    Hovel, H.; Woodall, J. M.

    1976-01-01

    Crystal growth procedures, fabrication techniques, and theoretical analysis were developed in order to make GaAlAs-GaAs solar cell structures which exhibit high performance at air mass 0 illumination and high temperature conditions.

  13. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  14. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  15. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-05

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER.

  16. Visual Steering and Verification of Mass Spectrometry Data Factorization in Air Quality Research.

    PubMed

    Engel, D; Greff, K; Garth, C; Bein, K; Wexler, A; Hamann, B; Hagen, H

    2012-12-01

    The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms that aid in resolving mass spectrum ambiguity. Thereby, visualization assumes a key role in providing insight into and allowing to actively control a heretofore elusive data processing step, and thus enabling rapid analysis meaningful to domain scientists. In extending existing black box schemes, we explore design choices for visualizing, interacting with, and steering the factorization process to produce physically meaningful results. A domain-expert evaluation of our system performed by the air quality research experts involved in this effort has shown that our method and prototype admits the finding of unambiguous and physically correct lower-dimensional basis transformations of mass spectrometry data at significantly increased speed and a higher degree of ease.

  17. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  18. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  19. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-03-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. OMI observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the tropospheric NO2 AMF calculation by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model for cloud-free scenes. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation (SD) of the difference was 0.6 ± 8%. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 72% of the daily OMAERUV AOD observations were within 0.3 of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10% higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30%, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and explicit aerosol parameters is on average 6 and 3

  20. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  1. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    PubMed

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  2. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  3. Air mass characterization during the DAURE field campaign by PTR-TOF

    NASA Astrophysics Data System (ADS)

    Metzger, Axel; Schallhart, Simon; Müller, Markus; Hansel, Armin

    2010-05-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from a wide variety of biogenic and anthropogenic sources. Although some of the sources are well characterized, many uncertainties remain about the fate of these compounds in the atmosphere and their role in organic aerosol formation. Here we present measurements using Proton Transfer Reaction Time-of-Flight (PTR-TOF) Mass Spectrometry during the DAURE field campaign ("Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean") obtained during February and March 2009. Measurements were performed at a rural mountain site located in the Montseny Natural Park 40 km to the NNE of the city of Barcelona, and 25 km from the Mediterranean coast. Volatile organic compounds where identified and quantified using PTR-TOF with 1 minute time resolution. The instruments mass resolving power of 4000 - 5000 and a mass accuracy of 5 ppm allows for the unambiguous sum-formula identification of e.g. hydrocarbons (HCs) or oxygenated VOCs (OVOCs). The high time resolution allows separating out on site pollution events. Air masses impacted by biomass-burning, urban, marine and vegetation emissions are characterized using tracers like acetonitrile, aromatics, dimethyl sulfide or biogenic compounds (terpenoids) and the degree of photochemical processing is inferred from the data.

  4. A burn mass casualty event due to boiler room explosion on a cruise ship: preparedness and outcomes.

    PubMed

    Tekin, Akin; Namias, Nicholas; O'Keeffe, Terence; Pizano, Louis; Lynn, Mauricio; Prater-Varas, Robin; Quintana, Olga Delia; Borges, Leda; Ishii, Mary; Lee, Seong; Lopez, Peter; Lessner-Eisenberg, Sharon; Alvarez, Angel; Ellison, Tom; Sapnas, Katherine; Lefton, Jennifer; Ward, Charles Gillon

    2005-03-01

    The purpose of this study was to review our experience with a mass casualty incident resulting from a boiler room steam explosion aboard a cruise ship. Experience with major, moderate, and minor burns, steam inhalation, mass casualty response systems, and psychological sequelae will be discussed. Fifteen cruise ship employees were brought to the burn center after a boiler room explosion on a cruise ship. Eleven were triaged to the trauma resuscitation area and four to the surgical emergency room. Seven patients were intubated for respiratory distress or airway protection. Six patients had >80 per cent burns with steam inhalation, and all of these died. One of the 6 patients had 99 per cent burns with steam inhalation and died after withdrawal of support within the first several hours. All patients with major burns required escharotomy on arrival to trauma resuscitation. One patient died in the operating room, despite decompression by laparotomy for abdominal compartment syndrome and pericardiotomy via thoracotomy for cardiac tamponade. Four patients required crystalloid, 20,000 mls/m2-27,000 ml/m2 body surface area (BSA) in the first 48 hours to maintain blood pressure and urine output. Three of these four patients subsequently developed abdominal compartment syndrome and died in the first few days. The fourth patient of this group died after 26 days due to sepsis. Five patients had 13-20 per cent bums and four patients had less than 10 per cent burns. Two of the patients with 20 per cent burns developed edema of the vocal cords with mild hoarseness. They improved and recovered without intubation. The facility was prepared for the mass casualty event; having just completed a mass casualty drill several days earlier. Twenty-six beds were made available in 50 minutes for anticipated casualties. Fifteen physicians reported immediately to the trauma resuscitation area to assist in initial stabilization. The event occurred at shift change; thus, adequate support

  5. Simulation of solid oxide iron-air battery: Effects of heat and mass transfer on charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Iwai, Hiroshi

    2015-07-01

    A time-dependent 2-D numerical simulation was performed on a solid oxide iron-air battery (SOIAB) to reveal the fundamental characteristics of this new system. The SOIAB is a rechargeable battery consisting of a solid oxide electrochemical cell (SOEC) and iron as a redox metal. A simple battery configuration was employed assuming a system with a small capacity. A simulation model for a unit element was developed considering heat and mass transfer in the system, taking both electrochemical and redox reactions into account. The numerical results showed the spatial and temporal changes in the temperature field in the charge and discharge operations, which were due to the combined effects of heat generation/absorption by the electrochemical and redox reactions and heat exchange with the air supplied through convective heat transfer. As the reaction rates are functions of the local temperature, the predicted results show the importance of considering the heat transfer phenomena in this system. It was also found that the active reaction region in the redox metal evolves with time. The nonuniform distribution of iron utilization is affected by the effective gas diffusion coefficients in the porous redox metal, and consequently the change in the current density distribution in the SOEC.

  6. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  7. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  8. The impact of air mass advection on aerosol optical properties over Gotland (Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Zdun, Agnieszka; Rozwadowska, Anna; Kratzer, Susanne

    2016-12-01

    In the present paper, measurements of aerosol optical properties from the Gotland station of the AERONET network, combined with a two-stage cluster analysis of back trajectories of air masses moving over Gotland, were used to identify the main paths of air mass advection to the Baltic Sea and to relate them to aerosol optical properties, i.e. the aerosol optical thickness at the wavelength λ = 500 nm, AOT (500) and the Ångström exponent for the spectral range from 440 to 870 nm, α(440,870). One- to six-day long back trajectories ending at 300, 500 and 3000 m above the station were computed using the HYSPLIT model. The study shows that in the Gotland region, variability in aerosol optical thickness AOT(500) is more strongly related to advections in the boundary layer than to those in the free troposphere. The observed variability in AOT(500) was best explained by the advection speeds and directions given by clustering of 4-day backward trajectories of air arriving in the boundary layer at 500 m above the station. 17 clusters of 4-day trajectories arriving at altitude 500 m above the Gotland station (sea level) derived using two-stage cluster analysis differ from each other with respect to trajectory length, the speed of air mass movement and the direction of advection. They also show different cluster means of AOT(500) and α(440,870). The cluster mean AOT(500) ranges from 0.342 ± 0.012 for the continental clusters M2 (east-southeast advection with moderate speed) and 0.294 ± 0.025 for S5 (slow south-southeast advection) to 0.064 ± 0.002 and 0.069 ± 0.002 for the respective marine clusters L3 (fast west-northwest advection) and M3 (north-northwest advection with moderate speed). The cluster mean α(440,870) varies from 1.65-1.70 for the short-trajectory clusters to 0.98 ± 0.03 and 1.06 ± 0.03 for the Arctic marine cluster L4 (fast inflow from the north) and marine cluster L5 (fast inflow from the west) respectively.

  9. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  10. Use of stable lead isotopes and trace metals to characterize air mass sources into the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    VéRon, Alain J.; Church, Thomas M.

    1997-12-01

    Stable lead isotopes (204Pb, 206Pb, 207Pb, 208Pb) and trace metals (Mn, Al, Fe, Ni, Cu, Cd, Zn, Pb) have been analyzed in aerosol collected during the Atlantic Stratocumulus Transition Experiment-Marine Aerosol and Gas Exchange (ASTEX-MAGE) cruise that transited between Miami and the Azores from May to July 1992. Our goal was to define the continental signatures of the air masses encountered between the Azores and the subtropical regions. The combination of air mass trajectories, trace metal concentrations and stable lead isotopes allowed us to characterize the anthropogenic character of encountered air masses. The average 206Pb/207Pb ratio was 1.148±0.021 and corresponded to a mixing between well defined European (such as Great Britain with 1.115<206Pb/207Pb<1.125 and France with 206Pb/207Pb=1.141±0.000) and North American sources (with 206Pb/207Pb=1.184±0.000). On the basis of air mass trajectories and trace metal concentrations, the background isotopic signature associated with the trade winds (206Pb/207Pb=1.161±0.004) is consistent with previous reports by Church et al. [1990] such as 206Pb/207Pb=1.154±0.004 in 1988, (Véron et al., 1993), 206Pb/207Pb=1.155±0.004 in 1989, and Hamelin et al. [1996] (206Pb/207Pb=1.158±0.006) in 1991. Short-term variations of continental air mass sources was particularly investigated by considering the anthropogenic character of aerosols collected during two Lagrangian experiments conducted as part of the ASTEX-MAGE cruise. We demonstrated the utility of stable lead isotopes to assign a "continental source signature" (or mixture thereof) to air masses beyond that normally possible by conventional air mass trajectory analysis in remote oceanic regions.

  11. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins.

  12. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  13. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  14. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  15. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  16. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  17. Mass-loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2016-11-01

    We derive the asymptotic solutions for vacuum spacetimes with nonzero cosmological constant Λ , using the Newman-Penrose formalism. Our approach is based exclusively on the physical spacetime, i.e., we do not explicitly deal with conformal rescaling nor the conformal spacetime. By investigating the Schwarzschild-de Sitter spacetime in spherical coordinates, we subsequently stipulate the falloffs of the null tetrad and spin coefficients for asymptotically de Sitter spacetimes such that the terms which would give rise to the Bondi mass-loss due to energy carried by gravitational radiation (i.e., involving σo ) must be nonzero. After solving the vacuum Newman-Penrose equations asymptotically, we propose a generalization to the Bondi mass involving Λ and obtain a positive-definite mass-loss formula by integrating the Bianchi identity involving D'Ψ2 over a compact 2-surface on I . Whilst our original intention was to study asymptotically de Sitter spacetimes, the use of spherical coordinates implies that this readily applies for Λ <0 , and yields exactly the known asymptotically flat spacetimes when Λ =0 . In other words, our asymptotic vacuum solutions with Λ ≠0 reduce smoothly to those where Λ =0 , in spite of the distinct characters of I being spacelike, timelike, and null for de Sitter, anti-de Sitter, and Minkowski, respectively. Unlike for Λ =0 where no incoming radiation corresponds to setting Ψ0o=0 on some initial null hypersurface, for Λ ≠0 , no incoming radiation requires Ψ0o=0 everywhere.

  18. Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus

    NASA Astrophysics Data System (ADS)

    Wandinger, Ulla; Mattis, Ina; Tesche, Matthias; Ansmann, Albert; BöSenberg, Jens; Chaikovski, Anatoly; Freudenthaler, Volker; Komguem, Leonce; Linné, Holger; Matthias, Volker; Pelon, Jacques; Sauvage, Laurent; Sobolewski, Piotr; Vaughan, Geraint; Wiegner, Matthias

    2004-12-01

    For the first time, the vertically resolved aerosol optical properties of western and central/eastern European haze are investigated as a function of air mass transport. Special emphasis is put on clean maritime air masses that cross the European continent from the west and become increasingly polluted on their way into the continent. The study is based on observations at seven lidar stations (Aberystwyth, Paris, Hamburg, Munich, Leipzig, Belsk, and Minsk) of the European Aerosol Research Lidar Network (EARLINET) and on backward trajectory analysis. For the first time, a lidar network monitored continent-scale haze air masses for several years (since 2000). Height profiles of the particle backscatter coefficient and the particle optical depth of the planetary boundary layer (PBL) at 355-nm wavelength are analyzed for the period from May 2000 to November 2002. From the observations at Aberystwyth, Wales, the aerosol reference profile for air entering Europe from pristine environments was determined. A mean 355-nm optical depth of 0.05 and a mean PBL height of 1.5 km was found for clean maritime summer conditions. The particle optical depth and PBL height increased with increasing distance from the North Atlantic. Mean summer PBL heights were 1.9-2.8 km at the continental sites of Leipzig, Belsk, and Minsk. Winter mean PBL heights were mostly between 0.7 and 1.3 km over the seven EARLINET sites. Summer mean 355-nm optical depths increased from 0.17 (Hamburg, northwesterly airflow from the North Sea) and 0.21 (Paris, westerly flow from the Atlantic) over 0.33 (Hamburg, westerly flow) and 0.35 (Leipzig, westerly flow) to 0.59 (Belsk, westerly flow), and decreased again to 0.37 (westerly flow) at Minsk. Winter mean optical depths were, on average, 10-30% lower than the respective summer values. PBL-mean extinction coefficients were of the order of 200 Mm-1 at 355 nm at Hamburg and Leipzig, Germany, and close to 600 Mm-1 at Belsk, Poland, in winter for westerly flows

  19. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  20. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  1. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    During the Fukushima Daiichi nuclear power plant (FDNPP) accident, a dozen of high-altitude aerosol sampling stations, located between 850 and 3,454 m above sea level (a.s.l.), provided airborne activity levels across Europe (Fig. 1). This represents at most 5% of the total number of aerosol sampling locations that delivered airborne activity levels (at least one result) in Europe, in connection with this nuclear accident. High altitude stations are typically equipped with a high volume sampler that collects aerosols on filters. The Fukushima-labeled air mass arrival and the peak of airborne cesium-137 (137Cs) activity levels were registered in Europe at different dates depending on the location, with differences up to a factor of six on a regional scale. Besides this statement related to lowland areas, we have compared the maximum airborne levels registered at high-altitude European locations (850 m < altitudes < 3450 m) with what was observed at the closest lowland location. The vertical distribution of 137Cs peak level was not uniform even after a long travel time/distance from Japan. This being true at least in the atmospheric boundary layer and in the lower free troposphere. Moreover the relation '137Csmax vs. altitude' shows a decreasing trend (Fig. 2). Results and discussion : Comparison of 137Cs and 7Be levels shows simultaneous increases at least when the 137Cs airborne level rose for the first time (Fig. 3). Zugspitze and Jungfraujoch stations attest of a time shift between 7Be and 137Cs peak that can be due to the particular dynamic of air movements at such high altitudes. After the 137Cs peak value, the plume concentration decreased whatever the 7Be level. Due to the cosmogenic origin of 7Be, its increase in the ground-level air is usually associated with downwind air movements, i.e. stratospheric air intrusions or at least air from high-tropospheric levels, into lower atmospheric layers. This means that Fukushima-labeled air masses registered at ground

  2. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  3. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  4. Composition of air masses in Fuerteventura (Canary Islands) according to their origins

    SciTech Connect

    Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.; Ballesteros, J.S.; Santos-Alves, S.G. dos

    1994-12-31

    The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure some atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.

  5. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  6. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: a case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rainfall and air temperature variations resulting from climate change are important driving forces to alter hydrologic processes in watershed ecosystems. This study investigated impacts of past and potential future rainfall and air temperature variations upon water discharge, water outflow (from th...

  7. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  8. Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT.

    PubMed

    Kichou, H B; Chavez, J A; Turo, A; Salazar, J; Garcia-Hernandez, M J

    2006-12-22

    In Lamb waves inspection, an air-coupled transmitter transducer is oriented at a specific angle such that it generates a pure Lamb mode which propagates along the structure and interacts with any existing defects. For this inspection system, amplitude losses appears when small inclinations of the tested structure occurs. An important factor which affects directly these losses has been observed, it consists of the Lamb waves beam (LWB) deviation due to this bad alignment. In this work, a simple expression of LWB deviation has been deduced. This expression includes the test structure angle, phase velocity of generated Lamb mode, and the phase velocity of waves propagating in the coupled medium. A(0) Lamb mode is generated and detected in 1 mm thick aluminium plate sample using 1 MHz PZ27 piezoelectric transducers of 20 mm of diameter. Experimental LWB deviation angles are measured for different inclination angles of the test sample. A comparative study is released with theoretical results. For 1 degree of misalignment in the aluminium plate inclination, and transducers separation distance of 35 mm, LWB deviation angle is around 7 degrees and the amplitude is reduced by around 11%. Then, for a large separation distance, we must move the receiver transducer to detect the deviated LWB. It is shown that, for both theoretical and experimental studies, the LWB deviation and its measured amplitude are very sensitive to the alignment of the tested structure with respect to the transmitter-receiver transducers plane. In metal plates it is most satisfactory to use A(0) mode compared with S(0) mode since it is easy to excite and has a large amplitude and small deviation beam angles.

  9. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  10. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  11. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Li, Dayong; Chen, Bo; Fu, Yuke

    2016-12-01

    Air pressure is one of the main factors affecting the corona discharge and influence of air pressure should be carefully investigated. In order to obtain the influence of air pressure on the detailed characteristics of corona current pulse, such as pulse amplitude, rise time, pulse width, duration time, and pulse repetition frequency, a systematic investigation is carried out though a coaxial conductor-cylinder electrode structure with a corona point on the conductor. The electrodes are put into a pressure chamber for adjusting the air pressure. The results show that pulse amplitude increases with the increase of air pressure, while rise time, pulse width, duration time, and pulse repetition frequency decrease significantly at the same ratio between applied voltage and onset voltage (U/U0). Empirical formulas for the pulse amplitude, rise time, pulse width, and duration time varying with air pressure are first established. On the basis of the development of positive corona discharge, the influence of air pressure on the typical time intervals and experimental results are qualitatively explained.

  12. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  13. Association between air pollution and daily mortality and hospital admission due to ischaemic heart diseases in Hong Kong

    NASA Astrophysics Data System (ADS)

    Tam, Wilson Wai San; Wong, Tze Wai; Wong, Andromeda H. S.

    2015-11-01

    Ischaemic heart disease (IHD) is one of the leading causes of death worldwide. The effects of air pollution on IHD mortalities have been widely reported. Fewer studies focus on IHD morbidities and PM2.5, especially in Asia. To explore the associations between short-term exposure to air pollution and morbidities and mortalities from IHD, we conducted a time series study using a generalized additive model that regressed the daily numbers of IHD mortalities and hospital admissions on daily mean concentrations of the following air pollutants: nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter less than 10 μm (PM10), particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5), ozone (O3), and sulfur dioxide (SO2). The relative risks (RR) of IHD deaths and hospital admissions per 10 μg/m3 increase in the concentration of each air pollutant were derived in single pollutant models. Multipollutant models were also constructed to estimate their RRs controlling for other pollutants. Significant RRs were observed for all five air pollutants, ranging from 1.008 to 1.032 per 10 μg/m3 increase in air pollutant concentrations for IHD mortality and from 1.006 to 1.021 per 10 μg/m3 for hospital admissions for IHD. In the multipollutant model, only NO2 remained significant for IHD mortality while SO2 and PM2.5 was significantly associated with hospital admissions. This study provides additional evidence that mortalities and hospital admissions for IHD are significantly associated with air pollution. However, we cannot attribute these health effects to a specific air pollutant, owing to high collinearity between some air pollutants.

  14. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  15. Air/water subchannel measurements of the equilibrium quality and mass-flux distribution in a rod bundle. [BWR

    SciTech Connect

    Sterner, R.W.; Lahey, R.T. Jr.

    1983-07-01

    Subchannel measurements were performed in order to determine the equilibrium quality and mass flux distribution in a four rod bundle, using air/water flow. An isokinetic technique was used to sample the flow in the center, side and corner subchannels of this test section. Flow rates of the air and water in each sampled subchannel were measured. Experiments were performed for two test-section-average mass fluxes (0.333x10/sup 6/ and 0.666x10/sup 6/ lb/sub m//h-ft/sup 2/), and the test-section-average quality was varied from 0% to 0.54% for each mass flux. Single-phase liquid, bubbly, slug and churn-turbulent two-phase flow regimes were achieved. The observed data trends agreed with previous diabatic measurements in which the center subchannel had the highest quality and mass flux, while the corner subchannel had the lowest.

  16. Numerical simulations of rotational bursting of F-coronal dust in eccentric orbits due to coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Misconi, Nebil Y.

    2004-08-01

    Model calculations were carried out to determine the extent of the effects on the rotational bursting of F-coronal dust in eccentric orbits due to their interaction with the flow of coronal mass ejections (CMEs). The model included an initial limiting perihelion distance of 8 solar radii ( RS) for all particles used. The parameters of the CMEs (velocity and proton number density) along with the various parameters of the dust particles (size and median density) were taken into consideration. By keeping these parameters the same and varying one of them, it was found that the velocity of the CMEs protons plays a major role in determining at which heliocentric distance the particle bursts. To a lesser degree, the median density of the particle also had a similar effect. Depending on the values of the dust particles orbital eccentricity, limiting sizes of the dust particles were found beyond which the particles do not burst. More particles bursted in regions close to their perihelion passage, however very few particles bursted near 8 RS from which we conclude that the majority of the fragmented particles were outside the F-corona region. The results show that rotational bursting of the dust in eccentric orbits inside the F-corona forces the particles to fragment outside 8 RS.

  17. THE EFFECTS ON SUPERNOVA SHOCK BREAKOUT AND SWIFT LIGHT CURVES DUE TO THE MASS OF THE HYDROGEN-RICH ENVELOPE

    SciTech Connect

    Bayless, Amanda J.; Roming, Peter W. A.; Even, Wesley; Frey, Lucille H.; Fryer, Chris L.; Young, Patrick A.

    2015-06-01

    Mass loss remains one of the primary uncertainties in stellar evolution. In the most massive stars, mass loss dictates the circumstellar medium and can significantly alter the fate of the star. Mass loss is caused by a variety of wind mechanisms and also through binary interactions. Supernovae (SNe) are excellent probes of this mass loss, both the circumstellar material and the reduced mass of the hydrogen-rich envelope. In this paper, we focus on the effects of reducing the hydrogen-envelope mass on the SN light curve, studying both the shock breakout and peak light-curve emission for a wide variety of mass-loss scenarios. Even though the trends of this mass loss will be masked somewhat by variations caused by different progenitors, explosion energies, and circumstellar media, these trends have significant effects on the SN light curves that should be seen in SN surveys. We conclude with a comparison of our results to a few key observations.

  18. Benefits of mitigated ambient air quality due to transportation control on childhood asthma hospitalization during the 2002 summer Asian games in Busan, Korea.

