Science.gov

Sample records for air masses encountered

  1. Chemical composition of tropospheric air masses encountered during high altitude flights (>11.5 km) during the 2009 fall Operation Ice Bridge field campaign

    NASA Astrophysics Data System (ADS)

    Yang, Mei Ying Melissa; Vay, Stephanie A.; Stohl, Andreas; Choi, Yonghoon; Diskin, Glenn S.; Sachse, Glen W.; Blake, Donald R.

    2012-09-01

    As part of the 2009 Operation Ice Bridge campaign, the NASA DC-8 aircraft was used to fill the data-time gap in laser observation of the changes in ice sheets, glaciers and sea ice between ICESat-I (Ice, Cloud, and land Elevation Satellite) and ICESat-II. Complementing the cryospheric instrument payload were four in situ atmospheric sampling instruments integrated onboard to measure trace gas concentrations of CO2, CO, N2O, CH4, water vapor and various VOCs (Volatile Organic Compounds). This paper examines two plumes encountered at high altitude (12 km) during the campaign; one during a southbound transit flight (13°S) and the other at 86°S over Antarctica. The data presented are especially significant as the Southern Hemisphere is heavily under-sampled during the austral spring, with few if any high-resolution airborne observations of atmospheric gases made over Antarctica. Strong enhancements of CO, CH4, N2O, CHCl3, OCS, C2H6, C2H2 and C3H8 were observed in the two intercepted air masses that exhibited variations in VOC composition suggesting different sources. The transport model FLEXPART showed that the 13°S plume contained predominately biomass burning emissions originating from Southeast Asia and South Africa, while both anthropogenic and biomass burning emissions were observed at 86°S with South America and South Africa as indicated source regions. The data presented here show evidence that boundary layer pollution is transported from lower latitudes toward the upper troposphere above the South Pole, which may not have been observed in the past.

  2. Asteroid encounters suitable for mass determinations

    NASA Astrophysics Data System (ADS)

    Galád, A.; Gray, B.

    2002-09-01

    As in a previous paper (Galád \\cite{gal}), the search for effective perturbers among asteroids is done using the same method and during the same time period. The only difference is in the number of asteroids that were processed - 24 599 instead of 9511. Special attention is paid to comparison between perturbations due to (2) Pallas and (10) Hygiea. It is confirmed that the latter has a larger effect on the motion of main belt asteroids, perhaps by a factor of three. This is a reason to include its mass in asteroid orbit determinations. In addition to the Big Four main belt asteroids - (1) Ceres, (2) Pallas, (4) Vesta, (10) Hygiea - the masses of many other large asteroids, such as (11) Parthenope, (13) Egeria, (15) Eunomia, (16) Psyche, (24) Themis, (29) Amphitrite, (39) Laetitia, (45) Eugenia, (52) Europa, (65) Cybele, (121) Hermione, (451) Patientia, and (511) Davida, could be achieved by the end of this decade using astrometric data. In general, over the next decade small asteroids (with much higher numbers than above) will be used more thoroughly for mass determination of large asteroids.

  3. Mass transfer between debris discs during close stellar encounters

    NASA Astrophysics Data System (ADS)

    Jílková, Lucie; Hamers, Adrian S.; Hammer, Michael; Portegies Zwart, Simon

    2016-04-01

    We study mass transfers between debris discs during stellar encounters. We carried out numerical simulations of close flybys of two stars, one of which has a disc of planetesimals represented by test particles. We explored the parameter space of the encounters, varying the mass ratio of the two stars, their pericentre and eccentricity of the encounter, and its geometry. We find that particles are transferred to the other star from a restricted radial range in the disc and the limiting radii of this transfer region depend on the parameters of the encounter. We derive an approximate analytic description of the inner radius of the region. The efficiency of the mass transfer generally decreases with increasing encounter pericentre and increasing mass of the star initially possessing the disc. Depending on the parameters of the encounter, the transfer particles have a specific distribution in the space of orbital elements (semimajor axis, eccentricity, inclination, and argument of pericentre) around their new host star. The population of the transferred particles can be used to constrain the encounter through which it was delivered. We expect that many stars experienced transfer among their debris discs and planetary systems in their birth environment. This mechanism presents a formation channel for objects on wide orbits of arbitrary inclinations, typically having high eccentricity but possibly also close to circular (eccentricities of about 0.1). Depending on the geometry, such orbital elements can be distinct from those of the objects formed around the star.

  4. Simulating tidal evolution and encounters with mass-spring models

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Frouard, Julien; Ebinger, Cynthia; Giannella, David; Efroimsky, Michael; Shaw, John

    2016-05-01

    We have recently found that we can directly simulate tidal spin down of viscoelastic objects using damped springs within an N-body code. But there is a 30% discrepancy between the torque analytically predicted and that numerically measured and we still have not identified the cause!Close tidal encounters among large planetesimals and moons were more common than impacts. Using a mass spring model within an N-body simulation, we simulate the deformation of the surface caused by a close tidal encounter and find tidal encounters can induce sufficient stress on the surface to cause brittle failure of an icy crust. Simulated fractures can extend a large fraction of the radius of body. Strong tidal encounters may be responsible for the formation of long graben complexes and chasmata in ancient terrain of icy moons such as Dione, Tethys, Ariel and Charon.

  5. Stereographic Visualization of the Influence of Stratospheric Air on Ozone Layers Encountered During TRACE-P

    NASA Astrophysics Data System (ADS)

    Holdzkom, J.; Avery, M.; Hoell, J.; Newell, R.; Fuelberg, H.; Hu, Y.; Browell, E.

    2002-12-01

    The NASA TRAnsport and Chemical Evolution over the Pacific (TRACE-P) aircraft-based measurement campaign was conducted over the northwestern Pacific Basin during March-April, 2001. The broad objectives of determining the chemical composition and evolution of Asian outflow over the western Pacific during the spring time period, and understanding the ensemble of processes that control this evolution. A defining characteristic of the TRACE-P mission was the integration of aircraft, satellite, and ground-based studies, with a particularly strong coupling between the experimental investigations and modeling studies. While the resulting suite of observational data and model results provide a rich source for unraveling the various processes impacting the composition of Asian outflow, it also presents a challenge for efficient visualization of results from the various data sets. A promising approach for visual analysis of such multi-parametered data sets is through software called the Virtual Global Explorer and Observatory (vGeo). The vGeo software facilitates the merging of data objects into a single realistic 3-D stereographic environment in which the user can view, navigate, and interact with the data. Several outflow events encountered during TRACE-P will be presented in a 3-D stereographic world using vGeo. The 3-D visualization merges TRACE-P chemical measurements, meteorological fields, and air mass trajectories into a virtual world that provides a more intuitive synthesis of the combined chemical and dynamical fields. This presentation will focus on upper tropospheric layers of elevated ozone measured during TRACE-P flights in the vicinity of the Japan Jet. Representations of potential temperature, potential vorticity and vertical velocity from the European Center for Medium-Range Weather Forecasting (ECMWF) analysis, combined with coupled air mass trajectories suggest regions of enhanced ozone encountered by the aircraft that were significantly influenced by the

  6. Stellar encounter driven red-giant star mass loss in globular clusters

    SciTech Connect

    Pasquato, Mario; Moraghan, Anthony; Chung, Chul; Lee, Young-Wook; De Luca, Andrea; Raimondo, Gabriella; Carini, Roberta; Brocato, Enzo

    2014-07-01

    Globular cluster (GC) color-magnitude diagrams (CMDs) are reasonably well understood in terms of standard stellar evolution. However, there are still some open issues, such as fully accounting for the horizontal branch (HB) morphology in terms of chemical and dynamical parameters. Mass loss on the red giant branch (RGB) shapes the mass distribution of the HB stars, and the color distribution in turn. The physical mechanisms driving mass loss are still unclear, as direct observations fail to reveal a clear correlation between mass-loss rate and stellar properties. The HB mass distribution is further complicated by helium-enhanced multiple stellar populations due to differences in the evolving mass along the HB. We present a simple analytical mass-loss model based on tidal stripping through Roche-Lobe overflow during stellar encounters. Our model naturally results in a non-Gaussian mass-loss distribution with high skewness and contains only two free parameters. We fit it to the HB mass distribution of four Galactic GCs, as obtained from fitting the CMD with zero age HB models. The best-fit model accurately reproduces the observed mass distribution. If confirmed on a wider sample of GCs, our results would account for the effects of dynamics in RGB mass-loss processes and provide a physically motivated procedure for synthetic CMDs of GCs. Our physical modeling of mass loss may result in the ability to disentangle the effects of dynamics and helium-enhanced multiple populations on the HB morphology and is instrumental in making HB morphology a probe of the dynamical state of GCs, leading to an improved understanding of their evolution.

  7. Deep Space 1 Encounter With Comet Borrelly: Composition Measurements By The Pepe Ion Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Reisenfeld, D. B.; Nordholt, J. E.; Wiens, R. C.; Gary, S. P.; Steinberg, J. T.; Pepe Ion Mass Spectrometer Team

    On 22 September 2001 Deep Space One (DS1) successfully encountered Comet Bor- relly at a distance of closest approach of 2171 km. DS1 is, after Giotto, the second spacecraft bearing an ion-mass-resolving instrument to explore the plasma environ- ment of a comet. This mass spectrometer, called the Plasma Experiment for Planetary Exploration (PEPE), is capable of resolving the energy, angle of incidence, and mass composition of a wide range of solar system plasmas. Our preliminary analysis indi- cates that the predominant heavy ions observed during the seven minute interval about closest approach included approximately 63% OH+, 25% H2O+, and 8% CH3+. The ions O+, H3O+, and CH+ are likely present, but at abundances below clear detection. Because H3O+ is collisionally produced from H2O+, the relative absence of H3O+ measured by PEPE is consistent with the much lower activity of Borrelly compared with Halley, where H3O+ was the dominant ion at closest approach. Preliminary anal- ysis also shows a surprisingly high nitrogen to carbon ratio in this cometary plasma. Another new PEPE observation at Borrelly was the non-symmetric character of the water-group ion count rate, which varied approximately as r-3 over much of the /2 inbound approach, but scaled as r-1 on the outbound leg.

  8. Predictions for Dusty Mass Loss from Asteroids During Close Encounters with Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-06-01

    The Solar Probe Plus (SPP) mission will explore the Sun's corona and innermost solar wind starting in 2018. The spacecraft will also come close to a number of Mercury-crossing asteroids with perihelia less than 0.3 AU. At small heliocentric distances, these objects may begin to lose mass, thus becoming "active asteroids" with comet-like comae or tails. This paper assembles a database of 97 known Mercury-crossing asteroids that may be encountered by SPP, and it presents estimates of their time-dependent visible-light fluxes and mass loss rates. Assuming a similar efficiency of sky background subtraction as was achieved by STEREO , we find that approximately 80 % of these asteroids are bright enough to be observed by the Wide-field Imager for SPP (WISPR). A model of gas/dust mass loss from these asteroids is developed and calibrated against existing observations. This model is used to estimate the visible-light fluxes and spatial extents of spherical comae. Observable dust clouds occur only when the asteroids approach the Sun closer than 0.2 AU. The model predicts that during the primary SPP mission between 2018 and 2025, there should be 113 discrete events (for 24 unique asteroids) during which the modeled comae have angular sizes resolvable by WISPR. The largest of these correspond to asteroids 3200 Phaethon, 137924, 155140, and 289227, all with angular sizes of roughly 15-30 arcminutes. We note that the SPP trajectory may still change, but no matter the details there should still be multiple opportunities for fruitful asteroid observations.

  9. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  10. Mass distribution of particulates measured by Giotto's Dust Impact Detection System (DIDSY) in the close encounter period

    NASA Technical Reports Server (NTRS)

    Zarnecki, J. C.; Mcdonnell, J. A. M.; Burton, W. M.; Alexander, W. M.; Hanner, M. S.

    1986-01-01

    The cumulative mass distribution of the comet Halley dust efflux in the close encounter period -300 to +300 sec was analyzed. Analysis of the cumulative mass distribution index (alpha) shows considerable short time scale variation. There is clear evidence from the flux rates of passage through at least one major dust enhancement (dust jet) just after closest approach and this is associated with a steepening of the alpha. Comparison with measurements from other sources, and with preencounter predictions, is also made.

  11. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  12. Accuracy of estimating the masses of Phobos and Deimos from multiple Viking orbiter encounters

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Mason, M. L.

    1975-01-01

    The problem was investigated of estimating the masses of Phobos and Deimos from Doppler and onboard optical measurements during the Viking extended mission. A Kalman filter was used to analyze the effects of gravitational uncertainties and nongravitational accelerations. These accelerations destroy the dynamical integrity of the orbit, and multibatch or limited memory filtering is preferred to single batch processing. Optical tracking is essential to improve the relative orbit geometry. The masses can be determined to about 10% and 25% respectively for Phobos and Deimos, assuming satellite densities of about 3 gr/cu cm.

  13. Using mass scaling of movement cost and resource encounter rate to predict animal body size-population density relationships.

    PubMed

    Nilsen, Erlend B; Finstad, Anders G; Næsje, Tor F; Sverdrup-Thygeson, Anne

    2013-06-01

    The negative relationship between body mass and population abundance was documented decades ago and forms one of the most fundamental scaling-laws in ecology. However, current theory fails to capture observed variations and the subject continues to raise controversy. Here we unify empirically observed size-abundance relationships with theory, by incorporating allometries in resource encounter rate and metabolic costs of movements. Fractal geometry is used to quantify the underlying resources distributions. Our model predicts that in environments packed with resources, body mass to population abundance relationships is less negative than the commonly assumed -3/4 power law. When resources are more patchily distributed, we predict a more negative exponent. These predictions are consistent with empirical observations. The current research provides an important step towards synthesizing metabolism, resource distribution and the global scaling of animal abundance, explaining why size-abundance relationships vary among feeding guilds and ecosystems. PMID:23548840

  14. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.

    2015-05-01

    A climatology of air-mass origin in the tropical lower stratosphere is presented for the Goddard Earth Observing System Chemistry Climate Model. During late boreal summer and fall, air-mass fractions reveal that as much as 20% of the air in the tropical lower stratosphere last contacted the planetary boundary layer (PBL) over Asia; by comparison, the air-mass fractions corresponding to last PBL contact over North America and over Europe are negligible. Asian air reaches the extratropical tropopause within a few days of leaving the boundary layer and is quasi-horizontally transported into the tropical lower stratosphere, where it persists until January. The rapid injection of Asian air into the lower stratosphere—and its persistence in the deep tropics through late (boreal) winter—is important as industrial emissions over East Asia continue to increase. Hence, the Asian monsoon may play an increasingly important role in shaping stratospheric composition.

  15. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  16. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  17. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  18. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    used to provide accurate information about the amount of air entering the engine so that the amount of fuel can be adjusted to give the most efficient combustion. The ideal mass-flow sensor would be a rugged design that minimizes the disturbance to the flow stream and provides an accurate reading of both smooth and turbulent flows; NASA's design satisfies these requirements better than any existing design. Most of the mass-flow sensors used today are the hot wire variety. Hot wires can be fragile and cannot accurately measure a turbulent or reversing flow, which is often encountered in an intake manifold. Other types of mass-flow sensors include pitot tubes, vane anemometers, and thermocouple rakes-all of which suffer from some type of performance problem. Because it solves these performance problems while maintaining a simple design that lends itself to low-cost manufacturing techniques, NASA s thin-film resistance temperature detector air-mass-flow sensor should lead to more widespread use of mass-flow sensors.

  19. Comment on "Improved ray tracing air mass numbers model"

    NASA Astrophysics Data System (ADS)

    van der Werf, Siebren Y.

    2008-01-01

    Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.

  20. Methodological and Ethical Dilemmas Encountered during Field Research of Family Violence Experienced by Adolescent Women in Buenos Aires

    ERIC Educational Resources Information Center

    Luxardo, Natalia; Colombo, Graciela; Iglesias, Gabriela

    2011-01-01

    The purpose of this article is to examine some obstacles and dilemmas related to methodological strategies and ethical considerations that arose during the fieldwork of research focused on family violence during the stages of pregnancy and childbirth in adolescent females in Buenos Aires during 2007. From this study, we are able to contribute some…

  1. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  2. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  3. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  4. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  5. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  6. Galileo's Encounter with Amalthea

    NASA Astrophysics Data System (ADS)

    Johnson, T. V.; Anderson, J. D.

    2003-04-01

    Galileo's last science periapsis encounter with Jupiter before impact was on orbit 34. One of the main scientific goals of this encounter was a close, targeted flyby of the satellite Amalthea. Although two-way Doppler tracking was lost near closest approach, one-way data were obtained throughout the encounter. Together with solid two-way data before and after the encounter period, there is enough information to constrain the mass of the satellite. Together with previously determined shape and volume information these data yield a useful value for the density of this highly non-spherical moon. Preliminary analyses have been presented indicating a bulk density near 1 gm/cc, considerably lower than was expected from the satellite's dark albedo and anticipated rocky composition. Low-density rock or rock/ice mixtures combined with a high porosity, similar to that inferred from recent small asteroid data, are suggested as the most likely explanation. Refined estimates of mass and density as well as uncertainties will be presented and the implications for Amalthea's composition and porosity discussed.

  7. UAS in the NAS Air Traffic Controller Acceptability Study-1: The Effects of Horizontal Miss Distances on Simulated UAS and Manned Aircraft Encounters

    NASA Technical Reports Server (NTRS)

    Ghatas, Rania W.; Comstock, James R., Jr.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.

    2015-01-01

    This study examined air traffic controller acceptability ratings based on the effects of differing horizontal miss distances (HMDs) for encounters between UAS and manned aircraft. In a simulation of the Dallas/Fort Worth (DFW) East-side airspace, the CAS-1 experiment at NASA Langley Research Center enlisted fourteen recently retired DFW air traffic controllers to rate well-clear volumes based on differing HMDs that ranged from 0.5 NM to 3.0 NM. The controllers were tasked with rating these HMDs from "too small" to "too excessive" on a defined, 1-5, scale and whether these distances caused any disruptions to the controller and/or to the surrounding traffic flow. Results of the study indicated a clear favoring towards a particular HMD range. Controller workload was also measured. Data from this experiment and subsequent experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely and efficiently integrate UAS into the NAS.

  8. Encounters with Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Heller, Clayton H.

    1992-12-01

    A numerical study of encounters between stars with circumstellar disks has bee completed. Cross sections and rates for disk tilt, disk disruption, and binary formation are estimated using a large data base of encounter simulations. The consequences of these results for star-forming regions and our solar system are discussed. A numerical code is developed which is capable of evolving a mixture of stars and gas in three dimensions. The algorithm is based on the method of smoothed-particle hydrodynamics combined with the heirarchical tree method of computing gravitational forces. The code is tested by simulating the collision between two sheets of gas and the radial pulsations of a polytropic gas sphere. A protostellar-disk model is developed based on simple assumptions. Test encounters are performed to determine the sensitivity of measured quantities on algorithm parameters, such as the gravitational tolerance and viscosity. It is shown that the solar system could have had an encounter shortly after its formation of sufficient strength to generate the observed obliquity yet retain enough mass and radial extent to form the planetary system. For the Orion B clusters as a whole, it is estimated that during a one-million-year period of time a few percent of the stars will experience an enoucnter that results in a disk tilt of 7 degrees or greater. For the central regions of NGC 2024 and the Trapezium cluster values of 24% and 39% are obtained, respectively. Encounters between equal-mass stars with periastra of 0.5, 1.0, 1.5, and 2.0 disk radii will retain on average about 15%, 40%, 55%, and 75% of the disk mass, respectively. For encounters that do not penetrate the disk a minimum of 15% of the mass is retained. Even in dense environments the characteristic lifetime of a disk due to disruptive encounters can be many millions of years. On average, an encounter that penetrates the disk will dissipate an amount of orbital energy equal to approximately 50% of the initial

  9. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  10. Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Oro, Nicole E; Whittal, Randy M; Lucy, Charles A

    2012-09-01

    Normal phase high performance liquid chromatography (HPLC) is used to separate a gas oil petroleum sample, and the fractions are collected offline and analyzed on a high resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS). The separation prior to MS analysis dilutes the sample significantly; therefore the fractions need to be prepared properly to achieve the best signal possible. The methods used to prepare the HPLC fractions for MS analysis are described, with emphasis placed on increasing the concentration of analyte species. The dilution effect also means that contamination in the MS spectra needs to be minimized. The contamination from molecular sieves, plastics, soap, etc. and interferences encountered during the offline fraction collection process are described and eliminated. A previously unreported MS contamination of iron formate clusters with a 0.8 mass defect in positive mode electrospray is also described. This interference resulted from the stainless steel tubing in the HPLC system. Contamination resulting from what has tentatively been assigned as palmitoylglycerol and stearoylglycerol was also observed; these compounds have not previously been reported as contaminant peaks. PMID:22840706

  11. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrometry.

    PubMed

    Feilberg, Anders; Adamsen, Anders P S; Lindholst, Sabine; Lyngbye, Merete; Schäfer, Annette

    2010-01-01

    Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and selectivity were tested on synthetic samples of selected odorous compounds, and linearity and detection limits in the lower ppb range were demonstrated for all compounds tested (methanethiol, dimethyl sulfide, carboxylic acids, 4-methylphenol, aldehydes, indole, and skatole) except trimethylamine. The method was applied in situ at two full-scale filters installed at swine houses. The results have been compared with analyses by thermal desorption gas chromatography-mass spectrometry (TD-GC/MS), and odor was measured by olfactometry. By comparison with TD-GC/MS, observed MIMS signals were assigned to 4-methylphenol, 4-ethylphenol, indole, skatole, the sum of volatile reduced organic sulfur compounds (ROS), and three subgroups of carboxylic acids. The removal rates were observed to be related to air-water partitioning with removal efficiencies in the range of 0 to 50% for low-soluble organic sulfur compounds and high removal efficiencies (typically 80-100%) for more soluble phenols and carboxylic acids. Based on the results and published odor threshold values, it is estimated that the low removal efficiency of ROS is the main limitation for achieving a higher odor reduction. PMID:20400604

  12. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  13. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  14. Identification and Tracking of Polluted Air Masses in the South-Central Coast Air Basin.

    NASA Astrophysics Data System (ADS)

    Moore, G. E.; Douglas, S. G.; Kessler, R. C.; Killus, J. P.

    1991-05-01

    Canister samples of air taken during the South-Central Coast Cooperative Air Monitoring Program (SCCCAMP) 1985 field study program were analyzed for concentrations of over 50 hydrocarbons as well as chlorofluorocarbons (CFCs), carbon monoxide, hydrogen, and methane. Additional evidence of location and timing of airmass origin was obtained by utilizing long-lived halocarbons such as F-12 as `tracers of opportunity' in conjunction with known source profiles. Wind trajectories were developed from hourly gridded wind fields produced by a diagnostic wind model utilizing observed wind data. These wind trajectories were used to determine how pollutants from major source areas might be transported to sampling sites. Particulate lidar height-distance traverses were made from aircraft that provided a view of pollutant layering. Mixing height and vertical pollutant concentration distributions were obtained in order to determine if observed pollutant concentrations were consistent with the degree of stagnation present and hypothesized transport pathway.Analyses to track specific polluted air masses were conducted for the 13 September, 21 September, 23-24 September, and 2-3 October 1985 intensive study periods. The analyses find that elevated ozone concentrations during these periods are primarily attributed to transport and storage of ozone-enriched air from Los Angeles. During one type of episode (2-3 October) ozone and ozone precursors are stored near the surface over the Santa Barbara Channel overnight and transported into coastal areas on the following day. In another type of episode (23-24 September) ozone is transported into the study domain from the San Fernando Valley and Los Angeles via flow around the Santa Monica Hills. Transport of pollutant-enriched air takes place in a layer 200-500 m aloft, in many places overlaying cleaner marine-layer air. This advected ozone is mixed down to contribute to ground-level ozone concentrations over terrain where the marine layer

  15. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  16. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  17. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  18. Vertical air mass exchange driven by the local circulation on the northern slope of Mount Everest

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Zou, Han; Ma, Shupo; Li, Peng; Zhu, Jinhuan; Huo, Cuiping

    2011-01-01

    To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.

  19. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  20. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  1. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  2. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  3. Charge and discharge of polar cold air mass in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Kanno, Yuki; Abdillah, Muhammad Rais; Iwasaki, Toshiki

    2015-09-01

    This study shows the variability of polar cold air mass amount below potential temperature of 280 K, and north of 45°N can be understood with a concept of charge and discharge, where anomalously large daily discharge indicates an intermittent occurrence of cold air outbreak. The polar cold air mass amount north of 45°N gradually charges up due to diabatic cooling but dramatically discharges due to cold air outbreak with a pulse width of about 5 days. Cold air outbreaks tend to bring colder winter in East Asia and the east coast of North America, while warmer winter prevails on the northern side of these regions. The cold air mass amount south of 45°N increases just after a cold air outbreak but returns to the normal level soon because of its life time of about 3 days. Therefore, monthly mean of total cold air mass amount in the Northern Hemisphere is negatively correlated with the monthly mean discharge.

  4. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  5. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  6. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  7. [To encounter oneself, to encounter each other].

    PubMed

    Kogan, A A

    1982-06-01

    The purpose of this article is to elucidate the concept of encounter within the realm of psycotherapy, either individual or group, with its inter and intrapersonal connotations. Its importance is emphasized and means for its achievement are suggested. A double course is followed to attain this end: on the one hand, the tracing of the concept in the contemporary philosophic anthropology (the positions of M. Buber and of K. Jaspers are briefly examined) and in the views of several psychotherapists who have placed it as a significant issue in their treatments (the therapists considered are K. Binswanger, C. Rogers, J. L. Moreno and E. Pichon-Rivière), and on the other hand, some clinical means, and very special attitudes, are indicated as particularly favourable for the promotion of that enlargement of subjectivity leading to the encounter of one-self as well as the other person. Some fragments of sessions are presented demonstrating that in general the "how" of the attitude prevailing in the therapeutic relation is more effective than the "what" of the specific technical resources employed. However, some of these are commendable as a more direct way to bring about the experience of encounter. This leads me to psychodrama, with its techniques of the double, the inversion of roles, the mirror, and most of all with the general group sharing that closes the sessions, and to the gestalt methods, which involve in many instances physical contacts with other people, with the precise object of achieving a maximum insight, or, in the already classical expression, awareness, which is basically an encounter with oneself. Implicit in all the above considerations lies the conviction that man must share his existence with others not only for biological reasons; it is an indispensable requirement for his full development as an individual, a requirement for being himself. If one of the goals of psychological treatments is to promote personal growth and proximity to oneself, an

  8. Critical Mass Academic Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Jones, Larry R.

    Methods of academic resource planning for research-oriented colleges and universities are explored. Focus is on resource allocation that is not strictly related to overall institutional enrollment level, but with the desirability of maintaining a minimum or "critical mass" levels of program breadth and quality. The purpose of critical mass…

  9. Angry Birds Space Encounter

    NASA Video Gallery

    At NASA's Kennedy Space Center Visitor Complex in Florida, a grand opening celebration was held for the new Angry Birds Space Encounter, March 22. Finland-based Rovio Entertainment, the creator of ...

  10. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  11. [Encounters with strangers].

    PubMed

    Lindner, W V

    1990-01-01

    Beginning with three episodes about the encounter with the alien (from a working group, a therapeutic group and from the actual public discussion about aliens) it is pointed out, why the encounter with the alien is both, fascinating and frightening. From the psychoanalytic point of view this is explained with the concept of the representation of the alien, especially under the genetic, adaptive and topic aspects. Finally from the initial examples conclusions for counseling and psychotherapy are drawn. PMID:2399213

  12. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  13. The clinical encounter revisited.

    PubMed

    Schattner, Ami

    2014-04-01

    The patient-physician encounter is the pivotal starting point of any healthcare delivery, but it is subject to multiple process breakdowns and prevalent suboptimal performance. An overview of the techniques and components of a successful encounter valid for every setting and readily applicable is presented, stressing 7 rules: (1) ensuring optimal environment, tools, and teamwork; (2) viewing each encounter not only as a cognitive/biomedical challenge, but also as a personal one, and a learning opportunity; (3) adopting an attitude of curiosity, concentration, compassion, and commitment, and maintaining a systematic, orderly approach; (4) "simple is beautiful"-making the most of the basic clinical data and their many unique advantages; (5) minding "the silent dimension"-being attentive to the patient's identity and emotions; (6) following the "Holy Trinity" of gathering all information, consulting databases/colleagues, and tailoring gained knowledge to the individual patient; and (7) using the encounter as a "window of opportunity" to further the patient's health-not just the major problem, by addressing screening and prevention; promoting health literacy and shared decision-making; and establishing proper follow-up. Barriers to implementation identified can be overcome by continuous educational interventions. A high-quality encounter sets a virtuous cycle of patient-provider interaction and results in increasing satisfaction, adherence, and improved health outcomes. PMID:24333201

  14. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  15. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  16. Variability of local PM10 mass concentrations in connection with blocking air circulation

    NASA Astrophysics Data System (ADS)

    Ştefan, Sabina; Roman, Iuliana

    2015-06-01

    The aim of this paper is to analyze the temporal variability of Particulate Matter mass concentrations in connection with air circulation, for eight rural sites situated in the Central and Eastern parts of Europe. The stations from Poland, Hungary and Romania are rural stations without sources of pollutants. The analysis covers four winters, between December 2004 and February 2008. The pollution episodes were selected to explain air circulation influence. The results show that the causes of pollution were local, due to high mean sea level pressure and the blocking, as air circulation on large scale, was dominant in the cases of enhanced pollution in the selected area.

  17. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  18. Fundamental mass transfer model for indoor air emissions from surface coatings

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1994-01-01

    The paper discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architectural coatings. As a first step, a simple model based on Fick's Law of Diffusion has been developed. In the model, the mass transfer rate is assumed to be controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining in the source at any point in time. Both static and dynamic chamber tests were conducted to obtain model validation data. Further validation experiments were conducted in a test house. Results of these tests are presented.

  19. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented. PMID:17716909

  20. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  1. A Lakatosian Encounter

    ERIC Educational Resources Information Center

    Chick, Helen

    2010-01-01

    There is much to be learned and pondered by reading "Proofs and Refutations," by Imre Lakatos. It highlights the importance of mathematical definitions, and how definitions evolve to capture the essence of the object they are defining. It also provides an exhilarating encounter with the ups and downs of the mathematical reasoning process, where…

  2. Encountering an Alien Culture.

    ERIC Educational Resources Information Center

    Sproull, Lee S.; And Others

    1984-01-01

    Applies a cultural perspective to the problem of introducing novices to computing. Presents a model of initial socialization composed of reality shock, confusion, and attempts at control. Describes a survey of college students' first encounters with computers and suggests that the social contexts of introductory courses encourage feelings of…

  3. Solution for blank and matrix difficulties encountered during phthalate analysis of edible oils by high performance liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Vavrouš, Adam; Pavloušková, Jana; Ševčík, Václav; Vrbík, Karel; Čabala, Radomír

    2016-07-22

    Worldwide production of phthalates has led to their undesirable presence in the food chain. Particularly edible oils have become an area of growing concern owing to numerous reported occurrences of phthalates. The analytical methods used in this field face difficulties associated mainly with matrix complexity or phthalate contamination which this study has aimed to describe and resolve. The proposed procedure consisting of liquid-liquid extraction, solid phase extraction and high performance liquid chromatography coupled with tandem mass spectrometry allowed us to analyze simultaneously 6 individual phthalates and 2 phthalate isomeric mixtures. DSC-18 SPE phase was selected for cleanup owing to the most efficient co-extract removal (assessed using high resolution mass spectrometry). Several sources of phthalate contamination were identified, however, the mobile phase was the most serious. The key improvement was achieved by equipping a contamination trap, a 50-mm reverse phase HPLC column, generating a delay between target and mobile phase peaks of the same compounds. RSDs ranging between 2.4 and 16 % confirm good precision and LOQs between 5.5 and 110μgkg(-1) reflect satisfactory blank management. With up to 19 occurrences in 25 analyzed edible oil samples and levels up to 33mgkg(-1), bis(2-ethylhexyl), diisononyl and diisodecyl phthalates were the most important contaminants. PMID:27318508

  4. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  5. Study of the extensive air shower mass sensitive parameters in prototype of ALBORZ array

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2015-03-01

    In this work we have used muon production depth distribution as well as the lateral distribution of the secondary particles of Extensive Air Showers (EAS) as two main parameters to infer the mass composition of primary cosmic rays. In order to achieve a realistic estimate of the mass composition, a sample of showers initiated by proton and iron particles as primaries have been simulated by CORSIKA code with zenith angle between 0° and 18° and discrete energies in a range between 1014 and 1016 eV for ALBORZ (1200 m a.s.l, Tehran, Iran) and KASKADE (110 m a.s.l, Karlsruhe, Germany) observation levels. Moreover lateral density distribution functions of energy for charged particles of air showers have been proposed for both proton and Iron primaries. We have indicated that among these two EAS parameters, lateral distribution of secondary particles provides better mass discrimination.

  6. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  7. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  8. ICE encounter operations

    NASA Technical Reports Server (NTRS)

    Fanelli, N.; Morris, D.