    PubMed

    Lee, Jong-Tae; Son, Ji-Young; Cho, Yong-Sung

    2007-08-01

    The objective of this study is to see whether there were any health benefits of mitigated air pollution concentration due to reduced traffic flow during a citywide intervention for the 2002 Summer Asian Games. Relative risks of hospitalization for childhood asthma during the post-Asian Game period compared with the baseline period were estimated using a time-series analysis of the generalized additive Poisson model. Fourteen consecutive days of traffic volume control in Busan during the Games reduced all regulated air pollutant levels by 1-25%. The estimated relative risk of hospitalization during the post-Games period over the baseline period was 0.73 (95% confidence interval [CI] = 0.49, 1.11). We observed that this reduced air pollution was unique in 2002 when the traffic volume reduction program was applied during the Games period. This empirical data provides epidemiologic evidence of the health benefits resulting from environmental interventions to reduce ambient air pollution.

  19. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dünnbier, M.; Schmidt-Bleker, A.; Winter, J.; Wolfram, M.; Hippler, R.; Weltmann, K.-D.; Reuter, S.

    2013-10-01

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN_{2}^{+} ) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown.

  20. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  1. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  2. On the association between daily mortality and air mass types in Athens, Greece during winter and summer.

    PubMed

    Kassomenos, Pavlos A; Gryparis, Alexandros; Katsouyanni, Klea

    2007-03-01

    In this study, we examined the short-term effects of air mass types on mortality in Athens, Greece. An objective air mass types classification was used, based on meteorological parameters measured at the surface. Mortality data were treated with generalized additive models (GAM) and extending Poisson regression, using a LOESS smoother to control for the confounding effects of seasonal patterns, adjusting also for temperature, long-term trends, day of the week, and ambient particle concentrations. The introduced air mass classification explains the daily variation of mortality to a statistically significant degree. The highest daily mortality was observed on days characterized by southerly flow conditions for both the cold (increase in relative risk for mortality 9%; with a 95% confidence interval: 3-14%), and the warm period (7%; with a 95% confidence interval: 2-13%) of the year. The northeasterly flow is associated with the lowest mortality. Effects on mortality, independent of temperature, are observed mainly for lag 0 during the cold period, but persist longer during the warm period. Not adjusting for temperature and/or ambient particle levels slightly alters the results, which then reflect the known temperature and particle effects, already reported in the literature. In conclusion, we find that air mass types have independent effects on mortality for both the cold and warm season and may be used to predict weather-related adverse health effects.

  3. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue

    PubMed Central

    2015-01-01

    Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18–25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments. PMID:26517261

  4. Wireless Tri-Axial Trunk Accelerometry Detects Deviations in Dynamic Center of Mass Motion Due to Running-Induced Fatigue.

    PubMed

    Schütte, Kurt H; Maas, Ellen A; Exadaktylos, Vasileios; Berckmans, Daniel; Venter, Rachel E; Vanwanseele, Benedicte

    2015-01-01

    Small wireless trunk accelerometers have become a popular approach to unobtrusively quantify human locomotion and provide insights into both gait rehabilitation and sports performance. However, limited evidence exists as to which trunk accelerometry measures are suitable for the purpose of detecting movement compensations while running, and specifically in response to fatigue. The aim of this study was therefore to detect deviations in the dynamic center of mass (CoM) motion due to running-induced fatigue using tri-axial trunk accelerometry. Twenty runners aged 18-25 years completed an indoor treadmill running protocol to volitional exhaustion at speeds equivalent to their 3.2 km time trial performance. The following dependent measures were extracted from tri-axial trunk accelerations of 20 running steps before and after the treadmill fatigue protocol: the tri-axial ratio of acceleration root mean square (RMS) to the resultant vector RMS, step and stride regularity (autocorrelation procedure), and sample entropy. Running-induced fatigue increased mediolateral and anteroposterior ratios of acceleration RMS (p < .05), decreased the anteroposterior step regularity (p < .05), and increased the anteroposterior sample entropy (p < .05) of trunk accelerometry patterns. Our findings indicate that treadmill running-induced fatigue might reveal itself in a greater contribution of variability in horizontal plane trunk accelerations, with anteroposterior trunk accelerations that are less regular from step-to-step and are less predictable. It appears that trunk accelerometry parameters can be used to detect deviations in dynamic CoM motion induced by treadmill running fatigue, yet it is unknown how robust or generalizable these parameters are to outdoor running environments.

  5. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  6. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  7. Northern East Asian Monsoon Precipitation Revealed by Air Mass Variability and Its Prediction

    NASA Astrophysics Data System (ADS)

    Son, J. H.; Seo, K. H.

    2015-12-01

    This work provides a new perspective on the major factors controlling the East Asian summer monsoon (EASM) in July, and a promising physical-statistical forecasting of the EASM ahead of summer. Dominant modes of the EASM are revealed from the variability of large-scale air masses discerned by equivalent potential temperature, and are found to be dynamically connected with the anomalous sea surface temperatures (SSTs) over the three major oceans of the world and their counterparts of prevailing atmospheric oscillation or teleconnection patterns. Precipitation over Northeast Asia (NEA) during July is enhanced by the tropical central Indian Ocean warming and central Pacific El Niño-related SST warming, the northwestern Pacific cooling off the coast of NEA, and the North Atlantic Ocean warming. Using these factors and data from the preceding spring seasons, the authors build a multiple linear regression model for seasonal forecasting. The cross-validated correlation skill predicted for the period 1994 to 2012 is up to 0.84, which far exceeds the skill level of contemporary climate models.

  8. Inverse Estimation of SO2 Emissions over China with Local Air Mass Factor Applied

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, J.; Xu, X.; Henze, D. K.

    2015-12-01

    Sulfur dioxide (SO2) has significant impacts on human health as it forms sulfate aerosols in the atmosphere. Widespread uncertainty in the magnitude of SO2 emissions hinders efforts to address this issue. In this work we use Ozone Monitoring Instrument (OMI) slant column SO2 observations as constraints to conduct inversion of SO2 emissions over China for April 2008. Local air mass factors are formulated as the integral of the relative vertical distribution of SO2 simulated from GEOS-Chem, weighted by scattering weights computed from VLIDORT. They are applied to convert slant column to vertical column GEOS-Chem SO2. After data assimilation SO2 emissions decrease in Sichuan Basin, South China, and most areas of North China. The posterior SO2 emissions are evaluated with in situ SO2 observation. Besides, we apply the posterior SO2 emissions of April 2008 to April 2009, and it leads to improved agreement of modeled SO2 to the OMI observations. This offers potential to update SO2 emissions in real time.

  9. Detection of Free Tropospheric Air Masses With High So2 and Aerosol Concentrations: Evidence For New Aerosol Particle Formation By H2so4/h2o Nucleation

    NASA Astrophysics Data System (ADS)

    Katragkou, E.; Wilhelm, S.; Kiendler, A.; Arnold, F.; Minikin, A.; Schlager, H.; van Velthoven, P.

    Sulfur dioxide and aerosol measurements were performed in the free troposphere (FT) and the Planetary Boundary Layer (PBL) above continental Europe. The measure- ments took place on board of the German research aircraft "Falcon" in 18 April 2001 as a part of the SCAVEX campaign. A novel aircraft based CIMS (Chemical Ion- ization Mass Spectrometry) instrument equipped with an ion trap mass spectrometer (ITMS) with a low detection limit (50pptv) and a high time resolution (1.3s) operated by MPI-K was used to perform the SO2 measurements. For the aerosol measurements DLR-IPA operated a Condensation Particle Size Analyzer, detecting particles with diameters d > 4, 7, 9 and 20nm and a PCASP-100X aerosol spectrometer probe (d > 100nm). In the measurements made mostly around 5000m altitude SO2 rich air masses were occasionally observed with SO2 VMR of up to 2900pptv. The strong SO2 pollu- tion was due to fast vertical transport of polluted continental PBL air and small-scale deep convection, as indicated by the 5-day backward 3D trajectories. These observa- tions of strong SO2 pollution have interesting implications for aerosol processes, in- cluding efficient formation of gaseous sulfuric acid (GSA) and new aerosol particles. They also imply fast growth of freshly nucleated aerosol particles, which increases the chance for new particles to grow to the size of a CCN. Our analysis indicates the occurrence of new particle formation by H2SO4/H2O nucleation and fast new particle growth by H2SO4/H2O condensation and self-coagulation in the different air masses encountered during the flight.

  10. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  11. Updating exposure models of indoor air pollution due to vapor intrusion: Bayesian calibration of the Johnson-Ettinger model.

    PubMed

    Johnston, Jill E; Sun, Qiang; Gibson, Jacqueline Macdonald

    2014-02-18

    The migration of chlorinated volatile organic compounds from groundwater to indoor air--known as vapor intrusion--is an important exposure pathway at sites with contaminated groundwater. High-quality screening methods to prioritize homes for monitoring and remediation are needed, because measuring indoor air quality in privately owned buildings is often logistically and financially infeasible. We demonstrate an approach for improving the accuracy of the Johnson-Ettinger model (JEM), which the Environmental Protection Agency (EPA) recommends as a screening tool in assessing vapor intrusion risks. We use Bayesian statistical techniques to update key Johnson-Ettinger input parameters, and we compare the performance of the prior and updated models in predicting indoor air concentrations measured in 20 homes. Overall, the updated model reduces the root mean squared error in the predicted concentration by 66%, in comparison to the prior model. Further, in 18 of the 20 homes, the mean measured concentration is within the 90% confidence interval of the concentration predicted by the updated model. The resulting calibrated model accounts for model uncertainty and variability and decreases the false negatives rate; hence, it may offer an improved screening approach, compared to the current EPA deterministic approach.

  12. Physical principles of the amplification of electromagnetic radiation due to negative electron masses in a semiconductor superlattice

    NASA Astrophysics Data System (ADS)

    Shorokhov, A. V.; Pyataev, M. A.; Khvastunov, N. N.; Hyart, T.; Kusmartsev, F. V.; Alekseev, K. N.

    2015-02-01

    In a superlattice placed in crossed static electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the mini-band and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.

  13. Investigation of levels in ambient air near sources of Polychlorinated Biphenyls (PCBs) in Kanpur, India, and risk assessment due to inhalation.

    PubMed

    Goel, Anubha; Upadhyay, Kritika; Chakraborty, Mrinmoy

    2016-05-01

    Polychlorinated biphenyls (PCBs) are a class of organic compounds listed as persistent organic pollutant and have been banned for use under Stockholm Convention (1972). They were used primarily in transformers and capacitors, paint, flame retardants, plasticizers, and lubricants. PCBs can be emitted through the primary and secondary sources into the atmosphere, undergo long-range atmospheric transport, and hence have been detected worldwide. Reported levels in ambient air are generally higher in urban areas. Active sampling of ambient air was conducted in Kanpur, a densely populated and industrialized city in the Indo-Gangetic Plain, for detection of 32 priority PCBs, with the aim to determine the concentration in gas/particle phase and assess exposure risk. More than 50 % of PCBs were detected in air. Occurrence in particles was dominated by heavier congeners, and levels in gas phase were below detection. Levels determined in this study are lower than the levels in Coastal areas of India but are at par with other Asian countries where majority of sites chosen for sampling were urban industrial areas. Human health risk estimates through air inhalation pathway were made in terms of lifetime average daily dose (LADD) and incremental lifetime cancer risks (ILCR). The study found lower concentrations of PCBs than guideline values and low health risk estimates through inhalation within acceptable levels, indicating a minimum risk to the adults due to exposure to PCBs present in ambient air in Kanpur.

  14. Crustal deformation at very long baseline interferometry sites due to seasonal air-mass and ground water variations

    NASA Technical Reports Server (NTRS)

    Stolz, A.; Larden, D. R.

    1980-01-01

    The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.

  15. Change of microbial communities in glaciers along a transition of air masses in western China

    NASA Astrophysics Data System (ADS)

    Xiang, Shu-Rong; Chen, Yong; Shang, Tian-Cui; Jing, Ze-Fan; Wu, Guangjian

    2010-12-01

    Microbial community dynamics across glaciers in different climatic zones provide important information about the sources, transportation pathways, and deposition of microorganisms. To better understand the possible driving forces of microbial community shifts in glacier ice at a large spatial scale, 16S rRNA gene amplification was used to establish clone libraries containing 95 bacterial sequences from three different habitats in the Qiangyong Gacier in 2005. The libraries were used in phylogenetic comparison with 149 previously reported sequences from the surface samples collected from the Kuytun 51, and East Rongbuk glaciers in the same year. The results showed the presence of cosmopolitan and endemic species, and displayed a tendency of zonal distribution of bacterial communities at genera and community levels, corresponding to the geographic placement of the three glaciers. Data also showed a significant difference in the proportion of dominant phylogenetic groups in the three glaciers. Comamonadaceae/Polaromonas (Betaproteobacteria) and Flexibacteraceae (Bacteroidetes) were dominant in the Qiangyong Glacier, Cyanobacteria, Comamonadaceae/Polaromonas, and Rhodoferax (Betaproteobacteria) were dominant in the Kuytun 51 Glacier, and Acinetobacteria (Gammaproteobacteria) were dominant in the Rongbuk Glacier. In conclusion, the current study provides evidence of microbial biogeography in glacier ice at both the fine lineage and whole community levels. The biogeographical patterns were generally associated with the hydrological transition over the glaciers in the northern periphery and southern part of the Tibetan plateau. This supports our hypothesis of air mass behavior being one of the main drivers determining the zonal distribution of microbial communities across the mountain glaciers in western China.

  16. Climatology of wintertime long-distance transport of surface-layer air masses arriving urban Beijing in 2001-2012

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xiang-De, XU

    2017-02-01

    In this study, the FLEXPART-WRF coupled modeling system is used to conduct 12-year Lagrangian modeling over Beijing, China, for the winters of 2001-2012. Based on large trajectory tracking ensembles, the long-range air transport properties, in terms of geographic source regions within the atmospheric planetary boundary layer (PBL) and large-scale ventilation, and its association with air quality levels were quantified from a climatological perspective. The results show the following: (1) The air masses residing in the near-surface layer over Beijing potentially originate from broader atmospheric boundary-layer regions, which cover vast areas with the backward tracking time elapsed. However, atmospheric transport from northeastern China and, to a lesser extent, from the surrounding regions of Beijing is important. (2) The evolution of air quality over Beijing is negatively correlated with large-scale ventilation conditions, particularly at a synoptic timescale. Thus, the simple but robust backward-trajectory ventilation (BV) index defined in this study could facilitate operational forecasting of severe air pollution events. (3) By comparison, the relatively short-range transport occurring over transport timescales of less than 3 days from southern and southeastern Beijing and its surrounding areas plays a vital role in the formation of severe air pollution events during the wintertime. (4) Additionally, an interannual trend analysis suggests that the geographic sources and ventilation conditions also changed, at least over the last decade, corresponding to the strength variability of the winter East Asian monsoon.

  17. Modeling study of air pollution due to the manufacture of export goods in China's Pearl River Delta

    SciTech Connect

    David G. Streets; Carolyne Yu; Michael H. Bergin; Xuemei Wang; Gregory R. Carmichael

    2006-04-01

    The Pearl River Delta is a major manufacturing region on the south coast of China that produces more than $100 billion of goods annually for export to North America, Europe, and other parts of Asia. Considerable air pollution is caused by the manufacturing industries themselves and by the power plants, trucks, and ships that support them. It is estimated that 10-40% of emissions of primary SO{sub 2}, NOx, RSP, and VOC in the region are caused by export-related activities. Using the STEM-2K1 atmospheric transport model, it is estimated that these emissions contribute 5-30% of the ambient concentrations of SO{sub 2}, NOx, NOz, and VOC in the region. (NO{sub Z}=PAN, HONO, HNO{sub 3}, N{sub 2}O{sub 5} and organic nitrates). One reason that the exported goods are cheap and therefore attractive to consumers in developed countries is that emission controls are lacking or of low performance. It is estimated that state-of-the-art controls could be installed at an annualized cost of $0.3-3 billion, representing 0.3-3% of the value of the goods produced. Mitigation measures could be adopted without seriously affecting the prices of exported goods and would achieve considerable human health and other benefits in the form of reduced air pollutant concentrations in densely populated urban areas. 22 refs., 5 figs., 5 tabs.

  18. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    Air pollution will be directly influenced by future changes in emissions of pollutants, climate, and stratospheric ozone, and will have significant consequences for human health and the environment. UV radiation is one of the controlling factors for the formation of photochemical smog, which includes tropospheric ozone (O(3)) and aerosols; it also initiates the production of hydroxyl radicals (˙OH), which control the amount of many climate- and ozone-relevant gases (e.g., methane and HCFCs) in the atmosphere. Numerical models predict that future changes in UV radiation and climate will modify the trends and geographic distribution of ˙OH, thus affecting the formation of photochemical smog in many urban and regional areas. Concentrations of ˙OH are predicted to decrease globally by an average of 20% by 2100, with local concentrations varying by as much as a factor of two above and below current values. However, significant differences between modelled and measured values in a limited number of case studies show that chemistry of hydroxyl radicals in the atmosphere is not fully understood. Photochemically produced tropospheric ozone is projected to increase. If emissions of anthropogenic air pollutants from combustion of fossil fuels, burning of biomass, and agricultural activities continue to increase, concentrations of tropospheric O(3) will tend to increase over the next 20-40 years in certain regions of low and middle latitudes because of interactions of emissions, chemical processes, and climate change. Climate-driven increases in temperature and humidity will also increase production of tropospheric O(3) in polluted regions, but reduce it in more pristine regions. Higher temperatures tend to increase emissions of nitrogen oxides (NO(x)) from some soils and release of biogenic volatile organic compounds (VOCs) from vegetation, leading to greater background concentrations of ozone in the troposphere. The net effects of future changes in UV radiation

  19. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  20. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  1. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry.

    PubMed

    Schneider, J F; Boparai, A S; Reed, L L

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 microg/mL or higher. This method is ideal for screening samples for quick response situations.

  2. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  3. Mass

    SciTech Connect

    Quigg, Chris

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  4. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  5. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  6. A Method for Incorporating Changing Structural Characteristics Due to Propellant Mass Usage in a Launch Vehicle Ascent Simulation

    NASA Technical Reports Server (NTRS)

    McGhee, D. S.

    2004-01-01

    Launch vehicles consume large quantities of propellant quickly, causing the mass properties and structural dynamics of the vehicle to change dramatically. Currently, structural load assessments account for this change with a large collection of structural models representing various propellant fill levels. This creates a large database of models complicating the delivery of reduced models and requiring extensive work for model changes. Presented here is a method to account for these mass changes in a more efficient manner. The method allows for the subtraction of propellant mass as the propellant is used in the simulation. This subtraction is done in the modal domain of the vehicle generalized model. Additional computation required is primarily for constructing the used propellant mass matrix from an initial propellant model and further matrix multiplications and subtractions. An additional eigenvalue solution is required to uncouple the new equations of motion; however, this is a much simplier calculation starting from a system that is already substantially uncoupled. The method was successfully tested in a simulation of Saturn V loads. Results from the method are compared to results from separate structural models for several propellant levels, showing excellent agreement. Further development to encompass more complicated propellant models, including slosh dynamics, is possible.

  7. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Qi, Zhigang; Ramani, Manikandan; Elter, John F.

    The impacts of unprotected start up and shut down on fuel cell performance degradation was investigated using both single cell and dual cell configurations. It was found that the air/fuel boundary developed at the anode side after a fuel cell shut down or during its restart caused extremely quick degradation of the cathode. The thickness, the electrochemical active surface area, and the performance of the cathode catalyst layer were significantly reduced. By using a dual cell configuration, cathode potential as high as two times of open circuit voltage was measured, and the corrosion current flowing externally between the two cells was detected and quantified. Carbon catalyst-support corrosion/oxidation at such a high potential was largely responsible for the accelerated fuel cell performance degradation.

  8. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  9. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall.

    PubMed

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-11-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005-2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination.

  10. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Hsu, N. Christina; Lin, Neng-Huei; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2013-10-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment (λ = 550 nm) for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulfate, nitrate, and elemental carbon. Achieving full optical closure is hampered by limitations in accounting for the role of water vapor in the system, uncertainties in the instruments and the need for further knowledge in the source apportionment of the model's major chemical components. Nonetheless, our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulfate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Consistency between the measured and modeled optical parameters serves as an

  11. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  12. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    NASA Astrophysics Data System (ADS)

    Tsunesada, Yoshiki; Katsuya, Ryoichi; Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao; Tajima, Norio; Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3 ×1015 eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10-100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  13. Distribution of PM(2.5) and PM(10-2.5) in PM(10) fraction in ambient air due to vehicular pollution in Kolkata megacity.

    PubMed

    Das, Manab; Maiti, Subodh Kumar; Mukhopadhyay, Ujjal

    2006-11-01

    This research paper aims at establishing baseline PM(10) and PM(2.5) concentration levels, which could be effectively used to develop and upgrade the standards in air pollution in developing countries. The relative contribution of fine fractions (PM(2.5)) and coarser fractions (PM(10-2.5)) to PM(10) fractions were investigates in a megacity which is overcrowded and congested due to lack of road network and deteriorated air quality because of vehicular pollution. The present study was carried out during the winter of 2002. The average 24h PM(10) concentration was 304 microg/m(3), which is 3 times more than the Indian National Ambient Air Quality Standards (NAAQS) and higher PM(10) concentration was due to fine fraction (PM(2.5)) released by vehicular exhaust. The 24h average PM(2.5) concentration was found 179 microg/m(3), which is exceeded USEPA and EU standards of 65 and 50 microg/m(3) respectively for the winter. India does not have any PM(2.5) standards. The 24 h average PM(10-2.5) concentrations were found 126 microg/m(3). The PM(2.5) constituted more than 59% of PM(10) and whereas PM(10)-PM(2.5) fractions constituted 41% of PM(10). The correlation between PM(10) and PM(2.5) was found higher as PM(2.5) comprised major proportion of PM(10) fractions contributed by vehicular emissions.

  14. Linear and cyclic methylsiloxanes in air by concurrent solvent recondensation-large volume injection-gas chromatography-mass spectrometry.

    PubMed

    Companioni-Damas, E Y; Santos, F J; Galceran, M T

    2014-01-01

    In the present work, a simple and fast method for the analysis of linear and cyclic methylsiloxanes in ambient air based on active sampling combined with gas chromatography - mass spectrometry (GC-MS) was developed. The retention efficiency of five sampling sorbents (activated coconut charcoal, Carbopack B, Cromosorb 102, Cromosorb 106 and Isolute ENV+) was evaluated and Isolute ENV+ was found to be the most effective. A volume of 2700 L of air can be sampled without significant losses of the most volatile methylsiloxanes. To improve the sensitivity of the GC-MS method, concurrent solvent recondensation - large volume injection (CSR-LVI), using volumes up to 30 µl of sample extract, is proposed and limits of quantification down to 0.03-0.45 ng m(-3), good linearity (r>0.999) and precision (RSD %<9%) were obtained. The developed method was applied to the analysis of ambient air. Concentrations of linear and cyclic methylsiloxanes in indoor air ranging from 3.9 to 319 ng m(-3) and between 48 and 292668 ng m(-3), were obtained, respectively, while levels from 6 to 22 ng m(-3) for linear and between 2.2 and 439 ng m(-3) for cyclic methylsiloxanes in outdoor air from Barcelona (Spain), were found.

  15. Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals

    NASA Astrophysics Data System (ADS)

    Lorente, Alba; Folkert Boersma, K.; Yu, Huan; Dörner, Steffen; Hilboll, Andreas; Richter, Andreas; Liu, Mengyao; Lamsal, Lok N.; Barkley, Michael; De Smedt, Isabelle; Van Roozendael, Michel; Wang, Yang; Wagner, Thomas; Beirle, Steffen; Lin, Jin-Tai; Krotkov, Nickolay; Stammes, Piet; Wang, Ping; Eskes, Henk J.; Krol, Maarten

    2017-03-01

    Air mass factor (AMF) calculation is the largest source of uncertainty in NO2 and HCHO satellite retrievals in situations with enhanced trace gas concentrations in the lower troposphere. Structural uncertainty arises when different retrieval methodologies are applied within the scientific community to the same satellite observations. Here, we address the issue of AMF structural uncertainty via a detailed comparison of AMF calculation methods that are structurally different between seven retrieval groups for measurements from the Ozone Monitoring Instrument (OMI). We estimate the escalation of structural uncertainty in every sub-step of the AMF calculation process. This goes beyond the algorithm uncertainty estimates provided in state-of-the-art retrievals, which address the theoretical propagation of uncertainties for one particular retrieval algorithm only. We find that top-of-atmosphere reflectances simulated by four radiative transfer models (RTMs) (DAK, McArtim, SCIATRAN and VLIDORT) agree within 1.5 %. We find that different retrieval groups agree well in the calculations of altitude resolved AMFs from different RTMs (to within 3 %), and in the tropospheric AMFs (to within 6 %) as long as identical ancillary data (surface albedo, terrain height, cloud parameters and trace gas profile) and cloud and aerosol correction procedures are being used. Structural uncertainty increases sharply when retrieval groups use their preference for ancillary data, cloud and aerosol correction. On average, we estimate the AMF structural uncertainty to be 42 % over polluted regions and 31 % over unpolluted regions, mostly driven by substantial differences in the a priori trace gas profiles, surface albedo and cloud parameters. Sensitivity studies for one particular algorithm indicate that different cloud correction approaches result in substantial AMF differences in polluted conditions (5 to 40 % depending on cloud fraction and cloud pressure, and 11 % on average) even for low

  16. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth

    NASA Astrophysics Data System (ADS)

    de Visser, Pieter J.; Levallois, Julien; Tran, Michaël K.; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O.; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B.

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13 ±1 %, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light.

  17. De Garengeot's hernia: an unusual right groin mass due to acute appendicitis in an incarcerated femoral hernia.

    PubMed

    Salkade, Parag R; Chung, Alexander Y F; Law, Y M

    2012-10-01

    The presence of an acutely inflamed vermiform appendix in a femoral hernia sac is extremely rare; the condition is termed De Garengeot's hernia. Here we describe an elderly patient for whom preoperative computed tomography aided the diagnosis of this rare entity. This Chinese woman had presented with a painful right groin mass. The patient successfully underwent an emergency appendicectomy and primary femoral hernia repair. Once diagnosed, it is imperative to follow key surgical principles to limit the spread of infection.

  18. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  19. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  20. In-situ TEM-investigations of mass transport in ``near-bamboo'' Al-interconnects due to electromigration

    NASA Astrophysics Data System (ADS)

    Heinen, Dirk; Schroeder, Herbert; Schilling, Werner

    1998-01-01

    Electromigration (EM)-driven mass transport in "near-bamboo" Al-lines, which consist mostly of "blocking grains," is an important topic of research on ULSI-metallizations. Because the most easy diffusion path, i.e. grain boundaries parallel to the line, is suppressed in bamboo-like Al-lines other paths have to be considered. In this work two other possible paths of diffusion were examined by in-situ observations in a transmission electron microscope (TEM). For these experiments a special sample holder had to be constructed. One path is EM-driven intragranular diffusion in Al-lines. In this experiment, inert gas-filled voids with a mean diameter of about 10 nm, so-called bubbles, which were created after gas implantation and annealing of the Al-lines, serve as indicators of mass (or vacancy) transport. The in-situ EM-tests reveal no intragranular void motion over a period of more than 100 h at current densities of 1-1.75 MA/cm2 and temperatures of 150-225 °C. This leads to an estimation of the maximum void diffusion velocity which was compared with calculated values of surface and volume diffusion controlled void motion, respectively. The second point of interest was the behavior of dislocations in Al-lines under an applied EM-force. The importance of their observed motion for intragranular mass transport will be discussed.

  1. Investigations of Pulmonary Epithelial Cell Damage due to Air-Liquid Interfacial Stresses in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.

    2004-01-01

    Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.

  2. Experimental Validation of a Forward Looking Interferometer for Detection of Clear Air Turbulence due to Mountain Waves

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Daniels, Taumi S.; West, Leanne L.; Gimmestad, Gary G.; Lane, Sarah E.; Burdette, Edward M.; Smith, William L.; Kireev, Stanislav; Cornman, Larry; Sharman, Robert D.

    2012-01-01

    The Forward-Looking Interferometer (FLI) is an airborne sensor concept for detection and estimation of potential atmospheric hazards to aircraft. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry technologies that have been developed for satellite remote sensing. The FLI is being evaluated for its potential to address multiple hazards, during all phases of flight, including clear air turbulence, volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing. In addition, the FLI is being evaluated for its potential to detect hazardous runway conditions during landing, such as wet or icy asphalt or concrete. The validation of model-based instrument and hazard simulation results is accomplished by comparing predicted performance against empirical data. In the mountain lee wave data collected in the previous FLI project, the data showed a damped, periodic mountain wave structure. The wave data itself will be of use in forecast and nowcast turbulence products such as the Graphical Turbulence Guidance and Graphical Turbulence Guidance Nowcast products. Determining how turbulence hazard estimates can be derived from FLI measurements will require further investigation.

  3. Application of a prospective model for calculating worker exposure due to the air pathway for operations in a laboratory.

    PubMed

    Grimbergen, T W M; Wiegman, M M

    2007-01-01

    In order to arrive at recommendations for guidelines on maximum allowable quantities of radioactive material in laboratories, a proposed mathematical model was used for the calculation of transfer fractions for the air pathway. A set of incident scenarios was defined, including spilling, leakage and failure of the fume hood. For these 'common incidents', dose constraints of 1 mSv and 0.1 mSv are proposed in case the operations are being performed in a controlled area and supervised area, respectively. In addition, a dose constraint of 1 microSv is proposed for each operation under regular working conditions. Combining these dose constraints and the transfer fractions calculated with the proposed model, maximum allowable quantities were calculated for different laboratory operations and situations. Provided that the calculated transfer fractions can be experimentally validated and the dose constraints are acceptable, it can be concluded from the results that the dose constraint for incidents is the most restrictive one. For non-volatile materials this approach leads to quantities much larger than commonly accepted. In those cases, the results of the calculations in this study suggest that limitation of the quantity of radioactive material, which can be handled safely, should be based on other considerations than the inhalation risks. Examples of such considerations might be the level of external exposure, uncontrolled spread of radioactive material by surface contamination, emissions in the environment and severe accidents like fire.

  4. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  5. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  6. a Survey on Health Effects due to Aircraft Noise on Residents Living around Kadena Air Base in the Ryukyus

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yamamoto, T.; Taira, K.; Ito, A.; Nakasone, T.

    1997-08-01

    Results are reported of a questionnaire survey relating to a scale for general health, the Todai Health Index, in a town, bordering on a large U.S. airbase in the Ryukyus. The level of aircraft noise exposure, in the town, expressed by WECPNL, ranges from 75 to 95 or more. The sample size was 1200, including a 200 person “control” group. Results of the analysis of the responses in terms of the noise exposure suggest that the exposed residents suffer psychosomatic effects, especially perceived psychological disorders, due to the noise exposure to military aircraft, and that such responses increase with the level of noise exposure.

  7. Air Superiority at Red Flag: Mass, Technology, and Winning the Next War

    DTIC Science & Technology

    2009-10-01

    improved their estimate. In The Art of Wargaming, Peter Perla suggests that adding exercise analysis could help. He recommends a “continuous cycle...Survey, 44. 45. Ibid., 27–28. 46. “Desert Shield Tactical Air Force Combat Losses, Damage, and Muni- tions Consumption.” 47. Ibid. 48. Perla , Art of...Williamson. Strategy for Defeat: The Luftwaffe, 1933– 1945, 1983. Reprint. Maxwell AFB, AL: Air University Press, 2007. Perla , Peter P. The Art of Wargaming

  8. STROBE-Long-Term Exposure to Ambient Fine Particulate Air Pollution and Hospitalization Due to Peptic Ulcers

    PubMed Central

    Wong, Chit-Ming; Tsang, Hilda; Lai, Hak-Kan; Thach, Thuan-Quoc; Thomas, G. Neil; Chan, King-Pan; Lee, Siu-Yin; Ayres, Jon G.; Lam, Tai-Hing; Leung, Wai K.

    2016-01-01

    Abstract Little is known about the effect of air pollution on the gastrointestinal (GI) system. We investigated the association between long-term exposures to outdoor fine particles (PM2.5) and hospitalization for peptic ulcer diseases (PUDs) in a large cohort of Hong Kong Chinese elderly. A total of 66,820 subjects aged ≥65 years who were enrolled in all 18 Government Elderly Health Service centers of Hong Kong participated in the study voluntarily between 1998 and 2001. They were prospectively followed up for more than 10 years. Annual mean exposures to PM2.5 at residence of individuals were estimated by satellite data through linkage with address details including floor level. All hospital admission records of the subjects up to December 31, 2010 were retrieved from the central database of Hospital Authority. We used Cox regression to estimate the hazard ratio (HR) for PUD hospitalization associated with PM2.5 exposure after adjustment for individual and ecological covariates. A total of 60,273 subjects had completed baseline information including medical, socio-demographic, lifestyle, and anthropometric data at recruitment. During the follow-up period, 1991 (3.3%) subjects had been hospitalized for PUD. The adjusted HR for PUD hospitalization per 10 μg/m3 of PM2.5 was 1.18 (95% confidence interval: 1.02–1.36, P = 0.02). Further analysis showed that the associations with PM2.5 were significant for gastric ulcers (HR 1.29; 1.09–1.53, P = 0.003) but not for duodenal ulcers (HR 0.98; 0.78 to 1.22, P = 0.81). Long-term exposures to PM2.5 were associated with PUD hospitalization in elder population. The mechanism underlying the PM2.5 in the development of gastric ulcers warrants further research. PMID:27149464

  9. Modeling of the relationship between the environmental air pollution, clinical risk factors, and hospital mortality due to myocardial infarction in Isfahan, Iran

    PubMed Central

    Sadeghi, Mehraban; Ahmadi, Ali; Baradaran, Azar; Masoudipoor, Neda; Frouzandeh, Soleiman

    2015-01-01

    Background: This study aimed to determine the relationship between the environmental factor, clinical risk factors, and individual variables with mortality due to acute myocardial infarction (MI) in Isfahan. Materials and Methods: This cross-sectional study was performed between April 2012 and March 2013. The data on the patients’ mortality due to MI in Isfahan were obtained from the MI National Registry. The international classification system (ICD10: I21-I22) was used to diagnose MI. The air quality indicators and environmental variables were used to measure the air pollution. Multilevel logistic regression in the Stata software was used to determine the factors associated with mortality in patients and odds ratios (ORs) were calculated. Results: Six hundred eleven patients with MI were studied during 1-year. 444 (72.2%) patients were male and the rest were female. 4.7% of the patients died due to MI. The mean age at MI incidence was 62.2 ± 13 years. Of the air pollution parameters, PM10 had the maximum mean concentration (49.113 ppm), followed by NOX, NO, NO2, CO, SO2, and O3. The adjusted OR of mortality was derived 2.07 (95% CI: 1.5-2.85) for right bundle branch block, 1.5 (95% CI: 1.3-1.7) for ST-segment elevation MI, 1.84 (95% CI: 1.13-3) for age, 1.06 (95% CI: 1.01-1.20) for CO, 1.1 (95% CI: 1.03-1.30) for O3, and 1.04 (95% CI: 1.01-1.4) for SO2, all of which were considered as the risk factors of mortality. However, OR of mortality was 0.79 for precipitation (95% CI: 0.74-0.84) and 0.52 for angioplasty (95% CI: 0.4-0.68) were considered as protective factors of mortality. The individual characteristics including age, history of MI in the immediate family, hypertension, and diabetes were significantly associated with mortality from MI. The indices of air pollution including SO2, CO, O3, and environmental factors such as the precipitation and temperature were the determinants of mortality in patients with MI. Conclusion: With regards to the factors

  10. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  11. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  12. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples.

  13. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  14. Generalized solution for 1-D non-Newtonian flow in a porous domain due to an instantaneous mass injection

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Ciriello, V.

    2011-12-01

    Non-Newtonian fluid flow in porous media is of considerable interest in hydrology, chemical and petroleum engineering, and biofluid mechanics. We consider an infinite porous domain of plane (d=1), cylindrical (d=2) or semi-spherical geometry (d=3), having uniform permeability k and porosity Φ, initially at uniform pressure and saturated by a weakly compressible non-Newtonian fluid, and analyze the dynamics of the pressure variation generated within the domain by an instantaneous mass injection m0 in its origin. The fluid is described by a rheological power-law model of given consistency index H and flow behavior index n; the flow law is a modified Darcy's law depending on H, Φ, n. Coupling flow law and mass balance equations yields the nonlinear partial differential equation governing the pressure field; an analytical solution is derived in space r and time t as a function of a self-similar variable η=r/tβ(n). We revisit and expand the work in previous papers by providing a dimensionless general formulation and solution to the problem for d=1,2,3. When a shear-thinning fluid (n<1) is considered, the analytical solution exhibits traveling wave characteristics, in variance with Newtonian fluids; the front velocity is proportional to t(n-2)/2 in plane geometry, t(2n-3)/(3-n) in cylindrical geometry, and t(3n-4)/(4-2n) in semi-spherical geometry. The front position is a markedly increasing function of n and is inversely dependent on d; the pressure front advances at a slower rate for larger values of compressibility, higher injected mass and lower porosity. When pressure is considered, it is seen that an increase in d from 1 to 3 brings about an order of magnitude reduction. An increase in compressibility implies a significant decrease in pressure, especially at early times. To reflect the uncertainty inherent in values of the problem parameters, we then consider selected properties of fluid (flow behavior index n) and porous domain (permeability k, porosity

  15. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase

  16. Left Ventricular Mass and Intrarenal Arterial Stiffness as Early Diagnostic Markers in Cardiorenal Syndrome Type 5 due to Systemic Sclerosis

    PubMed Central

    Gigante, Antonietta; Barilaro, Giuseppe; Barbano, Biagio; Romaniello, Antonella; Di Mario, Francesca; Quarta, Silvia; Gasperini, Maria Ludovica; Di Lazzaro Giraldi, Gianluca; Laviano, Alessandro; Amoroso, Antonio; Cianci, Rosario; Rosato, Edoardo

    2016-01-01

    Background Cardiorenal syndrome type 5 (CRS-5) includes a group of conditions characterized by a simultaneous involvement of the heart and kidney in the course of a systemic disease. Systemic sclerosis (SSc) is frequently involved in the etiology of acute and chronic CRS-5 among connective tissue diseases. In SSc patients, left ventricular mass (LVM) can be used as a marker of nutritional status and fibrosis, while altered intrarenal hemodynamic parameters are suggestive of early kidney involvement. Methods Forty-two consecutive patients with a diagnosis of SSc without cardiac and/or renal impairment were enrolled to assess whether cardiac muscle mass can be related to arterial stiffness. Thirty subjects matched for age and sex were also enrolled as healthy controls (HC). All patients performed echocardiography and renal ultrasound. Results Doppler indices of intrarenal stiffness and echocardiographic indices of LVM were significantly increased in SSc patients compared to HC. A positive correlation exists between LVM/body surface area and pulsatile index (p < 0.05, r = 0.36), resistive index (p < 0.05, r = 0.33) and systolic/diastolic ratio (p < 0.05, r = 0.38). Doppler indices of intrarenal stiffness and LVM indices were significantly higher in SSc patients with digital ulcers than in SSc patients without a digital ulcer history. Conclusions SSc is characterized by the presence of microvascular and multiorgan injury. An early cardiac and renal impairment is very common. LVM and intrarenal arterial stiffness can be considered as early markers of CRS onset. The clinical use of these markers permits a prompt identification of organ damage. An early diagnosis allows the appropriate setting of pharmacological management, by slowing disease progression. © 2016 S. Karger AG, Basel PMID:27022332

  17. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  18. Numerical study of coupled transfer of heat and mass between air and water inside a geothermal water cooling tower

    NASA Astrophysics Data System (ADS)

    Bassem, Mohamed Mehdi; Bourouni, Karim; Thameur Chaibi, Mohamed

    2006-11-01

    In the south of Tunisia, geothermal water is used to irrigate cultures. Since its temperature is very high (70 C), geothermal water is cooled by cooling towers. These towers are sized empirically and present many operating problems such as excessive energy consumption, big loss of vapour and low cooling efficiency. The aim of our work is modelling the coupled heat and mass transfer between air and water inside the cooling tower. The most important results obtained are that the evaporative potential is dominating the convective one in the cooling process. That's why the cooling is more efficient in summer than in hibernal period when humidity of ambient air reaches high values. In other hand, the negative convective phenomenon is illustrated. In fact, at the bottom of the tower, water temperature reaches the air one; the two fluids begin to cooling simultaneously. Air is cooled by convection and water by evaporation. We demonstrate also that there is no point in putting fans in working during cold weather. We studied also the effect of the variation of heat transfer coefficient on the efficiency of cooling.

  19. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  20. Ambient air analyses using nonspecific flame ionization and electron capture detection compared to specific detection by mass spectroscopy

    SciTech Connect

    Pleil, J.D.; Oliver, K.D.; McClenny, W.A.

    1988-08-01

    Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.

  1. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  2. On the possibility of solar dust ring formation due to increased dust-ion drag from coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Misconi, N. Y.; Pettera, L. E.

    1995-07-01

    Model calculations of circumsolar dust are conducted taking into account the increased ion drag due to the interaction of F-coronal dust with CMEs inside 8 Rs. The choice of 8 Rs is not arbitrary, after considering the severe plasma environment inside this region. Dust particles are allowed to spiral inward towards the Sun via the Poynting-Robertson drag, and the characteristics of the CMEs are applied in order to numerically compute the increased ion drag on F-coronal dust. The results show that the spiraling time would roughly be cut in half for dust particles inside 8 Rs. Differences in the spiraling time due to the dependence of the magnitude of increased ion drag on dust particle size, creates separation in the heliocentric distance of the orbits of small (> 10 μm) vs. larger particles. This result could create conditions where a dust ring or rings may appear as a transient feature, which would explain former citing of such dust rings by observers and their absence by others.

  3. The impact of past and future climate change on global human mortality due to ozone and PM2.5 outdoor air pollution

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.

    2012-12-01

    Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately

  4. Quantification of the sources and composition of particulate matter by field-deployable mass spectrometry: implications for air quality and public health.

    PubMed

    Hayes, Patrick L

    2017-02-27

    Airborne particulate matter less than 2.5 μm in diameter (PM2.5) negatively impacts air quality in cities throughout the world where it has been linked to increased cardiac and respiratory morbidity and mortality. For this reason PM2.5 standards have been established by many countries and the World Health Organization. However, these guidelines are regularly exceeded in North America, Europe and East Asia. While PM2.5 is often reported as a single atmospheric species, it is actually a mixture of organic and inorganic compounds. The organic fraction, termed organic aerosol (OA), contributes approximately 20-70% of the PM2.5 mass globally, and OA itself is a complex mixture of thousands of compounds. Characterizing the chemical properties of OA represents a major analytical challenge that has motivated the development of a range of new instruments. The focus of this perspective is the use of field-deployable mass spectrometers and in particular the Aerodyne Aerosol Mass Spectrometer (AMS) for chemically characterizing submicron particles. Field measurements of the composition of PM2.5 are directly relevant to evaluating its health impact because reductions in life expectancy due to PM2.5 vary according to composition. In addition, AMS measurements are especially useful for characterizing OA. The sources of OA are not well understood as evidenced by the performance of many air quality models, including those run by government agencies, which lack accurate and well constrained parameterizations for simulating secondary OA concentrations in urban regions. Given that OA is an important component of the total PM2.5 mass, this uncertainty makes accurate evaluation of the impact of PM2.5 on public health difficult, especially when evaluating future mitigation strategies. The development of the AMS has been a critical step towards addressing this public health challenge in that it provides quantitative data regarding particulate matter and OA concentration and composition

  5. SU-F-BRB-14: Dosimetric Effects at Air- Tissue Boundary Due to Magnetic Field in MR-Guided IMRT/VMAT Delivery for Head and Neck Cancer

    SciTech Connect

    Prior, P; Chen, X; Schultz, C; Li, X

    2015-06-15

    Purpose: The advent of the MR-Linac enables real-time and high soft tissue contrast image guidance in radiation therapy (RT) delivery. Potential hot-spots at air-tissue interfaces, such as the sphenoid sinus, in RT for head and neck cancer (HNC), could potentially occur due to the electron return effect (ERE). In this study, we investigate the dosimetric effects of ERE on the dose distribution at air-tissues interfaces in HNC IMRT treatment planning. Methods: IMRT plans were generated based on planning CT’s acquired for HNC cases (nasopharynx, base of skull and paranasal sinus) using a research planning system (Monaco, v5.09.06, Elekta) employing Monte Carlo dose calculations with or without the presence of a transverse magnetic field (TMF). The dose in the air cavity was calculated in a 1 & 2 mm thick tissue layer, while the dose to the skin was calculated in a 1, 3 and 5 mm thick tissue layer. The maximum dose received in 1 cc volume, D1cc, were collected at different TMF strengths. Plan qualities generated with or without TMF or with increasing TMF were compared in terms of commonly-used dose-volume parameters (DVPs). Results: Variations in DVPs between plans with and without a TMF present were found to be within 5% of the planning CT. The presence of a TMF results in <5% changes in sinus air tissue interface. The largest skin dose differences with and without TMF were found within 1 mm of the skin surface Conclusion: The presence of a TMF results in practically insignificant changes in HNC IMRT plan quality, except for skin dose. Planning optimization with skin DV constraints could reduce the skin doses. This research was partially supported by Elekta Inc. (Crowley, U.K.)

  6. Theory of inelastic confinement-induced resonances due to the coupling of center-of-mass and relative motion

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Saenz, Alejandro

    2016-08-01

    A detailed study of the anharmonicity-induced resonances caused by the coupling of center-of-mass and relative motion is presented for a system of two ultracold atoms in single-well potentials. As has been confirmed experimentally, these inelastic confinement-induced resonances are of interest since they can lead to coherent molecule formation, losses, and heating in ultracold atomic gases. A perturbative model is introduced to describe the resonance positions and the coupling strengths. The validity of the model and the behavior of the resonances for different confinement geometries are analyzed in comparison with exact numerical ab initio calculations. While such resonances have so far only been detected for large positive values of the s -wave scattering length, it is found that they are present also for negative s -wave scattering lengths, i.e., for attractive interactions. The possibility to coherently tune the resonances by a variation of the external confinement geometry might pave the way for coherent molecule association where magnetic Feshbach resonances are inaccessible.