    1986-01-01

    The operations encompassing the International Cometary Explorer's (ICE) encounter with the Comet Giacobini-Zinner on September 11, 1985 are documented. The ICE mission presented new challenges for the Deep Space Network (DSN) 64 meter subnetwork. Because of poor telemetry link margin predicted for Giacobini-Zinner (GZ) encounter, supplemental support by the Japanese Institute for Space and Astronautical Sciences 64-meter antenna at Usuda, Japan and the 305-meter Arecibo Radio Observatory in Puerto Rico was required. To improve the 64 meter subnetwork telemetry performance the following were also implemented: (1) Real time antenna array of 64 meter and 34 meter at a single complex and the required performance testing; and (2) Nonreal time antenna array of two complexes was implemented as a backup in the event of ground or spacecraft failure.

  9. Voyager: Neptune Encounter Highlights

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Voyager encounter data are presented in computer animation (CA) and real (R) animation. The highlights include a view of 2 full rotations of Neptune. It shows spacecraft trajectory 'diving' over Neptune and intercepting Triton's orbit, depicting radiation and occulation zones. Also shown are a renegade orbit of Triton and Voyager's encounter with Neptune's Magnetopause. A model of the spacecraft's complex maneuvers during close encounters of Neptune and Triton is presented. A view from Earth of Neptune's occulation experiment is is shown as well as a recreation of Voyager's final pass. There is detail of Voyager's Image Compensation technique which produces Voyager images. Eighteen images were produced on June 22 - 23, 1989, from 57 million miles away. A 68 day sequence which provides a stroboscopic view - colorization approximates what is seen by the human eye. Real time images recorded live from Voyager on 8/24/89 are presented. Photoclinometry produced the topography of Triton. Three images are used to create a sequence of Neptune's rings. The globe of Neptune and 2 views of the south pole are shown as well as Neptune rotating. The rotation of a scooter is frozen in images showing differential motion. There is a view of rotation of the Great Dark Spot about its own axis. Photoclinometry provides a 3-dimensional perspective using a color mosaic of Triton images. The globe is used to indicate the orientation of Neptune's crescent. The east and west plumes on Triton are shown.

  10. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  11. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  12. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  13. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  14. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Harris, Joyce M.; Smith, George I.; Johnson, Craig A.

    2002-10-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (δD) and oxygen-18 (δ18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  15. DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS

    EPA Science Inventory

    Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

  16. Study of single and combined mass-sensitive observables of cosmic ray induced extensive air showers

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2016-03-01

    In this study, combinations of the global arrival time, (Δτ_{global}), pseudorapidity, and lateral density distribution (ρ_{μ}) of muons, which are three mass-sensitive observables of cosmic ray induced extensive air showers, have been used as new parameters to study the primary mass discrimination around the knee energies (100 TeV-10 PeV). This is a simulation-based study and the simulations have been performed for the KASCADE array at Karlsruhe and the Alborz-I array at Tehran to study the effect of the altitude on the quality of the primary mass discrimination. The merit factors of the single and combined three mass-sensitive observables have been calculated to compare the discrimination power of combined and single observables. We have used the CORSIKA 7.4 code to simulate the extensive air showers (EASs) sample sets. Considering all aspects of our study, it is found that the ratio of the global time to the lateral density distribution of the muons gives better results than other ratios; also in the case of single observables, the muon density gives better results compared with the other observables. Also it is shown that below 1 PeV primary energies, the ratio of the muon global time to the muon density (Δτ_{global}/ρ_{μ}) results in a better mass discrimination relative to the muon density only.

  17. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  18. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  19. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  20. Rings from Close Encounters

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  1. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  2. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2‑ and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  3. Analysis of air mass trajectories in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2015-11-01

    Air masses reaching the Iberian Peninsula, which is located between two continents and two seas, have been classified. 24-h backward air trajectories were calculated each hour for three years using the METEX model at a site in the centre of the northern plateau of the Iberian Peninsula where the air flow has scarcely been investigated to date. Rather than the usual Euclidean geometry, spherical trigonometry, together with the kernel regression method, was considered to calculate trajectory distances to the site. Numerical indicators allow for an accurate description of the results. Ranges surrounding the site from E to S evidenced a restriction in the movement of the arriving flow. However, the range to the N showed only a slight effect. A noticeable seasonal contrast was observed between winter, whose distances were the greatest, and summer, which displayed the shortest distances. Trajectory clusters, initially not considered in the METEX model, were obtained with different metrics to determine the air mass pathways reaching the site. Five clusters of trajectories were selected so as to easily explain the directions and distances covered. Regional and long range transport were observed in clusters from the NE, NW and SW. The NE cluster presented an orographic deviation and local processes were limited to the SE cluster. Finally, seasonal analysis revealed singular behaviour during autumn, when local processes centred on the N-S direction.

  4. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways.

    PubMed

    Liu, D X; Liu, Z C; Chen, C; Yang, A J; Li, D; Rong, M Z; Chen, H L; Kong, M G

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H(+), nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2(-) and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  5. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  6. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  7. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  8. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  9. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  10. Marriage Encounter: A Critical Appraisal.

    ERIC Educational Resources Information Center

    Doherty, William J; And Others

    1978-01-01

    This paper describes and evaluates the marriage encounter movement from theoretical and clinical perspectives. While aknowledging that the marriage encounter responds to a need among many couples for greater marital closeness, the authors raise concerns about potentially destructive and illusory effects of the marriage encounter experience.…

  11. Teacher Educators Using Encounter Stories

    ERIC Educational Resources Information Center

    Davis, Danné E.; Kellinger, Janna Jackson

    2014-01-01

    Many prospective teachers are unaware of the encounters that Black, heterosexual women or White lesbians face. Here, we present encounter stories--individual narratives of poignant encounters and interactions that we have experienced with people unlike us--to identify with and ultimately draw on their experiences. Subsequently, the narratives…

  12. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  13. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  14. A multivariate/chemical mass balance model for air pollution in China: A hybrid methodology

    SciTech Connect

    Zelenka, M.P.

    1992-01-01

    This research explores the possibility of using a two step method of identifying and quantifying air pollution emissions in an urban environment. The procedure uses a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace element air concentration data. A source profile is analogous to a fingerprint since it is unique to each source of air pollution. It is important to use source profiles that are measured or estimated for the specific location under study. The profiles estimated by TTFA are then employed in a Chemical Mass Balance (CMB) source apportionment analysis for the airshed. Other known sources are estimated using source signatures from the literature. Applying the TTFA and CMB models in this fashion is called receptor modeling. Generically, a receptor model is the combination of measured air pollution concentration data with a numerical technique which apportions the measured air pollution among distinct source types. The results show that TTFA can be used to provide quantitative estimates of air pollution source profiles for an urban center in China. The number of profiles for unique source types was limited for this data set since emissions from certain types of sources co-varied during each sampling day. Consequently, the CMB analyses that applied the TTFA source profiles needed to be supplemented with standard US EPA source profiles. The application of TTFA for estimating source profiles from ambient data and the subsequent use of those profiles in CMB analyses with source profiles obtained from the EPA's source library can improve the statistical quality of the source apportionment analysis. TTFA can identify source categories of airborne pollution for specific cities, as well as give quantitative data on the composition of the emissions from those source types.

  15. Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance.

    PubMed

    Moreno, J C; Serrano, M A; Cañada, J; Gurrea, G; Utrillas, M P

    2014-09-01

    This paper analyses the effects of the clearness index (Kt) and the relative optical air mass (mr) on erythemal UV irradiance (UVER). The UVER measurements were made in Valencia (Spain) from 6:00 am to 6:00 pm between June 2003 and December 2012 and (140,000 data points). Firstly, two models were used to calculate values for the erythemal ultraviolet irradiance clearness index (KtUVER) as a function of the global irradiance clearness index (Kt). Secondly, a potential regression model to measure the KtUVER as a function of the relative optical air mass was studied. The coefficients of this regression were evaluated for clear and cloudy days, as well as for days with high and low ozone levels. Thirdly, an analysis was made of the relationship between the two effects in the experimental database, with it being found that the highest degree of agreement, or the joint highest frequencies, are located in the optical mass range mr∈[1.0, 1.2] and the clearness index range of Kt∈[0.8, 1.0]. This is useful for establishing the ranges of parameters where models are more efficient. Simple equations have been tested that can provide additional information for the engineering projects concerning thermal installations. Fourthly, a high dispersion of radiation data was observed for intermediate values of the clearness for UV and UVER. PMID:24911276

  16. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  17. Satellite ephemerides for the Voyager Neptune encounter

    NASA Technical Reports Server (NTRS)

    Jacobson, Robert A.

    1988-01-01

    This paper presents the results of the latest fits of both analytical theory and numerically integrated Neptunian satellite orbits to Earth-based astrometric observations. Ephemerides based on the integrated orbits will be used by the Voyager project for pre-encounter planning and analysis until late 1988 when the final pre-encounter ephemerides will be produced. As a by-product of the orbit fits, new estimates of the Neptune mass, the second zonal harmonic of Neptune, and the pole orientation of Neptune are obtained. The theory and integrated orbits are compared with each other and with orbits obtained by previous investigators.

  18. Community air monitoring for pesticides-part 2: multiresidue determination of pesticides in air by gas chromatography, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry.

    PubMed

    Hengel, Matt; Lee, P

    2014-03-01

    Two multiresidue methods were developed to determine pesticides in air collected in California. Pesticides were trapped using XAD-4 resin and extracted with ethyl acetate. Based on an analytical method from the University of California Davis Trace Analytical Laboratory, pesticides were detected by analyzing the extract by gas chromatography-mass spectrometry (GC-MS) to determine chlorothalonil, chlorthal-dimethyl, cycloate, dicloran, dicofol, EPTC, ethalfluralin, iprodione, mefenoxam, metolachlor, PCNB, permethrin, pronamide, simazine, trifluralin, and vinclozolin. A GC with a flame photometric detector was used to determine chlorpyrifos, chlorpyrifos oxon, diazinon, diazinon oxon, dimethoate, dimethoate oxon, fonophos, fonophos oxon, malathion, malathion oxon, naled, and oxydemeton. Trapping efficiencies ranged from 78 to 92 % for low level (0.5 μg) and 37-104 % for high level (50 and 100 μg) recoveries. Little to no degradation of compounds occurred over 31 days; recoveries ranged from 78 to 113 %. In the California Department of Food and Agriculture (CDFA) method, pesticides were detected by analyzing the extract by GC-MS to determine chlorothalonil, chlorpyrifos, cypermethrin, dichlorvos, dicofol, endosulfan 1, endosulfan sulfate, oxyfluorfen, permethrin, propargite, and trifluralin. A liquid chromatograph coupled to a MS was used to determine azinphos-methyl, chloropyrifos oxon, DEF, diazinon, diazinon oxon, dimethoate, dimethoate oxon, diuron, EPTC, malathion, malathion oxon, metolachlor, molinate, norflurazon, oryzalin, phosmet, propanil, simazine and thiobencarb. Trapping efficiencies for compounds determined by the CDFA method ranged from 10 to 113, 22 to 114, and 56 to 132 % for 10, 5, and 2 μg spikes, respectively. Storage tests yielded 70-170 % recovery for up to 28 days. These multiresidue methods represent flexible, sensitive, accurate, and cost-effective ways to determine residues of various pesticides in ambient air. PMID:24370860

  19. Determination of the effect of transfer between vacuum and air on mass standards of platinum-iridium and stainless steel

    NASA Astrophysics Data System (ADS)

    Davidson, Stuart

    2010-08-01

    This paper reports work undertaken to assess the change in the mass values of stainless steel and platinum-iridium weights transferred between air and vacuum and to determine the repeatability of this change. Sets of kilogram transfer standards, manufactured from stainless steel and platinum-iridium and with different surface areas, were used to determine the effect of transfer between air and vacuum on the values of the mass standards. The SI unit of mass is the only unit of the seven base SI quantities which is still defined in terms of an artefact rather than by relation to a fundamental physical constant. Work is underway to identify a means of deriving the SI unit of mass from fundamental constants and at present the two principal approaches are the International Avogadro Coordination and the watt balance projects. Both of these approaches involve realizing a kilogram in vacuum and therefore the traceability from a kilogram realized in vacuum to mass standards in air is crucial to the effective dissemination of the mass scale. The work reported here characterizes the changes in mass values of standards on transfer between air and vacuum and thus will enable traceability to be established for an in-air mass scale based on a definition of the unit in vacuum.

  20. Variation in airborne 137Cs peak levels with altitude from high-altitude locations across Europe after the arrival of Fukushima-labeled air masses

    NASA Astrophysics Data System (ADS)

    Masson, Olivier; Bieringer, Jacqueline; Dalheimer, Axel; Estier, Sybille; Evrard, Olivier; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Tositti, Laura; de Vismes-Ott, Anne

    2015-04-01

    level were transported until Europe at rather high altitudes. This is consistent with 137Cs activity levels and 133Xe observations performed at the tropopause level thanks to aircraft samples over Germany and Switzerland (Estier and Steinmann). This also validates dispersion model computation according to which the Fukushima-labeled air masses were transported to Europe above 5500 m a.s.l. Conclusions : High altitude locations are on 'sentry duty' for radioactive monitoring and cross-border spreading of a contaminated plume. In this sense they can provide useful information on the vertical spreading of radionuclides, reveal arrival times over a given region and make it possible to explain ground deposition levels as a result of interactions of cloud droplets or rain drops with aerosols at high altitude. Beside non-homogeneities encountered on the European scale at lowland locations, this study shows that 137Cs peak activity levels regularly decreased between about 3500 m and less than 1000 m a.s.l. In addition field measurements confirm that air masses travelled at high altitude and that the 137Cs peaks were due to air masses coming from high tropospheric levels. This study also highlights the need to reinforce high-altitude aerosol sampling during emergency situations. This will make it possible to specify the dispersion conditions for modeling purposes and help explaining simulation and observation discrepancies.

  1. Ozone Modulation/Membrane Introduction Mass Spectrometry for Analysis of Hydrocarbon Pollutants in Air

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.

    2001-12-01

    Modulation of volatile hydrocarbons in two-component mixtures is demonstrated using an ozonolysis pretreatment with membrane introduction mass spectrometry (MIMS). The MIMS technique allows selective introduction of volatile and semivolatile analytes into a mass spectrometer via processes known collectively as pervaporation [Kotiaho and Cooks, 1992]. A semipermeable polymer membrane acts as an interface between the sample (vapor or solution) and the vacuum of the mass spectrometer. This technique has been demonstrated to allow for sensitive analysis of hydrocarbons and other non-polar volatile organic compounds (VOC`s) in air samples[Cisper et al., 1995] . The methodology has the advantages of no sample pretreatment and short analysis time, which are promising for online monitoring applications but the chief disadvantage of lack of a separation step for the different analytes in a mixture. Several approaches have been investigated to overcome this problem including use of selective chemical ionization [Bier and Cooks, 1987] and multivariate calibration techniques[Ketola et al., 1999] . A new approach is reported for the quantitative measurement of VOCs in complex matrices. The method seeks to reduce the complexity of mass spectra observed in hydrocarbon mixture analysis by selective pretreatment of the analyte mixture. In the current investigation, the rapid reaction of ozone with alkenes is used, producing oxygenated compounds which are suppressed by the MIMS system. This has the effect of removing signals due to unsaturated analytes from the compound mass spectra, and comparison of the spectra before and after the ozone treatment reveals the nature of the parent compounds. In preliminary investigations, ozone reacted completely with cyclohexene from a mixture of cylohexene and cyclohexane, and with β -pinene from a mixture of toluene and β -pinene, suppressing the ion signals from the olefins. A slight attenuation of the cyclohexane and toluene in those

  2. Accelerator Mass Spectrometric determination of radiocarbon in stratospheric CO2, retrieved from AirCore sampling.

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Been, Henk A.; Chen, Huilin; Kivi, Rigel; Meijer, Harro A. J.

    2015-04-01

    In this decade, understanding the impact of human activities on climate is one of the key issues of discussion globally. The continuous rise in the concentration of greenhouse gases, e.g., CO2, CH4, etc. in the atmosphere, predominantly due to human activities, is alarming and requires continuous monitoring to understand the dynamics. Radiocarbon is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases like CO2 and CH4. Measurement of 14C (or radiocarbon) in atmospheric CO2 generally requires collection of large air samples (few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined. Currently, Accelerator Mass Spectrometry (AMS) is the most precise, reliable and widely used technique for atmospheric radiocarbon detection. However, the regular collection of air samples from troposphere and stratosphere, for example using aircraft, is prohibitively expensive. AirCore is an innovative atmospheric sampling system, developed by NOAA. It comprises of a long tube descending from a high altitude with one end open and the other closed, and has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ~ 30 km) measurements of CH4and CO2(Karion et al. 2010). In Europe, AirCore measurements are being performed on a regular basis near Sodankylä since September 2013. Here we describe the analysis of two such AirCore samples collected in July 2014, Finland, for determining the 14C concentration in stratospheric CO2. The two AirCore samples were collected on consecutive days. Each stratospheric AirCore sample was divided into six fractions, each containing ~ 35 μg CO2 (~9.5 μg C). Each fraction was separately trapped in 1 /4 inch coiled stainless steel tubing for radiocarbon measurements. The procedure for CO2 extraction from the stratospheric air samples; the sample preparation, with samples containing < 10

  3. A thunderstorm cell-lightning activity analysis: The new concept of air mass catchment

    NASA Astrophysics Data System (ADS)

    Mona, Tamás; Horváth, Ákos; Ács, Ferenc

    2016-03-01

    Thunderstorm cell-lightning activity is discussed in terms of analysing a thunderstorm's lightning frequency-equipotential temperature relationship. Thunderstorms were tracked using Doppler radars in five-minute time steps. Lightning is assigned to the nearest thunderstorm cell, it is characterised by lightning frequency data using LINET. Equipotential temperature is not directly estimated, instead the notion of air mass catchment is introduced to represent it. It is shown in this paper that the thunderstorm cell with maximum lightning frequency in the current time step is almost always the so-called leading storm cell. The lightning frequency activity of the non-leading storm cells is not significant.

  4. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets.

    PubMed

    Miller, M F; Kessler, W J; Allen, M G

    1996-08-20

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O(2) density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1-2% of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm/s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages. PMID:21102916

  5. Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets

    NASA Astrophysics Data System (ADS)

    Miller, Michael F.; Kessler, William J.; Allen, Mark G.

    1996-08-01

    An optical air mass flux sensor based on a compact, room-temperature diode laser in a fiber-coupled delivery system has been tested on a full-scale gas turbine engine. The sensor is based on simultaneous measurements of O 2 density and Doppler-shifted velocity along a line of sight across the inlet duct. Extensive tests spanning engine power levels from idle to full afterburner demonstrate accuracy and precision of the order of 1 2 of full scale in density, velocity, and mass flux. The precision-limited velocity at atmospheric pressure was as low as 40 cm s. Multiple data-reduction procedures are quantitatively compared to suggest optimal strategies for flight sensor packages.

  6. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method. PMID:12732918

  7. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  8. NEAs' Satellites Under Close Encounters with Earth

    NASA Astrophysics Data System (ADS)

    Araujo, Rosana; Winter, O. C.

    2012-10-01

    In the present work we took into account the gravitational effects experienced by a NEA (Near-Earth Asteroid), during a close encounter with Earth, in order to estimate the stability regions of NEAs' satellites as a function of the encounter conditions and for different primary-satellite mass ratio values. Initially, the methodology consisted on numerically simulating a system composed by the Sun, the planets of the Solar System, and samples of NEAs belonging to the groups Apollo, Atens and Amor, for a period of 10 Myr. All encounters with Earth closer than 100 Earth's radius were registered. The next step consisted on simulating all those registered close encounters considering the Earth, the asteroid that perform the close encounter, and a cloud of satellites around the asteroid. We considered no-interacting satellites with circular orbits, random values for the inclination, longitude of the ascending node and true anomaly, and with radial distribution going from 0.024 to 0.4 Hill's radius of the asteroid. The largest radial distance for which all the satellites survive (no collision or ejection) is defined as the critical radius. We present a statistical analysis of the registered encounters and the critical radius found, defining the stable regions as a function of the impact parameter - d, and of the relative velocity - V. For the case of massless satellites, we found that all satellites survived for encounters with d>0.3 Earth Hill's radius. For impact parameter d<0.13 Earth Hill's radius, we found that particles with radial distance greater than 0.24 Hill's radius of the asteroid, are unstable, for any relative velocity. The results for the other considered cases will be presented and discussed. We also discuss the implications of the regions found, specially in the NEAs-binary scenarios.

  9. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  10. Universalist ethics in extraterrestrial encounter

    NASA Astrophysics Data System (ADS)

    Baum, Seth D.

    2010-02-01

    If humanity encounters an extraterrestrial civilization, or if two extraterrestrial civilizations encounter each other, then the outcome may depend not only on the civilizations' relative strength to destroy each other but also on what ethics are held by one or both civilizations. This paper explores outcomes of encounter scenarios in which one or both civilizations hold a universalist ethical framework. Several outcomes are possible in such scenarios, ranging from one civilization destroying the other to both civilizations racing to be the first to commit suicide. Thus, attention to the ethics of both humanity and extraterrestrials is warranted in human planning for such an encounter. Additionally, the possibility of such an encounter raises profound questions for contemporary human ethics, even if such an encounter never occurs.

  11. Stream Lifetimes Against Planetary Encounters

    NASA Technical Reports Server (NTRS)

    Valsecchi, G. B.; Lega, E.; Froeschle, Cl.

    2011-01-01

    We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.

  12. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  13. Aerosol composition in a stagnant air mass impacted by dense fogs: preliminary results

    SciTech Connect

    Jacob, D.J.; Munger, J.W.; Waldman, J.M.; Hoffman, M.R.

    1984-01-01

    Over the last two winters, our research group has been investigating the chemical composition of fogwater and haze aerosol during wintertime stagnation episodes in the San Joaquin Valley of California. The valley is encompassed by mountain ranges. During the winter a strong subsidence inversion based below the natural boundaries of the valley restricts the ventilation of the air masses below the inversion. The residence time of an air parcel in the valley under these stagnation conditions is on the order of 8 days. Because the trapped air is very humid, stagnation episodes are associated with a persistent thick haze and frequent widespread nighttime fogs. During the winter 1982-1983 the authors sampled fog and haze at one site (Bakersfield); results from this preliminary study have been discussed in detail in a previous report. In the winter 1983-1984 the scale of the program was expanded in order to test hypotheses formulated as a result of first year data. The present paper first reports briefly on the 1982-1983 results and outlines the essential conclusions. They then describe the large-scale experiment conducted during the winter of 1983-1984, and discuss some preliminary fogwater data.

  14. Air mass distribution and the heterogeneity of the climate change signal in the Hudson Bay/Foxe Basin region, Canada

    NASA Astrophysics Data System (ADS)

    Leung, Andrew; Gough, William

    2016-08-01

    The linkage between changes in air mass distribution and temperature trends from 1971 to 2010 is explored in the Hudson Bay/Foxe Basin region. Statistically significant temperature increases were found of varying spatial and temporal magnitude. Concurrent statistically significant changes in air mass frequency at the same locations were also detected, particularly in the declining frequency of dry polar (DP) air. These two sets of changes were found to be linked, and we thus conclude that the heterogeneity of the climatic warming signal in the region is at least partially the result of a fundamental shift in the concurrent air mass frequency in addition to global and regional changes in radiative forcing due to increases in long-lived greenhouse gases.

  15. Trends and sources vs air mass origins in a major city in South-western Europe: Implications for air quality management.

    PubMed

    Fernández-Camacho, R; de la Rosa, J D; Sánchez de la Campa, A M

    2016-05-15

    This study presents a 17-years air quality database comprised of different parameters corresponding to the largest city in the south of Spain (Seville) where atmospheric pollution is frequently attributed to traffic emissions and is directly affected by Saharan dust outbreaks. We identify the PM10 contributions from both natural and anthropogenic sources in this area associated to different air mass origins. Hourly, daily and seasonal variation of PM10 and gaseous pollutant concentrations (CO, NO2 and SO2), all of them showing negative trends during the study period, point to the traffic as one of the main sources of air pollution in Seville. Mineral dust, secondary inorganic compounds (SIC) and trace elements showed higher concentrations under North African (NAF) air mass origins than under Atlantic. We observe a decreasing trend in all chemical components of PM10 under both types of air masses, NAF and Atlantic. Principal component analysis using more frequent air masses in the area allows the identification of five PM10 sources: crustal, regional, marine, traffic and industrial. Natural sources play a more relevant role during NAF events (20.6 μg · m(-3)) than in Atlantic episodes (13.8 μg · m(-3)). The contribution of the anthropogenic sources under NAF doubles the one under Atlantic conditions (33.6 μg · m(-3) and 15.8 μg · m(-3), respectively). During Saharan dust outbreaks the frequent accumulation of local anthropogenic pollutants in the lower atmosphere results in poor air quality and an increased risk of mortality. The results are relevant when analysing the impact of anthropogenic emissions on the exposed population in large cities. The increase in potentially toxic elements during Saharan dust outbreaks should also be taken into account when discounting the number of exceedances attributable to non-anthropogenic or natural origins. PMID:26930305

  16. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  17. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  18. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  19. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  20. Successful I.D. Encounters.

    ERIC Educational Resources Information Center

    Poorman, Margaret J.

    Instructional Development (I.D.) encounters are dependent for success on such variables as power, politics, promotion, and organizational placement. I.D. consultants must be aware of power bases or orientation of other personnel and clients, e.g., these four "power personalities" which affect their efforts in managing I.D. encounters: the gate…

  1. Pioneer 11 Encounter. [with Jupiter

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 11's encounter with Jupiter is discussed in detail. The scientific experiments carried out on the probe are described along with the instruments used. Tables are included which provide data on the times of experiments, encounters, and the distances from Jupiter. Educational study projects are also given.

  2. An Air Mass Based Approach to the Establishment of Spring Season Synoptic Characteristics in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Zander, R.; Messina, A.; Godek, M. L.

    2012-12-01

    The spring season is indicative of marked meteorological, ecological, and biological changes across the Northeast United States. The onset of spring coincides with distinct meteorological phenomena including an increase in severe weather events and snow meltwaters that can cause localized flooding and other costly damages. Increasing and variable springtime temperatures also influence Northeast tourist operations and agricultural productivity. Even with the vested interest of industry in the season and public awareness of the dynamic characteristics of spring, the definition of spring remains somewhat arbitrary. The primary goal of this research is to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. A secondary goal examines the validity of recent speculations that the onset and termination of spring has changed in recent decades, particularly since 1975. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record around 1975 are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are then isolated and frequencies are obtained for these periods. Boundary frequencies are assessed across the period of record to identify important changes in the season's initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Significant differences in seasonal air mass frequency are also observed through time. Prior to 1975, higher frequencies of polar air mass types are detected while after 1975 there is an increase in the frequencies of both moderate and tropical types. This finding is also

  3. Evidence of rapid production of organic acids in an urban air mass

    NASA Astrophysics Data System (ADS)

    Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.; Gilman, Jessica B.; Kuster, William C.; Holloway, John S.; Graus, Martin; Flynn, James; Lefer, Barry; Warneke, Carsten; de Gouw, Joost

    2011-09-01

    Gas-phase acids (nitric, formic, acrylic, methacrylic, propionic, and pyruvic/butryic acid) were measured using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) in Pasadena, CA as part of the CalNex 2010 (Research at the Nexus of Air Quality and Climate Change) study in May-June 2010. Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to several parts per billion by volume (ppbv), with the largest concentrations observed for formic and propionic acids. Photochemically processed urban emissions transported from Los Angeles were frequently sampled during the day. Analysis of transported emissions demonstrates a strong correlation of organic acid concentrations with both nitric acid and odd oxygen (Ox = O3 + NO2) showing that the organic acids are photochemically and rapidly produced from urban emissions.

  4. Progress Toward a Global, EOS-Era Aerosol Air Mass Type Climatology

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2012-01-01

    The MISR and MODIS instruments aboard the NASA Earth Observing System's Terra Satellite have been collecting data containing information about the state of Earth's atmosphere and surface for over eleven years. Data from these instruments have been used to develop a global, monthly climatology of aerosol amount that is widely used as a constraint on climate models, including those used for the 2007 IPCC assessment report. The next frontier in assessing aerosol radiative forcing of climate is aerosol type, and in particular, the absorption properties of major aerosol air masses. This presentation will focus on the prospects for constraining aerosol type globally, and the steps we are taking to apply a combination of satellite and suborbital data to this challenge.

  5. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  6. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  7. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  8. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  9. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  10. Disk Galaxy Warp Formation via Close Encounters

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghwan; Peirani, S.; Kim, S.; Yoon, S.

    2012-01-01

    Warped disks appear to be ubiquitous among spiral galaxies. We present a new scenario for the warp formation, in which galactic fly-by encounters are main drivers of the warp structure. Based on N-body simulation using a publicly available code Gadget2, we investigate morphological and kinematical structures of disk galaxies while the galaxies are undergoing fly-by encounters with adjacent dark matter halos. In this study, we find that warps can be excited by impulsive encounters and sustained for a few billion years. We also find that encounters cause the initially spherical halos to deform into intricate shape halos at the inner regions where warps are generated. Most of the warps from the simulation show inclination angles that are comparable to the observations. The creation of warps, their inclination and their lifetimes are governed primarily by the following three parameters: the impact parameter (the minimum distance between two halos), the mass ratio between two galaxies, and the incoming angle of the intruder. We discuss pros and cons about our alternative scenario in comparison with existing explanations.

  11. Galaxy Transformation from Flyby Encounters

    NASA Astrophysics Data System (ADS)

    Davis, Christina

    2016-05-01

    Galaxy flybys are transient encounters where two halos interpenetrate and later detach forever. Although these encounters are surprisingly common—even outnumbering galaxy mergers for massive halos at the present epoch—their dynamical effects have been largely ignored. Using idealized collisionless N-body simulations of flyby encounters, it has been shown that a galaxy flyby can excite a bar and spin up the halo. Here, we compare the structural properties of recent flybys to that of recent mergers and isolated systems within the Illustris Simulation.

  12. Voyager Encounters Saturn: Scientific Highlights

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Observations generated by Voyager 1's encounter with Saturn are disclosed. Atmospheric conditions, the rings, new moons and the five inner moons are described. Titan, Hyperion and Iapetus are discussed in detail, as is Saturn's magnetosphere.

  13. The Voyager 2 Neptune encounter

    SciTech Connect

    Tsurutani, B.T. )

    1989-10-01

    The findings made by the Voyager 2 Neptune encounter are reviewed. Data on the bowshock, magnetic field, magnetosphere, rings, plasma sheet, aurora, moons, and dust of Neptune are discussed. Findings made concerning Triton are summarized.

  14. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)

    NASA Astrophysics Data System (ADS)

    Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.

    2014-09-01

    There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.

  15. Study Case of Air-Mass Modification over Poland and Romania Observed by the Means of Multiwavelength Raman Depolarization Lidars

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Janicka, Lucja; Stachlewska, Iwona S.; Nemuc, Anca; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2016-06-01

    An air-mass modification, on its way from Poland to Romania, observed between 19-21 July 2014 is discussed. The air-mass was investigated using data of two multi-wavelength lidars capable of performing regular elastic, depolarization and Raman measurements in Warsaw, Poland, and in Magurele, Romania. The analysis was focused on evaluating optical properties of aerosol in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations within given period.

  16. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  17. Characterizing Air Masses in the Lower Troposphere (< 2 km) during the 2011 Student Airborne Program (SARP) Mission in Southern California

    NASA Astrophysics Data System (ADS)

    Lee, H.; Elder, C.; Kauffman, E. J.; Weathers, E.; Thomas, E.; Johnson, E.; Turrentine, H.; Saad, K.; Nighelli, K.; Burns, M.; Heath, N.; Shetter, R. E.; Schaller, E.; Webster, A.; Buzay, E.; Peterson, J.; Simpson, I. J.; Rowland, F. S.; Blake, D. R.

    2011-12-01

    During the NASA Student Airborne Program (SARP) mission, high frequency whole air sampling during a missed-approach to Los Angeles International airport (LAX) provided air mass signatures collected in close proximity to their urban and oceanic sources. Each whole air sample was analyzed for 80 halocarbons, hydrocarbons and organic nitrates. Unlike other airborne missions, high frequency whole air sampling of about 70 samples collected over a 20 minute period (15 second fill per sample) during a 150 km flight path at low altitude (< 2 km) provided a more detailed profile of the Los Angeles air shed than has been previously accomplished. Correlations between CH3I, CHBr3, and MeONO2 (marine tracers) versus C2Cl4 and HCFC-22 (anthropogenic tracers) were used to distinguish between purely marine air and air influenced by emissions from Los Angeles (Figure 1). Of the 80 C1-C10 volatile organic compounds that were measured, 60 were elevated in air from the Los Angeles air shed. These included C1-C10 alkanes, C6-C8 aromatics, C2-C3 alkenes, halons, HCFCs, HFCs, CH3CCl3, chlorinated solvents (e.g., C2Cl4, CHCl3, CH2Cl2), and organic nitrates. Marine species emitted in this region of the Pacific were found to include MeONO2, EtONO2, CH2Br2, CHBr3, CH3I and DMS. Note that the C3 organic nitrates were not enhanced in the marine influenced air, and instead they are attributed to urban photochemistry. Overall, high-frequency and low-altitude whole air sampling during the LAX missed-approach clearly distinguished urban and oceanic sources and allowed a detailed chemical signature for Los Angeles air to be determined.

  18. Close encounters of the stellar kind

    NASA Astrophysics Data System (ADS)

    Bailer-Jones, C. A. L.

    2015-03-01

    Stars which pass close to the Sun can perturb the Oort cloud, injecting comets into the inner solar system where they may collide with the Earth. Using van Leeuwen's re-reduction of the Hipparcos data complemented by the original Hipparcos and Tycho-2 catalogues, along with recent radial velocity surveys, I integrate the orbits of over 50 000 stars through the Galaxy to look for close encounters. The search uses a Monte Carlo sampling of the covariance of the data in order to properly characterize the uncertainties in the times, distances, and speeds of the encounters. I show that modelling stellar encounters by assuming instead a linear relative motion produces, for many encounters, inaccurate and biased results. I find 42, 14, and 4 stars which have encounter distances below 2, 1, and 0.5 pc respectively, although some of these stars have questionable data. Of the 14 stars coming within 1 pc, 5 were found by at least one of three previous studies (which found a total of 7 coming within 1 pc). The closest encounter appears to be Hip 85605, a K or M star, which has a 90% probability of coming between 0.04 and 0.20 pc between 240 and 470 kyr from now (90% Bayesian confidence interval). However, its astrometry may be incorrect, in which case the closest encounter found is the K7 dwarf GL 710, which has a 90% probability of coming within 0.10-0.44 pc in about 1.3 Myr. A larger perturbation may have been caused by gamma Microscopii, a G6 giant with a mass of about 2.5 M⊙, which came within 0.35-1.34 pc (90% confidence interval) around 3.8 Myr ago. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A35

  19. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

    NASA Astrophysics Data System (ADS)

    Feng, Xiao; Li, Qi; Zhu, Yajie; Hou, Junxiong; Jin, Lingyan; Wang, Jingjie

    2015-04-01

    In the paper a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented. The model was developed from 13 different air pollution monitoring stations in Beijing, Tianjin, and Hebei province (Jing-Jin-Ji area). The air mass trajectory was used to recognize distinct corridors for transport of "dirty" air and "clean" air to selected stations. With each corridor, a triangular station net was constructed based on air mass trajectories and the distances between neighboring sites. Wind speed and direction were also considered as parameters in calculating this trajectory based air pollution indicator value. Moreover, the original time series of PM2.5 concentration was decomposed by wavelet transformation into a few sub-series with lower variability. The prediction strategy applied to each of them and then summed up the individual prediction results. Daily meteorological forecast variables as well as the respective pollutant predictors were used as input to a multi-layer perceptron (MLP) type of back-propagation neural network. The experimental verification of the proposed model was conducted over a period of more than one year (between September 2013 and October 2014). It is found that the trajectory based geographic model and wavelet transformation can be effective tools to improve the PM2.5 forecasting accuracy. The root mean squared error (RMSE) of the hybrid model can be reduced, on the average, by up to 40 percent. Particularly, the high PM2.5 days are almost anticipated by using wavelet decomposition and the detection rate (DR) for a given alert threshold of hybrid model can reach 90% on average. This approach shows the potential to be applied in other countries' air quality forecasting systems.

  20. Dust and Pollution Aerosol Air Mass Mapping from Satellite Multi-angle Imaging

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.; Nelson, D. L.; Yau, K. S.; Martonchik, J.; Diner, D. J.; Gaitley, B. J.; Russell, P.; Livingston, J.; Redemann, J.; Quinn, P. R.; Clarke, A. R.; Howell, S.; McNaughton, C.; Reid, J.; Holben, B.; Wendisch, M.; Petzold, A.

    2006-12-01

    One objective of the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) is to map aerosol air mass types, based on retrieved column-average particle microphysical properties. Early results demonstrated the ability to distinguish three-to-five bins over the 0.1 to 2.5 micron aerosol size range, about two-to-four groupings of single-scattering albedo, and to separate spherical from randomly oriented non- spherical particles, under good but not ideal viewing conditions. These results relied heavily on the MISR Research Aerosol Retrieval algorithm, which allows flexibility in choosing retrieval patch size and location, component aerosol properties and mixtures, and mixture acceptance criteria, compared to early versions of the MISR Standard algorithm, designed to routinely process the entire global data set. Early mid-visible column aerosol optical depth results were validated against surface-based sun photometer measurements. The corresponding particle property results appeared qualitatively promising, but formal validation requires quantitative constraints on component particle properties and mixtures in a range of natural settings, available mainly from the combination of height-resolved and total column data collected by surface and airborne instruments during field campaigns. This presentation will highlight the latest detailed, multi-platform case studies, as well as MISR regional mapping, of smoke, Saharan dust, and mixtures of pollution aerosol and desert dust collected during the INTEX, SAMUM, and UAE-2 campaigns, respectively. The broader implications of these results for global, and especially regional, aerosol climate and air quality studies will also be discussed. This work is performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  1. Predicting the Earth encounters of (99942) Apophis

    NASA Technical Reports Server (NTRS)

    Giorgini, Jon D.; Benner, Lance A. M.; Ostro, Steven J.; Nolan, Michael C.; Busch, Michael W.

    2007-01-01

    Arecibo delay-Doppler measurements of (99942) Apophis in 2005 and 2006 resulted in a five standard-deviation trajectory correction to the optically predicted close approach distance to Earth in 2029. The radar measurements reduced the volume of the statistical uncertainty region entering the encounter to 7.3% of the pre-radar solution, but increased the trajectory uncertainty growth rate across the encounter by 800% due to the closer predicted approach to the Earth. A small estimated Earth impact probability remained for 2036. With standard-deviation plane-of-sky position uncertainties for 2007-2010 already less than 0.2 arcsec, the best near-term ground-based optical astrometry can only weakly affect the trajectory estimate. While the potential for impact in 2036 will likely be excluded in 2013 (if not 2011) using ground-based optical measurements, approximations within the Standard Dynamical Model (SDM) used to estimate and predict the trajectory from the current era are sufficient to obscure the difference between a predicted impact and a miss in 2036 by altering the dynamics leading into the 2029 encounter. Normal impact probability assessments based on the SDM become problematic without knowledge of the object's physical properties; impact could be excluded while the actual dynamics still permit it. Calibrated position uncertainty intervals are developed to compensate for this by characterizing the minimum and maximum effect of physical parameters on the trajectory. Uncertainty in accelerations related to solar radiation can cause between 82 and 4720 Earth-radii of trajectory change relative to the SDM by 2036. If an actionable hazard exists, alteration by 2-10% of Apophis' total absorption of solar radiation in 2018 could be sufficient to produce a six standard-deviation trajectory change by 2036 given physical characterization; even a 0.5% change could produce a trajectory shift of one Earth-radius by 2036 for all possible spin-poles and likely masses

  2. Optimization of solar cells for air mass zero operation and a study of solar cells at high temperatures, phase 3

    NASA Technical Reports Server (NTRS)

    Blakeslee, A. E.; Hovel, H. J.; Woodall, J. M.

    1977-01-01

    The etch-back epitaxy process is described for producing thin, graded composition GaAlAs layers. The palladium-aluminum contact system is discussed along with its associated problems. Recent solar cell results under simulated air mass zero light and at elevated temperatures are reported and the growth of thin polycrystalline GaAs films on foreign substrates is developed.

  3. An objective classification system of air mass types for Szeged, Hungary, with special attention to plant pollen levels.

    PubMed

    Makra, László; Juhász, Miklós; Mika, János; Bartzokas, Aristides; Béczi, Rita; Sümeghy, Zoltán

    2006-07-01

    This paper discusses the characteristic air mass types over the Carpathian Basin in relation to plant pollen levels over annual pollination periods. Based on the European Centre for Medium-Range Weather Forecasts dataset, daily sea-level pressure fields analysed at 00 UTC were prepared for each air mass type (cluster) in order to relate sea-level pressure patterns to pollen levels in Szeged, Hungary. The database comprises daily values of 12 meteorological parameters and daily pollen concentrations of 24 species for their pollination periods from 1997 to 2001. Characteristic air mass types were objectively defined via factor analysis and cluster analysis. According to the results, nine air mass types (clusters) were detected for pollination periods of the year corresponding to pollen levels that appear with higher concentration when irradiance is moderate while wind speed is moderate or high. This is the case when an anticyclone prevails in the region west of the Carpathian Basin and when Hungary is under the influence of zonal currents (wind speed is high). The sea level pressure systems associated with low pollen concentrations are mostly similar to those connected to higher pollen concentrations, and arise when wind speed is low or moderate. Low pollen levels occur when an anticyclone prevails in the region west of the Carpathian Basin, as well as when an anticyclone covers the region with Hungary at its centre. Hence, anticyclonic or anticyclonic ridge weather situations seem to be relevant in classifying pollen levels. PMID:16575583

  4. Background NO/sub x/ mixing ratios in air masses over the North Atlantic ocean

    SciTech Connect

    Helas, G.; Warneck, P.

    1981-08-20

    A chemiluminescence analyzer was used to measure NO/sub x/ mixing ratios at the west coast of Ireland. Two measurement modes allowed the determination of NO and NO/sub x/ = NO+NO/sub 2/. In a third mode using a molybdenum converter, higher signals were observed than was in the second mode indicating that nitrogen compounds other than NO+NO/sub 2/ are registered. They are denoted 'excess NO/sub x/'. The average NO/sub 2/ mixing ratio for a week period was 101 +- 87 pptv. In pure marine air masses identified by means of trajectory calculations, the NO/sub 2/ mixing ratios were lower and exhibited in addition a diurnal variation with nighttime values of 37 +- 6 pptv and average values of 87 +- 47 pptv. Possible origins of the diurnal variation are discussed. For such conditions, the NO mixing ratio generally was unmeasurably small, certainly less than 10 pptv. The excess NO/sub x/ is also higher during the day compared with nighttime values of about 70 pptv. Further studies are required to identify the compounds involved.

  5. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  6. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  7. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  8. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Canagaratna, M. R.; Worsnop, D. R.; Bahreini, R.; de Gouw, J. A.; Warneke, C.; Goldan, P. D.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Roberts, J. M.; Meagher, J. F.; Fehsenfeld, F. C.; Marchewka, M.; Bertman, S. B.; Middlebrook, A. M.

    2006-12-01

    We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS) bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  9. Crustal failure on icy Moons from a strong tidal encounter

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Giannella, David; Shaw, John G.; Ebinger, Cynthia

    2016-09-01

    Close tidal encounters among large planetesimals and Moons should have been more common than grazing or normal impacts. Using a mass spring model within an N-body simulation, we simulate the deformation of the surface of an elastic spherical body caused by a close parabolic tidal encounter with a body that has similar mass as that of the primary body. Such an encounter can induce sufficient stress on the surface to cause brittle failure of an icy crust and simulated fractures can extend a large fraction of the radius of body. Strong tidal encounters may be responsible for the formation of long graben complexes and chasmata in ancient terrain of icy Moons such as Dione, Tethys, Ariel and Charon.

  10. Dialogic Encounters as Art Education

    ERIC Educational Resources Information Center

    Miles, Adetty Perez

    2010-01-01

    Although educators believe in the importance of dialogue and dialogic encounters, and often propose to engage their students in "discussion," dialogic communication is rarely used in the classroom. Rather than through relational and substantive conversation, most educational dialogue in public schools is limited to telling, asking one-way…

  11. A Lakatosian Encounter with Probability

    ERIC Educational Resources Information Center

    Chick, Helen

    2010-01-01

    There is much to be learned and pondered by reading "Proofs and Refutations" by Imre Lakatos (Lakatos, 1976). It highlights the importance of mathematical definitions, and how definitions evolve to capture the essence of the object they are defining. It also provides an exhilarating encounter with the ups and downs of the mathematical reasoning…

  12. Chiral Signatures of Anthropogenic Semi-Volatile Organic Compounds in Asian, trans- Pacific, and Pacific Northwestern Air Masses

    NASA Astrophysics Data System (ADS)

    Genualdi, S.; Primbs, T.; Bidleman, T.; Jantunen, L.; Simonich, S.

    2006-12-01

    The goal of this research is to use the chiral signatures of Semi-Volatile Organic Compounds (SOCs) to distinguish between new and old sources in Asian, trans-Pacific, and regional air masses. During 2004, a six week air sampling campaign was conducted at a remote site in Okinawa, Japan to determine the chemical composition of Eurasian air masses. During 2003 and 2004, high volume air samples were collected at three different locations in the Pacific Northwest of the United States. These sampling locations were; Mary's Peak Observatory (MPO) located at 1250m in the Oregon Coast Range, Mt. Bachelor located at 2800m in Oregon's Cascade Range, and Cheeka Peak Observatory (CPO) located at 500m in the state of Washington. The air samples consisted of both polyurethane foam and XAD-2 resin to collect the gas phase SOCs, and glass fiber filters to collect the particulate phase SOCs. The samples were extracted using accelerated solvent extraction and enantiomer fractions were determined using GCMS-ECNI with the use of a BGB Analytik chiral column. The chiral SOCs, á-Hexachlorocyclohexane, cis and trans chlordane, heptachlor epoxide, and o'p' DDT, were measured, the enantiomer ratios were determined, and potential new and historical sources of these compounds were identified.

  13. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    {sup {minus}7}, 10{sup {minus}5}, and 10{sup {minus}5} respectively. To understand how internal surface area influences the equivalent reaction probability of whole carpet, a model of ozone diffusion into and reaction with internal carpet components was developed. This was then used to predict apparent reaction probabilities for carpet. He combines this with a modified model of turbulent mass transfer developed by Liu, et al. to predict deposition rates and indoor ozone concentrations. The model predicts that carpet should have an equivalent reaction probability of about 10{sup {minus}5}, matching laboratory measurements of the reaction probability. For both carpet and duct materials, surfaces become progressively quenched (aging), losing the ability to react or otherwise take up ozone. He evaluated the functional form of aging and find that the reaction probability follows a power function with respect to the cumulative uptake of ozone. To understand ozone aging of surfaces, he developed several mathematical descriptions of aging based on two different mechanisms. The observed functional form of aging is mimicked by a model which describes ozone diffusion with internal reaction in a solid. He shows that the fleecy nature of carpet materials in combination with the model of ozone diffusion below a fiber surface and internal reaction may explain the functional form and the magnitude of power function parameters observed due to ozone interactions with carpet. The ozone induced aldehyde emissions, measured from duct materials, were combined with an indoor air quality model to show that concentrations of aldehydes indoors may approach odorous levels. He shows that ducts are unlikely to be a significant sink for ozone due to the low reaction probability in combination with the short residence time of air in ducts.

  14. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  15. Determination of respirable mass concentration using a high volume air sampler and a sedimentation method for fractionation

    SciTech Connect

    Johnson, J.

    1995-12-31

    A preliminary study of a new method for determining respirable mass concentration is described. This method uses a high volume air sampler and subsequent fractionation of the collected mass using a particle sedimentation technique. Side-by-side comparisons of this method with cyclones were made in the field and in the laboratory. There was good agreement among the samplers in the laboratory, but poor agreement in the field. The effect of wind on the samplers` capture efficiencies is the primary hypothesized source of error among the field results. The field test took place at the construction site of a hazardous waste landfill located on the Hanford Reservation.

  16. Difficulties encountered removing locked plates

    PubMed Central

    Raja, S; Imbuldeniya, AM; S, Garg; Groom, G

    2012-01-01

    INTRODUCTION Locked plates are commonly used to obtain fixation in periarticular and comminuted fractures. Their use has also gained popularity in repairing fractures in osteoporotic bone. These plates provide stable fixation and promote biological healing. Over the last 3 years, we have used over 150 locked plates with varying success to fix periarticular fractures involving mainly the knee and ankle. In this study, we report our clinical experience and the difficulties encountered when removing locked plates in adult patients with a variety of indications including implant failure, infection, non-union and a palpable symptomatic implant. METHODS A retrospective analysis was performed of patients enrolled prospectively into a database. Included in the study were 36 consecutive adult patients who each underwent the procedure of locked plate removal in a single inner city level 1 trauma centre. Data collected included primary indication for fixation, indication for implant removal, time of the implant in situ, grade of operating surgeon and difficulties encountered during the procedure. RESULTS Implant removal was associated with a complication rate of 47%. The major problems encountered were difficulty in removing the locked screws and the implant itself. A total of ten cold welded screws were found in eight cases. Removal was facilitated by high speed metal cutting burrs and screw removal sets in all but one case, where a decision was made to leave the plate in situ. CONCLUSIONS The majority of studies investigating implant removal and problems encountered in doing so report a relatively high complication rate. With the advent of locking plates and their growing popularity, difficulties are now being seen intra-operatively when removing them. There is a paucity of data, however, specifically directed at locking plate removal. We recommend that surgeons should be aware of the potential complications while removing locked plates. Fluoroscopic control and all

  17. Voyager 1: Encounter with Saturn

    NASA Technical Reports Server (NTRS)

    Panagakos, N.

    1980-01-01

    The history of the Voyager Project is reviewed as well as known facts about Saturn and its satellites. Important results of encounters with Jupiter are summarized. Scientific objectives of the flyby of Saturn involve the planet's atmosphere, rings, and magnetic field interactions with the solar wind and satellites. The search for additional satellites, and various aspects of Titan, Rhea, Dione, Mimas, Iapetus, Hyperion, and Enceladas are also of interest. The instruments developed to obtain these goals are described.

  18. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  19. Calculations of relative optical air masses for various aerosol types and minor gases in Arctic and Antarctic atmospheres

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Petkov, Boyan H.

    2014-02-01

    The dependence functions of relative optical air mass on apparent solar zenith angle θ have been calculated over the θ < 87° range for the vertical profiles of wet-air molecular number density in the Arctic and Antarctic atmospheres, extinction coefficients of different aerosol types, and molecular number density of water vapor, ozone, nitrogen dioxide, and oxygen dimer. The calculations were made using as weight functions the seasonal average vertical profiles of (i) pressure and temperature derived from multiyear sets of radiosounding measurements performed at Ny-Ålesund, Alert, Mario Zucchelli, and Neumayer stations; (ii) volume extinction coefficients of background summer aerosol, Arctic haze, and Kasatochi and Pinatubo volcanic aerosol measured with lidars or balloon-borne samplings; and (iii) molecular number concentrations of the above minor gases, derived from radiosonde, ozonesonde, and satellite-based observations. The air mass values were determined using a formula based on a realistic atmospheric air-refraction model. They were systematically checked by comparing their mutual differences with the uncertainties arising from the seasonal and daily variations in pressure and temperature conditions within the various ranges, where aerosol and gases attenuate the solar radiation most efficiently. The results provide evidence that secant-approximated and midlatitude air mass values are inappropriate for analyzing the Sun photometer measurements performed at polar sites. They indicate that the present evaluations can be reliably used to estimate the aerosol optical depth from the Arctic and Antarctic measurements of total optical depth, after appropriate corrections for the Rayleigh scattering and gaseous absorption optical depths.

  20. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  1. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  2. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  3. On the Aerosol Particle Size Distribution Spectrum in Alaskan Air Mass Systems: Arctic Haze and Non-Haze Episodes.

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1983-05-01

    Aerosols in central Alaskan winter air mass system were classified according to size by diffusive separation and light-scattering spectrometry. Particles entering central Alaska from the Pacific Marine environment had number concentrations ranging from 300 to 2000 cm3 (geometric mean 685 cm3) and unimodal size spectra, with maximum in number concentration near 1 × 106 cm radius.Air masses entering Alaska from the Eurasian Arctic possessed a factor of two smaller aerosol number concentrations than Pacific Marine systems (e.g., 150-700 cm3; geometric mean 386 cm3) but contained a factor of two greater particle volume loading within the fine particle radius range 5 × 107 < r < 1 × 105 cm. The particles in Eurasian Arctic air masses were bimodally distributed, with maxima in the particle size spectra near r = 3 × 107 and 5 × 106 cm. Sulfur was the predominant element in all cases studied.A particle depleted region was present in the size spectra obtained for Eurasian Arctic air masses. The deficiency of particles in the 106 cm radius range is interpreted as being the result of thermal coagulation taking place between sulfur-rich nuclei (produced at a rate of 1020 to 1018 g cm3 s1 and in sizes r < 106 cm) and `large' (r 105 cm) imported primary particles. The primary particles are in the removal-resistant Greenfield Gap (r 105 cm) and seem to originate in the central Eurasian region.

  4. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  5. Features of air masses associated with the deposition of Pseudomonas syringae and Botrytis cinerea by rain and snowfall

    PubMed Central

    Monteil, Caroline L; Bardin, Marc; Morris, Cindy E

    2014-01-01

    Clarifying the role of precipitation in microbial dissemination is essential for elucidating the processes involved in disease emergence and spread. The ecology of Pseudomonas syringae and its presence throughout the water cycle makes it an excellent model to address this issue. In this study, 90 samples of freshly fallen rain and snow collected from 2005–2011 in France were analyzed for microbiological composition. The conditions favorable for dissemination of P. syringae by this precipitation were investigated by (i) estimating the physical properties and backward trajectories of the air masses associated with each precipitation event and by (ii) characterizing precipitation chemistry, and genetic and phenotypic structures of populations. A parallel study with the fungus Botrytis cinerea was also performed for comparison. Results showed that (i) the relationship of P. syringae to precipitation as a dissemination vector is not the same for snowfall and rainfall, whereas it is the same for B. cinerea and (ii) the occurrence of P. syringae in precipitation can be linked to electrical conductivity and pH of water, the trajectory of the air mass associated with the precipitation and certain physical conditions of the air mass (i.e. temperature, solar radiation exposure, distance traveled), whereas these predictions are different for B. cinerea. These results are pertinent to understanding microbial survival, emission sources and atmospheric processes and how they influence microbial dissemination. PMID:24722630

  6. Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable Air Mass Regimes During the 7-SEAS/Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey

    2012-01-01

    During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-SEAS field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different air mass regimes including background maritime and those contaminated by anthropogenic air pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including sea-salt, particulate organic matter, soil, non sea-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse air masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non sea-salt sulphate mixed with some dust with transitions to background sea-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote

  7. Chemical compositions and radiative properties of dust and anthropogenic air masses study in Taipei Basin, Taiwan, during spring of 2004

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Yu; Fang, Guor-Cheng; Chou, Charles C.-K.; Chen, Wei-Nai

    Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM 10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00'N, 121°32'E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m 2 g -1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m 2 g -1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3-2.3 m 2 g -1), which were similar to the previous measurements with

  8. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-01

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  9. Stability of reference masses: VII. Cleaning methods in air and vacuum applied to a platinum mass standard similar to the international and national kilogram prototypes

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Sano, Naoko; Barlow, Anders J.; Portoles, Jose F.

    2013-10-01

    Mercury contamination and the build-up of carbonaceous contamination are two contributing factors to the instability observed in kilogram prototype masses. The kilogram prototypes that lie at the core of the dissemination of the SI base unit were manufactured in the late 19th century, and have polished surfaces. In papers IV and V of this series we developed a method for cleaning noble metal mass standards in air to remove carbonaceous contamination. At the core of this ‘UVOPS’ protocol is the application of UV light and ozone gas generated in situ in air. The precise nature of the carbonaceous contamination that builds up on such surfaces is difficult to mimic demonstrably or quickly on new test surfaces, yet data from such tests are needed to provide the final confidence to allow UVOPS to be applied to a real 19th century kilogram prototype. Therefore, in the present work we have applied the UVOPS method to clean a platinum avoirdupois pound mass standard, ‘RS2’, manufactured in the mid-19th century. This is thought to have been polished in a similar manner to the kilogram prototypes. To our knowledge this platinum surface has not previously been cleaned by any method. We used x-ray photoelectron spectroscopy to identify organic contamination, and weighing to quantify the mass lost at each application of the UVOPS procedure. The UVOPS procedure is shown to be very effective. It is likely that the redefinition of the kilogram will require mass comparisons in vacuum in the years to come. Therefore, in addition to UVOPS a cleaning method for use in vacuum will also be needed. We introduce and evaluate gas cluster ion-beam (GCIB) treatment as a potential method for cleaning reference masses in vacuum. Again, application of this GCIB cleaning to a real artefact, RS2, allows us to make a realistic evaluation of its performance. While it has some attractive features, we cannot recommend it for cleaning mass standards in its present form.

  10. Mass

    SciTech Connect

    Chris Quigg

    2007-12-05

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  11. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  12. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  13. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  14. Use of Chiral Signatures of Organochlorine Pesticides in Asian, Trans-Pacific, and Western U.S. Air Masses to Identify Source Regions

    NASA Astrophysics Data System (ADS)

    Simonich, S.; Genualdi, S.; Primbs, T.; Ryoo, K.; Bidleman, T.; Jantunen, L.

    2008-12-01

    Chiral signatures of organochlorine pesticides were measured in air masses on Okinawa Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a coastal site on the Olympic Peninsula of Washington at 500 m; Mary's Peak Observatory (MPO), a site at 1250 m in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2300 m in Oregon's Cascade range. The chiral signature of composite soil samples collected from agricultural areas in China and South Korea were also measured. Racemic alpha-HCH was measured in Asian air masses and soil from China and South Korea. Non-racemic (enantiomer fraction (EF) = 0.528 ± 0.0048) alpha-HCH was measured in regional air masses at CPO, a marine boundary layer site, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the EFs were significantly (p-value <0.001) more racemic (EF = 0.513 ± 0.0003). Racemic alpha-HCH was consistently measured in trans- Pacific air masses at MPO and MBO. The alpha-HCH EFs in CPO, MPO, and MBO air masses were positively correlated (p-value = 0.0017) with the amount of time the air mass spent above the boundary layer along the 10-day back air mass trajectory prior to being sampled. This suggests that the alpha-HCH in the free troposphere is racemic. The racemic signatures of cis and trans chlordane in air masses at all four air sampling sites suggest that Asian and U.S. urban areas continue to be sources of chlordanes that have not yet undergone biotransformation.

  15. Thermal desorption-gas chromatography-mass spectrometry method to determine phthalate and organophosphate esters from air samples.

    PubMed

    Aragón, M; Borrull, F; Marcé, R M

    2013-08-16

    A method based on thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed to determine four organophosphate esters, seven phthalate esters, and bis(2-ethylhexyl) adipate in the gas phase from harbour and urban air samples. The method involves the sampling of 1.5L of air in a Tenax TA sorbent tube followed by thermal desorption (using a Tenax TA cryogenic trap) coupled to gas chromatography-mass spectrometry. The repeatability of the method expressed as %RSD (n=3) is less than 15% and the MQLs are between 0.007μgm(-3) (DMP, TBP, BBP, TPP and DnOP) and 6.7μgm(-3) (DEHP). The method was successfully applied in two areas (urban and harbour) testing two and three points in each one, respectively. Some of these compounds were found in both urban and harbour samples. Di-(2-ethylhexyl)phthalate was the most abundant compound found in both areas at concentration levels between 6.7μgm(-3) and 136.4μgm(-3). This study demonstrates that thermal desorption is an efficient method for the determination of these semi-volatile compounds in the gas phase fraction of air samples. PMID:23859797

  16. Retrospective screening of pesticide metabolites in ambient air using liquid chromatography coupled to high-resolution mass spectrometry.

    PubMed

    López, Antonio; Yusà, Vicent; Millet, Maurice; Coscollà, Clara

    2016-04-01

    A new methodology for the retrospective screening of pesticide metabolites in ambient air was developed, using liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (UHPLC-HRMS), including two systematic workflows (i) post-run target screening (suspect screening) and (ii) non-target screening. An accurate-mass database was built and used for the post-run screening analysis. The database contained 240 pesticide metabolites found in different matrixes such as air, soil, water, plants, animals and humans. For non-target analysis, a "fragmentation-degradation" relationship strategy was selected. The proposed methodology was applied to 31 air samples (PM10) collected in the Valencian Region (Spain). In the post-target analysis 34 metabolites were identified, of which 11 (3-ketocarburan, carbofuran-7-phenol, carbendazim, desmethylisoproturon, ethiofencarb-sulfoxide, malaoxon, methiocarb-sulfoxide, N-(2-ethyl-6-methylphenyl)-L-alanine, omethoate, 2-hydroxy-terbuthylazine, and THPAM) were confirmed using analytical standards. The semiquantitative estimated concentration ranged between 6.78 and 198.31 pg m(-3). Likewise, two unknown degradation products of malaoxon and fenhexamid were elucidated in the non-target screening. PMID:26838378

  17. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  18. An automated gas chromatography time-of-flight mass spectrometry instrument for the quantitative analysis of halocarbons in air

    NASA Astrophysics Data System (ADS)

    Obersteiner, F.; Bönisch, H.; Engel, A.

    2016-01-01

    We present the characterization and application of a new gas chromatography time-of-flight mass spectrometry instrument (GC-TOFMS) for the quantitative analysis of halocarbons in air samples. The setup comprises three fundamental enhancements compared to our earlier work (Hoker et al., 2015): (1) full automation, (2) a mass resolving power R = m/Δm of the TOFMS (Tofwerk AG, Switzerland) increased up to 4000 and (3) a fully accessible data format of the mass spectrometric data. Automation in combination with the accessible data allowed an in-depth characterization of the instrument. Mass accuracy was found to be approximately 5 ppm in mean after automatic recalibration of the mass axis in each measurement. A TOFMS configuration giving R = 3500 was chosen to provide an R-to-sensitivity ratio suitable for our purpose. Calculated detection limits are as low as a few femtograms by means of the accurate mass information. The precision for substance quantification was 0.15 % at the best for an individual measurement and in general mainly determined by the signal-to-noise ratio of the chromatographic peak. Detector non-linearity was found to be insignificant up to a mixing ratio of roughly 150 ppt at 0.5 L sampled volume. At higher concentrations, non-linearities of a few percent were observed (precision level: 0.2 %) but could be attributed to a potential source within the detection system. A straightforward correction for those non-linearities was applied in data processing, again by exploiting the accurate mass information. Based on the overall characterization results, the GC-TOFMS instrument was found to be very well suited for the task of quantitative halocarbon trace gas observation and a big step forward compared to scanning, quadrupole MS with low mass resolving power and a TOFMS technique reported to be non-linear and restricted by a small dynamical range.

  19. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  20. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  1. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    PubMed

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  2. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    PubMed

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air. PMID:26493981

  3. COMET ENCOUNTERS AND CARBON 14

    SciTech Connect

    Eichler, David; Mordecai, David

    2012-12-20

    The {sup 14}C production of shock-accelerated particles is calculated in terms of the total energy released in energetic particles. The recently reported 1.2% jump in the {sup 14}C content of the atmosphere in the year C.E. 775, it is found, would require {approx}> 10{sup 34} erg in energetic particles, less than first estimates but far more than any known solar flare on record. It is noted that the superflare from a large comet (comparable to C/Hale-Bopp) colliding with the sun could produce shock-accelerated GeV cosmic rays in the solar corona and/or solar wind, and possibly account for the C.E. 775 event. Several additional predictions of cometary encounters with the sun and other stars may be observable in the future.

  4. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  5. Continental Land Mass Air Traffic Control (COLM ATC). [using three artificial satellite configurations

    NASA Technical Reports Server (NTRS)

    Pecar, J. A.; Henrich, J. E.

    1973-01-01

    The application of various satellite systems and techniques relative to providing air traffic control services for the continental United States was studied. Three satellite configurations were reviewed. The characteristics and capabilities of the satellites are described. The study includes consideration for the various ranging waveforms, multiple access alternatives, and the power and bandwidth required as a function of the number of users.

  6. Resonance-mode effect on microcantilever mass-sensing performance in air.

    PubMed

    Xia, Xiaoyuan; Li, Xinxin

    2008-07-01

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance. PMID:18681721

  7. Resonance-mode effect on microcantilever mass-sensing performance in air

    SciTech Connect

    Xia Xiaoyuan; Li Xinxin

    2008-07-15

    This research investigates the air drag damping effect of the micromachined cantilevers in different resonance modes on the quality factor, which are operated in ambient air. Based on a simplified dish-string model for air drag force acting on the resonant cantilever, the air drag damping properties of the cantilevers vibrating in different modes are analyzed with theoretic vibration mechanics, which is complemented and further confirmed with finite-element simulation. Four kinds of integrated cantilevers, which resonate in the first flexural mode, the second flexural mode, the first torsional mode, and the second torsional mode, respectively, are designed and fabricated by using micromachining techniques. Finally, biomolecular sensing experiments are carried out to verify the theoretical results obtained before. From both the modeling and experimental results, it can be seen that damping characteristics of the torsional cantilever resonators are generally better than that of the flexural ones, and quality factor of the cantilever resonator in a higher-frequency mode is always superior to that in a lower-frequency one. Among the four kinds of microcantilever resonators operated in our experiments, the one operated in the second flexural modes exhibits the highest Q factor and the best biomass sensing performance.

  8. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  9. Detection of biological particles in ambient air using bio-aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    McJimpsey, Erica L.; Steele, Paul T.; Coffee, Keith R.; Fergenson, David P.; Riot, Vincent J.; Woods, Bruce W.; Gard, Eric E.; Frank, Matthias; Tobias, Herbert J.; Lebrilla, Carlito

    2006-05-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  10. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  11. Elemental composition and oxidative properties of PM(2.5) in Estonia in relation to origin of air masses - results from the ECRHS II in Tartu.