  7. Identifying tropospheric baseline air masses at Mauna Loa Observatory between 2004 and 2010 using Radon-222 and back trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, Scott D.; Zahorowski, Wlodek; Williams, Alastair G.; Crawford, Jagoda; Griffiths, Alan D.

    2013-01-01

    We use 7 years of hourly radon observations at Mauna Loa Observatory (MLO), together with 10-day back trajectories, to identify baseline air masses at the station. The amplitude of the annual MLO radon cycle, based on monthly means, was 98 mBq m-3 (39 -137 mBq m-3), with maximum values in February (90th percentile 330 mBq m-3) and minimum values in August (10th percentile 8.1 mBq m-3). The composite diurnal radon cycle (amplitude 49 mBq m-3) is discussed with reference to the influences of local flow features affecting the site, and a 3-hour diurnal sampling window (0730-1030 HST) is proposed for observing the least terrestrially influenced tropospheric air masses. A set of 763 baseline events is selected, using the proposed sampling window together with trajectory information, and presented along with measured radon concentrations as a supplement. This data set represents a resource for the selection of baseline events at MLO for use with a range of trace species. A reduced set of 196 "deep baseline" events occurring in the July-September window is also presented and discussed. The distribution (10th/50th/90th percentile) of radon in deep-baseline events (8.7/29.2/66.1 mBq m-3) was considerably lower than that for the overall set of 763 baseline events (12.3/40.8/104.1 mBq m-3). Results from a simple budget calculation, using sonde-derived mixing depths and literature-based estimates of oceanic radon flux and radon concentrations in the marine boundary layer, indicate that the main source of residual radon in the lower troposphere under baseline conditions at MLO is downward mixing from aged terrestrial air masses in the upper troposphere.

  8. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  9. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  10. Health related vulnerability due to chronic diseases: Impact on clinical services across emergency shelters in mass disasters

    NASA Astrophysics Data System (ADS)

    Koleva, Yordanka Nikolova

    Chronic diseases are increasingly recognized as major contributors to the global burden of disease. Individuals with chronic disease are particularly vulnerable during mass emergencies as they may suffer an interruption in their therapeutic programs, leading to life-threatening conditions and complications. Based on the individual and community risk factors framework, three categories are defined as the most vulnerable to extreme natural events: physically, psychologically, and socially vulnerable. Complex emergencies that occurred in the recent decade have provided evidence that these groups suffer more pronounced effects than others. Individuals seeking community support during emergencies have been predominantly medically dependent, elderly, children, people with chronic health conditions, and lower socioeconomic status. The purpose of this study was to investigate the effect of health-related vulnerability on shelter operations, and to estimate the burden of chronic disease on community resources following catastrophic events. A comprehensive survey data collection conducted by the United States Public Health Service in 2005 was used to evaluate clinical services for populations with health conditions accommodated by Louisiana temporary disaster shelters. Correlation and multiple regression analyses determined the relationship between shelter characteristics and the factors predicting shelters' needs for short-term assistance. Significant predictors were identified in all three explored domains: structural shelter characteristics (sponsor, interpreter needed); clinical characteristics (access to health providers, clinic on site, staff had no days off); population characteristics (census, compromised mental health alone, or in combination with chronic conditions and diseases with epidemic potential). Shelters sponsored by faith-based organizations were less likely to be in risk of rapid resource depletion. Shelters with large census demonstrated association with

  11. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis; de Loos-Vollebregt, Margaretha T. C.; Mora, Juan

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma-mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w- 1) have been compared with the corresponding signals for a 1% w w- 1- nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10-20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.

  12. A conceptual model of the dehydration of air due to freeze-drying by optically thin, laminar cirrus rising slowly across the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Jensen, Eric J.; Pfister, Leonhard; Ackerman, Andrew S.; Tabazadeh, Azadeh; Toon, Owen B.

    2001-01-01

    In this study, we use a cloud model to simulate dehydration which occurs due to formation of optically thin, laminar cirrus as air rises slowly across the tropopause. The slow ascent and adiabatic cooling, which balances the radiative heating near the tropopause, drives nucleation of a very small number of ice crystals (<1 L-1). These crystals grow rapidly and sediment out within a few hours. The clouds never become optically thick enough to be visible from the ground. The ice crystal nucleation and growth prevents the relative humidity with respect to ice (RHI) from rising more than a few percent above the threshold for ice nucleation (RHInuc ≃ 110-160%, depending upon the aerosol composition); hence, laminar cirrus can limit the mixing ratio of water vapor entering the stratosphere. However, the ice number densities are too low and their sedimentation is too rapid to allow dehydration of the air from RHInuc down to saturation (RHI = 100%). The net result is that air crosses the tropopause with water vapor mixing ratios about 1.1 to 1.6 times the ice saturation mixing ratio corresponding to the tropopause temperature, depending on the threshold of ice nucleation on aerosols in the tropopause region. If the cross-tropopause ascent rate is larger than that calculated to balance radiative heating (0.2 cm s-1), then larger ice crystal number densities are generated, and more effective dehydration is possible (assuming a fixed temperature). The water vapor mixing ratio entering the stratosphere decreases with increasing ascent rate (approaching the tropopause ice saturation mixing ratio) until the vertical wind speed exceeds the ice crystal terminal velocity (about 10 cm s-1). More effective dehydration can also be provided by temperature oscillations associated with wave motions. The water vapor mixing ratio entering the stratosphere is essentially controlled by the tropopause temperature at the coldest point in the wave. Hence, the efficiency of dehydration at the

  13. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components.

  14. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  15. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  16. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb.

  17. Identification of European Air Masses Using an Interactive Computer Technique for Separating Mixed Normal Distributions.

    DTIC Science & Technology

    1982-01-01

    classifying a maritime surface, he refers to the Pacific, Atlantic, or Gulf of Mexico using the general term "maritime" only when the exact origin is...portions of North Atlantic NPA PA air modified over warm North Atlantic TC Southern U.S. and Northern Mexico TG Gulf of Mexico and Caribbean NTG TG...Bergeron, T., 1928: " Uber Die Dreidimensional Verknupfende Wetteranalyse, Teil I." Geofys. Pub!., Vol. 5, No. 6. Berggren, R., 1953: "On Temperature

  18. Causes, Dynamics and Impacts of Lahar Mass Flows due to the April 2015 Eruption of Calbuco Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Dussaillant, Alejandro; Russell, Andy; Meier, Claudio; Rivera, Andres; Mella, Mauricio; Garrido, Natalia; Hernandez, Jorge; Napoleoni, Felipe; Gonzalez, Cristian

    2016-04-01

    provides large volumes of sediment to distal portions of fluvial systems radiating from Calbuco, continuing impact on infrastructure and settlements, including secondary lahars due to rain and melt events. The database generated by this study hopes to contribute to further studies into lahars, including its use to test lahar numerical models.

  19. Properties of individual aerosol particles and their relation to air mass origins in a south China coastal city

    NASA Astrophysics Data System (ADS)

    Shi, Zongbo; He, Kebin; Xue, Zhigang; Yang, Fumo; Chen, Yanju; Ma, Yongliang; Luo, Jiaojiao

    2009-05-01

    Atmospheric particles in urban and rural areas in Shenzhen city were collected in summer and winter 2004. The particles were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. The fine particles (<1 μm) were categorized into chain-like, elongated, rounded, and others on the basis of their morphology. Chain-like particles were likely soot aggregates. In summer and winter, chain-like particles accounted for 43% and 42% of total particles in the urban area, and 22% and 43% in the rural area, respectively. The elongated particles were mixtures of aged sea salts and ammonium sulfate, suggesting an aqueous phase reaction mechanism, i.e., in-cloud sulfate formation. Such particles occupied 12% of total particles in the urban area in the summer and were rarely observed in the wintertime samples. The rounded particles were mainly composed of sulfate and/or carbon. Their number concentration in the urban area was more than three times higher in the winter. In addition, we found that air masses from northern inland contained much higher concentrations of particles than those from the ocean. This was particularly evident in the rural area, where concentrations of chain-like and rounded particles were eight times higher in the continental air masses. These results suggest the strong influence of regional pollution on the particle number concentrations in the coastal city.

  20. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  1. An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere

    NASA Astrophysics Data System (ADS)

    Lerner, Brian M.; Gilman, Jessica B.; Aikin, Kenneth C.; Atlas, Elliot L.; Goldan, Paul D.; Graus, Martin; Hendershot, Roger; Isaacman-VanWertz, Gabriel A.; Koss, Abigail; Kuster, William C.; Lueb, Richard A.; McLaughlin, Richard J.; Peischl, Jeff; Sueper, Donna; Ryerson, Thomas B.; Tokarek, Travis W.; Warneke, Carsten; Yuan, Bin; de Gouw, Joost A.

    2017-01-01

    Volatile organic compounds were quantified during two aircraft-based field campaigns using highly automated, whole air samplers with expedited post-flight analysis via a new custom-built, field-deployable gas chromatography-mass spectrometry instrument. During flight, air samples were pressurized with a stainless steel bellows compressor into electropolished stainless steel canisters. The air samples were analyzed using a novel gas chromatograph system designed specifically for field use which eliminates the need for liquid nitrogen. Instead, a Stirling cooler is used for cryogenic sample pre-concentration at temperatures as low as -165 °C. The analysis system was fully automated on a 20 min cycle to allow for unattended processing of an entire flight of 72 sample canisters within 30 h, thereby reducing typical sample residence times in the canisters to less than 3 days. The new analytical system is capable of quantifying a wide suite of C2 to C10 organic compounds at part-per-trillion sensitivity. This paper describes the sampling and analysis systems, along with the data analysis procedures which include a new peak-fitting software package for rapid chromatographic data reduction. Instrument sensitivities, uncertainties and system artifacts are presented for 35 trace gas species in canister samples. Comparisons of reported mixing ratios from each field campaign with measurements from other instruments are also presented.

  2. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J. C.; Sodeau, J. R.; Healy, R. M.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; O'Dowd, C. D.

    2009-12-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the NE Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Black carbon concentrations in polluted air were between 300-400 ng m-3, and in clean marine air were less than 50 ng m-3. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water

  3. Evidence from catch-up growth and hoarding behavior of rats that exposure to hypobaric air lowers the body-mass set point.

    PubMed

    Bozzini, Carlos E; Lezón, Christian E; Norese, María F; Conti, María I; Martínez, María P; Olivera, María I; Alippi, Rosa M

    2005-01-01

    The depression of body growth rate and the reduction of body mass for chronological age and gender in growing experimental animals exposed to hypobaric air (simulated high altitude = SHA) have been associated with hypophagia because of reduced appetite. Catch-up growth during protein recovery after a short period of protein restriction only occurs if food intake becomes super-normal, which should not be possible under hypoxic conditions if the set-point for appetite is adjusted by the level of SHA. The present investigation was designed to test the hypothesis that growth retardation during exposure to SHA is due to an alteration of the neural mechanism for setting body mass size rather than a primary alteration of the central set-point for appetite. One group of female rats aged 35 d were exposed to SHA (5460m) in a SHA chamber for 27 d (HX rats). Other group was maintained under local barometric pressure conditions (NX rats). One half of both NX and HX rats were fed a protein-free diet for the initial 9 d of the experimental period. From this time on, they were fed a diet containing 20% protein, as were the remaining rats of both groups during the entire experimental period. The growth rates of both mass and length of the body were significantly depressed in well-nourished rats exposed to SHA during the entire observation period when compared to normoxic ones. At its end, body mass and body length were 24% and 21% less in HX than in NX rats. Growth rates were negatively affected by protein restriction in both NX and HX rats. During protein recovery, they reached supernormal values in response to supernormal levels of energy intake that allowed a complete catch-up of both body mass and length. The finding that energy intake during the period of protein rehabilitation in HX rats previously stunted by protein restriction was markedly higher than in HX control ones at equal levels of hypoxia demonstrates that the degree of hypoxia does not determine directly the

  4. Distortion of thermospheric air masses by horizontal neutral winds over Poker Flat Alaska measured using an all-sky scanning Doppler imager

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.

    2016-01-01

    An air mass transported by a wind field will become distorted over time by any gradients present in the wind field. To study this effect in Earth's thermosphere, we examine the behavior of a simple parameter that we describe here as the "distortion gradient." It incorporates all of the wind field's departures from uniformity and is thus capable of representing all contributions to the distortion or mixing of air masses. The distortion gradient is defined such that it is always positive, so averaging over time and/or space does not suppress small-scale features. Conventional gradients, by contrast, are signed quantities that would often average to zero. To analyze the climatological behavior of this distortion gradient, we used three years (2010, 2011, and 2012) of thermospheric F region wind observations from a high-latitude ground-based all-sky wavelength scanning Doppler Fabry-Perot interferometer located at Poker Flat Alaska. Climatological averaging of the distortion gradient allowed us to investigate its diurnal and seasonal (annual) behaviors at our observing location. Distortion was observed to be higher before local magnetic midnight and to be seasonally dependent. While maximum distortion occurred before local magnetic midnight under all geomagnetic conditions, the peak distortion occurred earlier under moderate geomagnetic conditions as compared to the quiet geomagnetic conditions and even earlier still when geomagnetic conditions were active. Peak distortion was stronger and appeared earlier when interplanetary magnetic field (IMF) was southward compared to northward. By contrast, we could not resolve any time-shift effect due to the IMF component tangential to Earth's orbit.

  5. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.

    PubMed

    Tucker, Samuel P; Pretty, Jack R

    2005-10-01

    Solanesol, a 45-carbon, trisesquiterpenoid alcohol found in tobacco leaves and tobacco smoke, has been used as a quantitative marker for tobacco smoke for years. However, solanesol appears to be unreliable as a quantitative marker for tobacco smoke during environmental air sampling because it can be degraded substantially when present as a component of tobacco smoke and by as much as 100% when present as pure solanesol on fortified filters during air sampling. Since there is strong evidence that ozone is the agent responsible for the degradation, solanesol appears to be unreliable as a quantitative marker during indoor air sampling when indoor levels of ozone are greater than about 15 ppb. The degree of loss of pure solanesol is directly proportional to the concentration of ozone and the length of the sampling period and depends on the type of 37 mm membrane filter used for air sampling (PTFE or quartz fiber). While the degree of loss of solanesol is inversely proportional to the relative humidity of the air at a sampling rate of 1.7 L min(-1), the degree of loss is virtually independent of relative humidity at a lower sampling rate; i.e., 0.25 L min(-1). A curve of loss of solanesol on a filter versus concentration of ozone from an ozone generator is virtually identical to a curve segment based on atmospheric ozone under the same conditions of air sampling. Oxidation of solanesol by ozone to approximately 25 to 60% completion produces at least three series of products for a total of at least 26 compounds: (1) isoprenoid acetones, (2)omega-hydroxyisoprenoid acetaldehydes, and (3) isoprenoid oxoaldehydes. All products in each series were tentatively identified as their derivatives with 2-(p-aminophenyl)ethanol (APE) by electrospray mass spectrometry (ES-MS). Ten ozonation products were detected as their 2,4-dinitrophenylhydrazine derivatives by HPLC at 360 nm: 4-oxopentanal and nine isoprenoid acetones (acetone, 6-methyl-5-hepten-2-one, geranylacetone

  6. Upper air relaxation in regional climate model improves resolved interannual variability of the surface mass balance of Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke; van Meijgaard, Erik

    2015-04-01

    The surface mass balance (SMB) determines the variability of the mass balance of the Antarctic Ice sheet on sub-decadal timescales. Since continent-wide SMB cannot be measured, it must be modeled and regional climate models (RCMs) generally outperform global reanalyses in the representation of total mass flux and the spatial distribution of SMB. However, if RCMs are only forced with reanalysis on their lateral boundaries, the representation of the interannual variability of SMB deteriorates significantly. In this study we show how to improve the resolved interannual variability in RCM modeled SMB. For this purpose we use annual SMB observations in the Thwaites drainage basin in Antarctica derived from airborne radar reflections and the RCM RACMO2. RACMO2, driven by ERA-Interim, better represents the mean spatial SMB pattern in this basin than ERA-Interim. However, without relaxation in the interior, RACMO2 poorly resolves the observed interannual SMB variability. If we gently relax the temperature and wind field in the upper atmosphere in RACMO2 to ERA-Interim, RACMO2 gets the best of both. Upper air relaxation little changes the mean SMB and spatial pattern compared to the original RACMO2 output, but allows RACMO2 to resolve the observed interannual SMB as good as ERA-Interim.

  7. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany.

  8. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  9. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-06-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  10. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-02-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  11. Upper beak truncation in chicken embryos with the cleft primary palate mutation is due to an epithelial defect in the frontonasal mass.

    PubMed

    MacDonald, Mary E; Abbott, Ursula K; Richman, Joy M

    2004-06-01

    In this study, we used the chicken mutant strain known as cleft primary palate (cpp) to study the mechanisms of beak outgrowth. cpp mutants have complete truncation of the upper beak with normal development of the lower beak. Based on structural analysis and grafts of facial prominences, we localized the defect to the frontonasal mass and its derivatives. Several explanations that would account for the outgrowth defect were investigated, including abnormal expression of genes in the frontonasal epithelium, intrinsic defects in epithelium and/or mesenchyme defects in epithelial-mesenchymal signalling, a localized decrease in cell proliferation or a localized increase in programmed cell death. One of the genes expressed in the frontonasal epithelial growth zone, Fgf8, failed to down-regulate and was maintained for at least 48 hr beyond the time when down-regulation normally occurs. Recombination experiments further illustrated that the frontonasal mass epithelium was abnormal in the cpp mutants, whereas mutant mesenchyme was capable of normal outgrowth when combined with wild-type epithelium. Cell proliferation was not decreased in mutant embryos nor was cell death initially increased. Later, at stages 31-32, when the prenasal cartilage begins directed outgrowth, there was an increase in cell death within the mutant upper but not lower beak cartilage. The cpp beak truncation, therefore, is due to an epithelial defect in the frontonasal mass that is coincident with a failure to down-regulate expression of Fgf8.

  12. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-11-01

    In this paper, we assess the risk of future coastal flooding in the Severn Estuary, examining the contribution from low probability extreme sea level rise scenarios resulting from the possibility of increased rates of ice sheet mass loss in the coming century. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100, based on recent assessments of future sea level rise in the UK. A regular sampling procedure, sampling every 1 mm, is used to increase the boundary water levels associated with a current 1:200 year event to force a two-dimensional hydrodynamic model of coastal inundation to examine the influence of sea level rise on inundation of the Somerset Levels region. From the resulting ensemble of predictions an estimation of risk (conditioned upon the hazard and the probability of occurrence) by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (29.7%) increase to the projected risk. These findings clearly demonstrate that uncertainty in future sea level rise, mostly associated with the rate of ice sheet mass loss, is a vital component of coastal flood risk, and therefore, needs to be accounted for by decision makers when considering mitigation policies related to coastal flooding.

  13. Costs of Illness Due to Cholera, Costs of Immunization and Cost-Effectiveness of an Oral Cholera Mass Vaccination Campaign in Zanzibar

    PubMed Central

    Schaetti, Christian; Weiss, Mitchell G.; Ali, Said M.; Chaignat, Claire-Lise; Khatib, Ahmed M.; Reyburn, Rita; Duintjer Tebbens, Radboud J.; Hutubessy, Raymond

    2012-01-01

    Background The World Health Organization (WHO) recommends oral cholera vaccines (OCVs) as a supplementary tool to conventional prevention of cholera. Dukoral, a killed whole-cell two-dose OCV, was used in a mass vaccination campaign in 2009 in Zanzibar. Public and private costs of illness (COI) due to endemic cholera and costs of the mass vaccination campaign were estimated to assess the cost-effectiveness of OCV for this particular campaign from both the health care provider and the societal perspective. Methodology/Principal Findings Public and private COI were obtained from interviews with local experts, with patients from three outbreaks and from reports and record review. Cost data for the vaccination campaign were collected based on actual expenditure and planned budget data. A static cohort of 50,000 individuals was examined, including herd protection. Primary outcome measures were incremental cost-effectiveness ratios (ICER) per death, per case and per disability-adjusted life-year (DALY) averted. One-way sensitivity and threshold analyses were conducted. The ICER was evaluated with regard to WHO criteria for cost-effectiveness. Base-case ICERs were USD 750,000 per death averted, USD 6,000 per case averted and USD 30,000 per DALY averted, without differences between the health care provider and the societal perspective. Threshold analyses using Shanchol and assuming high incidence and case-fatality rate indicated that the purchase price per course would have to be as low as USD 1.2 to render the mass vaccination campaign cost-effective from a health care provider perspective (societal perspective: USD 1.3). Conclusions/Significance Based on empirical and site-specific cost and effectiveness data from Zanzibar, the 2009 mass vaccination campaign was cost-ineffective mainly due to the relatively high OCV purchase price and a relatively low incidence. However, mass vaccination campaigns in Zanzibar to control endemic cholera may meet criteria for cost

  14. Tsunami run-up and inundation along the coast of Sabah and Sarawak, Malaysia due to a potential Brunei submarine mass failure.

    PubMed

    Tan, Wai Kiat; Teh, Su Yean; Koh, Hock Lye

    2017-03-25

    Submarine landslides, also known as submarine mass failures (SMFs), are major natural marine disasters that could critically damage coastal facilities such as nuclear power plants and oil and gas platforms. It is therefore essential to investigate submarine landslides for potential tsunami hazard assessment. Three-dimensional seismic data from offshore Brunei have revealed a giant seabed mass deposited by a previous SMF. The submarine mass extends over 120 km from the continental slope of the Baram Canyon at 200 m water depth to the deep basin floor of the Northwest Borneo Trough. A suite of in-house two-dimensional depth-averaged tsunami simulation model TUNA (Tsunami-tracking Utilities and Application) is developed to assess the vulnerability of coastal communities in Sabah and Sarawak subject to potential SMF tsunami. The submarine slide is modeled as a rigid body moving along a planar slope with the center of mass motion parallel to the planar slope and subject to external forces due to added mass, gravity, and dissipation. The nonlinear shallow water equations are utilized to simulate tsunami propagation from deepwater up to the shallow offshore areas. A wetting-drying algorithm is used when a tsunami wave reaches the shoreline to compute run up of tsunami along the shoreline. Run-up wave height and inundation maps are provided for seven densely populated locations in Sabah and Sarawak to highlight potential risks at each location, subject to two scenarios of slide slopes: 2° and 4°. The first wave may arrive at Kudat as early as 0.4 h after the SMF, giving local communities little time to evacuate. Over a small area, maximum inundated depths reaching 20.3 m at Kudat, 26.1 m at Kota Kinabalu, and 15.5 m at Miri are projected, while the maximum inundation distance of 4.86 km is expected at Miri due to its low-lying coast. In view of the vulnerability of some locations to the SMF tsunami, it is important to develop and implement community resilience

  15. Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Ceburnis, D.; Martucci, G.; Bialek, J.; Dupuy, R.; Jennings, S. G.; Berresheim, H.; Wenger, J.; Healy, R.; Facchini, M. C.; Rinaldi, M.; Giulianelli, L.; Finessi, E.; Worsnop, D.; Ehn, M.; Mikkilä, J.; Kulmala, M.; O'Dowd, C. D.