    PubMed

    Orru, Hans; Kimmel, Veljo; Kikas, Ulle; Soon, Argo; Künzli, Nino; Schins, Roel P F; Borm, Paul J A; Forsberg, Bertil

    2010-03-01

    Fine particulate matter (PM(2.5)) was sampled at an urban background site in Tartu, Estonia over one-year period during the ECRHS II study. The elemental composition of 71 PM(2.5) samples was analyzed for different chemical elements using energy-dispersive X-ray fluorescence spectrometry (ED-XRF). The oxidative activity of 36 samples was assessed by measuring their ability to generate hydroxyl radicals in the presence of hydrogen peroxide. The origin of air masses was determined by computing 96-hour back trajectories of air masses with the HYSPLIT Model. The trajectories of air masses were divided into four sectors according to geographical patterns: "Russia," "Eastern Europe," "Western Europe," and "Scandinavia." During the study period, approximately 30% of air masses originated from "Scandinavia." The other three sectors had slightly lower values (between 18 and 22%). In spring, summer, and winter, higher total PM levels originated from air masses from continental areas, namely "Russia" and "Eastern Europe" (18.51+/-7.33 and 19.96+/-9.23microg m(-3), respectively). In autumn, the PM levels were highest in "Western Europe". High levels of Fe, Ti, and AlCaSi (Al, Ca, and Si) were also detected in air masses from the Eurasian continent. The oxidative properties were correlated to the origin of air masses. The OH values were approximately 1.5 times higher when air masses originated from the direction of "Eastern Europe" or "Russia." The origin of measured particles was evaluated using principal component factor analysis. When comparing the PM(2.5) elemental composition with seasonal variation, factor scores, and other studies, the factors represent: (1) combustion of biomass; (2) crustal dust; (3) traffic; and (4) power plants and industrial processes associated with oil burning. The total PM(2.5) is driven mainly by biomass and industrial combustion (63%) and other unidentified sources (23%). Other sources of PM, such as crustal dust and traffic, contribute a total

  12. Reading the Other: Ethics of Encounter

    ERIC Educational Resources Information Center

    Allen, Sarah

    2008-01-01

    Most scholarly fields, at least in the humanities, have been asking the same questions about the politics of encounter for hundreds of years: Should we try to find a way to encounter an other without appropriating it, without imposing ourselves on it? Is encountering-without-appropriating even possible? These questions are profuse and taken up…

  13. High-efficiency, one-sun (22. 3% at air mass 0; 23. 9% at air mass 1. 5) monolithic two-junction cascade solar cell grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Chung, B.; Virshup, G.F.; Werthen, J.G.

    1988-05-30

    A high-efficiency monolithic two-junction solar cell consisting of an Al/sub 0.37/Ga/sub 0.63/As (E/sub g/ = 1.93 eV) upper cell and a GaAs lower cell has been grown by metalorganic vapor phase epitaxy. Since both component cells have the n-on-p configuration, the unwanted p-n junction has been eliminated with the use of metal-interconnect contact during post-growth processing. As a two-terminal device, an efficiency of 22.3% has been achieved under 1 sun, air mass 0 illumination conditions, whereas an efficiency of 23.9% was obtained when the cascade cell was operated as a three-terminal device under 1 sun, air mass 1.5 illumination. This result represents the highest 1 sun efficiency ever reported. The advantages of utilizing this multijunction solar cell for terrestrial and space applications are also described.

  14. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  15. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  16. Smart tetroons for Lagrangian air-mass tracking during ACE 1

    NASA Astrophysics Data System (ADS)

    Businger, Steven; Johnson, Randy; Katzfey, Jack; Siems, Steven; Wang, Qing

    1999-05-01

    A series of "smart" tetroons was released from shipboard during the recent ACE 1 field experiment designed to monitor changes in the sulfur budget in a remote marine boundary layer (MBL) south of Tasmania, Australia. The smart tetroons were designed at NOAA Air Resources Laboratory Field Research Division to provide air parcel tracking information. The adjective smart here refers here to the fact that the buoyancy of the tetroons automatically adjusts through the action of a pump and valves when the tetroon travels vertically outside a range of pressures set prior to tetroon release. The smart tetroon design provides GPS location, barometric pressure, temperature, relative humidity, and tetroon status data via a transponder to the NCAR C-130 research aircraft flying in the vicinity of the tetroons. In this paper we will describe (1) the design and capability of the smart tetroons and their performance during the two Lagrangian experiments conducted during ACE 1, (2) the synoptic context of the Lagrangians, including the origin of the air parcels being tracked, and (3) the results of trajectory predictions derived from the National Center for Environmental Prediction (NCEP) Global Spectral Model (GSM) and Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Atmospheric Research (DAR) limited-area model.

  17. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components. PMID:21504010

  18. Icing Encounter Duration Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Lee, Sam

    2011-01-01

    This paper describes a study performed to investigate how aerodynamic performance degradation progresses with time throughout an exposure to icing conditions. It is one of the first documented studies of the effects of ice contamination on aerodynamic performance at various points in time throughout an icing encounter. Both a 1.5 and 6 ft chord, two-dimensional, NACA-23012 airfoils were subjected to icing conditions in the NASA Icing Research Tunnel for varying lengths of time. At the end of each run, lift, drag, and pitching moment measurements were made. Measurements with the 1.5 ft chord model showed that maximum lift and pitching moment degraded more rapidly early in the exposure and degraded more slowly as time progressed. Drag for the 1.5 ft chord model degraded more linearly with time, although drag for very short exposure durations was slightly higher than expected. Only drag measurements were made with the 6 ft chord airfoil. Here, drag for the long exposures was higher than expected. Novel comparison of drag measurements versus an icing scaling parameter, accumulation parameter times collection efficiency was used to compare the data from the two different size model. The comparisons provided a means of assessing the level of fidelity needed for accurate icing simulation.

  19. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  20. Interaction of clothing and body mass index affects validity of air displacement plethysmography in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Examine the effect of alternate clothing schemes on validity of Bod Pod to estimate percent body fat (BF) compared to dual x-ray absorptiometry (DXA), and determine if these effects differ by body mass index (BMI). Design: Cross-sectional Subjects: 132 healthy adults aged 19-81 classifi...

  1. Mass transfer coefficients developed from the air gasification of wood pellets

    SciTech Connect

    Botts, J.W.

    1998-07-01

    A convertible updraft/downdraft, fixed-bed gasifier was used in the gasification of 3/8-inch diameter wood pellets. The test data was used to develop mass transfer coefficients and describe the gasification process for each gasifier configuration. The results show that the production of the principal combustion gases, i.e., hydrogen (H{sub c}), carbon monozide (CO), and methane (CH{sub 4}), varies directly as to their mass transfer coefficient: H{sub 2}, CO, and CH{sub 4} = k h{sub DA}. Factoring the Reynolds (Re{sub d}) and Schmidt (Sc) numbers with the influence of the noncombustible gases, i.e., nitrogen (N{sub 2}), oxygen (O{sub 2}), and carbon dioxide (CO{sub 2}), is used to define the mass transfer coefficients. The general form describing this joint variation is: H{sub 2}, CO, and CH{sub 4} = kx (the effect of the noncombustible gases) x Re x Sc where Re = Reynolds number and Sc = Schmidt number. The developments of these mass transfer coefficients are shown for updraft and downdraft gasification.

  2. Air-sea fluxes and satellite-based estimation of water masses formation

    NASA Astrophysics Data System (ADS)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  3. Influence of dissolved humic substances on the mass transfer of organic compounds across the air-water interface.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-01-01

    The effect of dissolved humic substances (DHS) on the rate of water-gas exchange of two volatile organic compounds was studied under various conditions of agitation intensity, solution pH and ionic strength. Mass-transfer coefficients were determined from the rate of depletion of model compounds from an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution (dynamic system). Under these conditions, the overall transfer rate is controlled by the mass-transfer resistance on the water side of the water-gas interface. The experimental results show that the presence of DHS hinders the transport of the organic molecules from the water into the gas phase under all investigated conditions. Mass-transfer coefficients were significantly reduced even by low, environmentally relevant concentrations of DHS. The retardation effect increased with increasing DHS concentration. The magnitude of the retardation effect on water-gas exchange was compared for Suwannee River fulvic and humic acids, a commercially available leonardite humic acid and two synthetic surfactants. The observed results are in accordance with the concept of hydrodynamic effects. Surface pressure forces due to surface film formation change the hydrodynamic characteristics of water motion at the water-air interface and thus impede surface renewal. PMID:22051345

  4. What is the role of wind pumping on heat and mass transfer rates at the air-snow interface?

    NASA Astrophysics Data System (ADS)

    Helgason, W.; Pomeroy, J. W.

    2010-12-01

    Accurate prediction of the turbulent exchange of sensible heat and water vapour between the atmosphere and snowpack remains a challenging task under all but the most ideal conditions. Heat and mass transfer coefficients that recognize the unique properties of the snow surface are warranted. A particular area requiring improvement concerns the role of the porous nature of snow which provides a large surface area for heat and mass exchange with the atmosphere. Wind-pumping has long been considered as a viable mechanism for incorporating aerosols into snowpacks; however these processes are not considered in parameterization schemes for heat and mass transfer near the surface. This study attempts to determine the degree to which wind pumping can increase the rates of heat and mass transfer to snow, and to ascertain which structural properties of the snowpack are needed for inclusion in heat and mass transfer coefficients that reflect wind pumping processes. Based upon a review of recent geophysical and engineering literature where porous surfaces are exploited for their ability to augment heat and mass transfer rates, a technical analysis was conducted. Numerous conceptual mechanisms of wind pumping were considered: topographically-induced flow; barometric pressure changes; high frequency pressure fluctuations at the surface; and steady flow in the interfacial region. A sensitivity analysis was performed, subjecting each conceptual model to varying thermal and hydraulic conditions at the air-snow interface, as well as variable micro-structural properties of snow. It is shown that the rate of heat and mass exchange is most sensitive to the interfacial thermal conditions and factors controlling the energy balance of the uppermost snow grains. The effect upon the thermal regime of the snowpack was found to be most significant for mechanisms of wind pumping that result in shorter flow paths near the surface, rather than those caused by low frequency pressure changes. In

  5. Primary and secondary organic aerosols in urban air masses intercepted at a rural site

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Vlasenko, Alexander; Sjostedt, Steve; Chang, Rachel; Shantz, Nicole; Abbatt, Jonathan; Slowik, J. G.; Bottenheim, J. W.; Brickell, P. C.; Stroud, C.; Leaitch, W. Richard

    2010-11-01

    Measurements made at a rural site in central Ontario during May-June 2007 are used to investigate the composition of organic aerosol (OA) downwind of an urban region. Observations of aerosol organic carbon and oxygen containing fragments from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) are combined with toluene to benzene ratios to estimate the relative importance of secondary organic aerosol (SOA) and primary organic aerosol (POA) to the total OA at the site during periods of significant urban influence. We estimate that SOA formed within 1-2 days of the anthropogenic source regions was 40-50% of the measured OA and that POA was 5-16% of the OA. The remaining 35-45% of the OA is assumed to have been present in the aerosol upwind of the source regions prior to entering the study domain as defined by trajectories and estimates of the potential photochemical aging time. The apportionment results were also compared to that of positive matrix factorization analysis. In addition, the measurements of the molar oxygen to carbon ratio (O/C) in the OA demonstrates that SOA becomes progressively more oxygenated with increasing photochemical age and at low total OA mass.

  6. Stellar encounters involving neutron stars in globular cluster cores

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1992-01-01

    Encounters between a 1.4 solar mass neutron star and a 0.8 solar mass red giant (RG) and between a 1.4 solar mass neutron star (NS) and an 0.8 solar mass main-sequence (MS) star have been successfully simulated. In the case of encounters involving an RG, bound systems are produced when the separation at periastron passage R(MIN) is less than about 2.5 R(RG). At least 70 percent of these bound systems are composed of the RG core and NS forming a binary engulfed in a common envelope of what remains of the former RG envelope. Once the envelope is ejected, a tight white dwarf-NS binary remains. For MS stars, encounters with NSs will produce bound systems when R(MIN) is less than about 3.5 R(MS). Some 50 percent of these systems will be single objects with the NS engulfed in a thick disk of gas almost as massive as the original MS star. The ultimate fate of such systems is unclear.

  7. Understanding metropolitan patterns of daily encounters.

    PubMed

    Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng

    2013-08-20

    Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373

  8. Interactions effectives, théories de champ moyen masses et rayons nucléaires

    NASA Astrophysics Data System (ADS)

    Meyer, J.

    2003-05-01

    Effective interactions, mean field theories, masses and nuclear radii A review of effective interactions used in mean field theories for the description of properties of atomic nuclei is presented. Relativistic as well as non relativistic theories are discussed with a special attention to the cases where their results are very different. We will concentrate on the effective forces built up to investigate the nuclear medium in extreme conditions. Masses and r.m.s. radii along long chain of isotopes will be discussed. Large deformations, as observed in the fission of heavy nuclei, and exotic neutron rich nuclei will be taken as examples of these extreme conditions. Le principal propos de cet ouvrage est : (i) de passer en revue les outils théoriques utilisés sous le sigle ”théories microscopiques de champ moyen ”. Sans entrer dans le détail des formalismes (le lecteur sera systématiquement renvoyé ”pour en savoir plus ” à des cours plus complets qui ont déjà été donnés dans le passé à l'École Joliot-Curie) il s'agira surtout de préciser le contexte, les hypothèses et les approximations qui se cachent sous les sigles : Hartree-Fock (HF), Hartree-Fock-Bogoliubov (HFB), Approximation BCS (HFBCS), Champ Moyen Relativiste (RMF), Approximations Hartree (RH), Hartree-Fock (RHF) et Hartree-Bogoliubov (RHB) Relativistes, ... ; (ii) de présenter la procédure générale et les ingrédients qui entrent dans la construction d'une interaction effective, élément de base de ces théories dont l'intérêt majeur est de livrer des résultats comparables à l'expérience sans paramètre ajustable ; (iii) de discuter des effets des différentes approximations ou interactions effectives sur des résultats expérimentaux pris dans diverses zones de noyaux. Ces discussions seront surtout centrées sur les masses et les rayons des noyaux mais aussi sur certaines quantités plus significatives que l'on peut en extraire : énergies de séparation de deux neutrons

  9. Brief Communication: Upper-air relaxation in RACMO2 significantly improves modelled interannual surface mass balance variability in Antarctica

    NASA Astrophysics Data System (ADS)

    van de Berg, Willem Jan; Medley, Brooke

    2016-03-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  10. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  11. Comparison of sampling methods for radiocarbon dating of carbonyls in air samples via accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schindler, Matthias; Kretschmer, Wolfgang; Scharf, Andreas; Tschekalinskij, Alexander

    2016-05-01

    Three new methods to sample and prepare various carbonyl compounds for radiocarbon measurements were developed and tested. Two of these procedures utilized the Strecker synthetic method to form amino acids from carbonyl compounds with either sodium cyanide or trimethylsilyl cyanide. The third procedure used semicarbazide to form crystalline carbazones with the carbonyl compounds. The resulting amino acids and semicarbazones were then separated and purified using thin layer chromatography. The separated compounds were then combusted to CO2 and reduced to graphite to determine 14C content by accelerator mass spectrometry (AMS). All of these methods were also compared with the standard carbonyl compound sampling method wherein a compound is derivatized with 2,4-dinitrophenylhydrazine and then separated by high-performance liquid chromatography (HPLC).

  12. Measurement error models in chemical mass balance analysis of air quality data

    NASA Astrophysics Data System (ADS)

    Christensen, William F.; Gunst, Richard F.

    The chemical mass balance (CMB) equations have been used to apportion observed pollutant concentrations to their various pollution sources. Typical analyses incorporate estimated pollution source profiles, estimated source profile error variances, and error variances associated with the ambient measurement process. Often the CMB model is fit to the data using an iteratively re-weighted least-squares algorithm to obtain the effective variance solution. We consider the chemical mass balance model within the framework of the statistical measurement error model (e.g., Fuller, W.A., Measurement Error Models, Wiley, NewYork, 1987), and we illustrate that the models assumed by each of the approaches to the CMB equations are in fact special cases of a general measurement error model. We compare alternative source contribution estimators with the commonly used effective variance estimator when standard assumptions are valid and when such assumptions are violated. Four approaches for source contribution estimation and inference are compared using computer simulation: weighted least squares (with standard errors adjusted for source profile error), the effective variance approach of Watson et al. (Atmos, Environ., 18, 1984, 1347), the Britt and Luecke (Technometrics, 15, 1973, 233) approach, and a method of moments approach given in Fuller (1987, p. 193). For the scenarios we consider, the simplistic weighted least-squares approach performs as well as the more widely used effective variance solution in most cases, and is slightly superior to the effective variance solution when source profile variability is large. The four estimation approaches are illustrated using real PM 2.5 data from Fresno and the conclusions drawn from the computer simulation are validated.

  13. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  14. A mass balance method for non-intrusive measurements of surface-air trace gas exchange

    NASA Astrophysics Data System (ADS)

    Denmead, O. T.; Harper, L. A.; Freney, J. R.; Griffith, D. W. T.; Leuning, R.; Sharpe, R. R.

    A mass balance method is described for calculating gas production from a surface or volume source in a small test plot from measurements of differences in the horizontal fluxes of the gas across upwind and downwind boundaries. It employs a square plot, 24 m×24 m, with measurements of gas concentration at four heights (up to 3.5 m) along each of the four boundaries. Gas concentrations are multiplied by the appropriate vector winds to yield the horizontal fluxes at each height on each boundary. The difference between these fluxes integrated over downwind and upwind boundaries represents production. Illustrations of the method, which involve exchanges of methane and carbon dioxide, are drawn from experiments with landfills, pastures and grazing animals. Tests included calculation of recovery rates from known gas releases and comparisons with a conventional micrometeorological approach and a backward dispersion model. The method performed satisfactorily in all cases. Its sensitivity for measuring exchanges of CO 2, CH 4 and N 2O in various scenarios was examined. As employed by us, the mass balance method can suffer from errors arising from the large number of gas analyses required for a flux determination, and becomes unreliable when there are light winds and variable wind directions. On the other hand, it is non-disturbing, has a simple theoretical basis, is independent of atmospheric stability or the shape of the wind profile, and is appropriate for flux measurement in situations where conventional micrometeorological methods can not be used, e.g. for small plots, elevated point sources, and heterogeneous surface sources.

  15. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  16. Development of portable mass spectrometer with electron cyclotron resonance ion source for detection of chemical warfare agents in air.

    PubMed

    Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo

    2014-01-01

    A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. PMID:24211802

  17. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  18. Spectral effects on latitude-tilt and vertical PV modules as affected by latitude, air mass, and climate

    NASA Astrophysics Data System (ADS)

    Gueymard, Christian A.

    2007-09-01

    Using the same SMARTS radiative code as for the development of improved reference spectra for PV rating, an analysis of the spectral sensitivity of specific PV technologies to varying air mass and other factors is presented. To the difference of previous studies, the approach taken here considers realistic atmospheric conditions, as measured at five North- American sites from widely different climatic zones. Two different PV applications (latitude-tilted flat-plates and vertical building-integrated modules) are showcased with seven possible materials, including a-Si, m-Si, and triple junctions. Considering the most frequent clear-sky conditions around the summer solstice at the selected sites, the Spectral Enhancement Factor (SEF) is calculated both for a fixed air mass (1.5) and daily-average spectral conditions. This analysis provides a preliminary assessment of how latitude, local climatic conditions, and PV geometry affect the relative merits of different technologies relatively to standard rating conditions. In particular, it is shown that, in summer, latitude-tilt PV modules experience bluer incident spectra than the reference spectrum, therefore favoring the a-Si modules (SEF > 1). For vertical-tilt PV systems, the SEF is generally lower than for latitude-tilt systems, with the notable exception of m- Si. When considering daily-average results, the effective SEF can become extremely low in the case of a-Si (down to 0.65) and moderately high for m-Si (up to 1.09). It is concluded that the effects of location, season, and PV material on the spectral effect needs to be investigated in detail, particularly for applications involving vertical building-integrated systems.

  19. Viking first encounter of phobos: preliminary results.

    PubMed

    Tolson, R H; Duxbury, T C; Born, G H; Christensen, E J; Diehl, R E; Farless, D; Hildebrand, C E; Mitchell, R T; Molko, P M; Morabito, L A; Palluconi, F D; Reichert, R J; Taraji, H; Veverka, J; Neugebauer, G; Findlay, J T

    1978-01-01

    During the last 2 weeks of February 1977, an intensive scientific investigation of the martian satellite Phobos was conducted by the Viking Orbiter-1 (VO-1) spacecraft. More than 125 television pictures were obtained during this period and infrared observations were made. About 80 percent of the illuminated hemisphere was imaged at a resolution of about 30 meters. Higher resolution images of limited areas were also obtained. Flyby distances within 80 kilometers of the surface were achieved. An estimate of the mass of Phobos (GM) was obtained by observing the effect of Phobos's gravity on the orbit of VO-1 as sensed by Earth-based radiometric tracking. Preliminary results indicate a value of GM of 0.00066 +/- 0.00012 cubic kilometer per second squared (standard deviation of 3) and a mean density of about 1.9 +/- 0.6 gram per cubic centimeter (standard deviation of 3). This low density, together with the low albedo and the recently determined spectral reflectance, suggest that Phobos is compositionally similar to type I carbonaceous chondrites. Thus, either this object formed in the outer part of the asteroid belt or Lewis's theory that such material cannot condense at 1.5 astronomical units is incorrect. The data on Phobos obtained during this first encounter period are comparable in quantity to all of the data on Mars returned by Mariner flights 4, 6, and 7. PMID:17841954

  20. Atmospheric pollutants in Chiang Mai (Thailand) over a five-year period (2005-2009), their possible sources and relation to air mass movement

    NASA Astrophysics Data System (ADS)

    Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan

    2012-12-01

    Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the

  1. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  2. Combining airborne gas and aerosol measurements with HYSPLIT: a visualization tool for simultaneous evaluation of air mass history and back trajectory consistency

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Kapustin, V. N.; Campos, T.; Brekhovskikh, V. L.; Zhou, J.

    2014-01-01

    The history of air masses is often investigated using backward trajectories to gain knowledge about processes along the air parcel path as well as possible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous evaluation of air mass history and back trajectory reliability without the need to calculate trajectory errors. We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along free tropospheric (FT) flight tracks and profiles every 10 s. We integrate our in situ physiochemical data by color-coding each of these trajectories with its corresponding in situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories. This is particularly true when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. The cluster-visualization tool used here reveals that most FT back trajectories with pollution signatures measured in the central equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g., the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories

  3. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  4. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Liston, Glen

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  5. Selective Mass Spectrometer Characterization of Halogen Gases in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Dahl, S.; Ivey, M. M.; Foster, K. L.

    2004-12-01

    We have developed a new interface for use with a commercial ion-trap mass spectrometer equipped with atmospheric pressure chemical ionization (APCI-MS). The new interface uses a mechanical pump to draw gaseous analyte through a glass manifold and into the corona discharge area of the APCI-MS. This new method of delivering a gaseous sample at atmospheric pressure directly to the MS has been used to obtain real-time measurements of Br2 and Cl2 over synthetic seawater ice. The ion intensity of a halogen gas measured by the MS is affected by the pumping rate and the position of the glass manifold. The MS signals for Br2 are linear in the 0.1 to 10.6 ppbv range, and the estimated 3 sigma detection limit is 20.7 pptv. The MS signals for Cl2 are linear in the 0.2 to 25 ppbv range, and the estimated 3 sigma detection limit is 1.081 ppbv. This lab-based technique is suitable to be the basis for a portable field-based design. Such a design, a miniaturized instrument, will help elucidate the role of seawater snow and ice surfaces on the photochemical production of Br2 and Cl2 in the high Arctic.

  6. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-02-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with the mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons of the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air mass from south direction are always associated with pollution events during the summertime of Beijing. In August 2008, the frequency of air mass arriving from south has been twice higher compared to the average of the previous years, these southerly air masses did however not result in elevated particle volume concentrations in Beijing. This result implied that the air mass history was not the key factor, explaining reduced particle number and volume concentrations during the Beijing 2008 Olympic Games. Four factors were found influencing particle concentrations using a Positive matrix factorization (PMF) model. They were identified to local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  7. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales - II. Mass size distributions and gas-particle partitioning

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Klánová, Jana; Ilić, Predrag; Kohoutek, Jiří; Gasić, Bojan; Kovacić, Igor; Škrdlíková, Lenka

    2010-12-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured together with inorganic air pollutants at two urban sites and one rural background site in the Banja Luka area, Bosnia and Hercegovina, during 72 h in July 2008 using a high time resolution (5 samples per day) with the aim to study gas-particle partitioning, aerosol mass size distributions and to explore the potential of a higher time resolution (4 h-sampling). In the particulate phase the mass median diameters of the PAHs were found almost exclusively in the accumulation mode (0.1-1.0 μm of size). These were larger for semivolatile PAHs than for non-volatile PAHs. Gas-particle partitioning of semivolatile PAHs was strongly influenced by temperature. The results suggest that the Junge-Pankow model is inadequate to explain the inter-species variation and another process must be significant for phase partitioning which is less temperature sensitive than adsorption. Care should be taken when interpreting slopes m of plots of the type log K p = m log p L0 + b based on 24 h means, as these are found sensitive to the time averaging, i.e. tend to be higher than when based on 12 h-mean samples.

  8. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Christopher, Sundar A.

    2003-11-01

    We explore the relationship between column aerosol optical thickness (AOT) derived from the Moderate Resolution Imaging SpectroRadiometer (MODIS) on the Terra/Aqua satellites and hourly fine particulate mass (PM2.5) measured at the surface at seven locations in Jefferson county, Alabama for 2002. Results indicate that there is a good correlation between the satellite-derived AOT and PM2.5 (linear correlation coefficient, R = 0.7) indicating that most of the aerosols are in the well-mixed lower boundary layer during the satellite overpass times. There is excellent agreement between the monthly mean PM2.5 and MODIS AOT (R > 0.9), with maximum values during the summer months due to enhanced photolysis. The PM2.5 has a distinct diurnal signature with maxima in the early morning (6:00 ~ 8:00AM) due to increased traffic flow and restricted mixing depths during these hours. Using simple empirical linear relationships derived between the MODIS AOT and 24hr mean PM2.5 we show that the MODIS AOT can be used quantitatively to estimate air quality categories as defined by the U.S. Environmental Protection Agency (EPA) with an accuracy of more than 90% in cloud-free conditions. We discuss the factors that affect the correlation between satellite-derived AOT and PM2.5 mass, and emphasize that more research is needed before applying these methods and results over other areas.

  9. First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.

    PubMed

    Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel

    2014-08-19

    During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models. PMID:25103722

  10. Encounter with Jupiter. [Pioneer 10 space probe

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Pioneer 10 space probe's encounter with the Jupiter is discussed in detail. Tables are presented which include data on the distances during the encounter, times of crossing satellite orbits, important events in the flight near Jupiter, and time of experiments. Educational study projects are also included.

  11. Encountering Death: Structured Activities for Death Awareness.

    ERIC Educational Resources Information Center

    Welch, Ira David; And Others

    This book is intended to be used as a supplement to standard textbooks on death and dying for college students. Chapter 1 "Encountering Death in the Self" builds the foundation for increased self-awareness for the study of death and dying. Chapter 2 "Encountering Death in the Family" provides activities which are appropriate for a wide variety of…

  12. Encountering! The Arts Part of Basic Education.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City. Curriculum Div.

    This publication contains an "Encountering Model" and model lessons for integrating arts experiences into the basic curriculum at the elementary and junior high school levels. The model uses a three-phase learning sequence in which each phase is labeled an "encounter." The first phase is "exploration," when students are provided with certain ideas…

  13. Marriage Encounter Casualties: A Preliminary Investigation.

    ERIC Educational Resources Information Center

    Doherty, William J.; Walker, Brian J.

    1982-01-01

    Investigated the relationship between participation in Marriage Encounter and subsequent marital or family distress. An analysis of 13 case reports suggested that Marriage Encounter weekends can cause marital or family deterioration through increased marital conflict, avoidance of constructive problem solving, or marital enmeshment at the expense…

  14. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  15. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  16. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  17. Recent trends of persistent organic pollutants in air in central Europe - Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy

    NASA Astrophysics Data System (ADS)

    Dvorská, A.; Lammel, G.; Holoubek, I.

    We use air mass back trajectory analysis of persistent organic pollutant (POP) levels monitored at a regional background site, Košetice, Czech Republic, as a tool to study the effectiveness of emission reduction measures taken in the last decade in the region. The representativity of the chosen trajectory starting height for air sampling near ground was ensured by excluding trajectories starting at time of inversions lower than their starting height. As the relevant pollutant sources are exclusively located in the atmospheric boundary layer, trajectory segments above this layer were also excluded from the analysis. We used a linear time weight to account for the influence of dispersion and deposition on trace components abundances and to quantify the ground source loading, a continuous measure for the influence of surface emissions. Hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), DDT, and two time periods, the years 1997-1999 and 2004-2006, were studied. The pollutant levels transported to Košetice decreased for all substances except HCB. Except for lindane seasonal emissions were insignificant. Increasing emissions of HCB were at least partly linked to the 2002 floods in the Danube basin. Major emissions of 1997-1999 which decreased significantly were in France (lindane), western Poland, Hungary and northern ex-Yugoslavia (technical HCH), and the Czech Republic (DDT). Emissions remaining in 2004-2006 include HCB and DDT in the northern Czech Republic, HCB and PCBs in Germany. Besides changes in emission strength meteorological factors influence the level of transported pollutant concentrations. The prevailing air flow pattern limits the geographic coverage of this analysis to central Europe and parts of western Europe. However, no POP monitoring stations exist in areas suitable for a possible extension of the study area.

  18. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to

  19. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  20. Analysis of heat and mass transfer between air and falling film desiccant for different flow configurations in the presence of ultrafine particles

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad A.

    This work focuses on the enhancement of heat and mass transfer between air and falling desiccant film for different flow channel configurations. Cu-Ultrafine particles are added to the desiccant film to investigate the enhancement in heat and mass transfer between air and desiccant film for dehumidification and cooling processes of the air and regeneration of desiccant film. A detailed comparative study between parallel and counter flow channels is performed using a parametric study to investigate the enhancements in dehumidification, cooling, and regeneration processes in terms of the pertinent parameters. The results reveal that the parallel flow arrangement provides better dehumidification and cooling for the air than the counter flow channel for a wide range of parameters. Next, the inclined parallel and counter flow configurations are investigated using an Alternating Direction Implicit (ADI) and successive over-relaxation methods to discretize the vorticity and stream-function equations, respectively. A parametric study is employed to investigate the inclination angle effects in enhancing the heat and mass transfer in terms of the controlling parameters. It is shown that inclination angle plays a significant role in enhancing the dehumidification, cooling, and regeneration processes. Finally, the enhancements in heat and mass transfer in cross flow channel between air and desiccant film is examined based on a parametric study to investigate the dehumidification and cooling processes of the air in terms of the pertinent controlling parameters. These parameters are air and desiccant Reynolds numbers, dimensions of the channel, volume fraction of Cu-ultrafine particles, and thermal dispersion effects. It is found that an increase in the Cu-volume fraction increases dehumidification and cooling capabilities and produce more stable Cu-desiccant film.

  1. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    NASA Astrophysics Data System (ADS)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  2. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  3. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  4. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    ERIC Educational Resources Information Center

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  5. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  6. First-Year Principal Encounters Homophobia

    ERIC Educational Resources Information Center

    Retelle, Ellen

    2011-01-01

    A 1st-year principal encounters homonegativity and an ethical dilemma when she attempts to terminate a teacher because of the teacher's inadequate and ineffective teaching. The teacher responds by threatening to "out" Ms. L. to the parents.

  7. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-01

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. PMID:25576042

  8. Assimilating airborne gas and aerosol measurements into HYSPLIT: a visualization tool for simultaneous assessment of air mass history and back trajectory reliability

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Kapustin, V. N.; Campos, T.; Brekhovskikh, V. L.; Zhou, J.

    2013-06-01

    Backward trajectories are commonly used to gain knowledge about the history of airborne observations in terms of possible processes along their path as well as feasible source regions. Here, we describe a refined approach that incorporates airborne gas, aerosol, and environmental data into back trajectories and show how this technique allows for simultaneous assessment of air mass history and back trajectory reliability without the need of calculating trajectory errors. We use the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model and add a simple semi-automated computing routine to facilitate high-frequency coverage of back trajectories initiated along the flight track every 10 s. We integrate our in-situ physiochemical data by color-coding each of these trajectories with its corresponding in-situ tracer values measured at the back trajectory start points along the flight path. The unique color for each trajectory aids assessment of trajectory reliability through the visual clustering of air mass pathways of similar coloration. Moreover, marked changes in trajectories associated with marked changes evident in measured physiochemical or thermodynamic properties of an air mass add credence to trajectories, particularly when these air mass properties are linked to trajectory features characteristic of recognized sources or processes. This visual clustering of air mass pathways is of particular value for large-scale 3-D flight tracks common to aircraft experiments where air mass features of interest are often spatially distributed and temporally separated. The cluster-visualization tool used here reveals most back trajectories with pollution signatures measured in the Central Equatorial Pacific reach back to sources on the South American continent over 10 000 km away and 12 days back in time, e.g. the Amazonian basin. We also demonstrate the distinctions in air mass properties between these and trajectories that penetrate deep convection in the

  9. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  10. Pioneer to encounter Saturn on September 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The encounter of the Pioneer 11 Spacecraft with Saturn, designed to provide information on the evolution of the Sun and its planets, is described. Photographs and measurements of Saturn, its rings, and several of its 10 satellites, including Titan, to be taken by Pioneer instruments, are emphasized. The encounter sequence and spacecraft trajectory are discussed. A description of Saturn and its atmosphere is included. Onboard instruments and experiments are also described.

  11. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  12. Gas chromatographic-mass spectroscopic determination of benzene in indoor air during the use of biomass fuels in cooking time.

    PubMed

    Sinha, Sukesh Narayan; Kulkarni, P K; Desai, N M; Shah, S H; Patel, G M; Mansuri, M M; Parikh, D J; Saiyed, H N

    2005-02-18

    A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p < 0.01) in indoor kitchen with respect to open type kitchen using dung fuels. The wood fuel produces 36.5 microg m(-3) of benzene in indoor kitchen. The concentration of benzene in indoor kitchen using wood fuel was significantly (p < 0.01) lower in comparison to dung fuel. This method may be helpful for environmental analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment. PMID:15782977

  13. Energetics and efficiency analysis of a cobaloxime-modified semiconductor under simulated air mass 1.5 illumination.

    PubMed

    Krawicz, Alexandra; Cedeno, Diana; Moore, Gary F

    2014-08-14

    We report on the energetics and efficiency of a p-type (100) gallium phosphide (GaP) semiconductor functionalized with molecular hydrogen production catalysts via polymer grafting. The catalysts belong to the cobaloxime class of compounds that have recently shown promise in electrocatalysis and solar-to-fuel applications. Attachment of the complex to a semiconductor surface allows direct photoelectrochemical (PEC) measurements of performance. Under simulated air mass 1.5 illumination, the catalyst-modified photocathode yields a 0.92 mA cm(-2) current density when operating at the equilibrium potential for the hydrogen production half reaction. The open circuit photovoltage (VOC) is 0.72 V vs. a reversible hydrogen electrode (RHE) and the fill factor (FF) is 0.33 (a 258% increase compared to polymer-modified electrodes, without cobaloxime treatment). The external quantum efficiency (EQE), measured under a reverse bias of +0.17 vs. RHE, shows a maximum of 67% under 310 nm illumination. Product analysis of the head-space gas yields a lower limit on the Faradaic efficiency of 88%. In addition, the near linear photoresponse of the current density upon increasing illumination indicates that photocarrier transport to the interface can limit performance. These results give insights into the design of improved photocatalytic constructs with additional performance gains. PMID:24619031

  14. Urban air pollution: a representative survey of PM(2.5) mass concentrations in six Brazilian cities.

    PubMed

    de Miranda, Regina Maura; de Fatima Andrade, Maria; Fornaro, Adalgiza; Astolfo, Rosana; de Andre, Paulo Afonso; Saldiva, Paulo

    2012-03-01

    In urban areas of Brazil, vehicle emissions are the principal source of fine particulate matter (PM(2.5)). The World Health Organization air quality guidelines state that the annual mean concentration of PM(2.5) should be below 10 μg m(-3). In a collaboration of Brazilian institutions, coordinated by the University of São Paulo School of Medicine and conducted from June 2007 to August 2008, PM(2.5) mass was monitored at sites with high traffic volumes in six Brazilian state capitals. We employed gravimetry to determine PM(2.5) mass concentrations, reflectance to quantify black carbon concentrations, X-ray fluorescence to characterize elemental composition, and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM(2.5) concentrations and proportions of black carbon (BC) in the cities of São Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Recife, and Porto Alegre were 28.1 ± 13.6 μg m(-3) (38% BC), 17.2 ± 11.2 μg m(-3) (20% BC), 14.7 ± 7.7 μg m(-3) (31% BC), 14.4 ± 9.5 μg m(-3) (30% BC), 7.3 ± 3.1 μg m(-3) (26% BC), and 13.4 ± 9.9 μg m(-3) (26% BC), respectively. Sulfur and minerals (Al, Si, Ca, and Fe), derived from fuel combustion and soil resuspension, respectively, were the principal elements of the PM(2.5) mass. We discuss the long-term health effects for each metropolitan region in terms of excess mortality risk, which translates to greater health care expenditures. This information could prove useful to decision makers at local environmental agencies. PMID:22408694

  15. Elemental composition and radical formation potency of PM10 at an urban background station in Germany in relation to origin of air masses

    NASA Astrophysics Data System (ADS)

    Hellack, Bryan; Quass, Ulrich; Beuck, Henning; Wick, Gabriele; Kuttler, Wilhelm; Schins, Roel P. F.; Kuhlbusch, Thomas A. J.

    2015-03-01

    At an urban background station in Mülheim-Styrum, North Rhine Westphalia, Germany, a set of 75 PM10 samples was collected over a one year period, followed by analyses for mass, chemical composition and hydroxyl radical (OHrad) formation potency. Additionally, the origin of air masses for the sampling days was calculated by 48-h backward trajectories, subdivided into the four cardinal sectors. Significant lower PM10 mass concentrations were observed for summertime air masses from the west compared to the other seasons and cardinal sectors. For the OHrad formation potency higher values were detected if air masses originate from east and south, thus predominantly being of continental origin. From the elevated OHrad formation potencies in fall and winter a seasonal trend with low potencies in summers is assumed. Furthermore, source apportionment was performed by a positive matrix factor analysis, separating seven plausible factors which could be attributed to mineral dust, secondary nitrate, industry, non-exhaust traffic, fossil fuel combustion, marine aerosol and secondary aerosol factors. The intrinsic OHrad formation potency was found to be associated mainly with the fossil fuel combustion factor (45%) and industry factor (22%).

  16. Superkicks in hyperbolic encounters of binary black holes.

    PubMed

    Healy, James; Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A

    2009-01-30

    Generic inspirals and mergers of binary black holes produce beamed emission of gravitational radiation that can lead to a gravitational recoil or kick of the final black hole. The kick velocity depends on the mass ratio and spins of the binary as well as on the dynamics of the binary configuration. Studies have focused so far on the most astrophysically relevant configuration of quasicircular inspirals, for which kicks as large as approximately 3300 km s;(-1) have been found. We present the first study of gravitational recoil in hyperbolic encounters. Contrary to quasicircular configurations, in which the beamed radiation tends to average during the inspiral, radiation from hyperbolic encounters is plunge dominated, resulting in an enhancement of preferential beaming. As a consequence, it is possible in highly relativistic scatterings to achieve kick velocities as large as 10 000 km s;(-1). PMID:19257409

  17. Size-Segregated Aerosol Composition and Mass Loading of Atmospheric Particles as Part of the Pacific Northwest 2001(PNW2001) Air Quality Study In Puget Sound

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Barrie, L. A.; Shutthanadan, S.; Cliff, S.; Cahill, T.

    2001-12-01

    In mid-August, 2001, an aircraft-based air-quality study was performed in the Puget Sound, WA, area entitled PNW2001 (http://www.pnl.gov/pnw2001). The objectives of this field campaign were the following: 1. reveal information about the 3-dimensional distribution of ozone, its gaseous precursors and fine particulate matter during weather conditions favoring air pollution; 2. derive information about the accuracy of urban and biogenic emissions inventories that are used to drive the air quality forecast models; and 3. examine the accuracy of modeled ozone concentration with that observed. In support of these efforts, we collected time-averaged ( { ~}10 minute averages), size-segregated, aerosol composition and mass-loading information using ex post facto analysis techniques of synchrotron x-ray fluorescence (s-XRF), proton induced x-ray emissions(PIXE), proton elastic scattering (PESA), and scanning transmission ion microscopy (STIM). This is the first time these analysis techniques have been used together on samples collected from aircraft using an optimized 3-stage rotating drum impactor. In our presentation, we will discuss the aerosol components in three aerosol size fractions as identified by statistical analysis of multielemental data (including total mass, H, Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Pb) and relate variations in these components to physical aerosol properties, other gaseous trace constituents and to air mass origin.

  18. Predicting close encounters between asteroids with the STB software

    NASA Astrophysics Data System (ADS)

    Lilly (Schunova), Eva; Jonas, Jeff; Srivatsa, Mudhakar; Ganti, Raghu; Agrawal, Dakshi; Denneau, Larry; Kratky, Martin; Wainscoat, Richard J.

    2015-11-01

    We have developed a method that can quickly and efficiently calculate close encounters between all known asteroids both in the past and the future. Only several hundred asteroids out of more than 690,000 have their masses currently known. The most accurate values are from direct measurements by in situ visits (e.g. Dawn at Ceres and Vesta (Russell et al. 2012, Science 336, 6082, pp. 684), Hayabusa at Itokawa (Abe et al. 2006, Science 312, 5778, pp. 1344-1349)) followed by measurements of binary systems and also from mutual orbit perturbations during close encounters between a handful of the largest MBAs.We used software called “Space Time Box” (STB) invented by IBM capable of efficiently determine co-located entities in 3D space and time. Orbits from the MPCORB.DAT database were placed into selected STB granularity with 1 day and 0.05 AU-wide bins. By determining and only tracking asteroids co-located within a selected minimal distance the computational requirements were significantly reduced. Selected instances of co-location were then provided as an input for a numerical integrator SWIFT with 8 planets as perturbers and were integrated until desired epoch with a 0.5 and 1 day timestep. We then used interpolation for the specified time window to check if the positions of asteroids intersect or are within a certain distance parameter.Using the STB optimization we calculated close encounters between years 2014 and 2039. These events offer the opportunity to search in the survey archives for potential collisions and carefully select the events for mass determination based on their minimal approach distance, angle and mass ratio of participating objects. A follow-up astrometric campaign would ensure improvement of the mass determination precision. Predicted future events can also be directly observed in the real time with optical and IR telescopes in search for collisions or mass loss.As an example we present one close encounter event observed with the University

  19. Development and characterisation of a state-of-the-art GOME-2 formaldehyde air-mass factor algorithm

    NASA Astrophysics Data System (ADS)

    Hewson, W.; Barkley, M. P.; Gonzalez Abad, G.; Bösch, H.; Kurosu, T.; Spurr, R.; Tilstra, L. G.

    2015-10-01

    Space-borne observations of formaldehyde (HCHO) are frequently used to derive surface emissions of isoprene, an important biogenic volatile organic compound. The conversion of retrieved HCHO slant column concentrations from satellite line-of-sight measurements to vertical columns is determined through application of an air mass factor (AMF), accounting for instrument viewing geometry, radiative transfer, and vertical profile of the absorber in the atmosphere. This step in the trace gas retrieval is subject to large errors. This work presents the AMF algorithm in use at the University of Leicester (UoL), which introduces scene-specific variables into a per-observation full radiative transfer AMF calculation, including increasing spatial resolution of key environmental parameter databases, input variable area weighting, instrument-specific scattering weight calculation, and inclusion of an ozone vertical profile climatology. Application of these updates to HCHO slant columns from the GOME-2 instrument is shown to typically adjust the AMF by ±20 %, compared to a reference algorithm without these advanced parameterisations. On average the GOME-2 AMFs increase by 4 %, with over 70 % of locations having an AMF of 0-20 % larger than originally, largely resulting from the use of the latest GOME-2 reflectance product. Furthermore, the new UoL algorithm also incorporates a full radiative transfer error calculation for each scene to help characterise AMF uncertainties. Global median AMF errors are typically 50-60 %, and are driven by uncertainties in the HCHO profile shape and its vertical distribution relative to clouds and aerosols. If uncertainty on the a priori HCHO profile is relatively small (< 10 %) then the median AMF total error decreases to about 30-40 %.

  20. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  1. Measurement and analysis of aerosol and black carbon in the southwestern United States and Panama and their dependence on air mass origin

    NASA Astrophysics Data System (ADS)

    Junker, C.; Sheahan, J. N.; Jennings, S. G.; O'Brien, P.; Hinds, B. D.; Martinez-Twary, E.; Hansen, A. D. A.; White, C.; Garvey, D. M.; Pinnick, R. G.

    2004-07-01

    Total aerosol mass loading, aerosol absorption, and black carbon (BC) content were determined from aerosol collected on 598 quartz fiber filters at a remote, semiarid site near Orogrande, New Mexico from December 1989 to October 1995. Aerosol mass was determined by weighing filters before and after exposure, and aerosol absorption was determined by measuring the visible light transmitted through loaded filter samples and converting these measurements to aerosol absorption. BC content was determined by measuring visible light transmitted through filter samples before and after firing and converting the absorption to BC mass, assuming a BC absorption cross section of 19 m2/g in the fiber filter medium. Two analyses were then performed on each of the logged variables: an autoregressive integrating moving average (ARIMA) analysis and a decomposition analysis using an autoregressive model to accommodate first-order autocorrelation. The two analyses reveal that BC mass has no statistically significant seasonal dependence at the 5% level of significance but only random fluctuations varying around an average annual value that has a long-term decreasing trend (from 0.16 to 0.11 μg/m3 during 1990-1995). Aerosol absorption, which is dominated by BC, also displays random fluctuations about an average value, and decreases from 1.9 Mm-1 to 1.3 Mm-1 during the same period. Unlike BC, aerosol mass at the Orogrande site displays distinctly different character. The analyses reveal a pronounced seasonal dependence, but no long-term trend for aerosol mass. The seasonal indices resulting from the autoregression analysis have a minimum in January (-0.78) and maximum in June (+0.58). The geometric mean value over the 1990-1995 period for aerosol mass is 16.0 μg/m3. Since BC aerosol at the Orogrande site is a product of long-range atmospheric transport, a back trajectory analysis of air masses was conducted. Back trajectory analyses indicate that air masses traversing high population

  2. Sequencing Voyager II for the Uranus encounter

    NASA Technical Reports Server (NTRS)

    Morris, R. B.

    1986-01-01

    The process of developing the programmed sequence of events necessary for the Voyager 2 spacecraft to return desired data from its Uranus encounter is discussed. The major steps in the sequence process are reviewed, and the elements of the Mission Sequence Software are described. The design phase and the implementation phase of the sequence process are discussed, and the Computer Command Subsystem architecture is examined in detail. The software's role in constructing the sequences and converting them into onboard programs is elucidated, and the problems unique to the Uranus encounter sequences are considered.

  3. History-Enriched Spaces for Shared Encounters

    NASA Astrophysics Data System (ADS)

    Konomi, Shin'ichi; Sezaki, Kaoru; Kitsuregawa, Masaru

    We discuss "history-enriched spaces" that use historical data to support shared encounters. We first examine our experiences with DeaiExplorer, a social network display that uses RFID and a historical database to support social interactions at academic conferences. This leads to our discussions on three complementary approaches to addressing the issues of supporting social encounters: (1) embedding historical data in embodied interactions, (2) designing for weakly involved interactions such as social navigation, and (3) designing for privacy. Finally, we briefly describe a preliminary prototype of a proxemics-based awareness tool that considers these approaches.

  4. Characteristics of particle number and mass emissions during heavy-duty diesel truck parked active DPF regeneration in an ambient air dilution tunnel

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Quiros, David C.; Dwyer, Harry A.; Collins, John F.; Burnitzki, Mark; Chernich, Donald; Herner, Jorn D.

    2015-12-01

    Diesel particle number and mass emissions were measured during parked active regeneration of diesel particulate filters (DPF) in two heavy-duty diesel trucks: one equipped with a DPF and one equipped with a DPF + SCR (selective catalytic reduction), and compliant with the 2007 and 2010 emission standards, respectively. The emission measurements were conducted using an ambient air dilution tunnel. During parked active regeneration, particulate matter (PM) mass emissions measured from a 2007 technology truck were significantly higher than the emissions from a 2010 technology truck. Particle number emissions from both trucks were dominated by nucleation mode particles having a diameter less than 50 nm; nucleation mode particles were orders of magnitude higher than accumulation mode particles having a diameter greater than 50 nm. Accumulation mode particles contributed 77.8 %-95.8 % of the 2007 truck PM mass, but only 7.3 %-28.2 % of the 2010 truck PM mass.

  5. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Noone, David; Galewsky, Joseph; Sharp, Zachary D.; Worden, John; Barnes, John; Baer, Doug; Bailey, Adriana; Brown, Derek P.; Christensen, Lance; Crosson, Eric; Dong, Feng; Hurley, John V.; Johnson, Leah R.; Strong, Mel; Toohey, Darin; van Pelt, Aaron; Wright, Jonathon S.

    2011-11-01

    Water vapor in the subtropical troposphere plays an important role in the radiative balance, the distribution of precipitation, and the chemistry of the Earth's atmosphere. Measurements of the water vapor mixing ratio paired with stable isotope ratios provide unique information on transport processes and moisture sources that is not available with mixing ratio data alone. Measurements of the D/H isotope ratio of water vapor from Mauna Loa Observatory over 4 weeks in October-November 2008 were used to identify components of the regional hydrological cycle. A mixing model exploits the isotope information to identify water fluxes from time series data. Mixing is associated with exchange between marine boundary layer air and tropospheric air on diurnal time scales and between different tropospheric air masses with characteristics that evolve on the synoptic time scale. Diurnal variations are associated with upslope flow and the transition from nighttime air above the marine trade inversion to marine boundary layer air during daytime. During easterly trade wind conditions, growth and decay of the boundary layer are largely conservative in a regional context but contribute ˜12% of the nighttime water vapor at Mauna Loa. Tropospheric moisture is associated with convective outflow and exchange with drier air originating from higher latitude or higher altitude. During the passage of a moist filament, boundary layer exchange is enhanced. Isotopic data reflect the combination of processes that control the water balance, which highlights the utility for baseline measurements of water vapor isotopologues in monitoring the response of the hydrological cycle to climate change.

  6. sup 222 Rn, sup 222 Rn progeny and sup 220 Rn progeny as atmospheric tracers of air masses at the Mauno Loa Observatory

    SciTech Connect

    Hutter, A.R.; George, A.C.; Maiello, M.L.; Fisenne, I.M.; Larsen, R.J.; Beck, H.L.; Wilson, F.C.

    1990-03-01

    {sup 222}Rn, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations in air were measured at the Mauna Loa Observatory (MLO) in Hawaii during March 1989 in order to investigate the feasibility of using them as atmospheric tracers to help determine local air mass flow patterns. Charcoal traps, cooled to dry ice temperatures, were used to collect {sup 222}Rn, which was subsequently measured in pulse ionization chambers at the Environmental Measurements Laboratory (EML). {sup 222}Rn progeny and {sup 220}Rn progeny for 37 samples were measured at the Observatory by sampling high volumes of air through filters, which were counted for up to 11 h in alpha scintillation counters. Individual progeny concentrations were calculated using both least squares and maximum likelihood techniques. In general, {sup 222}Rn progeny and {sup 220}Rn progeny concentrations were low when free tropospheric air was present (downslope and tradewind conditions), and consistently higher when surface air from the island broke through the trade wind inversion layer (upslope conditions). The data suggest that {sup 222}Rn, {sup 222}Rn progeny, or {sup 220}Rn progeny monitoring may provide new and useful information to help indicate the different air flow patterns present at MLO. 17 refs., 5 figs., 2 tabs.

  7. GIOTTO-Halley encounter - When was the large nutation generated?

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Bird, M. K.; Volland, H.

    1991-04-01

    It is generally believed that a very large dust particle with mass greater than 100 mg hit the GIOTTO spacecraft 7.6 sec before encounter, induced the switchover from the primary X-band amplifier (TWT) the redundant unit, generated the observable post-encounter nutation of about 1 deg and was responsible for the 22 sec telemetry loss during the phase of closest approach to Comet Halley. Using the data of the GIOTTO Radio-Science Experiment (GRE), it is shown that the signal loss was caused by an off-pointing of the antenna dish. The drop in signal level, however, is not consistent with the spacecraft having a nutation of 1 deg at this time. It is concluded that the off-pointing of the antenna dish is most likely due to an error in the High Gain Antenna (HGA) Design Control System resulting from an electrical discharge at t(0) - 8 sec and that the large nutation was generated during the telemetry blackout by the impacts of several large dust particles in the interval from 2 sec before to 18 sec after encounter.

  8. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  9. Crustal Failure in Large Icy Bodies from a Strong Tidal Encounter

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Giannella, David; Shaw, John

    2015-11-01

    Close tidal encounters among large planetesimals and satellites are more common than grazing or direct impacts. Using a mass spring model simulation, we look at the deformation of the surface of an elastic spherical body caused by a nearly parabolic close tidal encounter with a body that has mass similar to that of the primary body. We delineate a regime for tidal encounters that induce sufficient stress on the surface for brittle failure of an icy crust. Simulated cracks caused by extension of the crust extend a large fraction of the radius of body. Tidal encounters give an alternative mechanism for formation of long graben complexes and chasma on icy satellites such as Dione, Tethys, Ariel and Charon.

  10. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    NASA Astrophysics Data System (ADS)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  11. Identification of commonly encountered Pratylenchus in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pratylenchus species are commonly encountered in soil samples collected from a diversity of economically important crops in Oregon, including potato and small fruits. Proper identification is critical to the selection of an appropriate management strategy since, in many cases, populations are an as...

  12. Israeli Adolescents and Military Service: Encounters.

    ERIC Educational Resources Information Center

    Levy, Amihay; And Others

    1987-01-01

    Asserts that inadequate attention has been paid to the problems of the young soldier entering army life in Israel. Delineates some areas of friction and vulnerability between the worlds of the youth and the military. Describes the systematization of these encounters into groups, creating the "Binary Model," which helps in locating and treating…

  13. Minor satellites and the Gaspra encounter

    NASA Technical Reports Server (NTRS)

    Vanflandern, Thomas C.

    1992-01-01

    Observational evidence, especially from occultations and radar, indicate that satellites of minor planets are numerous and commonplace. This leads to the prediction that the Galileo spacecraft will find many such 'minor satellites' at the upcoming close encounter with minor planet 951 Gaspra. If such objects are found, this argues strongly against the current theory of minor planet origin from the primeval solar nebula.

  14. Domestic Violence Encountered among Kurdish Women

    ERIC Educational Resources Information Center

    Ali, Sirwan Kamil

    2015-01-01

    Background and objective; There is growing recognition that violence against women has a large public health impact, in addition to being a gross violation of women's human rights. The study's aims were: To show the types of domestic abuse encountered by Kurdish women, and study the relationship between them. Methods; The study conducted in the…

  15. Moral Relations in Encounters with Nature

    ERIC Educational Resources Information Center

    Andersson, Karin; Öhman, Johan

    2015-01-01

    The overall aim of this article is to develop in-depth knowledge about the connection between outdoor experiences and moral attitudes towards nature. The study focuses on processes in which moral relations are at stake in encounters between students and nature. The purpose is to identify such events, describe their specific circumstances and…

  16. Sensitivity Training and Group Encounter, an Introduction.

    ERIC Educational Resources Information Center

    Siroka, Robert W., Ed.; And Others

    "Sensitivity Training and Group Encounter" attempts to explore group interaction on many levels--verbal, sensory, and physical. It can be utilized as a model for dealing with various forms of interpersonal relations, from ongoing social issues to the isolation, alienation, and distrust felt by the members of a group. Presented as a guide to this…

  17. Entering a Crack: An Encounter with Gossip

    ERIC Educational Resources Information Center

    Henderson, Linda

    2014-01-01

    In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…

  18. Problems Encountered by Novice Pair Programmers

    ERIC Educational Resources Information Center

    Hanks, Brian

    2008-01-01

    In a study of the types of problems encountered by students that led them to seek assistance, Robins et al. [2006] found that the most common problems were related to trivial mechanics. The students in this study worked by themselves on their programming exercises. This article discusses a replication of the Robins et al. study in which the…

  19. The relationship between seasonal variations of total-nitrogen and total-phosphorus in rainfall and air mass advection paths in Matsue, Japan

    NASA Astrophysics Data System (ADS)

    Yoshioka, Katsuhiro; Kamiya, Hiroshi; Kano, Yoshihiro; Saki, Yukiko; Yamamuro, Masumi; Ishitobi, Yu

    We collected rainwater samples from every rainfall in Matsue, Japan in order to study variations of nitrogen and phosphorus concentrations over time. The seasonal average concentration by magnitude order of Total Nitrogen (here after T-N) was highest in winter, then in spring, fall, and summer and that of Total Phosphorus (here after T-P) was highest in spring, then in winter, fall, and summer. These seasonal variations were examined in relation to the transportation paths of arrived air masses by using a backward trajectory and rainfall patterns from a surface synoptic weather chart. In winter, continental air masses frequently flow from China or Siberia and the resultant winter rainfall is on many occasions of a continental type. In summer, maritime air masses frequently arrive from the Pacific Ocean and this resultant rainfall therefore was often of maritime type. Looking at average concentrations of T-N and T-P for each rainfall type, continental types were high range and maritime types were low. It was therefore concluded that the monthly average concentration of T-N was affected by continental air masses from northern China in winter and by maritime ones from the Pacific Ocean in summer. The maximum deposition of T-N was caused by this concentration in winter and rainfall depth in summer. Seasonal variation of T-P showed a different fluctuation tendency from T-N, with a maximum concentration in spring, and minimum in summer and fall. T-P was susceptible to the yellow sand phenomenon which maximised T-P deposition in spring.

  20. Gravity results from Pioneer 10 Doppler data. [during Jupiter encounter

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Null, G. W.; Wong, S. K.

    1974-01-01

    Two-way Doppler data received from Pioneer 10 during its encounter with Jupiter have been analyzed, and preliminary results have been obtained on the mass and the gravity field of Jupiter and on the masses of the four Galilean satellites. The ratios of the masses of the satellites to the mass of Jupiter are approximately 0.00004696 for Io, 0.00002565 for Europa, 0.00007845 for Ganymede, and 0.00005603 for Callisto (all error estimates presented in this paper are standard errors; those for Pioneer 10 represent our evaluation of the real errors as distinguished from formal errors). The ratio of the mass of the sun to the mass of the Jupiter system is about 1047.342, which is in good agreement with recent determinations from the motions of asteroids. The second- and fourth-degree zonal harmonic coefficients in the gravity field of Jupiter are 0.014720 and -0.00065, respectively, based on an equatorial planetary radius of 71,400 km, and the derived dynamical oblateness is 0.0647 at the same radius. The Pioneer 10 data are consistent with the assumption that Jupiter is in hydrostatic equilibrium at all levels.

  1. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds. PMID:25837315

  2. Who should take responsibility for decisions on internationally recommended datasets? The case of the mass concentration of mercury in air at saturation

    NASA Astrophysics Data System (ADS)

    Brown, Richard J. C.; Brewer, Paul J.; Ent, Hugo; Fisicaro, Paola; Horvat, Milena; Kim, Ki-Hyun; Quétel, Christophe R.

    2015-10-01

    This paper considers how decisions on internationally recommended datasets are made and implemented and, further, how the ownership of these decisions comes about. Examples are given of conventionally agreed data and values where the responsibility is clear and comes about through official designation or by common usage and practice over long time periods. The example of the dataset describing the mass concentration of mercury in air at saturation is discussed in detail. This is a case where there are now several competing datasets that are in disagreement with each other, some with historical authority and some more recent but, arguably, with more robust metrological traceability to the SI. Further, it is elaborated that there is no body charged with the responsibility to make a decision on an international recommendation for such a dataset. This has led to the situation where several competing datasets are in use simultaneously. Close parallels are drawn with the current debate over changes to the ozone absorption cross section, which has equal importance to the measurement of ozone amount fraction in air and to subsequent compliance with air quality legislation. It is noted that in the case of the ozone cross section there is already a committee appointed to deliberate over any change. We make the proposal that a similar committee, under the auspices of IUPAC or the CIPM’s CCQM (if it adopted a reference data function) could be formed to perform a similar role for the mass concentration of mercury in air at saturation.

  3. Finding the imprints of stellar encounters in long-period comets

    NASA Astrophysics Data System (ADS)

    Feng, Fabo; Bailer-Jones, C. A. L.

    2015-12-01

    The Solar system's Oort cloud can be perturbed by the Galactic tide and by individual passing stars. These perturbations can inject Oort cloud objects into the inner parts of the Solar system, where they may be observed as the long-period comets (periods longer than 200 yr). Using dynamical simulations of the Oort cloud under the perturbing effects of the tide and 61 known stellar encounters, we investigate the link between long-period comets and encounters. We find that past encounters were responsible for injecting at least 5 per cent of the currently known long-period comets. This is a lower limit due to the incompleteness of known encounters. Although the Galactic tide seems to play the dominant role in producing the observed long-period comets, the non-uniform longitude distribution of the cometary perihelia suggests the existence of strong - but as yet unidentified - stellar encounters or other impulses. The strongest individual future and past encounters are probably HIP 89825 (Gliese 710) and HIP 14473, which contribute at most 8 and 6 per cent to the total flux of long-period comets, respectively. Our results show that the strength of an encounter can be approximated well by a simple proxy, which will be convenient for quickly identifying significant encounters in large data sets. Our analysis also indicates a smaller population of the Oort cloud than is usually assumed, which would bring the mass of the solar nebula into line with planet formation theories.

  4. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Schwarz, Jaroslav; Cusack, Michael; Karban, Jindřich; Chalupníčková, Eva; Havránek, Vladimír; Smolík, Jiří; Ždímal, Vladimír

    2016-07-01

    of fresh, local aerosol and aged, long-range transport aerosol. The influences of different air masses were also investigated. The lowest concentrations of PM2.5 were recorded under the influence of marine air masses from the NW, which were also marked by increased concentrations of marine aerosol. In contrast, the highest concentrations of PM2.5 and most major chemical components were measured during periods when continental easterly air masses were dominant.

  5. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  6. Energetic ion observations during comet Giacobini-Zinner encounter

    NASA Astrophysics Data System (ADS)

    Hynds, R. J.; Cowley, S. W. H.; Richardson, I. G.; Sanderson, T. R.; Tranquille, C.

    The Energetic Particle Anisotropy Spectrometer (EPAS) on the ICE spacecraft observed large fluxes of energetic ions (E greater than 65-keV) for a period of one day prior to encounter with comet Giacobini-Zinner to several days afterwards. These observations permit the study of the way in which cometary atoms and molecules are 'picked-up' and accelerated by the solar wind flow, such that the flow becomes mass-loaded and slowed in the vicinity of the comet. The ion bulk flow within the mass-loaded region can also be studied together with the nature of the boundary between this region and the outer 'pick-up' region. Finally, it is also possible to study ion motion close to, and within, the induced magnetotail of the comet.

  7. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    PubMed Central

    Amos-Abanyie, S.; Akuffo, F. O.; Kutin-Sanwu, V.

    2013-01-01

    Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+) simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT). An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses. PMID:23878528

  8. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques. PMID:25901845

  9. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  10. Mobbing behaviors encountered by nurse teaching staff.

    PubMed

    Yildirim, Dilek; Yildirim, Aytolan; Timucin, Arzu

    2007-07-01

    The term 'mobbing' is defined as antagonistic behaviors with unethical communication directed systematically at one individual by one or more individuals in the workplace. This cross-sectional and descriptive study was conducted for the purpose of determining the mobbing behaviors encountered by nursing school teaching staff in Turkey, its effect on them, and their responses to them. A large percentage (91%) of the nursing school employees who participated in this study reported that they had encountered mobbing behaviors in the institution where they work and 17% that they had been directly exposed to mobbing in the workplace. The academic staff who had been exposed to mobbing behaviors experienced various physiological, emotional and social reactions. They frequently 'worked harder and [were] more organized and worked very carefully to avoid criticism' to escape from mobbing. In addition, 9% of the participants stated that they 'thought about suicide occasionally'. PMID:17562724

  11. Richard Zaner's phenomenology of the clinical encounter.

    PubMed

    Wiggins, Osborne P; Schwartz, Michael A

    2005-01-01

    The "clinical ethics" propounded by Richard Zaner is unique. Partly because of his phenomenological orientation and partly because of his own daily practice as a clinical ethicist in a large university hospital, Zaner focuses on the particular concrete situations in which patients and their families confront illness and injury and struggle toward workable ways for dealing with them. He locates ethical reality in the "clinical encounter." This encounter encompasses not only patient and physician but also the patient's family and friends and indeed the entire "lifeworld" in which the patient is still striving to live. In order to illuminate the central moral constituents of such human predicaments, Zaner discusses the often-overlooked features of disruption and crisis, the changed self, the patient's dependence and the physician's power, the violation of personal boundaries and their necessary reconfiguring, and the art of listening. PMID:15850044

  12. Voyager 1 encounters new region of space

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-10-01

    Voyager 1, which left Earth in 1977 and is now about 10 billion miles away, has entered a region of space with strange anomalies, according to project scientist Ed Stone, former director of the Jet Propulsion Laboratory. The spacecraft has encountered magnetic potholes and bumps-areas where the magnetic field of the heliosheath either nearly vanishes or doubles, respectively. It also has encountered `anomalous cosmic rays' that are less energetic, and thus less dangerous, than galactic cosmic rays. In addition, the solar wind in the heliosheath has been slower than scientists had expected, only about 54,700 kilometers per hour compared with the predicted 322,000-483,000 kilometers per hour. Voyager 1 is expected to reach the edge of the heliosheath in about 10 years.

  13. Winnicott and Lacan: a missed encounter?

    PubMed

    Vanier, Alain

    2012-04-01

    Winnicott was able to say that Lacan's paper on the mirror stage "had certainly influenced" him, while Lacan argued that he found his object a in Winnicott's transitional object. By following the development of their personal relations, as well as of their theoretical discussions, it is possible to argue that this was a missed encounter--yet a happily missed one, since the misunderstandings of their theoretical exchanges allowed each of them to clarify concepts otherwise difficult to discern. PMID:22768481

  14. Numerical Study of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The specific case was encountered during one of NASA's flight tests and was characterized by severe turbulence. The event was associated with overshooting convective turrets that contained low to moderate radar reflectivity. Model comparisons with observations are quite favorable. Turbulence hazard metrics are proposed and applied to the numerical data set. Issues such as adequate grid size are examined.

  15. Observation of the transport of polluted air masses from the northeastern United States to Cape Sable Island, Nova Scotia, Canada, during the 1993 NARE summer intensive

    NASA Astrophysics Data System (ADS)

    Knapp, K. G.; Balsley, B. B.; Jensen, M. L.; Hanson, H. P.; Birks, J. W.