    2010-09-01

    As part of the EUCAARI Intensive Observing Period, a 4-week campaign to measure aerosol physical, chemical and optical properties, atmospheric structure, and cloud microphysics was conducted from mid-May to mid-June, 2008 at the Mace Head Atmospheric Research Station, located at the interface of Western Europe and the N. E. Atlantic and centered on the west Irish coastline. During the campaign, continental air masses comprising both young and aged continental plumes were encountered, along with polar, Arctic and tropical air masses. Polluted-continental aerosol concentrations were of the order of 3000 cm-3, while background marine air aerosol concentrations were between 400-600 cm-3. The highest marine air concentrations occurred in polar air masses in which a 15 nm nucleation mode, with concentration of 1100 cm-3, was observed and attributed to open ocean particle formation. Continental air submicron chemical composition (excluding refractory sea salt) was dominated by organic matter, closely followed by sulphate mass. Although the concentrations and size distribution spectral shape were almost identical for the young and aged continental cases, hygroscopic growth factors (GF) and cloud condensation nuclei (CCN) to total condensation nuclei (CN) concentration ratios were significantly less in the younger pollution plume, indicating a more oxidized organic component to the aged continental plume. The difference in chemical composition and hygroscopic growth factor appear to result in a 40-50% impact on aerosol scattering coefficients and Aerosol Optical Depth, despite almost identical aerosol microphysical properties in both cases, with the higher values been recorded for the more aged case. For the CCN/CN ratio, the highest ratios were seen in the more age plume. In marine air, sulphate mass dominated the sub-micron component, followed by water soluble organic carbon, which, in turn, was dominated by methanesulphonic acid (MSA). Sulphate concentrations were

  16. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  17. Taking the Firn into Account: Elevation Change of the Greenland Ice Sheet due to Surface Mass Balance and Firn Processes, 1960-2014

    NASA Astrophysics Data System (ADS)

    Kuipers Munneke, P.; Ligtenberg, S.; Noel, B.; Howat, I. M.; Box, J. E.; Mosley-Thompson, E.; McConnell, J. R.; Steffen, K.; Harper, J. T.; Das, S. B.; van den Broeke, M.

    2015-12-01

    Observed changes in the surface elevation of the Greenland ice sheet are caused by ice dynamics, basal elevation change, surface mass balance (SMB) variability, and by compaction of the overlying firn. The latter two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960-2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. We find that the firn layer in the high interior is generally thickening slowly (1-5 cm y-1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20-50 cm y-1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s, and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2013 is estimated at -3900 ± 1030 km3 due to firn and SMB, corresponding to an ice-sheet average thinning of 2.32 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.

  18. Characterisation of a smartphone image sensor response to direct solar 305nm irradiation at high air masses.

    PubMed

    Igoe, D P; Amar, A; Parisi, A V; Turner, J

    2017-06-01

    This research reports the first time the sensitivity, properties and response of a smartphone image sensor that has been used to characterise the photobiologically important direct UVB solar irradiances at 305nm in clear sky conditions at high air masses. Solar images taken from Autumn to Spring were analysed using a custom Python script, written to develop and apply an adaptive threshold to mitigate the effects of both noise and hot-pixel aberrations in the images. The images were taken in an unobstructed area, observing from a solar zenith angle as high as 84° (air mass=9.6) to local solar maximum (up to a solar zenith angle of 23°) to fully develop the calibration model in temperatures that varied from 2°C to 24°C. The mean ozone thickness throughout all observations was 281±18 DU (to 2 standard deviations). A Langley Plot was used to confirm that there were constant atmospheric conditions throughout the observations. The quadratic calibration model developed has a strong correlation between the red colour channel from the smartphone with the Microtops measurements of the direct sun 305nm UV, with a coefficient of determination of 0.998 and very low standard errors. Validation of the model verified the robustness of the method and the model, with an average discrepancy of only 5% between smartphone derived and Microtops observed direct solar irradiances at 305nm. The results demonstrate the effectiveness of using the smartphone image sensor as a means to measure photobiologically important solar UVB radiation. The use of ubiquitous portable technologies, such as smartphones and laptop computers to perform data collection and analysis of solar UVB observations is an example of how scientific investigations can be performed by citizen science based individuals and groups, communities and schools.

  19. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  20. The collision cross sections of iodide salt cluster ions in air via differential mobility analysis-mass spectrometry.

    PubMed

    Ouyang, Hui; Larriba-Andaluz, Carlos; Oberreit, Derek R; Hogan, Christopher J

    2013-12-01

    To date, most collision cross section (CCS) predictions have invoked gas molecule impingement-reemission rules in which specular and elastic scattering of spherical gas molecules from rigid polyatomic surfaces are assumed. Although such predictions have been shown to agree well with CCSs measured in helium bath gas, a number of studies reveal that these predictions do not agree with CCSs for ions in diatomic gases, namely, air and molecular nitrogen. To further examine the validity of specular-elastic versus diffuse-inelastic scattering models, we measured the CCSs of positively charged metal iodide cluster ions of the form [MI]n[M(+)]z, where M = Na, K, Rb, or Cs, n = 1 - 25, and z = 1 - 2. Measurements were made in air via differential mobility analysis mass spectrometry (DMA-MS). The CCSs measured are compared with specular-elastic as well as diffuse-inelastic scattering model predictions with candidate ion structures determined from density functional theory. It is found that predictions from diffuse-inelastic collision models agree well (within 5%) with measurements from sodium iodide cluster ions, while specular-elastic collision model predictions are in better agreement with cesium iodide cluster ion measurements. The agreement with diffuse-inelastic and specular-elastic predictions decreases and increases, respectively, with increasing cation mass. However, even when diffuse-inelastic cluster ion predictions disagree with measurements, the disagreement is of a near-constant factor for all ions, indicating that a simple linear rescaling collapses predictions to measurements. Conversely, rescaling cannot be used to collapse specular-elastic predictions to measurements; hence, although the precise impingement reemission rules remain ambiguous, they are not specular-elastic.

  1. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future.

  2. The Collision Cross Sections of Iodide Salt Cluster Ions in Air via Differential Mobility Analysis-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ouyang, Hui; Larriba-Andaluz, Carlos; Oberreit, Derek R.; Hogan, Christopher J.

    2013-12-01

    To date, most collision cross section (CCS) predictions have invoked gas molecule impingement-reemission rules in which specular and elastic scattering of spherical gas molecules from rigid polyatomic surfaces are assumed. Although such predictions have been shown to agree well with CCSs measured in helium bath gas, a number of studies reveal that these predictions do not agree with CCSs for ions in diatomic gases, namely, air and molecular nitrogen. To further examine the validity of specular-elastic versus diffuse-inelastic scattering models, we measured the CCSs of positively charged metal iodide cluster ions of the form [MI]n[M+]z, where M = Na, K, Rb, or Cs, n = 1 - 25, and z = 1 - 2. Measurements were made in air via differential mobility analysis mass spectrometry (DMA-MS). The CCSs measured are compared with specular-elastic as well as diffuse-inelastic scattering model predictions with candidate ion structures determined from density functional theory. It is found that predictions from diffuse-inelastic collision models agree well (within 5 %) with measurements from sodium iodide cluster ions, while specular-elastic collision model predictions are in better agreement with cesium iodide cluster ion measurements. The agreement with diffuse-inelastic and specular-elastic predictions decreases and increases, respectively, with increasing cation mass. However, even when diffuse-inelastic cluster ion predictions disagree with measurements, the disagreement is of a near-constant factor for all ions, indicating that a simple linear rescaling collapses predictions to measurements. Conversely, rescaling cannot be used to collapse specular-elastic predictions to measurements; hence, although the precise impingement reemission rules remain ambiguous, they are not specular-elastic.

  3. Prospective Multicenter Study of Community-Associated Skin and Skin Structure Infections due to Methicillin-Resistant Staphylococcus aureus in Buenos Aires, Argentina

    PubMed Central

    López Furst, María José; de Vedia, Lautaro; Fernández, Silvina; Gardella, Noella; Ganaha, María Cristina; Prieto, Sergio; Carbone, Edith; Lista, Nicolás; Rotryng, Flavio; Morera, Graciana I.; Mollerach, Marta; Stryjewski, Martín E.

    2013-01-01

    Background Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) is now the most common cause of skin and skin structure infections (SSSI) in several world regions. In Argentina prospective, multicenter clinical studies have only been conducted in pediatric populations. Objective Primary: describe the prevalence, clinical and demographic characteristics of adult patients with community acquired SSSI due to MRSA; secondary: molecular evaluation of CA-MRSA strains. Patients with MRSA were compared to those without MRSA. Materials and Methods Prospective, observational, multicenter, epidemiologic study, with molecular analysis, conducted at 19 sites in Argentina (18 in Buenos Aires) between March 2010 and October 2011. Patients were included if they were ≥14 years, were diagnosed with SSSI, a culture was obtained, and there had no significant healthcare contact identified. A logistic regression model was used to identify factors associated with CA-MRSA. Pulse field types, SCCmec, and PVL status were also determined. Results A total of 311 patients were included. CA-MRSA was isolated in 70% (218/311) of patients. Clinical variables independently associated with CA-MRSA were: presence of purulent lesion (OR 3.29; 95%CI 1.67, 6.49) and age <50 years (OR 2.39; 95%CI 1.22, 4.70). The vast majority of CA-MRSA strains causing SSSI carried PVL genes (95%) and were SCCmec type IV. The sequence type CA-MRSA ST30 spa t019 was the predominant clone. Conclusions CA-MRSA is now the most common cause of SSSI in our adult patients without healthcare contact. ST30, SCCmec IV, PVL+, spa t019 is the predominant clone in Buenos Aires, Argentina. PMID:24324543

  4. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  5. Development of a thermal desorption-gas chromatography-mass spectrometry method for determining personal care products in air.

    PubMed

    Ramírez, Noelia; Marcé, Rosa Maria; Borrull, Francesc

    2010-06-25

    This study describes the development of a new analytical method for determining 14 personal care products (PCPs) - nine synthetic musks, four parabens and one insect repellent - in air samples. The method is based on active sampling on sorbent tubes and thermal desorption-gas chromatography-mass spectrometry analysis, and is rapid, sensitive and drastically reduces the risk of sample contamination. Three kinds of tubes and traps were tested, those filled with Tenax TA being the most suitable for this study. Method validation showed good repeatability and reproducibility, low detection limits (between 0.03 ng m(-3) for DPMI and 12.5 ng m(-3) for propyl paraben) and good linearity for all compounds. Stability during storage indicated that samples must be kept refrigerated at 4 degrees C and analysed within 1 week of collection. The applicability of the technique to real samples was tested in different indoor and outdoor atmospheres. The total PCP values for indoor air ranged from 135 ng m(-3) in a pharmacy to 2838 ng m(-3) in a hairdresser's, whereas the values for outdoor air ranged from 14 ng m(-3) for a suburban environment to 26 ng m(-3) for an urban environment. In general, the most abundant synthetic musks were galaxolide (5.9-1256 ng m(-3)), musk xylene (1.6-766 ng m(-3)) and tonalide (1.1-138 ng m(-3)). Methyl and ethyl paraben (2.4-313 ng m(-3) and 1.8-117 ng m(-3), respectively) were the most abundant parabens. Although thermal desorption methods have been widely used for determining volatile organic compounds, they are rarely used with semi-volatile compounds. This study thus demonstrates that the thermal desorption method performs well with semi-volatile compounds and, for the first time, that it can be used for determining PCPs.

  6. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  7. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-05

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  8. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  9. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  10. Measurement error models in chemical mass balance analysis of air quality data

    NASA Astrophysics Data System (ADS)

    Christensen, William F.; Gunst, Richard F.

    The chemical mass balance (CMB) equations have been used to apportion observed pollutant concentrations to their various pollution sources. Typical analyses incorporate estimated pollution source profiles, estimated source profile error variances, and error variances associated with the ambient measurement process. Often the CMB model is fit to the data using an iteratively re-weighted least-squares algorithm to obtain the effective variance solution. We consider the chemical mass balance model within the framework of the statistical measurement error model (e.g., Fuller, W.A., Measurement Error Models, Wiley, NewYork, 1987), and we illustrate that the models assumed by each of the approaches to the CMB equations are in fact special cases of a general measurement error model. We compare alternative source contribution estimators with the commonly used effective variance estimator when standard assumptions are valid and when such assumptions are violated. Four approaches for source contribution estimation and inference are compared using computer simulation: weighted least squares (with standard errors adjusted for source profile error), the effective variance approach of Watson et al. (Atmos, Environ., 18, 1984, 1347), the Britt and Luecke (Technometrics, 15, 1973, 233) approach, and a method of moments approach given in Fuller (1987, p. 193). For the scenarios we consider, the simplistic weighted least-squares approach performs as well as the more widely used effective variance solution in most cases, and is slightly superior to the effective variance solution when source profile variability is large. The four estimation approaches are illustrated using real PM 2.5 data from Fresno and the conclusions drawn from the computer simulation are validated.

  11. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  12. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    NASA Astrophysics Data System (ADS)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all

  13. Impact of northern and southern air mass transport on the temporal distribution of atmospheric (210)Po and (210)Pb in the east coast of Johor, Malaysia.

    PubMed

    Sabuti, Asnor Azrin; Mohamed, Che Abd Rahim

    2016-09-01

    Concentration activities of (210)Pb and (210)Po in the PM10 were determined to discuss their distribution and chemical behavior in relation to meteorological parameters especially in air mass transport during monsoon events. Marine aerosol samples were collected between January 2009 and December 2010 at the coastal region of Mersing, which is located in the southern South China Sea and is about 160 km northeast of Johor Bahru, as part of the atmosphere-ocean interaction program in Malaysia. About 47 PM10 samples were collected using the Sierra-Andersen model 1200 PM10 sampler over a 2-year sampling campaign between January 2009 and December 2010. Samples were processed using acid digestion sequential extraction techniques to analyze various fractions such as Fe and Mn oxides, organic matter, and residual fractions. While, (210)Pb and (210)Po activities were measured with the Gross Alpha/Beta Counting System model XLB-5 Tennelec® Series 5 and the Alpha Spectrometry (model Alpha Analyst Spectroscopy system with a silicon-surface barrier detector), respectively. The distribution activities of (210)Pb and (210)Po in the PM10 samples were varied from 162 to 881 μBq/m(3) with mean value of 347 ± 170 μBq/m(3) and from 85 to 1009 μBq/m(3) with mean value of 318 ± 202 μBq/m(3), respectively. The analysis showed that (210)Po activity in our samples lies in a border and higher range than global distribution values due to contributions from external sources injected to the atmosphere. The speciation of (210)Pb and (210)Po in marine aerosol corresponds to transboundary haze; e.g., biomass burning especially forest fires and long-range air mass transport of terrestrial dust has enriched concentrations of particle mass in the local atmosphere. The monsoon seems to play an important role in transporting terrestrial dust from Indo-China and northern Asia especially during the northeast monsoon, as well as biogenic pollutants originating from Sumatra and the southern

  14. Air mass 1.5 global and direct solar simulation and secondary reference cell calibration using a filtered large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1985-01-01

    Spectral mismatch between a solar simulator and a desired spectrum can result in nearly 20 percent measurement error in the output of photovoltaic devices. This occurs when a crystalline silicon cell monitors the intensity of an unfiltered large area pulsed solar simulator (LAPSS) simulating the ASTM air mass 1.5 direct spectrum and the test device is amorphous silicon. The LAPSS spectral irradiance is modified with readily available glass UV filters to closely match either the ASTM air mass 1.5 direct or global spectrum. Measurement error is reduced to about 1 percent when using either filter if the reference cell and test device are the same general type.

  15. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.

  16. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Škrdlíková, Lenka

    2010-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study gas-particle partitioning, aerosol mass size distributions and to explore the potential of a higher time resolution (4 h-sampling). In the particulate phase the mass median diameters of the PAHs were found almost exclusively in the accumulation mode (0.1-1.0 μm of size). These were larger for semivolatile PAHs than for non-volatile PAHs. Gas-particle partitioning of semivolatile PAHs was strongly influenced by temperature. The results suggest that the Junge-Pankow model is inadequate to explain the inter-species variation and another process must be significant for phase partitioning which is less temperature sensitive than adsorption. Care should be taken when interpreting slopes m of plots of the type log K p = m log p L0 + b based on 24 h means, as these are found sensitive to the time averaging, i.e. tend to be higher than when based on 12 h-mean samples.

  17. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  18. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  19. PMF receptor modelling of fine and coarse PM 10 in air masses governing monsoon conditions in Hanoi, northern Vietnam

    NASA Astrophysics Data System (ADS)

    Hien, P. D.; Bac, V. T.; Thinh, N. T. H.

    Fine and coarse PM 10 samples collected in Hanoi in 1999-2001 were analysed for black carbon (BC) and water soluble ions (WSI) and measured data were disaggregated according to three types of back trajectories, namely (1) northerly, over inland China, (2) northeasterly, over East China Sea and, (3) southwesterly over Indochina peninsula. Trajectories of types 1, 2 and 3 prevail in September/October-December, January-March/April and May-August, respectively. A source-receptor modelling was performed for each type of trajectories individually using the Positive Matrix Factorisation (PMF) technique. Six or seven sources were extracted for each trajectory type, including soil dust, primary and secondary emissions from local burning (LB), vehicle/road dust, sea salt, Cl-depleted marine aerosols and long-range transport (LRT). LRT contributes little to the coarse mass, but accounts for 50%, 34% and 33% of the fine mass in trajectories of types 1, 2 and 3, respectively. More than two-thirds of the fine mode sulphate are attributed to LRT and associated with ammonium. The comparison of LRT and LB source profiles suggests that air masses arriving from north-northeasterly trajectories are more polluted than those coming from the southwest. Therefore the contribution of LRT's aerosols further enhances the seasonal contrast in the particulate concentration with maximum in winter and minimum in summer. Various mechanisms of sulphate formation in LRT and LB were suggested based on the concentration ratios of [SO 42-]/[K +], [SO 42-]/[BC] and [NH 4+]/[SO 42-] for the two sources.

  20. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    NASA Astrophysics Data System (ADS)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  1. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany.

    PubMed

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m(2) of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  2. Normal impingement loads due to small air jets issuing from a base plate and reflecting off a platform for various jet Mach numbers, separation distances, and ambient pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1972-01-01

    An investigation was conducted in a 12.5-meter-diameter vacuum sphere to determine the impingement loads due to air jets issuing from and perpendicular to a circular base and reflecting off a square platform, that is, a simulation of rendezvous maneuvering, docking, launch, impact dampers etc. The nozzles had exit Mach numbers of 1, 3, 5, and 7. The ambient pressures were 0.0006, 5, 225, and 760 torr. Under near-field separation distances and at 0.0006 torr, reflections were significant; and ratios of the impingement force to thrust on both plates in the biplane arrangement varied from about 750 for exit Mach number 1 to 120 for exit Mach number 7. The far-field force ratios were near unity for the platform and zero for the base and indicated few, if any, reflections. Some reversals and rapid changes in loads were obtained at transition distances between the near and far fields. In general, increasing the exit Mach number or ambient pressure reduced the impingement loads.

  3. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  4. Biomass Burning versus Fossil Fuel Combustion Signatures of Air Masses Transported from Asia to the U.S. West Coast during ITCT2k2

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Cooper, O.; Warneke, C.; Hudson, P.; Brock, C.; Fehsenfeld, F.; Holloway, J.; Huebler, G.; Murphy, D.; Nowak, J.; Parrish, D.; Ryerson, T.; Trainer, M.; Atlas, E.

    2003-12-01

    The goal of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT2k2) was to study the transport of air pollution from Asia across the Pacific Ocean, and the implications for the background atmospheric composition at the surface in North America. During research flights of the NOAA WP-3 research aircraft on May 5 and 17, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia in the free troposphere to North America. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on May 5, 17 and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) versus propane (C3H8), and the percentage of particles measured by the PALMS (particle analysis by laser mass spectrometry) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast at various latitudes and pressures during the entire ITCT2k2 period, showed that air masses from South-East Asia and China were generally transported at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for South-East Asia. Combined with the origin of the air masses versus altitude determined by the back-trajectories, this explains the measured altitude profiles of the biomass burning indicators.

  5. Design and Performance of a Triple Source Air Mass Zero Solar Simulator

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Snyder, David

    2005-01-01

    Simulating the sun in a laboratory for the purpose of measuring solar cells has long been a challenge for engineers and scientists. Multi-junction cells demand higher fidelity of a solar simulator than do single junction cells, due to a need for close spectral matching as well as AM0 intensity. A GaInP/GaAs/Ge solar cell for example, requires spectral matching in three distinct spectral bands (figure 1). A commercial single source high-pressure xenon arc solar simulator such as the Spectrolab X-25 at NASA Glenn Research Center, can match the top two junctions of a GaInP/GaAs/Ge cell to within 1.3% mismatch, with the GaAs cell receiving slightly more current than required. The Ge bottom cell however, is mismatched +8.8%. Multi source simulators are designed to match the current for all junctions but typically have small illuminated areas, less uniformity and less beam collimation compared to an X-25 simulator. It was our intent when designing a multi source simulator to preserve as many aspects of the X-25 while adding multi-source capability.

  6. Satellite-based identification of tropopause folding signatures along air mass boundaries

    NASA Astrophysics Data System (ADS)

    Wimmers, Anthony James

    Tropopause folding is a significant though frequently underestimated source of mass exchange between the stratosphere and the troposphere. Although tropopause folds are inherently three-dimensional phenomena, empirical evidence shows that certain signature features in two-dimensional satellite products that are sensitive to tropopause height can be used to infer the vertical layering that characterizes tropopause folds. Both Altered Water Vapor (AWV) imagery and Total Ozone Mapping Spectrometer (TOMS) total ozone reveal significant gradients at the "openings" of tropopause folds, and the direction of the gradient indicates the direction of the intrusion. This is demonstrated empirically with a comparison of the satellite imagery to a data set of aircraft-based ozone lidar transects from the Tropospheric Ozone Production about the Spring Equinox (TOPSE) experiment. Using the data set to optimize the parameters of this empirical relationship, a statistical model is developed to predict the location of tropopause folds based solely on the properties of AWV imagery, which operates on a hemispheric-scale domain and at the approximately 10-km resolution of the GOES water vapor channel. Validation of this model with evidence of tropopause folding from operational radiosonde data was only partially successful; the validation was not reliable enough to provide precise confirmation of the model parameter values, but it did provide some confirmation that the model was well calibrated. Application of this model over a February to May, 2000 time period provides a four-month "climatology" of tropopause folding activity around North America. During this time period, tropopause folding activity was strongest over the northeast Pacific and northwest Atlantic, and at a minimum in the high latitudes around Hudson Bay. Over the entire domain (25--63° N, 40--165° W), tropopause folding activity was greatest in March. This result does not prove that downward vertical transport from

  7. Estimation of air-water gas exchange coefficient in a shallow lagoon based on 222Rn mass balance.

    PubMed

    Cockenpot, S; Claude, C; Radakovitch, O

    2015-05-01

    The radon-222 mass balance is now commonly used to quantify water fluxes due to Submarine Groundwater Discharge (SGD) in coastal areas. One of the main loss terms of this mass balance, the radon evasion to the atmosphere, is based on empirical equations. This term is generally estimated using one among the many empirical equations describing the gas transfer velocity as a function of wind speed that have been proposed in the literature. These equations were, however, mainly obtained from areas of deep water and may be less appropriate for shallow areas. Here, we calculate the radon mass balance for a windy shallow coastal lagoon (mean depth of 6m and surface area of 1.55*10(8) m(2)) and use these data to estimate the radon loss to the atmosphere and the corresponding gas transfer velocity. We present new equations, adapted to our shallow water body, to express the gas transfer velocity as a function of wind speed at 10 m height (wind range from 2 to 12.5 m/s). When compared with those from the literature, these equations fit particularly well with the one of Kremer et al. (2003). Finally, we emphasize that some gas transfer exchange may always occur, even for conditions without wind.