    1998-06-01

    Vertical profiles of ozone, temperature, pressure, and water vapor mass mixing ratio obtained using a parafoil kite platform during the North Atlantic Regional Experiment (NARE) 1993 summer intensive at Cape Sable Island, Nova Scotia, Canada, demonstrate the of use of kite platforms for the collection of vertically and temporally resolved data over a fixed location. During the period August 8-28, 1993, 39 profiles of the lower atmosphere were collected. Data collected as part of this field campaign illustrate the complex vertical stratification and temporal variability of pollutants transported into the Maritime Provinces of Canada. Transport phenomena resulted in pollution events in which ozone at the ground level remained in the 20-40 parts per billion by volume (ppbv) range, while mixing ratios of 90-130 ppbv were observed above ˜300 m. Back trajectories indicate that these highly elevated levels of ozone are attributable to source regions in the heavily industrialized northeastern United States. Vertical stratification of the lower atmosphere was also present during transport of Canadian air to the sampling site, with layers of both elevated and diminished ozone observed, while marine air did not exhibit layering characteristic of air masses originating from continental source regions.

  16. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    PubMed

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities. PMID:23891369

  17. Characterizing the Hazard of a Wake Vortex Encounter

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Brandon, Jay; Greene, George; Rivers, Robert; Shah, Gautam; Stewart, Eric; Stuever, Robert

    1998-01-01

    The National Aeronautics and Space Administration (NASA) is conducting research with the goal of enabling safe improvements in the capacity of the nation's air transportation system. The wake vortex upset hazard is an important factor in establishing the minimum safe spacing between aircraft during landing and take-off operations, thus impacting airport capacity. Static and free-flight wind tunnel tests and flight tests have provided an extensive data set for improved understanding of vortex encounter dynamics and simulation. Piloted and batch simulation studies are also ongoing to establish a first-order hazard metric and determine the limits of an operationally acceptable wake induced upset. This paper outlines NASA's research in these areas.

  18. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  19. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  20. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS).

    PubMed

    Cotte-Rodríguez, Ismael; Handberg, Eric; Noll, Robert J; Kilgour, David P A; Cooks, R Graham

    2005-05-01

    The use of two methods in tandem, single-sided membrane introduction mass spectrometry (SS-MIMS) and fiber introduction mass spectrometry (FIMS), is presented as a technique for field analysis. The combined SS-MIMS-FIMS technique was employed in both a modified commercial mass spectrometer and a miniature mass spectrometer for the selective preconcentration of the explosive simulant o-nitrotoluene (ONT) and the chemical warfare agent simulant, methyl salicylate (MeS), in air. A home-built FIMS inlet was fabricated to allow introduction of the solid-phase microextraction (SPME) fiber into the mass spectrometer chamber and subsequent desorption of the trapped compounds using resistive heating. The SS-MIMS preconcentration system was also home-built from commercial vacuum parts. Optimization experiments were done separately for each preconcentration system to achieve the best extraction conditions prior to use of the two techniques in combination. Improved limits of detection, in the low ppb range, were observed for the combination compared to FIMS alone, using several SS-MIMS preconcentration cycles. The SS-MIMS-FIMS response for both instruments was found to be linear over the range 50 to 800 ppb. Other parameters studied were absorption time profiles, effects of sample flow rate, desorption temperature, fiber background, memory effects, and membrane fatigue. This simple, sensitive, accurate, robust, selective, and rapid sample preconcentration and introduction technique shows promise for field analysis of low vapor pressure compounds, where analyte concentrations will be extremely low and the compounds are difficult to extract from a matrix like air. PMID:15852137

  1. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  2. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  3. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  4. Combustion of a Methane-Air Mixture in a Slot Burner with an Inert Insert in Mass Transfer to the Environment

    NASA Astrophysics Data System (ADS)

    Krainov, A. Yu.; Moiseeva, K. M.

    2016-03-01

    A problem on combustion of a methane-air mixture in a slot burner with an internal insert in mass transfer from the burner's exterior wall to the environment has been solved. A mathematical formulation of the problem takes account of the dependence of the diffusion, thermal-conductivity, and heat-transfer coefficients on temperature, and also of the heat removal from the gas to the environment by convective and radiant heat transfer. A numerical investigation has been carried out in a one-dimensional mathematical formulation of the problem in dimensional variables. The boundary of existence of a stable high-temperature regime of combustion of the methane-air mixture has been determined as a function of the rate of feed of the gas, the environmental temperature, and the width of the flow area of the burner.

  5. Determination of seven pyrethroids biocides and their synergist in indoor air by thermal-desorption gas chromatography/mass spectrometry after sampling on Tenax TA ® passive tubes.

    PubMed

    Raeppel, Caroline; Appenzeller, Brice M; Millet, Maurice

    2015-01-01

    A method coupling thermal desorption and gas chromatography/mass spectrometry (GC/MS) was developed for the simultaneous determination of 7 pyrethroids (allethrin, bifenthrin, cyphenothrin, imiprothrin, permethrin, prallethrin and tetramethrin) and piperonyl butoxide adsorbed on Tenax TA(®) passive samplers after exposure in indoor air. Thermal desorption was selected as it permits efficient and rapid extraction without solvent used together with a good sensitivity. Detection (S/N>3) and quantification (S/N>10) limits varied between 0.001 ng and 2.5 ng and between 0.005 and 10 ng respectively with a reproducibility varied between 14% (bifenthrin) and 39% (permethrin). The method was used for the comparison indoor air contamination after low-pressure spraying and fumigation application in a rubbish chute situated in the basement of a building. PMID:25281107

  6. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  7. Large conversion rates of NO2 to HNO2 observed in air masses from the South China Sea: Evidence of strong production at sea surface?

    NASA Astrophysics Data System (ADS)

    Zha, Qiaozhi; Xue, Likun; Wang, Tao; Xu, Zheng; Yeung, Chungpong; Louie, Peter K. K.; Luk, Connie W. Y.

    2014-11-01

    Nitrous acid (HONO) plays important roles in tropospheric chemistry, but its source(s) are not completely understood. Here we analyze measurements of HONO, nitrogen dioxide (NO2), and related parameters at a coastal site in Hong Kong during September-December 2012. The nocturnal NO2-to-HONO conversion rates were estimated in air masses passing over land and sea surfaces. The conversion rates in the "sea cases" (3.17-3.36 × 10-2 h-1) were significantly higher than those in the "land cases" in our study (1.20-1.30 × 10-2 h-1) and in previous studies by others. These results suggest that air-sea interactions may be a significant source of atmospheric HONO and need to be considered in chemical transport models.

  8. HIGH PRECISION ISOTOPE RATIO MASS SPECTROMETRY METHOD FOR MEASURING THE O2/N2 RATIO OF AIR

    EPA Science Inventory

    Studies of the distribution of O2 in air will inform us about critical problems in the global carbon cycle which are not readily accessed by other measurements, including the rate of seasonal net production in the oceans on a hemispheric scale, the rate at which the oceans are ta...

  9. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  10. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  11. Earth imaging results from Galileo's second encounter

    NASA Technical Reports Server (NTRS)

    Greenberg, R.; Belton, M.; Dejong, E.; Ingersoll, A.; Klaasen, K.; Geissler, P.; Moersch, J.; Thompson, W. R.

    1993-01-01

    The recent flyby of the Galileo spacecraft en route to Jupiter contributes a unique perspective to our view of our home planet. Imaging activities conducted during the second Earth encounter provide an important opportunity to assess new methods and approaches on familiar territory. These include unique multispectral observations, low light-level imaging (searches for aurorae, lightning and artificial lights on the nightside) and experiments with multiple exposure times to extend the effective radiometric resolution and dynamic range of the camera system. Galileo imaging data has the potential to make important contributions to terrestrial remote sensing. This is because the particular set of filters included in the Solid State Imaging system are not presently incorporated in any currently operating Earth-orbiting sensor system. The visible/near-infrared bandpasses of the SSI filters are well suited to remote sensing of geological, glaciological, botanical, and meteorological phenomena. Data from this and the previous Earth encounter may provide an extremely valuable reference point in time for comparison with similar data expected from EOS or other systems in the future, contributing directly to our knowledge of global change. The highest resolution imaging (0.2 km/pixel) during the December, 1992 encounter occurred over the central Andes; a five filter mosaic of visible and near infrared bands displays the remarkable spectral heterogeneity of this geologically diverse region. As Galileo departed the Earth, cooperative imaging with the Near Infrared Mapping Spectrometer (NIMS) instrument targeted Antarctica, Australia, and Indonesia at 1.0 to 2.5 km/pixel resolutions in the early morning local times near the terminator. The Antarctic data are of particular interest, potentially allowing ice grain size mapping using the 889 and 968 nm filters and providing an important means of calibrating the technique for application to the Galilean satellites. As the spacecraft

  12. The intriguing encounters of Pavlov and Cushing.

    PubMed

    Shahlaie, Kiarash; Watson, Joseph C; Benson, Daniel R

    2004-03-01

    Ivan Petrovich Pavlov and Harvey William Cushing were two of the most prominent neuroscientists of the early 20th century. Their contributions helped advance the understanding of the brain and its disorders, and propelled neuroscience into a new era of research and treatment. Although separated geographically and culturally, Pavlov and Cushing exchanged letters and followed one another's careers from afar. They met only a few times, during international scientific gatherings in the US and abroad. These encounters were captured in journal entries, letters, and photographs, and provide a glimpse into the lives of these two great men and the history of neuroscience at the turn of the last century. PMID:15035298

  13. An electronic encounter log's failure to scale.

    PubMed

    Sumner, Walton; Asaro, Phil; Asaro, Phillip

    2008-01-01

    We have developed a series of Electronic Student Encounter Log (ESEL) programs intended to introduce medical students to promising medical informatics concepts. We attempted to expand ESELs scope from ambulatory settings to all hospital venues and to track progress toward educational goals. Students were confused and frustrated by a previously fast interface and delayed feedback. Numerous scaling problems emerged. Our attempt to address these problems in an extensive revision, developed for the latest affordable hardware and operating system, failed due to new data-corrupting crashes. Risks of scaling up and other familiar software development lessons are reinforced. PMID:18998815

  14. First spacecraft encounter with an asteroid approaches

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1991-01-01

    During the course of the Galileo spacecraft's journey to Jupiter it will make two excursions through the steroid belt situated between Mars and Jupiter. The first excursion involves an encounter with the asteroid 951 Gaspra, which will take place on October 29, 1991. Gaspra is a small (about 15 km diameter) asteroid near the outer edge of the main asteroid belt. It's spectral classification is S, suggesting a composition similar to those of stony-iron meteorites. A figure is given showing the brightness of this asteroid as a function of time.

  15. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes

  16. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  17. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  18. Superkicks in ultrarelativistic encounters of spinning black holes

    SciTech Connect

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans; Yunes, Nicolas

    2011-01-15

    We study ultrarelativistic encounters of two spinning, equal-mass black holes through simulations in full numerical relativity. Two initial data sequences are studied in detail: one that leads to scattering and one that leads to a grazing collision and merger. In all cases, the initial black hole spins lie in the orbital plane, a configuration that leads to the so-called superkicks. In astrophysical, quasicircular inspirals, such kicks can be as large as {approx}3000 km/s; here, we find configurations that exceed {approx}15 000 km/s. We find that the maximum recoil is to a good approximation proportional to the total amount of energy radiated in gravitational waves, but largely independent of whether a merger occurs or not. This shows that the mechanism predominantly responsible for the superkick is not related to merger dynamics. Rather, a consistent explanation is that the ''bobbing'' motion of the orbit causes an asymmetric beaming of the radiation produced by the in-plane orbital motion of the binary, and the net asymmetry is balanced by a recoil. We use our results to formulate some conjectures on the ultimate kick achievable in any black hole encounter.

  19. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Anthropogenic emissions, be it exhaust gases or aerosols, stem from multitude of sources and may survive long-range transport within the air masses they were emitted into. So they follow regional and global transport pathways varying under different climatological regimes. Transboundary transfer of pollutants occurs this way and has a significant impact on the ecological situation of the territories neighbouring those of emission sources, as found in a few earlier studies examining the environmental monitoring data [1]. In this study, we employ a relatively facile though robust technique for estimating the transboundary air and concomitant pollutant fluxes using actual or climatological meteorological and air pollution monitoring data. Practically, we assume pollutant transfer being proportional to the horizontal transport of air enclosed in the lower troposphere and to the concentration of the pollutant of interest. The horizontal transport, in turn, is estimated using the mean layer wind direction and strength, or their descriptive statistics at the individual transects of the boundary of interest. The domain of our interest is the segment of Russian continental border in East Asia spanning from 88° E (southern Middle Siberia) to 135° E (Far East at Pacific shore). The data on atmospheric pollutants concentration are available from the Russian monitoring sites of the region-wide Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) Mondy (Baikal area) and Primorskaya (near Vladivostok). The data comprises multi-year continuous measurement of gas-phase and particulate species abundances in air with at least biweekly sampling rate starting from 2000. In the first phase of our study, we used climatological dataset on winds derived from the aerological soundings at Russian stations along the continental border for the 10-year period (1961-1970) by the Research Institute of Hydrometeorological Information - World Data Centre (RIHMI-WDC) [3

  20. On the possibility to discriminate the mass of the primary cosmic ray using the muon arrival times from extensive air showers: Application for Pierre Auger Observatory

    SciTech Connect

    Arsene, N.; Rebel, H.; Sima, O.

    2012-11-20

    In this paper we study the possibility to discriminate the mass of the primary cosmic ray by observing the muon arrival times in ground detectors. We analyzed extensive air showers (EAS) induced by proton and iron nuclei with the same energy 8 Multiplication-Sign 10{sup 17} eV simulated with CORSIKA, and analyzed the muon arrival times at ground measured by the infill array detectors of the Pierre Auger Observatory (PAO). From the arrival times of the core and of the muons the atmospheric depth of muon generation locus is evaluated. The results suggest a potential mass discrimination on the basis of muon arrival times and of the reconstructed atmospheric depth of muon production. An analysis of a larger set of CORSIKA simulations carried out for primary energies above 10{sup 18} eV is in progress.

  1. Sensitive method for quantification of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) in end-exhaled air by thermal desorption gas chromatography mass spectrometry.

    PubMed

    Biesterbos, Jacqueline W H; Beckmann, Gwendolyn; Anzion, Rob B M; Ragas, Ad M J; Russel, Frans G M; Scheepers, Paul T J

    2014-06-17

    Octamethylcyclotetrasiloxane (D4) and decamethylpentasiloxane (D5) are used as ingredients for personal care products (PCPs). Because of the use of these PCPs, consumers are exposed daily to D4 and D5. A sensitive analytical method was developed for analysis of D4 and D5 in end-exhaled air by thermal desorption gas chromatography mass spectrometry (TD-GC-MS), to determine the internal dose for consumer exposure assessment. Fifteen consumers provided end-exhaled air samples that were collected using Bio-VOC breath samplers and subsequently transferred to automatic thermal desorption (ATD) tubes. Prior to use, the ATD tubes were conditioned for a minimum of 4 h at 350 °C. The TD unit and auto sampler were coupled to a GC-MS using electron ionization. Calibration was performed using 0-10 ng/μL solutions of D4/D5 and (13)C-labeled D4/D5 as internal standards. The ions monitored were m/z 281 for D4, 355 for D5, 285 for (13)C-labeled D4, and 360 for (13)C-labeled D5. The addition of internal standard reduced the coefficient of variation from 30.8% to 9.5% for D4 and from 37.8% to 12.5% for D5. The limit of quantification was 2.1 ng/L end-exhaled air for D4 and 1.4 ng/L end-exhaled air for D5. With this method, cyclic siloxanes (D4 and D5) can be quantified in end-exhaled air at concentrations as low as background levels observed in the general population. PMID:24833048

  2. Envisioning invertebrates and other aquatic encounters

    NASA Astrophysics Data System (ADS)

    Hayward, Eva

    2007-12-01

    To "envision" animals is to visualize, to experience, to figure, to image, kinds of species, discourses, representations, institutions, histories, epistemologies; and, to "imagine possible" a set of material and ethical relationships between species. This dissertation explores the "envisioning of animals" that takes place through/across/between the interfaces of seawater/visuality/experience/biology/technology/phyla---as illustrated in the documentary works of Jean Painleve (scientist and filmmaker), Genevieve Hamon (filmmaker and set-designer), Leni Riefenstahl (filmmaker and photographer), and David Powell (scientist and aquarist). In each case, aesthetic conceptions of beauty and/or ambiguity coupled with biological epistemology and phenomenology of the organisms themselves compete over "what gets to count as culture and nature," and in doing so, construct a host of hybridized and enmeshed "encounters." In the process the following questions are raised: What is the role of the ocean---it's ecosystems and semiotics---in the production of "envisioning"? How are animals used---and in turn shape and reshape the users---to construct tropes of encounter? What theories can be used to understand the phenomenological, semiotic, material, and rhetorical use/miss-use of animals in the articulation of history, economy, biology, narrativity, and representation? How does this motley crew of documentarians answer differently "the animal question," and challenge and/or reinforce anthropocentrism? Divided into two parts, the dissertation first develops a set of methodological questions derived from critical appraisal of "envisioning," encountering, and embodying through science studies, as well as an account of the use and misuse of animals as only "stand ins" for human intentionality; secondly, the dissertation analyses the work of the documentarians in question. Jean Painleve and Genevieve Hamon are shown to critique traditions of representation in nature/science films

  3. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California

    NASA Technical Reports Server (NTRS)

    Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A.

    1992-01-01

    Measurements were made of a suite of photochemically active trace species (including light hydrocarbons, ozone, peroxyacetyl nitrate, HNO3, NO3(-), NO(x), and NO(y)) in marine air collected during a 10-day period in April and May 1985 at Point Arena (California), a coastal inflow site. It was found that the mixing ratios of the alkanes, ozone, peroxyacetyl nitrate, and HNO3 correlated with variations in the origins of calculated air parcel trajectories and with variations in the ratios of the light alkanes. The highest levels of alkanes and the photochemical products were found in parcels that had been rapidly transported across the North Pacific Ocean from near the 600-mbar level above the east Asian coast. It is suggested that production over the continents, transport to the marine areas, and parallel removal processes account for much of the observed correlation.

  4. Comparative analysis of dioxins and furans in ambient air by high-resolution and electron-capture mass spectrometry

    SciTech Connect

    Koester, C.J.; Harless, R.L.; Hites, R.A.

    1992-01-01

    Known mixtures and unknown atmospheric sample extracts containing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F) were analyzed by both electron impact, high resolution, mass spectrometry (HRMS) and by electron capture, negative ion, low resolution mass spectrometry (ECNI). PCDD/F concentrations measured by the two methods were comparable, typically agreeing with + or - 33%. The major difference between the two techniques is that HRMS easily detects 2,3,7,8- tetrachlorodibenzo-p-dioxin but ECNI does not. Results suggest that ECNI can be a sensitive low cost alternative to HRMS for the determination of PCDD/F concentrations.

  5. Collisionless encounters and the origin of the lunar inclination

    NASA Astrophysics Data System (ADS)

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-01

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value -- a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system.

  6. Collisionless encounters and the origin of the lunar inclination.

    PubMed

    Pahlevan, Kaveh; Morbidelli, Alessandro

    2015-11-26

    The Moon is generally thought to have formed from the debris ejected by the impact of a planet-sized object with the proto-Earth towards the end of planetary accretion. Models of the impact process predict that the lunar material was disaggregated into a circumplanetary disk and that lunar accretion subsequently placed the Moon in a near-equatorial orbit. Forward integration of the lunar orbit from this initial state predicts a modern inclination at least an order of magnitude smaller than the lunar value--a long-standing discrepancy known as the lunar inclination problem. Here we show that the modern lunar orbit provides a sensitive record of gravitational interactions with Earth-crossing planetesimals that were not yet accreted at the time of the Moon-forming event. The currently observed lunar orbit can naturally be reproduced via interaction with a small quantity of mass (corresponding to 0.0075-0.015 Earth masses eventually accreted to the Earth) carried by a few bodies, consistent with the constraints and models of late accretion. Although the encounter process has a stochastic element, the observed value of the lunar inclination is among the most likely outcomes for a wide range of parameters. The excitation of the lunar orbit is most readily reproduced via collisionless encounters of planetesimals with the Earth-Moon system with strong dissipation of tidal energy on the early Earth. This mechanism obviates the need for previously proposed (but idealized) excitation mechanisms, places the Moon-forming event in the context of the formation of Earth, and constrains the pristineness of the dynamical state of the Earth-Moon system. PMID:26607544

  7. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area.

    PubMed

    Klasson, Maria; Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-07-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose-response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m(-3), range <0.023-3.0mg m(-3)) and below the present Swedish occupational exposure limit (OEL) of 10mg m(-3) The cobalt levels were low as well (AM 0.0030mg m(-3), range 0.000028-0.056mg m(-3)) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m(-3) For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m(-3) by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm(-3)) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm(2)·cm(-3)) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle number

  8. Occupational Exposure to Cobalt and Tungsten in the Swedish Hard Metal Industry: Air Concentrations of Particle Mass, Number, and Surface Area

    PubMed Central

    Bryngelsson, Ing-Liss; Pettersson, Carin; Husby, Bente; Arvidsson, Helena; Westberg, Håkan

    2016-01-01

    Exposure to cobalt in the hard metal industry entails severe adverse health effects, including lung cancer and hard metal fibrosis. The main aim of this study was to determine exposure air concentration levels of cobalt and tungsten for risk assessment and dose–response analysis in our medical investigations in a Swedish hard metal plant. We also present mass-based, particle surface area, and particle number air concentrations from stationary sampling and investigate the possibility of using these data as proxies for exposure measures in our study. Personal exposure full-shift measurements were performed for inhalable and total dust, cobalt, and tungsten, including personal real-time continuous monitoring of dust. Stationary measurements of inhalable and total dust, PM2.5, and PM10 was also performed and cobalt and tungsten levels were determined, as were air concentration of particle number and particle surface area of fine particles. The personal exposure levels of inhalable dust were consistently low (AM 0.15mg m−3, range <0.023–3.0mg m−3) and below the present Swedish occupational exposure limit (OEL) of 10mg m−3. The cobalt levels were low as well (AM 0.0030mg m−3, range 0.000028–0.056mg m−3) and only 6% of the samples exceeded the Swedish OEL of 0.02mg m−3. For continuous personal monitoring of dust exposure, the peaks ranged from 0.001 to 83mg m−3 by work task. Stationary measurements showed lower average levels both for inhalable and total dust and cobalt. The particle number concentration of fine particles (AM 3000 p·cm−3) showed the highest levels at the departments of powder production, pressing and storage, and for the particle surface area concentrations (AM 7.6 µm2·cm−3) similar results were found. Correlating cobalt mass-based exposure measurements to cobalt stationary mass-based, particle area, and particle number concentrations by rank and department showed significant correlations for all measures except for particle

  9. Desert Dust Air Mass Mapping in the Western Sahara, using Particle Properties Derived from Space-based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Fiebig, Marcus; Schladitz, Alexander; von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the SAhara Mineral dUst experiMent (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from Multi-angle Imaging SpectroRadiometer (MISR) observations, and to place the sub-orbital aerosol measurements into the satellite's larger regional context. On three moderately dusty days for which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 to 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR's ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape, and single-scattering albedo. For the three study days, the satellite observations (a) highlight regional gradients in the mix of dust and background spherical particles, (b) identify a dust plume most likely part of a density flow, and (c) show an air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometers away.

  10. Desert Dust Aerosol Air Mass Mapping in the Western Sahara, Using Particle Properties Derived from Space-Based Multi-Angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef; Schladitz, Alexander; Von Hoyningen-Huene, Wolfgang

    2008-01-01

    Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.

  11. Student Understanding of the Volume, Mass, and Pressure of Air within a Sealed Syringe in Different States of Compression.

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    1995-01-01

    Investigation of (n=101) 17- to 18-year-old students' responses to a task relating to Boyle's Law for gases found that 34% to 38% of students did not understand the concepts of volume and mass, respectively, of a gas under the given circumstances. (Author/MKR)

  12. Chemical mass balance modeling for air quality analysis near a waste-to-energy facility in a complex urban area: Program design

    SciTech Connect

    Wells, R.; Watson, J.; Woy, J. van

    1997-12-31

    This paper describes the design and implementation of an ambient monitoring and receptor modeling study to evaluate air quality impacts from a state-of-the-art municipal waste management facility in a major urban area. The Robbins Resource Recovery Facility (RRRF), located in the Chicago metropolitan area, processes municipal solid waste (MSW) to recover recyclables, process the residual waste to create refuse-derived fuel (RDF), and burns the RDF to reduce the residual waste volume and recover energy. The RRRF is cooperating with the Illinois Environmental Protection Agency (IEPA) and the Illinois Office of the Attorney General (OAG) to analyze air quality and facility impacts in the plant vicinity. An ambient monitoring program began one year before plant operation and will continue for five years after startup. Because the impacts of the RRRF are projected to be very low, and because the Chicago area includes a complex mix of existing industrial, commercial, and residential activity, the ambient data will be analyzed using Version 7.0 of the USEPA s Chemical Mass Balance (CMB) model to estimate the extent of the RRRF`s impact on air quality in the area. The first year of pre-operational ambient data is currently under analysis. This paper describes the study design considerations, ambient monitoring program, emission data acquisition, background source data needs, and data analysis procedures developed to conduct CMB modeling in a complex industrialized area.

  13. Voyager Briefing: Expectations of the Neptune Encounter

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This NASA KSC video release presents a news briefing held Aug. 4, 1989 at NASA Headquarters three weeks after Voyager 2's official "encounter" with Neptune began. The video is comprised of two slide presentations followed by a short question and answer period. The press conference is moderated by Charles Redmond, (NASA Public Affairs), includes an introduction by Dr. Geoffrey A Briggs (Dir., Solar System Exploration Div.), and features Norman R. Haynes (Voyager Project Manager, JPL) and Dr. Edward C. Stone (Voyager Project Scientist, Cal Tech). Mr. Haynes' presentation centers on Voyager's history, engineering changes, and spacecraft trajectories while Dr. Stone presents the scientific aspects of Voyager, including the 11 scientific investigations planned for the mission, instruments used, and imaging techniques.

  14. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  15. Brief encounters: Assembling cosmetic surgery tourism.

    PubMed

    Holliday, Ruth; Bell, David; Cheung, Olive; Jones, Meredith; Probyn, Elspeth

    2015-01-01

    This paper reports findings from a large-scale, multi-disciplinary, mixed methods project which explores empirically and theoretically the rapidly growing but poorly understood (and barely regulated) phenomenon of cosmetic surgery tourism (CST). We explore CST by drawing on theories of flows, networks and assemblages, aiming to produce a fuller and more nuanced account of - and accounting for - CST. This enables us to conceptualise CST as an interplay of places, people, things, ideas and practices. Through specific instances of assembling cosmetic surgery that we encountered in the field, and that we illustrate with material from interviews with patients, facilitators and surgeons, our analysis advances understandings and theorisations of medical mobilities, globalisation and assemblage thinking. PMID:24985788

  16. Numerical Simulation of a Convective Turbulence Encounter

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Bowles, Roland L.

    2002-01-01

    A numerical simulation of a convective turbulence event is investigated and compared with observational data. The numerical results show severe turbulence of similar scale and intensity to that encountered during the test flight. This turbulence is associated with buoyant plumes that penetrate the upper-level thunderstorm outflow. The simulated radar reflectivity compares well with that obtained from the aircraft's onboard radar. Resolved scales of motion as small as 50 m are needed in order to accurately diagnose aircraft normal load accelerations. Given this requirement, realistic turbulence fields may be created by merging subgrid-scales of turbulence to a convective-cloud simulation. A hazard algorithm for use with model data sets is demonstrated. The algorithm diagnoses the RMS normal loads from second moments of the vertical velocity field and is independent of aircraft motion.

  17. Spider behaviors include oral sexual encounters.

    PubMed

    Gregorič, Matjaž; Šuen, Klavdija; Cheng, Ren-Chung; Kralj-Fišer, Simona; Kuntner, Matjaž

    2016-01-01

    Several clades of spiders whose females evolved giant sizes are known for extreme sexual behaviors such as sexual cannibalism, opportunistic mating, mate-binding, genital mutilation, plugging, and emasculation. However, these behaviors have only been tested in a handful of size dimorphic spiders. Here, we bring another lineage into the picture by reporting on sexual behavior of Darwin's bark spider, Caerostris darwini. This sexually size dimorphic Madagascan species is known for extreme web gigantism and for producing the world's toughest biomaterial. Our field and laboratory study uncovers a rich sexual repertoire that predictably involves cannibalism, genital mutilation, male preference for teneral females, and emasculation. Surprisingly, C. darwini males engage in oral sexual encounters, rarely reported outside mammals. Irrespective of female's age or mating status males salivate onto female genitalia pre-, during, and post-copulation. While its adaptive significance is elusive, oral sexual contact in spiders may signal male quality or reduce sperm competition. PMID:27126507

  18. Altered body image: managing social encounters.

    PubMed

    Price, B

    2000-04-01

    For terminally ill people who are still active within the community, altered body image can pose significant problems. Patients may have an obvious change in appearance or function, but be unsure how to present a positive image to others. Moreover, lay supporters are often equally unsure how to react to the changed appearance of the dying person. Changes in physical appearance and function associated with disease processes (and sometimes treatment) need to be integrated into the interaction that occurs between patients and lay carers. This is likely to be a difficult matter to facilitate, taxing the ingenuity of the palliative care nurse who hopes to assist the patient in this regard. This article uses a case study from the community-based palliative care setting to introduce steps that nurses and patients might consider as the patient sets out to manage such social encounters. PMID:11143644

  19. Spider behaviors include oral sexual encounters

    PubMed Central

    Gregorič, Matjaž; Šuen, Klavdija; Cheng, Ren-Chung; Kralj-Fišer, Simona; Kuntner, Matjaž

    2016-01-01

    Several clades of spiders whose females evolved giant sizes are known for extreme sexual behaviors such as sexual cannibalism, opportunistic mating, mate-binding, genital mutilation, plugging, and emasculation. However, these behaviors have only been tested in a handful of size dimorphic spiders. Here, we bring another lineage into the picture by reporting on sexual behavior of Darwin’s bark spider, Caerostris darwini. This sexually size dimorphic Madagascan species is known for extreme web gigantism and for producing the world’s toughest biomaterial. Our field and laboratory study uncovers a rich sexual repertoire that predictably involves cannibalism, genital mutilation, male preference for teneral females, and emasculation. Surprisingly, C. darwini males engage in oral sexual encounters, rarely reported outside mammals. Irrespective of female’s age or mating status males salivate onto female genitalia pre-, during, and post-copulation. While its adaptive significance is elusive, oral sexual contact in spiders may signal male quality or reduce sperm competition. PMID:27126507

  20. EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR

    SciTech Connect

    Brook, P. R.; Karastergiou, A.; Buchner, S.; Roberts, S. J.; Keith, M. J.; Johnston, S.; Shannon, R. M.

    2014-01-10

    Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inward and interact with a pulsar's magnetosphere, causing changes in torque and emission. Long-term monitoring of PSR J0738–4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from 2005 September. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing and radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.

  1. Voyager Briefing: Expectations of the Neptune Encounter

    NASA Astrophysics Data System (ADS)

    1989-08-01

    This NASA KSC video release presents a news briefing held Aug. 4, 1989 at NASA Headquarters three weeks after Voyager 2's official "encounter" with Neptune began. The video is comprised of two slide presentations followed by a short question and answer period. The press conference is moderated by Charles Redmond, (NASA Public Affairs), includes an introduction by Dr. Geoffrey A Briggs (Dir., Solar System Exploration Div.), and features Norman R. Haynes (Voyager Project Manager, JPL) and Dr. Edward C. Stone (Voyager Project Scientist, Cal Tech). Mr. Haynes' presentation centers on Voyager's history, engineering changes, and spacecraft trajectories while Dr. Stone presents the scientific aspects of Voyager, including the 11 scientific investigations planned for the mission, instruments used, and imaging techniques.

  2. Participation during First Social Encounters in Schizophrenia

    PubMed Central

    Lavelle, Mary; Healey, Patrick G. T.; McCabe, Rosemarie

    2014-01-01

    Background Patients with a diagnosis of schizophrenia are socially excluded. The aim of this study was to investigate how patients participate in first encounters with unfamiliar healthy participants, who are unaware of their diagnosis. Methods Patterns of participation were investigated during interactions involving three-people. Three conversation roles were analysed: (i) speaker, (ii) primary recipient- focus of the speaker’s attention and (iii) secondary recipient- unaddressed individual. Twenty patient interactions (1 patient, 2 healthy controls) and 20 control interactions (3 healthy participants) were recorded and motion captured in 3D. The participation of patients and their partners, in each conversation role, was compared with controls at the start, middle and end of the interaction. The relationship between patients’ participation, their symptoms and the rapport others experienced with them was also explored. Results At the start of the interaction patients spoke less (ß = −.639, p = .02) and spent more time as secondary recipient (ß = .349, p = .02). Patients’ participation at the middle and end of the interaction did not differ from controls. Patients’ partners experienced poorer rapport with patients who spent more time as a primary recipient at the start of the interaction (Rho(11) = −.755, p<.01). Patients’ participation was not associated with symptoms. Conclusion Despite their increased participation over time, patients’ initial participation appears to be associated with others’ experience of rapport with them. Thus, the opening moments of patients’ first encounters appear to be interpersonally significant. Further investigation of patient and others’ behaviour during these critical moments is warranted in order to understand, and possibly develop interventions to address, the difficulties schizophrenia patients experience here. PMID:24465363

  3. Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; De Blasi, F.; Dalla Fontana, G.

    2015-05-01

    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect) and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium to large glaciers so far, while observations on smaller ice bodies (< 0.5 km2) are scarce. Using a data set from eight on-glacier and four off-glacier weather stations, collected in the summers of 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation. The methods proposed by Greuell and Bohm (1998) and Shea and Moore (2010) for calculating on-glacier temperature from off-glacier data did not fully reproduce our observations. Among them, the more physically based procedure of Greuell and Bohm (1998) provided the best overall results where the KBL prevails, but it was not effective elsewhere (i.e., on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

  4. Air temperature variability over three glaciers in the Ortles-Cevedale (Italian Alps): effects of glacier disintegration, intercomparison of calculation methods, and impacts on mass balance modeling

    NASA Astrophysics Data System (ADS)

    Carturan, L.; Cazorzi, F.; De Blasi, F.; Dalla Fontana, G.

    2014-12-01

    Glacier mass balance models rely on accurate spatial calculation of input data, in particular air temperature. Lower temperatures (the so-called glacier cooling effect), and lower temperature variability (the so-called glacier damping effect) generally occur over glaciers, compared to ambient conditions. These effects, which depend on the geometric characteristics of glaciers and display a high spatial and temporal variability, have been mostly investigated on medium- to large-size glaciers so far, while observations on smaller ice bodies are scarce. Using a dataset from 8 on-glacier and 4 off-glacier weather stations, collected in summer 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer (KBL) processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and disintegration. None of the methods proposed in the literature for calculating on-glacier temperature from off-glacier data fully reproduced our observations. Among them, the more physically-based procedure of Greuell and Böhm (1998) provided the best overall results where the KBL prevail, but it was not effective elsewhere (i.e. on smaller ice bodies and close to the glacier margins). The accuracy of air temperature estimations strongly impacted the results from a mass balance model which was applied to the three investigated glaciers. Most importantly, even small temperature deviations caused distortions in parameter calibration, thus compromising the model generalizability.

  5. Climatological classification of five sectors in the Iberian Peninsula using columnar (AOD, α) and surface (PM10, PM2.5) aerosol data supported by air mass apportioning

    NASA Astrophysics Data System (ADS)

    Cachorro, Victoria; Mateos, David; Toledano, Carlos; Burgos, Maria A.; Bennouna, Yasmine; Torres, Benjamín; Fuertes, David; González, Ramiro; Guirado, Carmen; Román, Roberto; Velasco-Merino, Cristian; Marcos, Alberto; Calle, Abel; de Frutos, Angel M.

    2015-04-01

    The study of atmospheric aerosol over the Iberian Peninsula (IP) under a climatologic perspective is an interesting and meaningful aim due to the wide variety of conditions (geographical position, air masses, topography, among others) which cause a complex role of the distribution of aerosol properties. In the deeply investigation on the annual cycle and time evolution of the particulate matter lower than 10 µm (PM10, surface) and aerosol optical depth (AOD, columnar) in a large number of sites covering the period 2000-2013, five sectors can be distinguished in the IP. Both set of data belong to EMEP and AERONET networks respectively, as representative of aerosol air quality and climate studies, are complementary elements for a global aerosol research. The prevalence of fine-coarse particles is also analyzed over each sector. Seasonal bimodality of the PM10 annual cycle with a strong North-South gradient is observed in most sites, but this is only reported in the AOD climatology for the southern IP. The northern coast is clearly governed by the Atlantic Ocean influence, while the northeastern area is modulated by the Mediterranean Sea. The southern area, very close to the African continent, presents a large influence of desert dust intrusions. However, the southern Atlantic and Mediterranean coast present discrepancies and two sectors have been defined in this area. Finally, the center of the Peninsula is a mix of conditions, with north-south and east-west gradients of different magnitude. Overall, there is a relationship between PM10 and AOD with a proportional factor varying from 20 to 90, depending on the sector. The particular characteristic of PM10-AOD annual cycle of each geographical sector can be understood by the different climatology of the air mass origins observed at 500 and 1500 m (a.s.l.) and its apportioning to PM10 and AOD, respectively.

  6. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  7. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  8. Galileo post-Gaspra cruise and Earth-2 encounter

    NASA Technical Reports Server (NTRS)

    Beyer, P. E.; Andrews, M. M.

    1993-01-01

    This article documents DSN support for the Galileo cruise after the Oct. 1991 encounter with the asteroid Gaspra. This article also details the Earth-2 encounter and the special non-DSN support provided during the Earth-2 closest approach.

  9. Guest-Host Encounters in Diaspora-Heritage Tourism: The Taglit-Birthright Israel Mifgash (Encounter)

    ERIC Educational Resources Information Center

    Sasson, Theodore; Mittelberg, David; Hecht, Shahar; Saxe, Leonard

    2011-01-01

    More than 300,000 diaspora Jewish young adults and tens of thousands of their Israeli peers have participated in structured, cross-cultural encounters--"mifgashim"--in the context of an experiential education program known as Taglit-Birthright Israel. Drawing on field observations, interviews, and surveys, the formal and informal components of the…

  10. A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.; Benz, Willy

    1995-10-01

    Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.

  11. Voyager program. Voyager 1 encounter at Jupiter, 5 March 1979

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Highlights of Voyager 1 activity during the observatory and far-encounter phases are summarized. Daily sequence of events for the spacecraft during the period of greatest encounter activity (Feb. 26 through Mar. 7) the near-encounter phase is given. Times shown designate the time of signal reception at Deep Space Network stations. Events listed emphasize activities pertaining to the four remote sensing instruments on the scan platforms. However, the other 7 experiments will continuously collect data throughout the encounter period.

  12. Close Encounters with the Fourth Dimension.

    ERIC Educational Resources Information Center

    Alexander, Mary, Ed.

    1984-01-01

    Most of the 11,108 sightings of unidentified flying objects (UFOs) between 1947 and 1966 were explained by the Air Force as astronomical phenomena, aircraft, or balloons. The document from the National Archives produced here for use in secondary classes is typical of those sighting reports. Classroom activities are suggested. (RM)

  13. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  14. Associations between Prenatal traffic-related air pollution exposure and birth weight: Modification by sex and maternal pre-pregnancy body mass index

    PubMed Central

    Coull, Brent A.; Just, Allan C.; Maxwell, Sarah L.; Schwartz, Joel; Gryparis, Alexandros; Kloog, Itai; Wright, Rosalind J.; Wright, Robert O.

    2015-01-01

    Background Prenatal traffic-related air pollution exposure is linked to adverse birth outcomes. However, modifying effects of maternal body mass index (BMI) and infant sex remain virtually unexplored. Objectives We examined whether associations between prenatal air pollution and birth weight differed by sex and maternal BMI in 670 urban ethnically mixed mother-child pairs. Methods Black carbon (BC) levels were estimated using a validated spatio-temporal land-use regression (LUR) model; fine particulate matter (PM2.5) was estimated using a hybrid LUR model incorporating satellite-derived Aerosol Optical Depth measures. Using stratified multivariable-adjusted regression analyses, we examined whether associations between prenatal air pollution and calculated birth weight for gestational age (BWGA) z-scores varied by sex and maternal pre-pregnancy BMI. Results Median birth weight was 3.3±0.6 kg; 33% of mothers were obese (BMI ≥30 kg/m3). In stratified analyses, the association between higher PM2.5 and lower birth weight was significant in males of obese mothers (−0.42 unit of BWGA z-score change per IQR increase in PM2.5, 95%CI: −0.79 to −0.06) ( PM2.5 × sex × obesity Pinteraction=0.02). Results were similar for BC models (Pinteraction=0.002). Conclusions Associations of prenatal exposure to traffic-related air pollution and reduced birth weight were most evident in males born to obese mothers. PMID:25601728

  15. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  16. Marriage Encounter Weekends: Couples Who Win and Couples Who Lose.

    ERIC Educational Resources Information Center

    Doherty, William J.; And Others

    1986-01-01

    Fifty couples who had the most positive or negative reactions in a group of Marriage Encounter couples were interviewed. Results indicated nine couples experienced significant negative changes related to Marriage Encounter, suggesting that distressed couples who attend Marriage Encounters are susceptible to further marital deterioration.…

  17. Close encounters between Chariklo and the giant planets: What about the rings?

    NASA Astrophysics Data System (ADS)

    Winter, Othon; Araujo, Rosana; Sfair, Rafael

    2015-08-01

    It is known that the Centaurs are subject to close gravitational encounters with the giant planets along their mean lifetime (10 Myrs). Thus, in the present work, we investigate the stability of the rings of Chariklo when perturbed by such encounters. Chariklo is a Centaur with semi-major axis a=15.8 AU, eccentricity e=0.175, orbital inclination I=23.4º, and with a physical radius of 124 km. The two narrow rings around Chariklo are in the equatorial plane and have circular orbits, with the orbital radii of 391 km and 405 km. The method consisted on numerically integrate for 100 Myrs a system composed by the Sun, the eight planets, and a sample of 729 objects with the same mass and radius of Chariklo, but with small deviations in the orbital elements a, e and I. All encounters of those clones within 1 Hill's radius of each planet were recorded. We found that the majority of the encounters (48.0%) happens with Uranus, 26.0% with Saturn, 16.6% with Jupiter and 9.4% with Neptune. From these encounters we selected those that take place within ten times the rupture radius to study the effect upon particles around Chariklo. The particles were distributed from 200 km to 1000 km, in equatorial and circular orbits, with a random angular distribution. We found that the effects due to the encounters with Uranus and Neptune are negligible on the dynamics of the particles, i.e., no particles are lost and the rings are not significantly disturbed. However, for Jupiter and Saturn there are some encounters able to completely remove the rings. We also analyze the variations in semi-major axis and eccentricity of the particles that compose the rings, due to the close planetary encounters. We will present a complete analysis of the characteristics and frequency of each kind of event.

  18. Xmaxμ vs. Nμ from extensive air showers as estimator for the mass of primary UHECR's. Application for the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Arsene, Nicusor; Sima, Octavian

    2015-02-01

    We study the possibility of primary mass estimation for Ultra High Energy Cosmic Rays (UHECR's) using the Xmaxμ (the height where the number of muons produced on the core of Extensive Air Showers (EAS) is maximum) and the number Nμ of muons detected on ground. We use the 2D distribution - Xmaxμ against Nμ in order to find its sensitivity to the mass of the primary particle. For that, we construct a 2D Probability Function Prob(p,Fe | Xmaxμ, Nμ) which estimates the probability that a certain point from the plane (Xmaxμ, Nμ) corresponds to a shower induced by a proton, respectively an iron nucleus. To test the procedure, we analyze a set of simulated EAS induced by protons and iron nuclei at energies of 1019eV and 20° zenith angle with CORSIKA. Using the Bayesian approach and taking into account the geometry of the infill detectors from the Pierre Auger Observatory, we observe an improvement in the accuracy of the primary mass reconstruction in comparison with the results obtained using only the Xmaxμ distributions.

  19. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively. PMID:25596872

  20. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Dingding; Zhu, Xun; Liao, Qiang; Li, Jun; Fu, Qian

    A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.

  1. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  2. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  3. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. PMID:24209303

  4. Recovery strategies for microburst encounters using reactive and forward-look wind shear detection

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    The threat of convective microburst wind shear phenomena to aircraft is studied. An attempt was made to quantify the benefits of forward-look sensing and to develop and test a candidate set of strategies for recovery from inadvertent microburst encounters during the landing approach. A batch simulation of various wind shear encounters was carried out; the simulation consisted of a point-mass aircraft model, an analytical microburst, and a simple wind shear detection scheme. It was found that forward-look alerts given 10 sec prior to microburst entry permitted recoveries to be made with little altitude loss.

  5. Solar Probe: Close Encounter with the Sun

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.

    2006-01-01

    The Solar Probe Science and Technology Definition Team (STDT) recently completed a detailed study of the Solar Probe Mission based on an earliest launch date of October 2014. Solar Probe, when implemented, will be the first close encounter by a spacecraft with a star (i.e., 3 Rs above the Sun s photosphere). The report and its executive summary were published by NASA (NASA/TM-2005-212786) in September 2005 and can be found at the website http://solarprobe.gsfc.nasa.gov/. A description of the science is being prepared for publication in Reviews of Geophysics by McComas et al. [2006]. For this talk, we will be presenting the consensus view of the STDT including a brief description of the scientific goals, a description of the overall mission, including trajectory scenarios, spacecraft description and proposed scientific payload. We will discuss all these topics and the importance of flying the Solar Probe mission both with regard to understanding fundamental issues of solar wind acceleration and coronal heating near the Sun and Solar Probe s unique role in understanding the acceleration of Solar Energetic Particles (SEPs), which is critical to future Human Exploration.

  6. Recommendations on frequently encountered relief requests

    SciTech Connect

    Hartley, R.S.; Ransom, C.B.

    1992-01-01

    This paper is based on the review of a large database of requests for relief from enservice testing (1ST) requirements for pumps and valves. From the review, the paper identifies areas where enhancements to either the relief request process or the applicable test codes can improve IST of pumps and valves. Certain types of requests occur frequently. The paper examines some frequent requests and considers possible changes to the requirements to determine if the frequent requests can be eliminated. Recommended changes and their bases will be discussed. IST of safety-related pumps and valves at commercial nuclear power plants is done according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section XI. Because of the design and function of some safety systems in nuclear plants, performing Code testing of certain pumps and valves is impractical or a hardship without a compensating increase in the level of safety. Deviations from the Code are allowed by law, as reviewed and approved by the United States Nuclear Regulatory Commission (NRC), through the relief request process. Because of similarities in plant design and system function, many problems encountered in testing components are similar from plant to plant. Likewise, there are often common problems associated with test methods or equipment. Therefore, many relief requests received by the NRC from various plants are similar. Identifying and addressing the root causes for these common requests will greatly improve IST.

  7. Recommendations on frequently encountered relief requests

    SciTech Connect

    Hartley, R.S.; Ransom, C.B.

    1992-09-01

    This paper is based on the review of a large database of requests for relief from enservice testing (1ST) requirements for pumps and valves. From the review, the paper identifies areas where enhancements to either the relief request process or the applicable test codes can improve IST of pumps and valves. Certain types of requests occur frequently. The paper examines some frequent requests and considers possible changes to the requirements to determine if the frequent requests can be eliminated. Recommended changes and their bases will be discussed. IST of safety-related pumps and valves at commercial nuclear power plants is done according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section XI. Because of the design and function of some safety systems in nuclear plants, performing Code testing of certain pumps and valves is impractical or a hardship without a compensating increase in the level of safety. Deviations from the Code are allowed by law, as reviewed and approved by the United States Nuclear Regulatory Commission (NRC), through the relief request process. Because of similarities in plant design and system function, many problems encountered in testing components are similar from plant to plant. Likewise, there are often common problems associated with test methods or equipment. Therefore, many relief requests received by the NRC from various plants are similar. Identifying and addressing the root causes for these common requests will greatly improve IST.

  8. Casebook: a system for tracking clinical encounters.

    PubMed

    Kahn, J A; Piggins, J; Blewett, D R; Hassan, L; Raila, W; Link, D; Oliver, D E; Barnett, G O

    1991-01-01

    Casebook is a clinically oriented database, written in MUMPS, and designed for recording the clinical encounters of medical students at Harvard Medical School. Its main goals are to 1) increase student use of computer technology, 2) help faculty evaluate the diversity of clinical experiences on their service, 3) provide data to the faculty on the "typical" experience of medical students on their service to aid in the evaluation of the curriculum and, 4) provide report-generation capabilities for the students to improve dialog with their preceptors. Students are able to enter information on "Problems" and "Procedures" selecting from a pop-up menu of medical terms or by entering free text. Casebook is currently in use in the Medicine, OB/GYN, Pediatric and Ambulatory rotations. At sites where the faculty take an active interest in the use of Casebook students perceive it to be valuable and subsequently use it more frequently. It is currently being expanded for use by medical students in their second, third, and fourth years of school. PMID:1807697

  9. LIDAR technique: a central puzzle piece to build an integrated observation - modeling approach for air mass aerosols concentration evaluation

    NASA Astrophysics Data System (ADS)

    Tudose, Ovidiu-Gelu

    2013-04-01

    This paper presents a study of the temporal and vertical variation of mixed aerosol mass concentration near Bucharest during a dedicated observation campaign performed in summer 2012. To obtain the vertical mass concentrations profiles a combination of measured (mainly based on LIDAR technique) and modeled data was used. This method is based on the hypothesis that any mixture in the atmosphere can be described as a combination of low-depolarizing and high-depolarizing particles of a particular type. It uses the method proposed by Tesche et al. (2009), combined with forward simulations (i.e. OPAC). Based on supplementary information (e.g. preliminary assessment of aerosol source from forecast models and back trajectories) and several optical indicators (Angstrom exponent, LIDAR ratio, particle depolarization, AOD we built an approach to 2 cases of aerosol mixture, and validate the results using other information sources: sun photometry, forecasts, back trajectories. The first case was proved to be a smoke predominant layer, the second a Saharan dust predominant layer. Information from various data sources (DREAM, HYSPLIT, AERONET, MODIS) was consistent with our retrievals.

  10. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  11. Thermally-driven advections of aerosol-rich air masses to an Alpine valley: Theoretical considerations and experimental evidences

    NASA Astrophysics Data System (ADS)

    Diémoz, Henri; Magri, Tiziana; Pession, Giordano; Zublena, Manuela; Campanelli, Monica; Gobbi, Gian Paolo; Barnaba, Francesca; Di Liberto, Luca; Dionisi, Davide

    2016-04-01

    A CHM-15k laser radar (lidar) was installed in April 2015 at the solar observatory of the Environmental Protection Agency (ARPA) of the Aosta Valley (Northern Italy, 45.74N, 7.36E, 560 m a.s.l.). The instrument operates at 1064 nm, is capable of mapping the vertical profile of aerosols and clouds up to the tropopause and is part of the Alice-net ceilometers network (www.alice-net.eu). The site is in a large Alpine valley floor, in a semi-rural context. Among the most interesting cases observed in the first months of operation, several days characterised by weak synoptic circulation and well-developed, thermally-driven up-valley winds are accompanied by the appearance of a thick aerosol layer in the afternoon. The phenomenon is frequent in Spring and Summer and is likely to be related to easterly airmass advections from polluted sites (e.g., the Po basin) rather than to local emissions. To test this hypothesis, the following method was adopted. First, some case studies were selected and the respective meteorological fields were analysed based on both observations at ground and the high-resolution output of the nonhydrostatic limited-area atmospheric prediction model maintained by the COnsortium for Small-scale MOdelling (COSMO) over the complex orography of the domain. Then, to evaluate the dynamics of the aerosol diffusion in the valley, the chemical transport 2D/3D eulerian Flexible Air quality Regional Model (FARM) was run. Finally, the three-dimensional output of the model was compared to the vertically-resolved aerosol field derived from the lidar-ceilometer soundings. The effects of up-slope winds, and the resulting subsidence along the main axis of the valley, is hypothesised to break up the aerosol layer close to the ground in the middle of the day and to drag the residual layer down into the mixing layer. The measurements by a co-located sun/sky photometer operating in the framework of the EuroSkyRad (ESR) network were additionally analysed to detect any

  12. Optimisation of sorbent trapping and thermal desorption-gas chromatography-mass spectrometric conditions for sampling and analysis of hydrogen cyanide in air.

    PubMed

    Juillet, Yannick; Le Moullec, Sophie; Bégos, Arlette; Bellier, Bruno

    2005-06-01

    Among the chemicals belonging to the schedules of the Chemical Weapons Convention (CWC), sampling and analysis of highly volatile compounds such as hydrogen cyanide (HCN) require special consideration. The latter is present in numerous old chemical weapons that are stockpiled awaiting destruction in Northeastern France: thus, sampling on stockpile area and subsequent verification of HCN levels is compulsory to ensure safety of workers on these areas. The ability of several commercial sorbents to trap hydrogen cyanide at various concentration levels and in various humidity conditions, was evaluated. Furthermore, thermal desorption of the corresponding samples, followed by analysis by gas chromatography-mass spectrometry was also optimised. Carbosieve S-III, a molecular sieve possessing a very high specific area, proved the most efficient sorbent for HCN sampling in all conditions tested. Conversely, the presented results show that Tenax, albeit generally considered as the reference sorbent for air monitoring and analysis of CWC-related chemicals, is not suitable for HCN trapping. PMID:15912249

  13. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  14. Dynamics of the flammable plumes resulting from the convective dispersion of a fixed mass of the buoyant gaseous fuel, methane, into air.

    PubMed

    Fardisi, S; Karim, Ghazi A

    2009-08-15

    The dynamics of the dispersion of a fixed mass of the buoyant fuel, methane, when exposed with a negligible pressure difference to overlaying air within vertical cylindrical enclosures open to the atmosphere is investigated. Features of the formation and dispersion of flammable mixtures created by the gas dissipation were examined using a 3D CFD model. For the cases considered, the lean-flammable mixture boundary appears to travel mainly at a near constant rate while the rich limit front shows a more chaotic behaviour. The corresponding simulation using an axis-symmetrical 2D model tended to under-predict the dynamics of the lean and rich boundaries, for the cases considered. PMID:19237243

  15. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    NASA Astrophysics Data System (ADS)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  16. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  17. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  18. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  19. Mass loading of size-segregated atmospheric aerosols in the ambient air during fireworks episodes in eastern Central India.

    PubMed

    Nirmalkar, Jayant; Deb, Manas K; Deshmukh, Dhananjay K; Verma, Santosh K

    2013-04-01

    The effects of combustion of the fire crackers on the air quality in eastern Central India were studied for the first time during Diwali festival. This case study analyzes the size distribution and temporal variation of aerosols collected in the rural area of eastern Central India during pre-diwali, Diwali and post-diwali period for the year of 2011. Fifteen aerosol samples were collected during the special case study of Diwali period using Andersen sampler. The mean concentrations of PM10 (respirable particulate matter) were found to be 212.8 ± 4.2, 555.5 ± 20.2 and 284.4 ± 5.8 during pre-diwali, Diwali and post-diwali period, respectively. During Diwali festival PM10 concentration was about 2.6 and 1.9 times higher than pre-diwali and post-diwali period, respectively. PM2.5 (fine) and PM1 (submicron) concentrations during Diwali festival were more than 2 times higher than pre-diwali and post-diwali. PMID:23287842

  20. Distortion of thermospheric air masses by horizontal neutral winds over Poker Flat Alaska measured using an all-sky scanning Doppler imager

    NASA Astrophysics Data System (ADS)

    Dhadly, M. S.; Conde, M.

    2016-01-01

    An air mass transported by a wind field will become distorted over time by any gradients present in the wind field. To study this effect in Earth's thermosphere, we examine the behavior of a simple parameter that we describe here as the "distortion gradient." It incorporates all of the wind field's departures from uniformity and is thus capable of representing all contributions to the distortion or mixing of air masses. The distortion gradient is defined such that it is always positive, so averaging over time and/or space does not suppress small-scale features. Conventional gradients, by contrast, are signed quantities that would often average to zero. To analyze the climatological behavior of this distortion gradient, we used three years (2010, 2011, and 2012) of thermospheric F region wind observations from a high-latitude ground-based all-sky wavelength scanning Doppler Fabry-Perot interferometer located at Poker Flat Alaska. Climatological averaging of the distortion gradient allowed us to investigate its diurnal and seasonal (annual) behaviors at our observing location. Distortion was observed to be higher before local magnetic midnight and to be seasonally dependent. While maximum distortion occurred before local magnetic midnight under all geomagnetic conditions, the peak distortion occurred earlier under moderate geomagnetic conditions as compared to the quiet geomagnetic conditions and even earlier still when geomagnetic conditions were active. Peak distortion was stronger and appeared earlier when interplanetary magnetic field (IMF) was southward compared to northward. By contrast, we could not resolve any time-shift effect due to the IMF component tangential to Earth's orbit.

  1. Determination of fragrance allergens in indoor air by active sampling followed by ultrasound-assisted solvent extraction and gas chromatography-mass spectrometry.

    PubMed

    Lamas, J Pablo; Sanchez-Prado, Lucia; Garcia-Jares, Carmen; Llompart, Maria

    2010-03-19

    Fragrances are ubiquitous pollutants in the environment, present in the most of household products, air fresheners, insecticides and cosmetics. Commercial perfumes may contain hundreds of individual fragrance chemicals. In addition to the widespread use and exposure to fragranced products, many of the raw fragrance materials have limited available health and safety data. Because of their nature as artificial fragrances, inhalation should be considered as an important exposure pathway, especially in indoor environments. In this work, a very simple, fast, and sensitive methodology for the analysis of 24 fragrance allergens in indoor air is presented. Considered compounds include those regulated by the EU Directive, excluding limonene; methyl eugenol was also included due to its toxicity. The proposed methodology is based on the use of a very low amount of adsorbent to retain the target compounds, and the rapid ultrasound-assisted solvent extraction (UAE) using a very low volume of solvent which avoids further extract concentration. Quantification was performed by gas chromatography coupled to mass spectrometry (GC-MS). The influence of main factors involved in the UAE step (type of adsorbent and solvent, solvent volume and extraction time) was studied using an experimental design approach to account for possible factor interactions. Using the optimized procedure, 0.2 m(-3) air are sampled, analytes are retained on 25 mg Florisil, from which they are extracted by UAE (5 min) with 2 mL ethyl acetate. Linearity was demonstrated in a wide concentration range. Efficiency of the total sampling-extraction process was studied at several concentration levels (1, 5 and 125 microg m(-3)), obtaining quantitative recoveries, and good precision (RSD<10%). Method detection limits were < or =0.6 microg m(-3). Finally, the proposed method was applied to real samples collected in indoor environments in which several of the target compounds were determined. PMID:20138288

  2. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  3. Molecular characterisation of organic material in air fine particles (PM10) using conventional and reactive pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Fabbri, Daniele; Prati, Silvia; Vassura, Ivano

    2002-04-01

    Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was applied to study the composition of organic constituents in air particulate matter (PM10) collected inside an industrial area. A few milligrams of sampling filters containing air particles were pyrolysed at 700 degrees C directly (conventional) or after the addition of a derivatising reagent (tetramethylammonium hydroxide, TMAH, for pyrolysis-methylation; hexamethyldisilazane, HMDS, for pyrolysis-silylation). Py-GC-MS was also applied to synthetic polymers (poly(styrene-co-isoprene), polylimonene and polypinene) and vegetation samples (coniferous pollen, bark and resin) to identify markers indicative of possible precursors. Pyrolysates of PM10 showed the same suite of compounds in all the four seasons, dominated by hydrocarbons like styrene, limonene and clusters of isomeric alkenes with 14, 15 and 16 carbon atoms. Pyrolysis products of natural origin, including furaldehyde, benzeneacetonitrile, dehydroabietin and other diterpenoids were found, while no specific markers of synthetic rubbers were detected. The principal products released from reactive pyrolysis of PM10 were methyl or trimethylsilyl (TMS) derivatives of 1,6-anhydroglucose (levoglucosan), fatty acids, dehydroabietic acid and other resin acids along with hydroxy (di)carboxylic acids. Possible sources of the detected products (e.g. pine forest, biomass combustion) are discussed. PMID:11993758

  4. Development and validation of a sensitive thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method for the determination of phosgene in air samples.

    PubMed

    Juillet, Y; Dubois, C; Bintein, F; Dissard, J; Bossée, A

    2014-08-01

    A new rapid, sensitive and reliable method was developed for the determination of phosgene in air samples using thermal desorption (TD) followed by gas chromatography-mass spectrometry (GC-MS). The method is based on a fast (10 min) active sampling of only 1 L of air onto a Tenax® GR tube doped with 0.5 mL of derivatizing mixture containing dimercaptotoluene and triethylamine in hexane solution. Validation of the TD-GC-MS method showed a low limit of detection (40 ppbv), acceptable repeatability, intermediate fidelity (relative standard deviation within 12 %) and excellent accuracy (>95%). Linearity was demonstrated for two concentration ranges (0.04 to 2.5 ppmv and 2.5 to 10 ppmv) owing to variation of derivatization recovery between low and high concentration levels. Due to its simple on-site implementation and its close similarity with recommended operating procedure (ROP) for chemical warfare agents vapour sampling, the method is particularly useful in the process of verification of the Chemical Weapons Convention. PMID:24817348

  5. Accurate orbit propagation with planetary close encounters

    NASA Astrophysics Data System (ADS)

    Baù, Giulio; Milani Comparetti, Andrea; Guerra, Francesca

    2015-08-01

    We tackle the problem of accurately propagating the motion of those small bodies that undergo close approaches with a planet. The literature is lacking on this topic and the reliability of the numerical results is not sufficiently discussed. The high-frequency components of the perturbation generated by a close encounter makes the propagation particularly challenging both from the point of view of the dynamical stability of the formulation and the numerical stability of the integrator. In our approach a fixed step-size and order multistep integrator is combined with a regularized formulation of the perturbed two-body problem. When the propagated object enters the region of influence of a celestial body, the latter becomes the new primary body of attraction. Moreover, the formulation and the step-size will also be changed if necessary. We present: 1) the restarter procedure applied to the multistep integrator whenever the primary body is changed; 2) new analytical formulae for setting the step-size (given the order of the multistep, formulation and initial osculating orbit) in order to control the accumulation of the local truncation error and guarantee the numerical stability during the propagation; 3) a new definition of the region of influence in the phase space. We test the propagator with some real asteroids subject to the gravitational attraction of the planets, the Yarkovsky and relativistic perturbations. Our goal is to show that the proposed approach improves the performance of both the propagator implemented in the OrbFit software package (which is currently used by the NEODyS service) and of the propagator represented by a variable step-size and order multistep method combined with Cowell's formulation (i.e. direct integration of position and velocity in either the physical or a fictitious time).

  6. Preliminary feasibility study of a multi-Phobos encounter experiment during the Viking extended mission

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.; Blanchard, R. C.; Daniels, E. F.

    1974-01-01

    The Viking '75 Mission to Mars is reported which permits a truly unique opportunity to explore the natural satellite, Phobos, from distances measured in tens of kilometers. A preliminary feasibility study has been made which shows that a science mission involving a Phobos close encounter is technically feasible and within the capabilities of the current Viking design. For less than 20 m/s, the Viking Orbiter can provide approximately two 40-day periods of close observation of Phobos, with the first encounter period in January and the second in March, 1977. Multi-pass images of the entire satellite from nearly all aspect angles and with resolution on the order of 10 meters are possible. Close encounters will permit mass determinations to an accuracy of tens of percent. These experiments can be performed in series with the nominal mission; thus, providing complementary scientific information without compromising the original mission and science objectives.

  7. Assessing Patterns in the Surface Electric Field Prior to First CG Flashes and After Last CG Flashes in Air-Mass Thunderstorms

    NASA Astrophysics Data System (ADS)

    Williams, D. E.; Beasley, W. H.; Hyland, P. T.