  8. Recent trends of persistent organic pollutants in air in central Europe - Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Lammel, G.; Holoubek, I.

    We use air mass back trajectory analysis of persistent organic pollutant (POP) levels monitored at a regional background site, Košetice, Czech Republic, as a tool to study the effectiveness of emission reduction measures taken in the last decade in the region. The representativity of the chosen trajectory starting height for air sampling near ground was ensured by excluding trajectories starting at time of inversions lower than their starting height. As the relevant pollutant sources are exclusively located in the atmospheric boundary layer, trajectory segments above this layer were also excluded from the analysis. We used a linear time weight to account for the influence of dispersion and deposition on trace components abundances and to quantify the ground source loading, a continuous measure for the influence of surface emissions. Hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), DDT, and two time periods, the years 1997-1999 and 2004-2006, were studied. The pollutant levels transported to Košetice decreased for all substances except HCB. Except for lindane seasonal emissions were insignificant. Increasing emissions of HCB were at least partly linked to the 2002 floods in the Danube basin. Major emissions of 1997-1999 which decreased significantly were in France (lindane), western Poland, Hungary and northern ex-Yugoslavia (technical HCH), and the Czech Republic (DDT). Emissions remaining in 2004-2006 include HCB and DDT in the northern Czech Republic, HCB and PCBs in Germany. Besides changes in emission strength meteorological factors influence the level of transported pollutant concentrations. The prevailing air flow pattern limits the geographic coverage of this analysis to central Europe and parts of western Europe. However, no POP monitoring stations exist in areas suitable for a possible extension of the study area.

  9. Validation and Application of the Mass Balance Model To Determine the Effectiveness of Portable Air Purifiers in Removing Ultrafine and Submicrometer Particles in an Apartment.

    PubMed

    Lee, Wan-Chen; Catalano, Paul J; Yoo, Jun Young; Park, Chan Jung; Koutrakis, Petros

    2015-08-18

    We validated the use of the mass balance model to determine the effectiveness of portable air purifiers in removing ultrafine (<0.10 μm) and submicrometer particles (0.10-0.53 μm) in an apartment. We evaluated two identical portable air purifiers, equipped with high efficiency particulate air filters, for their performance under three different air flow settings and three target air exchange rates: 0.60, 0.90, and 1.20 h(-1). We subsequently used a mixed effects model to estimate the slope between the measured and modeled effectiveness by particle size. Our study showed that effectiveness was highly particle size-dependent. For example, at the lowest target air exchange rate, it ranged from 0.33 to 0.56, 0.51 to 0.75, and 0.60 to 0.81 for the three air purifier flow settings, respectively. Our findings suggested that filtration was the dominant removal mechanism for submicrometer particles, whereas deposition could play a more important role in ultrafine particle removal. We found reasonable agreement between measured and modeled effectiveness with size-resolved slopes ranging from 1.11 ± 0.06 to 1.25 ± 0.07 (mean ± SE), except for particles <35 nm. Our study design can be applied to investigate the performances of other portable air purifiers as well as the influences of various parameters on effectiveness in different residential settings.

  10. Air mass origin signals in δ 18O of tree-ring cellulose revealed by back-trajectory modeling at the monsoonal Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wernicke, Jakob; Hochreuther, Philipp; Grießinger, Jussi; Zhu, Haifeng; Wang, Lily; Bräuning, Achim

    2016-12-01

    A profound consideration of stable oxygen isotope source water origins is a precondition for an unambiguous palaeoenvironmental interpretation of terrestrial δ 18O archives. To stress the influence of air mass origins on widely used δ 18O tree-ring chronologies, we conducted correlation analyses between six annually resolved δ 18O tree-ring cellulose ( δ ^{18}O_{TC}) chronologies and mean annual air package origins obtained from backward trajectory modeling. This novel approach has been tested for a transect at the southeastern Tibetan plateau (TP), where air masses with different isotopic composition overlap. Detailed examinations of daily precipitation amounts and monthly precipitation δ 18O values ( δ ^{18}OP) were conducted with the ERA Interim and Laboratoire de Météorologie Dynamique General Circulation Model (LMDZiso) data, respectively. Particularly the southernmost study sites are influenced by a distinct amount effect. Here, air package origin δ ^{18}O_{TC} relations are generally weaker in contrast to our northern located study sites. We found that tree-ring isotope signatures at dry sites with less rain days per year tend to be influenced stronger by air mass origin than tree-ring isotope values at semi-humid sites. That implies that the local hydroclimate history inferred from δ ^{18}O_{TC} archives is better recorded at semi-humid sites.

  11. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  12. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  13. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities.

  14. Determination of benzene at trace levels in air by a novel method based on solid-phase microextraction gas chromatography/mass spectrometry.

    PubMed

    Saba, A; Cuzzola, A; Raffaelli, A; Pucci, S; Salvadori, P

    2001-01-01

    A new method for the determination of benzene at trace levels in air is presented. The method consists of the collection of air samples on adsorbent cartridges with simultaneous adsorption of pre-established amounts of D6-labeled internal standard. Desorption from the cartridge is performed by solid-phase microextraction (SPME) with analysis by gas chromatography/mass spectrometry (GC/MS) using an ion trap mass spectrometer. The influence of several parameters (type of SPME fiber, temperature, time, for example) was investigated, and good linearity in the range 10-400 ng of C6D6, with a coefficient of variance (CV) around 3-5%, was obtained. The method was tested by sampling air in a town center in Italy, and a benzene concentration of approximately 50 microg/m(3) was determined. The maximum limit recommended by the European Community is 10 microg/m(3).

  15. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  16. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  17. A modelling study of the impact on air quality and health due to the emissions from E85 and petrol fuelled cars in Sweden

    NASA Astrophysics Data System (ADS)

    Fridell, Erik; Haeger-Eugensson, Marie; Moldanova, Jana; Forsberg, Bertil; Sjöberg, Karin

    2014-01-01

    Alternative fuels are becoming more and more important for road traffic and one fuel that has been used for several years is ethanol (E85). The main discussion points regarding the environmental performance for ethanol as a fuel are related to the production. However, there are also some notable differences in the emissions between E85 and petrol fuelled vehicles. This relates to some extent to the emissions of nitrogen oxides (NOx) and particulate matter (PM) but mainly to the composition of the emitted organic compounds. In the present study two fuel scenarios for passenger cars are investigated for the Västra Götaland Region in Sweden; one where the cars with Otto engines run on petrol and one where they run on E85. Two emission scenarios for 2020 are constructed for the whole Europe and coupled dispersion-chemistry modelling is applied to obtain the population exposure to key pollutants. The differences obtained from the modelling show decreased levels of NOx, ozone and benzene with E85 and increased levels of acetaldehyde in the Västra Götaland Region. For the latter the increase may be up to 80%, while NOx and ozone show decreases of up to a few per cent and a few tenths of per cent, respectively. Exposure to the different air pollutants is calculated as population-weighted concentrations. The health risk assessment, using the calculated exposure and published exposure-response functions for the relevant pollutants, shows decreased health risks in the E85 scenario relative the all-petrol scenario, due to the decreased NOx exposure, correlated with both preterm deaths and asthma. However, NOx (and NO2) may partly be indicators of unmeasured causal exhaust components in the epidemiological studies and thus the exposure-response functions for these may not be applicable in the present case where there is a difference in NOx exposure but not a proportional difference in exposure to other exhaust components normally associated with NOx. Smaller effects are

  18. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses

    NASA Astrophysics Data System (ADS)

    Hellack, Bryan; Quass, Ulrich; Beuck, Henning; Wick, Gabriele; Kuttler, Wilhelm; Schins, Roel P. F.; Kuhlbusch, Thomas A. J.

    2015-03-01

    At an urban background station in Mülheim-Styrum, North Rhine Westphalia, Germany, a set of 75 PM10 samples was collected over a one year period, followed by analyses for mass, chemical composition and hydroxyl radical (OHrad) formation potency. Additionally, the origin of air masses for the sampling days was calculated by 48-h backward trajectories, subdivided into the four cardinal sectors. Significant lower PM10 mass concentrations were observed for summertime air masses from the west compared to the other seasons and cardinal sectors. For the OHrad formation potency higher values were detected if air masses originate from east and south, thus predominantly being of continental origin. From the elevated OHrad formation potencies in fall and winter a seasonal trend with low potencies in summers is assumed. Furthermore, source apportionment was performed by a positive matrix factor analysis, separating seven plausible factors which could be attributed to mineral dust, secondary nitrate, industry, non-exhaust traffic, fossil fuel combustion, marine aerosol and secondary aerosol factors. The intrinsic OHrad formation potency was found to be associated mainly with the fossil fuel combustion factor (45%) and industry factor (22%).

  19. Optimization of automated gas sample collection and isotope ratio mass spectrometric analysis of delta(13)C of CO(2) in air.

    PubMed

    Zeeman, Matthias J; Werner, Roland A; Eugster, Werner; Siegwolf, Rolf T W; Wehrle, Günther; Mohn, Joachim; Buchmann, Nina

    2008-12-01

    The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.

  20. Student understanding of the volume, mass, and pressure of air within a sealed syringe in different states of compression

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin Charles

    Problem-solving strategies in the physical sciences have been characterized by a dependence on algorithmic techniques often devoid of any reasoning skills. The purpose of this study was to examine student responses to a task relating to Boyle's Law for gases, which did not demand the use of a mathematical equation for its solution. Students (17- to 18-year-olds) in lower sixth form from two colleges in the Leeds district of Yorkshire in England were asked to respond to a task relating to pressure and volume measurements of air within a sealed syringe in different states of compression. Both qualitative and quantitative tasks for the sealed syringe system were examined. It was found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under such circumstances. Performance on an inverse ratio (2:1) task was shown to depend on gender and those students who performed well on the 2:1 inverse ratio task did not necessarily perform well on a different inverse ratio task when an arithmetic averaging principle was present. Tasks which draw upon qualitative knowledge as well as quantitative knowledge have the potential to reduce dependence on algorithms, particularly equation substitution and solution. The implications for instructional design are discussed.Received: 14 April 1993; Revised: 29 June 1994;

  1. The Effect of Isotopic Composition on the Uncertainty of Routine Metal Mass Concentration Measurements in Ambient Air

    PubMed Central

    Brown, Richard J. C.; Goddard, Sharon L.; Brown, Andrew S.; Yardley, Rachel E.

    2008-01-01

    The main sources of uncertainty encountered during the analysis of the mass concentration of metals in ambient air as part of the operation of the UK Heavy Metals Monitoring Network are presented. It is observed that the uncertainty contribution from possible variation in the isotopic composition of the sample depends on the element in question, but can be significant (e.g., for Pb, Cd, and Hg). The working curve method for the ICP-MS analysis of metals in solution, with a low resolution, high throughput instrument measuring at one m/z ratio per element, relies on the relative abundance of the isotopes under consideration being the same in both the sample and the calibration solution. Calculation of the uncertainty in this analysis assumes that the isotopic composition variation within the sample and calibration solution is limited to a defined range. Therefore, in order to confirm the validity of this quantification methodology and its uncertainty budget, the isotopic composition of the calibration standards used for quantification has been determined. The results of this analysis are presented here. PMID:19223968

  2. Total ozone seasonal and interannual variations in the principal air masses of the Northern Hemisphere in 1975-1990

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Klyagina, L. P.; Shalamyansky, A. M.; Jagovkina, S. V.

    1994-01-01

    The diurnally mean total ozone X from the Northern Hemisphere ground based 90 stations for 1975-1990 are averaged over the Arctic (bar X (sub A)) Intermediate (bar X (sub I)) and Tropical (bar X (sub T)) air mass areas, divided by the jet stream axes on the isobaric surfaces 300 and 200 mb. The mean square variations of the so averaged X are considerably smaller than of the X, averaged over the corresponding zonal belts. This property allows one to improve considerably the statistical significance of X trends and changes over various time periods, taking into account the time correlation of data for adjacent time intervals. Bar X (sub A), bar X (sub I), and bar X (sub T) trends are estimated over the periods of solar activity rise and fall in its 21st and rise in its 22nd 11 year cycles and over the periods of west and east phases of the known over the periods of west and east phases of the known quasibiennial oscillation (QBO). Solar activity variations affect mostly bar X (sub T), bar X (sub I) trends in summer months, while QBO phases influence the X changes mostly during the cold half year. X are lower in the west QBO phase and their trend is negative during almost all periods considered. The anthropogenic effects on the X is also estimated.

  3. Air exposure behavior of the semiterrestrial crab Neohelice granulata allows tolerance to severe hypoxia but not prevent oxidative damage due to hypoxia-reoxygenation cycle.

    PubMed

    de Lima, Tábata Martins; Geihs, Márcio Alberto; Nery, Luiz Eduardo Maia; Maciel, Fábio Everton

    2015-11-01

    The air exposure behavior of the semi-terrestrial crab Neohelice granulata during severe hypoxia was studied. This study also verified whether this behavior mitigates possible oxidative damage, namely lipoperoxidation, caused by hypoxia and reoxygenation cycles. The lethal time for 50% of the crabs subjected to severe hypoxia (0.5 mgO2 · L(-1)) with free access to air was compared to that of crabs subjected to severe hypoxia without access to air. Crabs were placed in aquaria divided into three zones: water (when the animal was fully submersed), land (when the animal was completely emerged) and intermediate (when the animal was in contact with both environments) zones. Then the crabs were held in this condition for 270 min, and the time spent in each zone was recorded. Lipid peroxidation (LPO) damage to the walking leg muscles was determined for the following four experimental conditions: a--normoxic water with free access to air; b--hypoxic water without access to air; c--hypoxic water followed by normoxic water without air access; and d--hypoxic water with free access to air. When exposed to hypoxic water, N. granulata spent significantly more time on land, 135.3 ± 17.7 min, whereas control animals (exposed to normoxic water) spent more time submerged, 187.4 ± 20.2 min. By this behavior, N. granulata was able to maintain a 100% survival rate when exposed to severe hypoxia. However, N. granulata must still return to water after periods of air exposure (~ 14 min), causing a sequence of hypoxia/reoxygenation events. Despite increasing the survival rate, hypoxia with air access does not decrease the lipid peroxidation damage caused by the hypoxia and reoxygenation cycle experienced by these crabs.

  4. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2.5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways.

    PubMed

    Boreddy, S K R; Kawamura, Kimitaka; Bikkina, Srinivas; Sarin, M M

    2016-02-15

    Hygroscopic properties of water-soluble matter (WSM) extracted from fine-mode aerosols (PM2.5) in the marine atmospheric boundary layer of the Bay of Bengal (BoB) have been investigated during a cruise from 27th December 2008 to 30th January 2009. Hygroscopic growth factors were measured on particles generated from the WSM using an H-TDMA system with an initial dry size of 100 nm in the range of 5-95% relative humidity (RH). The measured hygroscopic growth of WSM at 90% RH, g(90%)WSM, were ranged from 1.11 to 1.74 (mean: 1.43 ± 0.19) over the northern BoB and 1.12 to 1.38 (mean: 1.25 ± 0.09) over the southern BoB. A key finding is that distinct hygroscopic growth factors are associated with the air masses from the Indo-Gangetic plains (IGP), which are clearly distinguishable from those associated with air masses from Southeast Asia (SEA). We found higher (lower) g(90%)WSM over the northern (southern) BoB, which were associated with an IGP (SEA) air masses, probably due the formation of high hygroscopic salts such as (NH4)2SO4. On the other hand, biomass burning influenced SEA air masses confer the low hygroscopic salts such as K2SO4, MgSO4, and organic salts over the southern BoB. Interestingly, mass fractions of water-soluble organic matter (WSOM) showed negative and positive correlations with g(90%)WSM over the northern and southern BoB, respectively, suggesting that the mixing state of organic and inorganic fractions could play a major role on the g(90%)WSM over the BoB. Further, WSOM/SO4(2-) mass ratios suggest that SO4(2-) dominates the g(90%)WSM over the northern BoB whereas WSOM fractions were important over the southern BoB. The present study also suggests that aging process could significantly alter the hygroscopic growth of aerosol particles over the BoB, especially over the southern BoB.

  5. Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin.

    PubMed

    Goto-Inoue, Naoko; Hayasaka, Takahiro; Zaima, Nobuhiro; Nakajima, Kimiko; Holleran, Walter M; Sano, Shigetoshi; Uchida, Yoshikazu; Setou, Mitsutoshi

    2012-01-01

    Imaging mass spectrometry (IMS) is a useful cutting edge technology used to investigate the distribution of biomolecules such as drugs and metabolites, as well as to identify molecular species in tissues and cells without labeling. To protect against excess water loss that is essential for survival in a terrestrial environment, mammalian skin possesses a competent permeability barrier in the stratum corneum (SC), the outermost layer of the epidermis. The key lipids constituting this barrier in the SC are the ceramides (Cers) comprising of a heterogeneous molecular species. Alterations in Cer composition have been reported in several skin diseases that display abnormalities in the epidermal permeability barrier function. Not only the amounts of different Cers, but also their localizations are critical for the barrier function. We have employed our new imaging system, capable of high-lateral-resolution IMS with an atmospheric-pressure ionization source, to directly visualize the distribution of Cers. Moreover, we show an ichthyotic disease pathogenesis due to abnormal Cer metabolism in Dorfman-Chanarin syndrome, a neutral lipid storage disorder with ichthyosis in human skin, demonstrating that IMS is a novel diagnostic approach for assessing lipid abnormalities in clinical setting, as well as for investigating physiological roles of lipids in cells/tissues.

  6. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  7. Measurements of δ13C in CH4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass

    NASA Astrophysics Data System (ADS)

    France, J. L.; Cain, M.; Fisher, R. E.; Lowry, D.; Allen, G.; O'Shea, S. J.; Illingworth, S.; Pyle, J.; Warwick, N.; Jones, B. T.; Gallagher, M. W.; Bower, K.; Le Breton, M.; Percival, C.; Muller, J.; Welpott, A.; Bauguitte, S.; George, C.; Hayman, G. D.; Manning, A. J.; Myhre, C. Lund; Lanoisellé, M.; Nisbet, E. G.

    2016-12-01

    A stratified air mass enriched in methane (CH4) was sampled at 600 m to 2000 m altitude, between the north coast of Norway and Svalbard as part of the Methane in the Arctic: Measurements and Modelling campaign on board the UK's BAe-146-301 Atmospheric Research Aircraft. The approach used here, which combines interpretation of multiple tracers with transport modeling, enables better understanding of the emission sources that contribute to the background mixing ratios of CH4 in the Arctic. Importantly, it allows constraints to be placed on the location and isotopic bulk signature of the emission source(s). Measurements of δ13C in CH4 in whole air samples taken while traversing the air mass identified that the source(s) had a strongly depleted bulk δ13C CH4 isotopic signature of -70 (±2.1)‰. Combined Numerical Atmospheric-dispersion Modeling Environment and inventory analysis indicates that the air mass was recently in the planetary boundary layer over northwest Russia and the Barents Sea, with the likely dominant source of methane being from wetlands in that region.

  8. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  9. Characterization of ion processes in a GC/DMS air quality monitor by integration of the instrument to a mass spectrometer.

    PubMed

    Limero, T F; Nazarov, E G; Menlyadiev, M; Eiceman, G A

    2015-02-07

    The air quality monitor (AQM), which included a portable gas chromatograph (GC) and a detector was interfaced to a mass spectrometer (MS) by introducing flow from the GC detector to the atmospheric pressure ion source of the MS. This small GC system, with a gas recirculation loop for carrier and detector make-up gases, comprised an inlet to preconcentrate volatile organic compounds (VOCs) in air, a thermal desorber before the GC column, a differential mobility spectrometer (DMS), and another DMS as an atmospheric pressure ionization source for the MS. Return flow to the internally recirculated air system of the AQM's DMS was replenished using purified air. Although ions and unreacted neutral vapors flowed from the detector through Viton® tubing into the source of the MS, ions were not detected in the MS without the auxillary ion source, (63)Ni as in the mobility detector. The GC-DMS-MS instrument provided a 3-D measurement platform (GC, DMS, and MS analysis) to explore the gas composition inside the GC-DMS recirculation loop and provide DMS-MS measurement of the components of a complex VOC mixture with performance significantly enhanced by mass-analysis, either with mass spectral scans or with an extracted ion chromatogram. This combination of a mobility spectrometer and a mass spectrometer was possible as vapors and ions are carried together through the DMS analyzer, thereby preserving the chromatographic separation efficiency. The critical benefit of this instrument concept is that all flows in and through the thoroughly integrated GC-DMS analyzer are kept intact allowing a full measure of the ion and vapor composition in the complete system. Performance has been evaluated using a synthetic air sample and a sample of airborne vapors in a laboratory. Capabilities and performance values are described using results from AQM-MS analysis of purified air, ambient air from a research laboratory in a chemistry building, and a sample of synthetic air of known composition

  10. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  11. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  12. Interlaboratory evaluation of trace element determination in workplace air filter samples by inductively coupled plasma mass spectrometry†‡

    PubMed Central

    Shulman, Stanley A.; Brisson, Michael J.; Howe, Alan M.

    2015-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory precision estimates were acceptable for medium- and high

  13. Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis

    NASA Astrophysics Data System (ADS)

    Lee, Chulkyu; Martin, Randall V.; van Donkelaar, Aaron; O'Byrne, Gray; Krotkov, Nickolay; Richter, Andreas; Huey, L. Gregory; Holloway, John S.