    2007-12-01

    In an effort to elicit patterns in the temporal and spatial evolution of the contours of surface electric field relevant to the occurrence of cloud-to-ground (CG) lightning, we have analyzed data from the network of 31 electric-field mills jointly operated by the John F. Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). To identify cases of interest, we used lightning ground-strike data, maps of in-cloud lightning discharges, rainfall data, and radar data. In particular, we have focused on two critical problems: 1) estimation of when and where the first CG flash in a storm might occur and 2) assessment of the likelihood of CG flashes occurring late in a storm after a long period without a CG flash. Our long-term goal is to understand the evolution of surface contours of electric field for periods of 30 minutes or more before the first flash of any kind and 30 minutes or more before and after the last flash of any kind. For practical reasons, we are reporting here on analysis of data for periods of 30 minutes before the first CG flash and 30 minutes after the last CG flash in each storm of interest. We have analyzed electric-field data from isolated air-mass convective storms that developed over KSC/CCAFS from late May through early September, 2004-2006. To identify thunderstorms that fit the air-mass, or "pop-up" criteria, we started by examining rainfall and CG lightning data, then looked at radar data. Then, for the storms selected, we performed a two-pass Barnes objective analysis on the electric-field data. Each analysis cycle resulted in one contour plot of 20-second averaged data, yielding 90 plots for each 30 minute interval, which we then animated. This resulted in 58 animations of the field contours prior to first CG flashes and 62 animations of the field contours after last CG flashes. Preliminary impressions from examinations of these cases suggest that the electric-field contours before the first flash exhibit a smooth transition

  8. Analysis of air-mass modification over Poland and Romania by means of multiwavelength lidars - a case study 19-21/07/2014

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Stachlewska, Iwona S.; Nicolae, Doina; Nemuc, Anca; Janicka, Lucja; Markowicz, Krzysztof M.; Belegante, Livio; Talianu, Camelia; Heese, Birgit; Engelmann, Ronny

    2015-04-01

    A case study of air-mass modification over Poland and Romania, assessing the role of the Carpathian Mountains, during 19-21/07/2014 is analyzed. The study is based mainly on measurements taken by two multiwavelength Raman lidars at two different sites: the Radiative Transfer Laboratory (RT-Lab) at the Faculty of Physics of the University of Warsaw in Warsaw (Poland) and at the RADO site of the National Institute of R&D in Optoelectronics in Magurele (Romania). These data were complemented with meteorological data collected at two other sites: SolarAOT in Strzyżów (Poland) - equipped also with AERONET photometer and CHM15k ceilometer, and in Cluj (Romania). The RADO site, with its 7-wavelength aerosol-Raman-depolarization lidar (RALi) is integrated into EARLINET network. The RT-Lab site, with its 8-wavelength aerosol-Raman-depolarization (PollyXT-type) lidar, started the procedure to join in EARLINET last year. Moreover, RT-Lab and SolarAOT sites are part of the Poland AOD network. The analysis is focused on evaluating both multi-wavelength lidar data sets in order to search for similarities and differences in the vertical profiles describing the atmospheric layers above the two stations. Accordingly to GDAS Hysplit 4-days backward trajectory ending up in Magurele at 0.5, 1.5 and 3 km an air-mass from western Europe entered Poland from the north-west on 19/07/2014, descended on the following day over the Poland AOD station in Strzyżów, followed by Cluj and end up at Magurele on 21/07/2014. As the four stations are located along a north-west to south-east line the objective was to evaluate the aerosol properties of the air flow transported over Poland and further to Romania. At both sites, backscatter profiles at 355, 532 and 1064nm, extinction profiles at 355 and 532nm, and depolarization profiles at 532nm and 355nm, show distinctly layered structure in the atmosphere. Along with these we used data from stations in Strzyżów and Cluj as well as information

  9. A Longitudinal Cohort Study of Body Mass Index and Childhood Exposure to Secondhand Tobacco Smoke and Air Pollution: The Southern California Children’s Health Study

    PubMed Central

    Shen, Ernest; Gilliland, Frank D.; Jerrett, Michael; Wolch, Jennifer; Chang, Chih-Chieh; Lurmann, Frederick; Berhane, Kiros

    2014-01-01

    Background: Childhood body mass index (BMI) and obesity prevalence have been associated with exposure to secondhand smoke (SHS), maternal smoking during pregnancy, and vehicular air pollution. There has been little previous study of joint BMI effects of air pollution and tobacco smoke exposure. Methods: Information on exposure to SHS and maternal smoking during pregnancy was collected on 3,318 participants at enrollment into the Southern California Children’s Health Study. At study entry at average age of 10 years, residential near-roadway pollution exposure (NRP) was estimated based on a line source dispersion model accounting for traffic volume, proximity, and meteorology. Lifetime exposure to tobacco smoke was assessed by parent questionnaire. Associations with subsequent BMI growth trajectory based on annual measurements and attained BMI at 18 years of age were assessed using a multilevel modeling strategy. Results: Maternal smoking during pregnancy was associated with estimated BMI growth over 8-year follow-up (0.72 kg/m2 higher; 95% CI: 0.14, 1.31) and attained BMI (1.14 kg/m2 higher; 95% CI: 0.66, 1.62). SHS exposure before enrollment was positively associated with BMI growth (0.81 kg/m2 higher; 95% CI: 0.36, 1.27) and attained BMI (1.23 kg/m2 higher; 95% CI: 0.86, 1.61). Growth and attained BMI increased with more smokers in the home. Compared with children without a history of SHS and NRP below the median, attained BMI was 0.80 kg/m2 higher (95% CI: 0.27, 1.32) with exposure to high NRP without SHS; 0.85 kg/m2 higher (95% CI: 0.43, 1.28) with low NRP and a history of SHS; and 2.15 kg/m2 higher (95% CI: 1.52, 2.77) with high NRP and a history of SHS (interaction p-value 0.007). These results suggest a synergistic effect. Conclusions: Our findings strengthen emerging evidence that exposure to tobacco smoke and NRP contribute to development of childhood obesity and suggest that combined exposures may have synergistic effects. Citation: McConnell R, Shen E

  10. Determining the levels of volatile organic pollutants in urban air using a gas chromatography-mass spectrometry method.

    PubMed

    Nicoara, Simona; Tonidandel, Loris; Traldi, Pietro; Watson, Jonathan; Morgan, Geraint; Popa, Ovidiu

    2009-01-01

    The paper presents the application of a method based on coupled gas chromatography-mass spectrometry, using an isotopically labelled internal standard for the quantitative analysis of benzene (B), toluene (T), ethyl benzene (E), and o-, m-, p-xylenes (X). Their atmospheric concentrations were determined based on short-term sampling, in different sites of Cluj-Napoca, a highly populated urban centre in N-W Romania, with numerous and diversified road vehicles with internal combustion engines. The method is relatively inexpensive and simple and shows good precision and linearity in the ranges of 7-60 mug/m(3) (B), 13-90 mug/m(3) (T), 7-50 mug/m(3) (E), 10-70 mug/m(3) (X-m,p), and 20-130 mug/m(3) (X-o). The limits of quantitation/detection of the method LOQ/LOD are of 10/5 mug/m(3) (Xo), 5/3 mug/m(3) (B, E, X-m,p), and of 3/1 mug/m(3) (T), respectively. PMID:20168976

  11. Long-term effects of close encounters with (3) Juno, (20) Massalia, (31) Euphrosyne, and (111) Ate

    NASA Astrophysics Data System (ADS)

    Carruba, V.; Aljbaae, S.; Souchay, J.

    2014-07-01

    The inaccuracy in the determination of asteroid masses represents the major limitation for the performance of modern ephemerids. We describe and use in this work a dynamical method to determine the masses of four asteroids: (3) Juno, (20) Massalia, (31) Euphrosyne, and (111) Ate, based on the observational study of deflection caused by these asteroids on other smaller ones. A list of the encounters likely to produce mass determination for each one of our sample asteroids are presented in this work. We selected encounters whose separation between the two asteroids was less than 0.01 au, and with an angle (θ_1), which is the scattering angle between the orbits of the target asteroid with and without the studied mass at the moment of close encounter, larger than 0.1 arcsec. After that, the distance between the two positions of the target asteroid were calculated after 30 days of each possible close encounter, with and without the perturbing asteroid. We then checked if the orbital change of the asteroid is observable from Earth. We aim to follow-up each one of the close encounters listed here, using the most appropriate method of observation, in order to determine the mass of our studied objects with good accuracy. This kind of study is all the more interesting since the astrometric space mission Gaia is on the verge of detecting some of the deflections investigated here.

  12. On-line monitoring of benzene air concentrations while driving in traffic by means of isotopic dilution gas chromatography/mass spectrometry.

    PubMed

    Davoli, E; Cappellini, L; Moggi, M; Ferrari, S; Fanelli, R

    1996-01-01

    There is no shortage of information about the average benzene concentrations in urban air, but there is very little about microenvironmental exposure, such as in-vehicle concentrations while driving in various traffic conditions, while refuelling, or while in a parking garage. The main reason for this lack of data is that no analytical instrumentation has been available to measure on-line trace amounts of benzene in such situations. We have recently proposed a highly accurate, high-speed cryofocusing gas chromatography/mass spectrometry (GC/MS) system for monitoring benzene concentrations in air. Accuracy of the analytical data is achieved by enrichment of the air sample before trapping, with a stable isotope permeation tube system. The same principles have been applied to a new instrument, specifically designed for operation on an electric vehicle (Ducato Elettra, Fiat). The zero emission vehicle and the fully transportable, battery-operated GC/MS system provide a unique possibility of monitoring benzene exposure in real everyday situations such as while driving, refuelling, or repairing a car. All power consumptions have been reduced so as to achieve a battery-operated GC/MS system. Liquid nitrogen cryofocusing has been replaced by a packed, inductively heated, graphitized charcoal microtrap. The instrument has been mounted on shock absorbers and installed in the van. The whole system has been tested in both fixed and mobile conditions. The maximum monitoring period without external power supply is 6 h. The full analytical cycle is 4 min, allowing close to real-time monitoring, and the minimum detectable level is 1 microgram/m3 for benzene. In-vehicle monitoring showed that, when recirculation was off and ventilation on, i.e., air from outside the vehicle was blown inside, concentrations varied widely in different driving conditions: moving from a parking lot into normal traffic on an urban traffic condition roadway yielded an increase in benzene concentration

  13. An evaluation of the impact of urban air pollution on paint dosimeters by tracking changes in the lipid MALDI-TOF mass spectra profile.

    PubMed

    Herrera, A; Navas, N; Cardell, C

    2016-08-01

    We evaluated the impact of urban air pollution on egg yolk tempera paint dosimeters (binary mixture samples made with historic artist´s blue, red and white pigments) by tracking changes over time in their lipid matrix-assisted laser desorption ionization time-of-flight mass spectra (MALDI-TOF-MS) profiles. We studied triacylglycerols (TGs), phospholipids (PLs) and their oxidation by-products from paint dosimeters that had been exposed outdoors for six months to the polluted atmosphere in the city center of Granada (Spain). Four types of chickens' eggs were also analyzed to find out whether their lipid mass spectra (lipid fingerprints) varied significantly. The ultimate goal of this research is to provide a precise analytical protocol to show whether the changes in the egg yolk identified in paint dosimeters are due to pigment-binder interactions. The Bligh-Dyer (BD) method was optimized for the extraction of the lipids. This innovative procedure included a washing-step prior to the mass spectrometric analysis, which proved crucial for obtaining higher quality lipid fingerprints. A novel interpretation of the results is proposed by applying the BD method, which suggests that transesterification processes occurred in the lipid fractions that were catalyzed by the pigments in the paint dosimeters. In blank dosimeters specific ions produced by oxidative cleavage of PLs and/or TGs may be used as markers of the presence of egg yolk binders. The composition and structure of the specific lipid compounds are also tentatively proposed. In aged dosimeters the intact content of the TGs and PLs decreased; however, we propose that short-chain oxidative products arising from TGs and PLs are present in all the samples, except for the white lead based dosimeter. We end with a new explanation as to why this dosimeter behaves differently from the others. PMID:27216656

  14. Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La Porte super site during the Texas Air Quality Study 2000

    NASA Astrophysics Data System (ADS)

    Karl, Thomas; Jobson, Tom; Kuster, William C.; Williams, Eric; Stutz, Jochen; Shetter, Rick; Hall, Samuel R.; Goldan, Paul; Fehsenfeld, Fred; Lindinger, Werner

    2003-08-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was deployed for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Overall, 28 ions dominated the PTR-MS mass spectra and were assigned as anthropogenic aromatics (e.g., benzene, toluene, xylenes) and hydrocarbons (propene, isoprene), oxygenated compounds (e.g., formaldehyde, acetaldehyde, acetone, methanol, C7 carbonyls), and three nitrogen-containing compounds (e.g., HCN, acetonitrile and acrylonitrile). Biogenic VOCs were minor components at this site. Propene was the most abundant lightweight hydrocarbon detected by this technique with concentrations up to 100+ nmol mol-1, and was highly correlated with its oxidation products, formaldehyde (up to ˜40 nmol mol-1) and acetaldehyde (up to ˜80 nmol/mol), with typical ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained data set helped in identifying different anthropogenic sources (e.g., industrial from urban emissions) and testing current emission inventories. A comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by "soft" chemical ionization using proton-transfer via H3O+. The method was especially valuable in monitoring rapidly changing VOC plumes which passed over the site, and when coupled with meteorological data it was possible to identify likely sources.

  15. SHATTERING FLARES DURING CLOSE ENCOUNTERS OF NEUTRON STARS

    SciTech Connect

    Tsang, David

    2013-11-10

    We demonstrate that resonant shattering flares can occur during close passages of neutron stars in eccentric or hyperbolic encounters. We provide updated estimates for the rate of close encounters of compact objects in dense stellar environments, which we find are substantially lower than given in previous works. While such occurrences are rare, we show that shattering flares can provide a strong electromagnetic counterpart to the gravitational wave bursts expected from such encounters, allowing triggered searches for these events to occur.

  16. Pioneer Saturn Encounter. [Pioneer 11 space probe

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Pioneer Saturn Spacecraft, which began its journey as Pioneer 11, provided the first close view of the rings of Saturn as well as its system of moons. Its payload of 11 operating instruments obtained or confirmed data about the mass, temperature, composition, radiation belts, and atmosphere of the planet and its larger satellite, Titan. It made photometric and polarization measurements of lapetus, Rhea, Dione, and Tethys, as well as discovered additional rings. Scientific highlights of the mission are summarized. Color imagery provided by the photopolarimeter is included along with illustrations of the planet's magnetic field and radiation belts.

  17. Faculty encounters with uncivil nursing students: an overview.

    PubMed

    Luparell, Susan

    2004-01-01

    The critical incident technique (CIT) was used to explore faculty experiences with uncivil nursing students. Twenty-one nursing faculty with various years of experience in teaching were interviewed to ascertain what they considered critical incidents of uncivil encounters with nursing students and what effect those encounters had on them. Thirty-six encounters were described by the faculty. Of the 36 encounters, 33 occurred with individual students and 3 occurred with groups of students. Twenty-three encounters occurred in the context of poor student performance requiring constructive criticism or resulting in course failure. A battlefield metaphor is used to describe the incidents, their antecedents, and their consequences. The encounters were precipitated by a period of escalating tensions and effort by the faculty to diffuse the situation. The faculty were surprised and caught off guard by the encounters, which ranged in severity from mild to highly aggressive. The faculty often perceived significant threats to well-being of self, loved ones, job security, and/or possessions. The aftermath of the encounters included physical and emotional tolls on faculty, decreased self-esteem and loss of confidence in teaching ability, significant time expenditures, and negative consequences to the educational process. Three of the faculty left teaching in part due to encounters with students. PMID:15011194

  18. Structure and Composition of Air-Plane Soots and Surrogates Analyzed by Raman Spectroscopy and Laser/Ions Desorption Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ortega, Ismael; Chazallon, Bertrand; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier; Salm, François; Delhaye, David; Gaffié, Daniel; Yon, Jérôme

    2015-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. An aircraft exhaust plume contains species emitted by the engines, species formed in the plume from the emitted species and atmospheric species that become entrained into the plume. The majority of emitted species (gases and soot particles) are produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Emissions of soot particles by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied since many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. Most likely one of the reasons behind these discrepancies resides in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g. with respect to fuel or combustion techniques. In this work, we use Raman microscopy (266, 514 and 785 nm excitation) and ablation techniques (SIMS, Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particles produced from air-plane at different engine regimes simulating a landing and taking-off (LTO) cycle. First, the spectral parameters of the first-order Raman band of various soot samples, collected from three different sources in the frame of the MERMOSE project (http://mermose.onera.fr/): PowerJet SaM-146 turbofan (four engine regimes), CAST generator (propane fuel, four different global equivalence ratios), and Kerosene laboratory flame

  19. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi

  20. Close encounters of three black holes

    SciTech Connect

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  1. Concentrations of Semivolatile Organic Compounds Associated with African Dust Air Masses in Mali, Cape Verde, Trinidad and Tobago, and the U.S. Virgin Islands, 2001-2008

    USGS Publications Warehouse

    Garrison, Virginia H.; Foreman, William T.; Genualdi, Susan A.; Majewski, Michael S.; Mohammed, Azad; Simonich, Staci Massey

    2011-01-01

    Every year, billions of tons of fine particles are eroded from the surface of the Sahara Desert and the Sahel of West Africa, lifted into the atmosphere by convective storms, and transported thousands of kilometers downwind. Most of the dust is carried west to the Americas and the Caribbean in the Saharan Air Layer (SAL). Dust air masses predominately impact northern South America during the Northern Hemisphere winter and the Caribbean and Southeastern United States in summer. Dust concentrations vary considerably temporally and spatially. In a dust source region (Mali), concentrations range from background levels of 575 micrograms per cubic meter (mu/u g per m3) to 13,000 mu/u g per m3 when visibility degrades to a few meters (Gillies and others, 1996). In the Caribbean, concentrations of 200 to 600 mu/u g per m3 in the mid-Atlantic and Barbados (Prospero and others, 1981; Talbot and others, 1986), 3 to 20 mu/u g per m3 in the Caribbean (Prospero and Nees, 1986; Perry and others, 1997); and >100 mu/u g per m3 in the Virgin Islands (this dataset) have been reported during African dust conditions. Mean dust particle size decreases as the SAL traverses from West Africa to the Caribbean and Americas as a result of gravitational settling. Mean particle size reaching the Caribbean is <1 micrometer (mu/u m) (Perry and others, 1997), and even finer particles are carried into Central America, the Southeastern United States, and maritime Canada. Particles less than 2.5 mu/u m diameter (termed PM2.5) can be inhaled deeply into human lungs. A large body of literature has shown that increased PM2.5 concentrations are linked to increased cardiovascular/respiratory morbidity and mortality (for example, Dockery and others, 1993; Penn and others, 2005).

  2. Determination of a wide range of volatile organic compounds in ambient air using multisorbent adsorption/thermal desorption and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Pankow, J.F.; Luo, W.; Isabelle, L.M.; Bender, D.A.; Baker, R.J.

    1998-01-01

    Adsorption/thermal desorption with multisorbent air-sampling cartridges was developed for the determination of 87 method analytes including halogenated alkanes, halogenated alkenes, ethers, alcohols, nitriles, esters, ketones, aromatics, a disulfide, and a furan. The volatilities of the compounds ranged from that of dichlorofluoromethane (CFC12) to that of 1,2,3- trichlorobenzene. The eight most volatile compounds were determined using a 1.5-L air sample and a sample cartridge containing 50 mg of Carbotrap B and 280 mg of Carboxen 1000; the remaining 79 compounds were determined using a 5-L air sample and a cartridge containing 180 mg of Carbotrap B and 70 mg of Carboxen 1000. Analysis and detection were by gas chromatography/mass spectrometry. The minimum detectable level (MDL) concentration values ranged from 0.01 parts per billion by volume (ppbv) for chlorobenzene to 0.4 ppbv for bromomethane; most of the MDL values were in the range 0.02-0.06 ppbv. No breakthrough was detected with the prescribed sample volumes. Analyte stability on the cartridges was very good. Excellent recoveries were obtained with independent check standards. Travel spike recoveries ranged from 90 to 110% for 72 of the 87 compounds. The recoveries were less than 70% for bromomethane and chloroethene and for a few compounds such as methyl acetate that are subject to losses by hydrolysis; the lowest travel spike recovery was obtained for bromomethane (62%). Blank values for all compounds were either below detection or very low. Ambient atmospheric sampling was conducted in New Jersey from April to December, 1997. Three sites characterized by low, moderate, and high densities of urbanization/traffic were sampled. The median detected concentrations of the compounds were either similar at all three sites (as with the chlorofluorocarbon compounds) or increased with the density of urbanization/traffic (as with dichloromethane, MTBE, benzene, and toluene). For toluene, the median detected

  3. Analyzing Service Encounters Cross-Culturally: Methodological Considerations.

    ERIC Educational Resources Information Center

    Kalaja, Paula

    Two approaches to analyzing service encounters (instances of face-to-face interaction between a server designated in a particular area and a customer receiving service from the server) are examined. Some linguists view service encounters as business transaction texts. The two approaches are the "top-down" approach, in which linguists make direct…

  4. Opening clinical encounters in an adult musculoskeletal setting.

    PubMed

    Chester, Emily C; Robinson, Natalie C; Roberts, Lisa C

    2014-08-01

    Effective communication between healthcare professionals and their patients is crucial for successful consultations, and can profoundly affect patients' adherence to treatment. Despite this evidence, communication within the physiotherapy profession is still underexplored, in particular, how 'best' to open clinical encounters. This study explores the issue by seeking the preferences of physiotherapists for opening encounters in the adult musculoskeletal outpatient setting. Initially, 42 consultations and 17 first follow-up encounters were observed between qualified physiotherapists and patients with back pain. These encounters were audio-recorded, analysed and used to develop a questionnaire to determine clinicians' preferences for opening encounters. From these findings, a synopsis of the questionnaire was posted on the four most-relevant professional networks of the national, interactive Chartered Society of Physiotherapy (iCSP) website, to canvass opinion more widely. Among the 43 physiotherapists who responded, the preferred 'key clinical question' for an initial encounter was: "Do you want to just tell me a little bit about [your 'problem presentation'] first of all?"; and for follow-up encounters: 'How have you been since I last saw you?' These results provide an important and novel contribution to the profession, as debate on this issue has not previously been published. Although the sample size in this study is small, the aim of this paper is to generate reflection and debate among clinicians on their preferences for opening patient encounters and optimising the non-specific treatment effects. PMID:24809241

  5. Improving Collaborative Learning by Supporting Casual Encounters in Distance Learning.

    ERIC Educational Resources Information Center

    Contreras, Juan; Llamas, Rafael; Vizcaino, Aurora; Vavela, Jesus

    Casual encounters in a learning environment are very useful in reinforcing previous knowledge and acquiring new knowledge. Such encounters are very common in traditional learning environments and can be used successfully in social environments in which students can discover and construct knowledge through a process of dialogue, negotiation, or…

  6. Voyager 2 to make closest encounter with Saturn in August

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The planned Voyager 2 Saturn mission is described. Information about Saturn obtained from the Voyager 1 encounter is summarized. Data on the satellites and rings of Saturn are tabulated. The video programming schedule for the Voyager 2 Saturn encounter is given. The Voyager science team is listed.

  7. Do Values Change in an Encounter Group? An Empirical Investigation.

    ERIC Educational Resources Information Center

    Annis, Lawrence V.

    Encounter groups represent an attempt to apply group methods for the enhancement of personal awareness and the acceleration of personal growth among "normal" people. The extent to which an individual's moral values are modified by disclosure and discussion of these values in an encounter group setting was investigated with a group of nine…

  8. BINARY ASTEROID ENCOUNTERS WITH TERRESTRIAL PLANETS: TIMESCALES AND EFFECTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-01-15

    Many asteroids that make close encounters with terrestrial planets are in a binary configuration. Here, we calculate the relevant encounter timescales and investigate the effects of encounters on a binary's mutual orbit. We use a combination of analytical and numerical approaches with a wide range of initial conditions. Our test cases include generic binaries with close, moderate, and wide separations, as well as seven well-characterized near-Earth binaries. We find that close approaches (<10 Earth radii) occur for almost all binaries on 1-10 million year timescales. At such distances, our results suggest substantial modifications to a binary's semimajor axis, eccentricity, and inclination, which we quantify. Encounters within 30 Earth radii typically occur on sub-million year timescales and significantly affect the wider binaries. Important processes in the lives of near-Earth binaries, such as tidal and radiative evolution, can be altered or stopped by planetary encounters.

  9. GASP cloud encounter statistics - Implications for laminar flow control flight

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1984-01-01

    The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.

  10. Features of encounters of small bodies with planets

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2015-11-01

    A kinematic approach is developed to qualitative analysis of characteristics of a low-speed encounter of a small body with a planet. A classification of encounters of small bodies with planets based on the magnitude of planetocentric speed is proposed. The concept of the points of low-speed quasi-tangency of orbits of small bodies and planets is introduced. Based on this concept, the definitions of the point of minimum planetocentric speed, a quasi-tangent low-velocity segment on the orbit of a small body, low-velocity and high-velocity encounters are formulated. A classification of encounters of small bodies with planets according to the global minimum of the function of planetocentric distance is also proposed. The classification is based on the concepts of the gravity sphere of action and the Hill sphere of the planet. The definitions of an area and duration of low-speed and high-speed encounters are given.

  11. NEAs' Binaries and Planetary Close Encounters -Stability and Lifetime

    NASA Astrophysics Data System (ADS)

    Araujo, Rosana; Winter, O.

    2013-05-01

    Abstract (2,250 Maximum Characters): In the present work we considered the effects of close encounters, suffered by hypothetical NEAs binaries, with Earth, Mercury and Venus, in order to determine the stability of their satellites as a function of the encounter conditions. In addition, knowing the conditions that leads to the loss (by ejection or collisions) of the most internal satellites, we are able to estimate the frequency of such encounters, and thus, determine the expected lifetime of the NEAs binaries. The methodology consisted on numerically simulate a system composed by the Sun, the planets of the Solar System, and a sample of 2100 NEAs, for a period of 10 Myr (predict NEAs' lifetime). All close encounters with the planets closer than 100 planet's radius were registered. The next step consisted on simulate a representative sample of those registered close encounters, through numerical integration, considering the planet, the asteroid that perform the close encounter, and a cloud of satellites around the asteroid. The largest radial distance for which all the satellites survive (no collision or ejection) was defined as the critical radius - Rc, given as a function of the encounter parameters (relative velocity and impact parameter). For the Earth, we found that the close encounters with impact parameter and relative velocity capable to remove the most internal satellites of the NEAs (Rc < 5 km), are very frequent. We found that 93% of the asteroids of the group Atens suffer an encounter within this limit in 10 Myrs, and that 50% of these encounters happen in approximately 330.000 years. For the Apollos we found that 60% of the asteroids suffer such encounters, and that 50% of then happen in approximately 700.000 years. Such results indicate that, in fact, the lifetime of the binaries is strongly influencied by the planetary close encounters, proving to be significantly shorter than the predicted lifetime of the NEAs. The contribution of the planets Mercury

  12. Microfluidic experiments to quantify microbes encountering oil water interfaces

    NASA Astrophysics Data System (ADS)

    Sheng, Jian; Jalali, Maryam; Molaei, Mehdi

    2015-11-01

    It is known that marine microbes are one of the components of biodegradation of crude oil. Biodegradation of crude oil is initiated by microbes encountering the droplet. To elucidate the key processes involved in bacterial encountering the rising oil droplets we have established microfluidic devices with hydrophilic surfaces to create micro oil droplets with controlled sizes. To quantify effect of motility of bacteria on their encounter rate, using high speed microscopy, we simultaneously tracked motile bacteria and solid particles with equivalent sizes encountering oil droplets. The results show that in the advection dominant regime, where the droplet size and the rising velocity are large, bacterial motility plays no role in the encountering rate; however, in the diffusion dominant regime, where the swimming velocity of the cells are comparable with rising velocity and Peclet number of particles is small, motility of the cells increases their encounter rate. Ongoing analysis focus on developing a mathematical model to predict the encounter rate of the cells based on their size, swimming speed, and dispersion rate and the size of oil droplets. GoMRI.

  13. Brain systems underlying encounter expectancy bias in spider phobia.

    PubMed

    Aue, Tatjana; Hoeppli, Marie-Eve; Piguet, Camille; Hofstetter, Christoph; Rieger, Sebastian W; Vuilleumier, Patrik

    2015-06-01

    Spider-phobic individuals are characterized by exaggerated expectancies to be faced with spiders (so-called encounter expectancy bias). Whereas phobic responses have been linked to brain systems mediating fear, little is known about how the recruitment of these systems relates to exaggerated expectancies of threat. We used fMRI to examine spider-phobic and control participants while they imagined visiting different locations in a forest after having received background information about the likelihood of encountering different animals (spiders, snakes, and birds) at these locations. Critically, imagined encounter expectancies modulated brain responses differently in phobics as compared with controls. Phobics displayed stronger negative modulation of activity in the lateral prefrontal cortex, precuneus, and visual cortex by encounter expectancies for spiders, relative to snakes or birds (within-participants analysis); these effects were not seen in controls. Between-participants correlation analyses within the phobic group further corroborated the hypothesis that these phobia-specific modulations may underlie irrationality in encounter expectancies (deviations of encounter expectancies from objective background information) in spider phobia; the greater the negative modulation a phobic participant displayed in the lateral prefrontal cortex, precuneus, and visual cortex, the stronger was her bias in encounter expectancies for spiders. Interestingly, irrationality in expectancies reflected in frontal areas relied on right rather than left hemispheric deactivations. Our data accord with the idea that expectancy biases in spider phobia may reflect deficiencies in cognitive control and contextual integration that are mediated by right frontal and parietal areas. PMID:25694215

  14. Cometary sputtering of the Martian atmosphere during the Siding Spring encounter

    NASA Astrophysics Data System (ADS)

    Wang, Yung-Ching; Luhmann, Janet G.; Rahmati, Ali; Leblanc, François; Johnson, Robert E.; Cravens, Thomas E.; Ip, Wing-Huen

    2016-07-01

    With the approach of the close encounter of comet Siding Spring with Mars, possible influences on the Martian atmosphere from the cometary coma are being explored. Here we describe the non-thermal atmospheric loss due to atmospheric sputtering produced by the impact of the coma material. We use an atmospheric sputtering model to simulate the effect of the incident neutral O and the pickup O+ , produced by photodissociation of water and its products. With the relatively large encounter speed of 56 km/s at a close flyby altitude of ∼130,000 km, the sputtering escape rates from the coma can reach 2-3 times the incident gas fluxes. Thus, the passing of the cometary coma will lead to removal of Martian atmosphere instead of mass loading. If the cometary outgassing rate reaches 1028s-1 , the sputtering from the extended coma could remove about 10 tons of Martian gases and deposit about 1 ton of external cometary material into the atmosphere during the one hour encounter. This implies that the cometary sputtering may have played a non-negligible role in Mars atmospheric evolution when this kind of cometary encounter may occur frequently in early Martian epochs.

  15. Transformations of galaxies - III. Encounter dynamics and tidal response as functions of galaxy structure

    NASA Astrophysics Data System (ADS)

    Barnes, Joshua E.

    2016-01-01

    Tidal interactions between disc galaxies depend on galaxy structure, but the details of this relationship are incompletely understood. I have constructed a three-parameter grid of bulge/disc/halo models broadly consistent with Λ cold dark matter, and simulated an extensive series of encounters using these models. Halo mass and extent strongly influence the dynamics of orbit evolution. In close encounters, the transfer of angular momentum mediated by the dynamical response of massive, extended haloes can reverse the direction of orbital motion of the central galaxies after their first passage. Tidal response is strongly correlated with the ratio ve/vc of escape to circular velocity within the participating discs. Moreover, the same ratio also correlates with the rate at which tidal tails are reaccreted by their galaxies of origin; consequently, merger remnants with `twin tails', such as NGC 7252, may prove hard to reproduce unless (ve/vc)2 ≲ 5.5. The tidal morphology of an interacting system can provide useful constraints on progenitor structure. In particular, encounters in which halo dynamics reverses orbital motion exhibit a distinctive morphology which may be recognized observationally. Detailed models attempting to reproduce observations of interacting galaxies should explore the likely range of progenitor structures along with other encounter parameters.

  16. Earth and Moon encounters by the Galileo Jupiter orbiter

    NASA Technical Reports Server (NTRS)

    Clarke, T. C.

    1988-01-01

    The Galileo Venus-Earth-Earth-Gravity-Assist trajectory to Jupiter is discussed. It includes two encounters from deep space with the Earth and the Earth-Moon system. Fortuitous and unique opportunities therefore exist to observe and study the Earth and Earth's moon during both of these encounters. Given the Galileo science payload, a candidate set of Earth and Moon science objectives is presented. The conditions and constraints of the Earth and Moon encounters, which define the observing opportunity, and which bound the objectives, are reviewed.

  17. Interagency telemetry arraying for Voyager-Neptune encounter

    NASA Technical Reports Server (NTRS)

    Brown, D. W.; Brundage, W. D.; Ulvestad, J. S.; Kent, S. S.; Bartos, K. P.

    1990-01-01

    The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented.

  18. Ganymede G1 & G2 Encounters - Interior of Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Voyager images are used to create a global view of Ganymede. The cut-out reveals the interior structure of this icy moon. This structure consists of four layers based on measurements of Ganymede's gravity field and theoretical analyses using Ganymede's known mass, size and density. Ganymede's surface is rich in water ice and Voyager and Galileo images show features which are evidence of geological and tectonic disruption of the surface in the past. As with the Earth, these geological features reflect forces and processes deep within Ganymede's interior. Based on geochemical and geophysical models, scientists expected Ganymede's interior to either consist of: a) an undifferentiated mixture of rock and ice or b) a differentiated structure with a large lunar sized 'core' of rock and possibly iron overlain by a deep layer of warm soft ice capped by a thin cold rigid ice crust. Galileo's measurement of Ganymede's gravity field during its first and second encounters with the huge moon have basically confirmed the differentiated model and allowed scientists to estimate the size of these layers more accurately. In addition the data strongly suggest that a dense metallic core exists at the center of the rock core. This metallic core suggests a greater degree of heating at sometime in Ganymede's past than had been proposed before and may be the source of Ganymede's magnetic field discovered by Galileo's space physics experiments.

    Galileo's primary 24 month mission includes eleven orbits around Jupiter and will provide observations of Jupiter, its moons and its magnetosphere. The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov.

  19. Interlaboratory evaluation of a standardized inductively coupled plasma mass spectrometry method for the determination of trace beryllium in air filter samples.

    PubMed

    Ashley, Kevin; Brisson, Michael J; Howe, Alan M; Bartley, David L

    2009-12-01

    A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0

  20. More Americans Engaging in Same-Sex Encounters

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_159139.html More Americans Engaging in Same-Sex Encounters And the number ... June 1, 2016 (HealthDay News) -- The number of Americans who say they've had sexual activity with ...

  1. Close encounters of nearly parabolic comets and planets

    NASA Astrophysics Data System (ADS)

    Tomanov, V. P.

    2016-03-01

    An overview is given of close encounters of nearly parabolic comets (NPCs; with periods of P > 200 years and perihelion distances of q > 0.1 AU; the number of the comets is N = 1041) with planets. The minimum distances Δmin between the cometary and planetary orbits are calculated to select comets whose Δmin are less than the radius of the planet's sphere of influence. Close encounters of these comets with planets are identified by numerical integration of the comets' equations of motion over an interval of ±50 years from the time of passing the perihelion. Close encounters of NPCs with Jupiter in 1663-2011 are reported for seven comets. An encounter with Saturn is reported for comet 2004 F2 (in 2001).

  2. Geological Mapping of the Encounter Hemisphere on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Young, L. A.; Cheng, A. F.; New Horizons GGI Theme Team

    2016-06-01

    We present mapping of Pluto's encounter hemisphere performed to date (focusing on Sputnik