    2009-11-01

    We develop an improved retrieval of sulfur dioxide (SO2) vertical columns from two satellite instruments (SCIAMACHY and OMI) that measure ultraviolet solar backscatter. For each SCIAMACHY and OMI observation, a local air mass factor (AMF) algorithm converts line-of-sight "slant" columns to vertical columns using altitude-dependent scattering weights computed with a radiative transfer model (LIDORT), weighted by relative vertical SO2 profile (shape factor) determined locally with a global atmospheric chemistry model (GEOS-Chem). The scattering weights account for viewing geometry, surface albedo, cloud scattering, absorption by ozone, and scattering and absorption by aerosols. Absorption of radiation by mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean SO2 shape factors simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated with coincident airborne in situ measurements (INTEX-A, INTEX-B, and a campaign over east China). The annual mean AMF errors are estimated to be 35-70% in polluted regions (e.g., East Asia and the eastern United States) and less than 10% over clear ocean regions. The overall SO2 error assessment is 45-80% for yearly averages over polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the United States (r = 0.85 for SCIAMACHY and 0.82 for OMI). A sensitivity study confirms the sensitivity of SCIAMACHY and OMI to anthropogenic SO2 emissions.

  14. sup 222 Rn, sup 222 Rn progeny and sup 220 Rn progeny as atmospheric tracers of air masses at the Mauno Loa Observatory

    SciTech Connect

    Hutter, A.R.; George, A.C.; Maiello, M.L.; Fisenne, I.M.; Larsen, R.J.; Beck, H.L.; Wilson, F.C.

    1990-03-01

    {sup 222}Rn, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations in air were measured at the Mauna Loa Observatory (MLO) in Hawaii during March 1989 in order to investigate the feasibility of using them as atmospheric tracers to help determine local air mass flow patterns. Charcoal traps, cooled to dry ice temperatures, were used to collect {sup 222}Rn, which was subsequently measured in pulse ionization chambers at the Environmental Measurements Laboratory (EML). {sup 222}Rn progeny and {sup 220}Rn progeny for 37 samples were measured at the Observatory by sampling high volumes of air through filters, which were counted for up to 11 h in alpha scintillation counters. Individual progeny concentrations were calculated using both least squares and maximum likelihood techniques. In general, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations were low when free tropospheric air was present (downslope and tradewind conditions), and consistently higher when surface air from the island broke through the trade wind inversion layer (upslope conditions). The data suggest that {sup 222}Rn, {sup 222}Rn progeny, or {sup 220}Rn progeny monitoring may provide new and useful information to help indicate the different air flow patterns present at MLO. 17 refs., 5 figs., 2 tabs.

  15. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  16. Analysis on seasonal retreat of Siberian high in association with that of the extremely cold Siberian air mass from winter to spring

    NASA Astrophysics Data System (ADS)

    Hamaki, Tatsuya; Haga, Yuichi; Kato, Kuranoshin

    2014-05-01

    According to Kato et al.(2009), the seasonal increase in surface air temperature in the Japan Islands area attains the maximum due to the rapid weakening of the winter time large-scale circulation pattern from late March to early April. Although the rapid decrease in the appearance frequency of the daily Siberian high at that time was pointed out by them, seasonal retreat process of the the Siberian high and the Siberian air mass including in the their day-to-day variations from winter to spring have not been systematically understood yet. Thus the present study will examine the above phenomena by using mainly the NCEP/NCAR reanalysis data and the daily weather maps at the surface level provided by JMA. Although the climatological analyses are need in the future, the present study will perform a case study for the several years, 1984(cold winter), 2007(warm winter) and 2011(normal winter). The area with high appearance frequency of the surface anticyclone with its center pressure more than 1032hPa (roughly corresponding to the Siberian high) was found around 40N~60N/90~120E (including Lake Baykal area (50~55N/105~110E)) in January and February. Interestingly, the latitude of that high appearance area was not so changed in March. Furthermore its frequency decreased rapidly with its maximum latitude unchanged in April. However, while the high frequency area was mainly located in the colder region with 850hPa temperature (T850) lower than -15 degrees Celsius in January and February wider part of the area with high appearance frequency of the intense anticyclone distributed in the baroclinic zone with T850 higher than -15 degrees Celsius. In April, the -15 degrees Celsius isotherm of T850 moved further northward to ~60N, although the maximum frequency of the anticyclone was seen along ~50N. In addition, although the anticyclone associated with the daily Siberian high showed rather quasi-stationary-like character also in March (as well as in midwinter), the storm track

  17. Characterizing the chemical evolution of air masses via multi-platform measurements of volatile organic compounds (VOCs) during CalNEX: Composition, OH reactivity, and potential SOA formation

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Kuster, W. C.; Bon, D.; Warneke, C.; Lerner, B. M.; Williams, E. J.; Holloway, J. S.; Pollack, I. B.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Herndon, S. C.; Zahniser, M. S.; Vlasenko, A. L.; Li, S.; Alvarez, S. L.; Rappenglueck, B.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; De Gouw, J. A.

    2011-12-01

    Volatile organic compounds (VOCs) are critical components in the photochemical production of ozone (O3) and secondary organic aerosol (SOA). During the CalNex 2010 field campaign, an extensive set of VOCs were measured at the Pasadena ground site, and aboard the NOAA WP-3D aircraft and the WHOI Research Vessel Atlantis. The measurements from each platform provide a unique perspective into the emissions, transport, and atmospheric processing of VOCs within the South Coast Air Basin (SoCAB). The observed enhancement ratios of the hydrocarbons measured on all three platforms are in good agreement and are generally well correlated with carbon monoxide (CO), indicating the prevalence of on-road VOC emission sources throughout the SoCAB. Offshore measurements aboard the ship and aircraft are used to characterize the air mass composition as a function of the land/sea-breeze effect. VOC ratios and other trace gases are used to identify air masses containing relatively fresh emissions that were often associated with offshore flow and re-circulated continental air associated with onshore flow conditions. With the prevailing southwesterly airflow pattern in the LAB throughout the daytime, the Pasadena ground site effectively functions as a receptor site and is used to characterize primary VOC emissions from downtown Los Angeles and to identify the corresponding secondary oxidation products. The chemical evolution of air masses as a function of the time of day is investigated in order to determine the relative impacts of primary emissions vs. secondary VOC products on OH reactivity and potential SOA formation. The reactivity of VOCs with the hydroxyl radical (OH) at the Pasadena site was dominated by the light hydrocarbons, isoprene, and oxygenated VOCs including aldehydes (secondary products) and alcohols (primary anthropogenic emissions). Toluene and benzaldehyde, both of which are associated with primary anthropogenic emissions, are the predominant VOC precursors to the

  18. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  19. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  20. Development and validation of a method for air-quality and nuisance odors monitoring of volatile organic compounds using multi-sorbent adsorption and gas chromatography/mass spectrometry thermal desorption system.

    PubMed

    Ribes, Alejandra; Carrera, Guillem; Gallego, Eva; Roca, Xavier; Berenguer, M A José; Guardino, Xavier

    2007-01-26

    An analytical method based on thermal desorption (TD) coupled to gas chromatography (GC) and mass spectrometry detection (MS) has been developed and validated for the determination of a wide range of odor nuisance and air-quality volatile organic compounds (VOC) in air. New generation isocyanates, isocyanato- and isothiocyanatocyclohexane, have been included for the first time as target compounds due to their high occurrence in air samples. A dynamic air sampling method to trap gas and vapor on multi-sorbent tubes using portable pump equipment has been also developed. Sorbent tubes were filled with Carbotrap (70mg), Carbopack X (100mg) and Carboxen-569 (90mg). Validation of the TD-GC-MS method showed good selectivity, sensibility and precision according to Compendium Method TO-17 (US Environment Protection Agency) criteria. Limits of detection (signal-to-noise=3, ng in tube) ranges were 0.004-0.03ng (alcanes), 0.001-0.1ng (aromatics), 0.03-14ng (aldehydes), 0.003-7ng (alcohols), 0.003-0.04ng (chlorides), 0.02-0.5ng (esters), 0.002-0.1ng (ketones), 0.01-0.53ng (terpenes), 14-97ng (amides), 0.2-10ng (isocyanates) and 0.001ng (carbon disulfide). The linear dynamic range was over 3-5 orders of magnitude, depending of the VOC. TD-GC-MS analysis was reproducible, with relative standard deviation (n=5) within 20%. VOCs breakthrough examination showed no significant losses when about 2000ng standard was prepared. In order to evaluate the performance of the developed method on real samples, several industrial and urban air samples were analysed. VOCs were found to be stable on the sorbent tubes for at least 1 week when stored at 4 degrees C.

  1. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  2. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  3. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health.

    PubMed

    Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y

    2015-01-01

    UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a

  4. The contribution to future flood risk in the Severn Estuary from extreme sea level rise due to ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Bates, P. D.; Siddall, M.

    2013-12-01

    The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution

  5. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.

    PubMed

    Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

    2006-10-21

    For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.

  6. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  7. Retrieval of Vertical Columns of Sulfur Dioxide From SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation

    NASA Astrophysics Data System (ADS)

    Lee, C.; Martin, R. V.; Donkelaar, A. V.; O'Byrne, G.; Krotkov, N.; Richter, A.; Huey, G.; Holloway, J. S.

    2009-05-01

    Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Outstanding questions exist about SO2 emissions and its atmospheric chemistry. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of its atmospheric chemistry. Here, we present an improved retrieval of sulfur dioxide (SO2) vertical columns from satellite instruments (SCIAMACHY and OMI) that measure solar backscattered UV radiance. Particular attention is devoted to development of a local air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each SCIAMACHY and OMI observation, we calculate an AMF from the relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem), weighted by altitude-dependent scattering weights computed with a radiative transfer model (LIDORT). Seasonal mean instrument sensitivity to SO2 (AMF) is generally twice as high over ocean than land. Mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean relative vertical profiles of SO2 simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated (r = 0.9) with coincident airborne in-situ measurements (INTEX-A, INTEX-B, and a campaign over East China). A global uniform AMF would reduce the correlation with aircraft measurements by 0.1 - 0.2. The overall error assessment leads to 45 - 80% errors for yearly averages over the polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the

  8. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Structure of flows due to interaction of CO2 laser pulse pairs with a target in air

    NASA Astrophysics Data System (ADS)

    Bakeev, A. A.; Nikolashina, L. I.; Potashkin, M. N.; Prokopenko, N. V.

    1991-06-01

    An analysis is made of two pulses from an electric-discharge CO2 laser, of 6-12 μs duration and separated in time, incident on a target surrounded by air of normal density. The main attention is concentrated on breakdown of air by the second pulse at a boundary separating the "cold gas" and the plasma generated by the first pulse ("hot gas"). A gasdynamic system of waves is then generated. It consists of an absorption wave traveling along the cold gas opposite to the laser radiation and a wave propagating along the hot gas toward the target. The best agreement between the theory and experiment is obtained employing a model in which an absorption wave travels along the hot gas in an overcompressed detonation regime. The density of the radiation flux needed to maintain such a wave is 20-30% of the average density of the laser radiation flux carried by the second pulse.

  9. Emergency Department Visits for Asthma Exacerbation due to Weather Conditions and Air Pollution in Chuncheon, Korea: A Case-Crossover Analysis

    PubMed Central

    Kwon, Jae-Woo; Han, Young-Ji; Oh, Moo Kyung; Lee, Chang Youl; Kim, Ja Yeun; Kim, E Jin; Kim, Ho

    2016-01-01

    Purpose This retrospective study was conducted to estimate the effects of climate factors and air pollution on asthma exacerbations using a case-crossover analysis. Methods Patients who visited the emergency department (ED) of 2 university hospitals in Chuncheon for asthma exacerbations from January 1, 2006, to December 31, 2011, were enrolled. Daily average data for meteorological factors (temperature, daily temperature range, relative humidity, wind speed, atmospheric pressure, presence of rain, solar irradiation, and presence of fog) and the daily average levels of gaseous air pollutants (SO2, NO2, O3, CO, and PM10) were obtained. A case-crossover analysis was performed using variables about the weather and air pollution at 1-week intervals between cases and controls before and after ED visits. Results There were 660 ED visits by 583 patients with asthma exacerbations. Low relative humidity (lag 1 and 2) and high wind speed (lag 1, 2, and 3) were associated with ED visits for asthma. Fog (lag 2) showed protective effects against asthma exacerbations in Chuncheon (risk increase: -29.4% [95% CI=-46.3% to -7.2%], P=0.013). These relationships were stronger in patients ≤19 years old than in those >60 years old. High levels of ambient CO (lag 1, 2, and 3) and NO2 (lag 2 and 3) were associated with decreased ED visits for asthma. However, there were no significant relationships among levels of ambient CO or NO2 and asthma exacerbations after adjusting for wind speed and relative humidity. Conclusions High wind speed and low humidity were associated with an increased risk of asthma ED visits. Fog was associated with a decreased risk of asthma ED visits after controlling for seasonal variations in weather and air pollution. PMID:27582402

  10. Impact of air quality in Mexico City due to particles smaller than ten microns (PM10) by wildland fire in "Cumbres del Ajusco Park" for the year 2013

    NASA Astrophysics Data System (ADS)

    Mendoza, A.; Garcia-Reynoso, J. A.; Ruiz-Suárez, L. G.; Torres, R.; Castro, T.; Peralta, O.; Padilla Barrera, Z. V.; Mar, B.; Carbajal, J. N.

    2014-12-01

    A forest fire is a natural process of combustion in a specific geographical area, its occurrence depends on meteorological variables, topography and vegetation type, the wildland fires are potential sources of large amounts of pollutants. The main air pollutants are in a wildland fires particles (PM10 and PM2.5) Carbon Monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOC's) and a negligible amount of sulfur dioxide (SO2) (Chow 1995), Was performed a study of the environmental impact on air quality in Mexico city for a wildland fire. The fire was presented in Cumbres del Ajusco Park on April 14 for the year 2013, with a duration of 26 hours and consuming an extension 150 ha of pasture, WRF-Chem and WRF-fire model were used to conduct the study, two modeling scenarios were made, one including emissions from wildfire and other without emission-fire, comparison is made between the two modeling scenarios in order to calculate on air quality in Mexico cityPM10 concentrations have a larger impact on the air quality of Mexico city, when fire emission were included, a plume of PM10 coming from fire increase ambient concentration up to 350ug/m3 and it was obtained by modeling similar to the concentration measured by a monitoring station (320ug/m3).The current limit is 120ug/m3 24 hours average. (Mexican standard NOM-025-SSA1-1993)This system for setting emissions from fire is working properly whoever further development is required.

  11. Reductions in commuter exposure to volatile organic compounds in Mexico City due to the environmental program ProAire2002-2010.

    PubMed

    Shinohara, Naohide; Ángeles, Felipe; Basaldud, Roberto; Cardenas, Beatriz; Wakamatsu, Shinji

    2016-06-15

    We investigated commuter exposure to volatile organic compounds in the metropolitan area of Mexico City in 2011 in private car, microbus, bus, metro, metrobus, and trolley bus. A similar survey was conducted in 2002 before initiation of the ProAire2002-2010 program aimed at reducing air pollution. Formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene were sampled while traveling during the morning rush hour in May 2011. Compared with the 2002 survey, in-vehicle concentrations were substantially lower in 2011, except for formaldehyde in microbuses (35% higher than in 2002). The reductions were 17-42% (except microbuses), 25-44%, 41-61%, 43-61%, 71-79%, 80-91%, and 79-93% for formaldehyde, acetaldehyde, benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene, respectively. These reductions are considered to be the outcome of some of the actions in the ProAire2002-2010 program. In some microbuses, use of liquid petroleum gas may have increased in-vehicle formaldehyde concentrations. The reduction in predicted excess cancer incidence of commuters because of ProAire2002-2010 was estimated to be 1.4 cases/yr. In addition, if every microbus commuter changed their transport mode to bus, metro, or metrobus in the future, the estimated excess cancer incidence of commuters could be further decreased from 6.4 to 0.88-2.2 cases/year.Journal of Exposure Science and Environmental Epidemiology advance online publication, 15 June 2016; doi:10.1038/jes.2016.31.

  12. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  13. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  14. Bilateral submandibular gland aplasia with clinico-radiological mass due to prolapsing sublingual salivary tissue through mylohyoid boutonniere: a case report and review.

    PubMed

    Ahmed, M; Strauss, M; Kassaie, A; Shotelersuk, V; DeGuzman, R

    2009-02-01

    Aplasia of major salivary glands is very rare. Compensatory hypertrophy of the rest of the glands can result in clinico-radiological masses. We present a report of a rare case of non-syndromic bilateral submandibular gland aplasia with hypertrophied sublingual salivary tissue, the latter herniating through mylohyoid boutonnière to present as a palpable mass on the left side with corresponding CT findings. Multiplanar evaluation is emphasised by utilizing multidetector CT.

  15. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  16. Seasonal origins of air masses transported to Mount Wrangell, Alaska, and comparison with the past atmospheric dust and tritium variations in its ice core

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2006-12-01

    The North Pacific region is subject to various climatic phenomena such as the Pacific Decadal Oscillation (PDO), the El Niño-Southern Oscillation (ENSO), and the Arctic Oscillation (AO), significantly affecting the ocean and the atmosphere. Additionally, material circulation is also very active in this region such as spring dust storms in the desert and arid regions of East Asia and forest fires in Siberia and Alaska. Understanding the complex connections among the climatic phenomena and the material circulation would help in attempts to predict future climate changes. For this subject, we drilled a 50-m ice core at the summit of Mount Wrangell, which is located near the coast of Alaska (62°162'170"162°171'N, 144°162'170"162;°171'W, and 4100-m). We analyzed dust particle number density, tritium concentration, and 171 171 171 171 170 162 171 D in the core. The ice core spanned the years from 1992 to 2002 and we finally divided the years into five parts (early-spring; late-spring; summer; fall; winter). Dust and tritium amounts varied annually and intra-annually. For further understanding of the factors on those variations, we should know the origins of the seasonal dust and tritium. Hence, we examined their origins by the calculation of everyday 10-days backward trajectory analysis from January 1992 to August 2002 with 3-D wind data of the European Center for Medium-Range Weather Forecast (ECMWF). In early spring, the air mass from East Asia increased and it also explained dust increases in springtime, although the air contribution in winter increased too. In late spring, the air mass from the stratosphere increased, and it also corresponded to the stratospheric tritium increase in the ice core. The air masses from Siberia and the North Pacific in the mid-latitude always significantly contributed to Mount Wrangell, although those maximum contributions were fall and summer, respectively. The air mass originating in the interior of Alaska and North America did

  17. Observation of the transport of polluted air masses from the northeastern United States to Cape Sable Island, Nova Scotia, Canada, during the 1993 NARE summer intensive

    NASA Astrophysics Data System (ADS)

    Knapp, K. G.; Balsley, B. B.; Jensen, M. L.; Hanson, H. P.; Birks, J. W.

    1998-06-01

    Vertical profiles of ozone, temperature, pressure, and water vapor mass mixing ratio obtained using a parafoil kite platform during the North Atlantic Regional Experiment (NARE) 1993 summer intensive at Cape Sable Island, Nova Scotia, Canada, demonstrate the of use of kite platforms for the collection of vertically and temporally resolved data over a fixed location. During the period August 8-28, 1993, 39 profiles of the lower atmosphere were collected. Data collected as part of this field campaign illustrate the complex vertical stratification and temporal variability of pollutants transported into the Maritime Provinces of Canada. Transport phenomena resulted in pollution events in which ozone at the ground level remained in the 20-40 parts per billion by volume (ppbv) range, while mixing ratios of 90-130 ppbv were observed above ˜300 m. Back trajectories indicate that these highly elevated levels of ozone are attributable to source regions in the heavily industrialized northeastern United States. Vertical stratification of the lower atmosphere was also present during transport of Canadian air to the sampling site, with layers of both elevated and diminished ozone observed, while marine air did not exhibit layering characteristic of air masses originating from continental source regions.

  18. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    PubMed

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities.

  19. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    PubMed

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  20. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  1. A Satellite Formation Due to A Giant Impact: The Effect of the Protoplanet Mass and Its Composition on the Disk Gas Fraction

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Genda, H.; Asphaug, E. I.; Ida, S.

    2010-12-01

    It has been thought that the Moon is formed by a giant impact in the late stage of the Earth formation. The impact generates a debris disk around the earth, from which the Moon is accreted. This type of satellite formation is believed to be common in the solar and extra solar systems, such as Pluto and its moon, Charon. Recent study has revealed that the initial gas mass fraction in an impact-generated disk can highly affect the satellite formation process. It also means that a satellite mass depends on the initial disk gas ratio. Machida and Abe (2004) have shown that the higher disk gas ratio creates smaller satellite mass. They have also found out that if evaporation rate exceeds 70%, no satellite can be formed from the disk since solid/liquid materials in the disk fall into the Earth or escape before the disk cooling. Wada et al. (2006) have suggested that strong shocks occur in a gas rich disk, which causes most of the disk material falls into the earth within a few days. Thus, initial disk gas ratio must be taken into account in order to understand the satellite formation process, however, its effect has not been considered carefully yet. In our work, we have investigated the disk gas ratio as a function of protoplanet mass and its material, based on the idea that impact energy and the latent heat of disk material basically define the disk gas ratio. We have performed giant impact simulations of water-icy and rocky protoplanets using Smoothed Particle Hydrodynamics (SPH) method. ANEOS and SESAME equation of states are used. As a result, the disk evaporation is negligible in a Pluto-Chaon mass-size impact, but for an Earth-Moon size, the disk evaporation rate of the water-icy protoplanet can exceed 70%, whereas that of rocky one is about 10-30%. For a 5 Earth mass size system, most of the disk material evaporates in both icy and rocky protoplanet impacts. The result suggests that protoplanet mass and its material also affect the satellite mass. In our

  2. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  3. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS).

    PubMed

    Cotte-Rodríguez, Ismael; Handberg, Eric; Noll, Robert J; Kilgour, David P A; Cooks, R Graham

    2005-05-01

    The use of two methods in tandem, single-sided membrane introduction mass spectrometry (SS-MIMS) and fiber introduction mass spectrometry (FIMS), is presented as a technique for field analysis. The combined SS-MIMS-FIMS technique was employed in both a modified commercial mass spectrometer and a miniature mass spectrometer for the selective preconcentration of the explosive simulant o-nitrotoluene (ONT) and the chemical warfare agent simulant, methyl salicylate (MeS), in air. A home-built FIMS inlet was fabricated to allow introduction of the solid-phase microextraction (SPME) fiber into the mass spectrometer chamber and subsequent desorption of the trapped compounds using resistive heating. The SS-MIMS preconcentration system was also home-built from commercial vacuum parts. Optimization experiments were done separately for each preconcentration system to achieve the best extraction conditions prior to use of the two techniques in combination. Improved limits of detection, in the low ppb range, were observed for the combination compared to FIMS alone, using several SS-MIMS preconcentration cycles. The SS-MIMS-FIMS response for both instruments was found to be linear over the range 50 to 800 ppb. Other parameters studied were absorption time profiles, effects of sample flow rate, desorption temperature, fiber background, memory effects, and membrane fatigue. This simple, sensitive, accurate, robust, selective, and rapid sample preconcentration and introduction technique shows promise for field analysis of low vapor pressure compounds, where analyte concentrations will be extremely low and the compounds are difficult to extract from a matrix like air.

  4. EVIDENCE OF FEED CONTAMINATION DUE TO SAMPLE HANDLING AND PREPARATION DURING A MASS BALANCE STUDY OF DIOXINS IN LACTATING COWS IN BACKGROUND CONDITIONS

    EPA Science Inventory

    In 1997, the United States (US) Environmental Protection Agency (EPA) conducted a mass balance study of polychlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) in lactating cows in background conditions. The field portion of the study occurred at the US Department of A...

  5. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  6. Are the residents of former Yugoslavia still exposed to elevated PCB levels due to the Balkan wars? Part 1: Air sampling in Croatia, Serbia, Bosnia and Herzegovina.

    PubMed

    Klánová, Jana; Kohoutek, Jirí; Kostrhounová, Romana; Holoubek, Ivan

    2007-08-01

    Persistent organic pollutants (POPs) spilled into the environment as a result of damaged industrial and military targets, natural resources, and infrastructure during the Balkan wars still pose a problem several years later. The aim of this project was to investigate an extent to which the residents of former Yugoslavia are exposed to elevated levels of POPs as a consequence of the wars. The atmospheric as well as the soil levels of PCBs, OCPs and PAHs were determined in Croatia, Serbia, Bosnia and Herzegovina during five high volume air sampling campaigns in 2003 and 2004. A considerable contamination of several sites was detected (PCB concentrations in the atmosphere ranged between 67 pg m(-3) and 40 ng m(-3) for the sum of 7 indicator congeners) and the levels are reported in this article.

  7. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    SciTech Connect

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  8. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  9. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  10. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air.

  11. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  12. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  13. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  14. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  15. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  16. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  17. Absorption cross sections for HF laser lines due to traces of CO/sub 2/, N/sub 2/O, and CH/sub 4/ in air

    SciTech Connect

    Agroskin, V.Ya.; Vasil'ev, G.K.; Gur'ev, V.I.; Tatarinova, E.E.

    1986-12-01

    The emission from an HF (DF) laser is spread over a large number of vibrational-rotational lines in the range 2.7-4.2 ..mu..m, which contains absorption bands of virtually all substances of interesting quantitative gas analysis, and in particular, detecting atmospheric pollutants, determining discharges from industrial plants, locating deposits of certain minerals, forecasting volcanic activity, and so on. Pulsed chemical HF (DF) lasers can be based on the chain reaction of fluorine with hydrogen (deuterium), which is promising for these purposes because the number of lines is large by comparison with any other type of laser (about 100 lines). These lasers also have high efficiency in converting the pumping energy to radiation and high beam power with relatively small dimensions and the same laser cell can be used to obtain the emission from carbon dioxide in the range 9.6-10.6 ..mu..m by energy transfer from DF to carbon dioxide. It is necessary to know the absorption characteristics of the substances at the lines of the HF (DF) laser. In this paper, the authors report measured cross sections for carbon dioxide, nitrogen oxide, and carbon hydrogenate, in the form of minor impurities in the air (about 1-10%) for various lines from an HF laser. The authors compare the data with published values, while the available spectroscopic characteristics are used in theoretical calculations of the absorption cross section and compared with the experiment.

  18. Failed Mask Ventilation due to Air Leakage around the Orbit in a Patient with a History of Radical Maxillofacial Surgery with Orbital Exenteration

    PubMed Central

    Horishita, Reiko; Kayashima, Kenji

    2016-01-01

    A 72-year-old male (height: 160 cm, weight: 53 kg) was scheduled to undergo left renal and male with ans uterine tract resection. The patient had previously undergone right radical maxillofacial surgery with orbital exenteration 14 years before the present operation to treat squamous cell carcinoma of the right maxillary sinus, with tumour invasion to the orbital floor. An anaesthesiologist encountered difficulty in performing mask ventilation during the induction of anaesthesia in the patient, despite a good mask fit on the face, because the adhesive tape around the orbit had moved. Urgent endotracheal intubation was successful without desaturation. A postoperative examination revealed that a communication between the nasal cavity and the orbit was visible on computed tomograms obtained nine years before the surgery. The patient felt the air leakage around the adhesive tape. The anaesthesiologist should have removed the adhesive tape to directly observe the lesion and should have realised that the communication might cause difficulty in mask ventilation. Careful examination of the airways using computed tomography and precise interviews may improve the understanding of patients’ airways and may help avoid similar events. PMID:28058144

  19. SAROTA: application of specific absorption rate (SAR) and over-the-air (OTA) data for the characterization of the real-life exposure due to mobile phones

    NASA Astrophysics Data System (ADS)

    Monebhurrun, Vikass

    2013-04-01

    The RF exposure level of a mobile phone is quantified by the measurement of the specific absorption rate (SAR) under laboratory conditions. The SAR which is measured while the mobile phone is operated at maximum power level does not reflect the real-life exposure scenario since the mobile phone typically re-adjusts its power level and frequency depending on the quality of the communication link with the nearest base station. The choice of a low RF exposure device based on the comparison of the relative SAR values of mobile phones can be misleading. The real-life RF exposure also depends on the over-the-air (OTA) performance of the mobile phone. Taken independently, the two sets of data do not allow a straightforward comparison of the global RF performance amongst mobile phones. A unique and simple parameter denoted as the SAROTA index is proposed for the characterization of mobile phones with regard to both RF exposure and OTA performance. The SAROTA index provides the real-life exposure index of the mobile phone.

  20. Structural and chemical changes in ultra-high-molecular-weight polyethylene due to gamma radiation-induced crosslinking and annealing in air.

    PubMed

    Viano, A M; Spence, K E; Shanks, M A; Scott, M A; Redfearn, R D; Carlson, C W; Holm, T A; Ray, A K

    2007-01-01

    Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) is the material of choice for one of the articulating surfaces in many total joint replacements, notably hip and knee prostheses. The various methods used by the orthopaedic biomaterials industry to sterilize and anneal UHMWPE components, and the resulting oxidation and crosslinking, affect the mechanical wear resistance properties in ways still unknown at the microscopic and molecular levels. Transmission electron microscopy and chemical pyrolysis were used to quantify crosslinking induced by gamma irradiation and annealing in air. Changes in lamellar stacking and the amount of crosslinking suggest two types of crosslinking: relatively unstable crosslinks in the amorphous region initially resulting from gamma irradiation which are later replaced by more thermally stable crosslinks resulting from rearrangements at the annealing temperature. Lamellar mobility, the ability of crystalline lamellae to flow in the material, is enhanced during the transition from one type of bond to the other, and this appears to optimize near eight hours of annealing time. Results from decomposition and percent crystallinity measurements provide further support for this theory.

  1. Do perceived job insecurity and annoyance due to air and noise pollution predict incident self-rated poor health? A prospective analysis of independent and joint associations using a German national representative cohort study

    PubMed Central

    Riedel, Natalie; Loerbroks, Adrian; Bolte, Gabriele; Li, Jian

    2017-01-01

    Background Current economic and social change has contributed to increasing job insecurity and traffic-related pollution in residential areas. Both job insecurity and exposure to noise and air pollution are known determinants of population health and can concur in peoples' lives. This may hold true particularly for socially disadvantaged subpopulations. Nevertheless, the potential independent and joint links of those exposures to health have been rarely examined so far. We aimed to contribute to the scarce body of evidence. Methods Information on perceived job insecurity and exposures to noise and air pollution as expressed by annoyance as well as on self-rated health were gathered from 2 waves of the population-based German Socio-Economic Panel (2009 and 2011, N=6544). We performed multivariable Poisson regression to examine the independent and joint risk of poor health in 2011 by perceived job insecurity and annoyance due to noise and air pollution in 2009. Results After the 2-year follow-up in 2011, 571 (8.7%) participants rated their health as poor. The risk of reporting incident poor health was increased by roughly 40% in employees reporting high versus low perceived job insecurity and annoyance due to noise and air pollution, respectively. This risk increased when both exposures were present at higher levels (risk ratio=1.95 (1.49 to 2.55)). Conclusions Work-related and environmental exposures may accumulate and have a joint health impact. Elaboration on the link between occupational and residential exposures is warranted in the light of their concurrence and their implications for health inequities. PMID:28115332

  2. Urbanization of black South African women may increase risk of low bone mass due to low vitamin D status, low calcium intake, and high bone turnover.

    PubMed

    Kruger, Marlena C; Kruger, Iolanthé M; Wentzel-Viljoen, Edelweiss; Kruger, Annamarie

    2011-10-01

    Globally, rural to urban migration is accompanied by changes in dietary patterns and lifestyle that have serious health implications, including development of low bone mass. We hypothesized that serum 25 (OH) vitamin D3 (25[OH]D3) levels will be lower, bone turnover higher, and nutrition inadequate in urban postmenopausal black women, increasing risk for low bone mass. We aimed to assess the prevalence of risk factors for low bone mass in 1261 black women from rural and urban areas in the North West Province of South Africa (Prospective Urban and Rural Epidemiology-South Africa project). Fasting blood samples were taken; and participants were interviewed to complete questionnaires on self-reported diseases, fractures, and dietary intakes. Bone health markers were assessed in a subgroup of 658 women older than 45 years. Specific lifestyle risk factors identified were inactivity, smoking, injectable progestin contraception use, and high alcohol consumption. Dietary risk factors identified were low calcium and high animal protein, phosphorous, and sodium intakes. The 25(OH)D3 and C-terminal telopeptide (CTX) levels were significantly higher in the rural vs the urban women older than 50 years. Parathyroid hormone (PTH) levels increased with age in both groups. The 25(OH)D levels were inversely correlated with CTX and PTH in rural women. In urban women, PTH and CTX were correlated while dietary calcium was inversely correlated with CTX and PTH with 25(OH)D3. The combination of low dietary calcium (<230 mg/d), marginally insufficient 25(OH)D3 status, and raised PTH may result in increased bone resorption. Further research is required to assess bone health and fracture risk in black African women.

  3. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California

    NASA Technical Reports Server (NTRS)

    Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A.

    1992-01-01

    Measurements were made of a suite of photochemically active trace species (including light hydrocarbons, ozone, peroxyacetyl nitrate, HNO3, NO3(-), NO(x), and NO(y)) in marine air collected during a 10-day period in April and May 1985 at Point Arena (California), a coastal inflow site. It was found that the mixing ratios of the alkanes, ozone, peroxyacetyl nitrate, and HNO3 correlated with variations in the origins of calculated air parcel trajectories and with variations in the ratios of the light alkanes. The highest levels of alkanes and the photochemical products were found in parcels that had been rapidly transported across the North Pacific Ocean from near the 600-mbar level above the east Asian coast. It is suggested that production over the continents, transport to the marine areas, and parallel removal processes account for much of the observed correlation.

  4. The assessment of air emissions increase due to the collection of municipal solid waste with old collection vehicles: A case study of Ludbreg (Croatia).

    PubMed

    Radetić, Luka; Vujević, Dinko; Premur, Vitomir; Melnjak, Ivana; Anić Vučinić, Aleksandra

    2016-10-01

    The usage of old equipment (over 10-year-old diesel-fuelled waste collection vehicles, WCVs) for municipal solid waste (MSW) collection in Ludbreg for longer than a decade has had a negative environmental impact, which has been reduced by replacing an old diesel WCV with a new diesel WCV. This study aims to assess the share of air emissions of two old WCVs (FAP 1990 and MAN 2003) and one new (MAN 2015), expressed in CO2 emissions. In addition, these vehicles have been found easily to reach the limit of 100 dB, which can cause hearing damage in their surroundings. Furthermore, their average fuel consumption is more than 80 l per 100 km, which makes them ineffective in terms of fuel consumption. Generally, higher fuel consumption results in more emissions and for a more eco-friendly operation, the MAN 2003 from Ludbreg WCV fleet should be technically amended and adjusted, and the FAP 1990 should be retired. Although the MAN 2015 is diesel fuelled, the best solution for replacement, according to Maimoun et al. (Waste Management 33: 1079-1089, 2016), would be the use of hydraulic-hybrid vehicles, which provide the best environmental benefits over other alternatives. According to Maimoun et al., hybrid is better environmentally, diesel is the best environmental-economical option and landfill gas-sourced natural gas is the best alternative when accessible because it significantly (up to 80%) reduces emissions of hazardous gases as well as noise levels (50-98%).

  5. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  6. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area.

    PubMed

    Klasson, Maria; Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-07-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose-response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m(-3), range <0.023-3.0mg m(-3)) and below the present Swedish occupational exposure limit (OEL) of 10mg m(-3) The cobalt levels were low as well (AM 0.0030mg m(-3), range 0.000028-0.056mg m(-3)) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m(-3) For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m(-3) by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm(-3)) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm(2)·cm(-3)) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number

  7. Peak-bridges due to in-column analyte transformations as a new tool for establishing molecular connectivities by comprehensive two-dimensional gas chromatography-mass spectrometry.

    PubMed

    Filippi, Jean-Jacques; Cocolo, Nicolas; Meierhenrich, Uwe J

    2015-02-27

    Comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) has been shown to permit for the unprecedented chromatographic resolution of volatile analytes encompassing various families of organic compounds. However, peak identification based on retention time, two-dimensional mapping, and mass spectrometric fragmentation only, is not a straightforward task yet. The possibility to establish molecular links between constituents is of crucial importance to understand the overall chemistry of any sample, especially in natural extracts where biogenetically related isomeric structures are often abundant. We here present a new way of using GC×GC that allows searching for those molecular connectivities. Analytical investigations of essential oil constituents by means of GC×GC-MS permitted to observe in real time the thermally-induced transformations of various sesquiterpenic derivatives. These transformations generated a series of well-defined two-dimensional peak bridges within the 2D-chromatograms connecting parent and daughter molecules, thus permitting to build a clear scheme of structural relationship between the different constituents. GC×GC-MS appears here as a tool for investigating chromatographic phenomena and analyte transformations that could not be understood with conventional GC-MS only.

  8. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Müller, Detlef; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2009-02-01

    ABSTRACT Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05-0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  9. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  10. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  11. Determination of volatile organic compounds in urban and industrial air from Tarragona by thermal desorption and gas chromatography-mass spectrometry.

    PubMed

    Ras-Mallorquí, Maria Rosa; Marcé-Recasens, Rosa Maria; Borrull-Ballarín, Francesc

    2007-05-15

    This study describes the optimisation of an analytical method to determine 54 volatile organic compounds (VOCs) in air samples by active collection on multisorbent tubes, followed by thermal desorption and gas chromatography-mass spectrometry. Two multisorbent beds, Carbograph 1/Carboxen 1000 and Tenax/Carbograph 1TD, were tested. The latter gave better results, mainly in terms of the peaks that appeared in blank chromatograms. Temperatures, times and flow desorption were optimised. Recoveries were higher than 98.9%, except methylene dichloride, for which the recovery was 74.9%. The method's detection limits were between 0.01 and 1.25mugm(-3) for a volume sample of 1200ml, and the repeatability on analysis of 100ng of VOCs, expressed as relative standard deviation for n=3, was lower than 4% for all compounds. Urban and industrial air samples from the Tarragona region were analysed. Benzene, toluene, ethylbenzene and xylenes (BTEX) were found to be the most abundant VOCs in urban air. Total VOCs in urban samples ranged between 18 and 307mugm(-3). Methylene chloride, 1,4-dichlorobenzene, chloroform and styrene were the most abundant VOCs in industrial samples, and total VOCs ranged between 19 and 85mugm(-3).

  12. Quantification of VX vapor in ambient air by liquid chromatography isotope dilution tandem mass spectrometric analysis of glass bead filled sampling tubes.

    PubMed

    Evans, Ronald A; Smith, Wendy L; Nguyen, Nam-Phuong; Crouse, Kathy L; Crouse, Charles L; Norman, Steven D; Jakubowski, E Michael

    2011-02-15

    An analysis method has been developed for determining low parts-per-quadrillion by volume (ppqv) concentrations of nerve agent VX vapor actively sampled from ambient air. The method utilizes glass bead filled depot area air monitoring system (DAAMS) sampling tubes with isopropyl alcohol extraction and isotope dilution using liquid chromatography coupled with a triple-quadrupole mass spectrometer (LC/MS/MS) with positive ion electrospray ionization for quantitation. The dynamic range was from one-tenth of the worker population limit (WPL) to the short-term exposure limit (STEL) for a 24 L air sample taken over a 1 h period. The precision and accuracy of the method were evaluated using liquid-spiked tubes, and the collection characteristics of the DAAMS tubes were assessed by collecting trace level vapor generated in a 1000 L continuous flow chamber. The method described here has significant improvements over currently employed thermal desorption techniques that utilize a silver fluoride pad during sampling to convert VX to a higher volatility G-analogue for gas chromatographic analysis. The benefits of this method are the ability to directly analyze VX with improved selectivity and sensitivity, the injection of a fraction of the extract, quantitation using an isotopically labeled internal standard, and a short instrument cycle time.

  13. Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1.

    PubMed

    Huang, S; Kaw, M; Harris, M T; Ebraheim, N; McInerney, M F; Najjar, S M; Lecka-Czernik, B

    2010-04-01

    Type 2 diabetes is associated with normal-to-higher bone mineral density (BMD) and increased rate of fracture. Hyperinsulinemia and hyperglycemia may affect bone mass and quality in the diabetic skeleton. In order to dissect the effect of hyperinsulinemia from the hyperglycemic impact on bone homeostasis, we have analyzed L-SACC1 mice, a murine model of impaired insulin clearance in liver causing hyperinsulinemia and insulin resistance without fasting hyperglycemia. Adult L-SACC1 mice exhibit significantly higher trabecular and cortical bone mass, attenuated bone formation as measured by dynamic histomorphometry, and reduced number of osteoclasts. Serum levels of bone formation (BALP) and bone resorption markers (TRAP5b and CTX) are decreased by approximately 50%. The L-SACC1 mutation in the liver affects myeloid cell lineage allocation in the bone marrow: the (CD3(-)CD11b(-)CD45R(-)) population of osteoclast progenitors is decreased by 40% and the number of (CD3(-)CD11b(-)CD45R(+)) B-cell progenitors is increased by 60%. L-SACC1 osteoclasts express lower levels of c-fos and RANK and their differentiation is impaired. In vitro analysis corroborated a negative effect of insulin on osteoclast recruitment, maturation and the expression levels of c-fos and RANK transcripts. Although bone formation is decreased in L-SACC1 mice, the differentiation potential and expression of the osteoblast-specific gene markers in L-SACC1-derived mesenchymal stem cells (MSC) remain unchanged as compared to the WT. Interestingly, however, MSC from L-SACC1 mice exhibit increased PPARgamma2 and decreased IGF-1 transcript levels. These data suggest that high bone mass in L-SACC1 animals results, at least in part, from a negative regulatory effect of insulin on bone resorption and formation, which leads to decreased bone turnover. Because low bone turnover contributes to decreased bone quality and an increased incidence of fractures, studies on L-SACC1 mice may advance our understanding of

  14. Interleukin 13- and interleukin 17A-induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution.

    PubMed

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M; Reibman, Joan; Grunig, Gabriele

    2014-12-01

    Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response-induced pulmonary hypertension.

  15. The effect of driver age on the incidence and severity of upper extremity injuries due to second generation front air bag deployment.

    PubMed

    Marshall, Rafael; Hunting, Katherine; McKay, Mary Pat

    2010-01-01

    This study used NHTSA NASS/CDS data to examine whether advancing age was associated with a higher incidence and severity of front airbag-related upper extremity injury (UEI). Using a retrospective cohort design we analyzed weighted data from 1998-2007 for. The study population consisted of lap/shoulder belted people over 16 years of age who were driving passenger vehicles with model years 1998-2003 and were involved in a frontal crash where their front airbag deployed. Drivers who were ejected, involved in a vehicle rollover, or accompanied by a passenger sitting directly behind them were omitted. The exposure variable was age and the outcome variables were UEI incidence and severity. Associations were adjusted for gender, seat track position, vehicle type, vehicle weight, intrusion, and delta-v. Logistic regressions were performed using SAS survey procedures to account for the complex survey design. Overall, 42% of drivers sustained an UEI. Advancing age was associated with a higher incidence (p<0. 0001) and severity (p<0. 0001) of UEI. Nineteen percent of drivers sustained an UEI related to the airbag. No significant differences in the incidence or severity of airbag-related UEI were found between young drivers and older driver age groups. The degree of severity due to airbag-related UEI was generally minor. The majority of airbag-related UEI appeared to shift slightly from abrasions to contusions with aging. These results indicate that UEI due to depowered airbag deployment is common but not disproportionately high among older drivers, and injury severity is generally minor across all age groups.

  16. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  17. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  18. Aerodynamical sealing by air curtains

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Linden, Paul

    2015-11-01

    Air curtains are artificial high-velocity plane turbulent jets which are installed in a doorway in order to reduce the heat and the mass exchange between two environments. The performance of an air curtain is assessed in terms of the sealing effectiveness E, the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. The main controlling parameter for air curtain dynamics is the deflection modulus Dm representing the ratio of the momentum flux of the air curtain and the transverse forces acting on it due to the stack effect. In this talk, we examine the influence of two factors on the performance of an air curtain: the presence of an additional ventilation pathway in the room, such as a small top opening, and the effects of an opposing buoyancy force which for example arises if a downwards blowing air curtain is heated. Small-scale experiments were conducted to investigate the E (Dm) -curve of an air curtain in both situations. We present both experimental results and theoretical explanations for our observations. We also briefly illustrate how simplified models developed for air curtains can be used for more complex phenomena such as the effects of wind blowing around a model building on the ventilation rates through the openings.

  19. Combined deep sampling and mass-based approaches to assess soil carbon and nitrogen losses due to land-use changes in karst area of southwestern China

    NASA Astrophysics Data System (ADS)

    Hu, Yecui; Du, Zhangliu; Wang, Qibing; Li, Guichun

    2016-07-01

    The conversion of natural vegetation to human-managed ecosystems, especially the agricultural systems, may decrease soil organic carbon (SOC) and total nitrogen (TN) stocks. The objective of present study was to assess SOC and TN stocks losses by combining deep sampling with mass-based calculations upon land-use changes in a typical karst area of southwestern China. We quantified the changes from native forest to grassland, secondary shrub, eucalyptus plantation, sugarcane and corn fields (both defined as croplands), on the SOC and TN stocks down to 100 cm depth using fixed-depth (FD) and equivalent soil mass (ESM) approaches. The results showed that converting forest to cropland and other types significantly led to SOC and TN losses, but the extent depended on both sampling depths and calculation methods selected (i.e., FD or ESM). On average, the shifting from native forest to cropland led to SOC losses by 19.1, 25.1, 30.6, 36.8 and 37.9 % for the soil depths of 0-10, 0-20, 0-40, 0-60 and 0-100 cm, respectively, which highlighted that shallow sampling underestimated SOC losses. Moreover, the FD method underestimated SOC and TN losses for the upper 40 cm layer, but overestimated the losses in the deeper layers. We suggest that the ESM together with deep sampling should be encouraged to detect the differences in SOC stocks. In conclusion, the conversion of forest to managed systems, in particular croplands significantly decreased in SOC and TN stocks, although the effect magnitude to some extent depended on sampling depth and calculation approach selected.

  20. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety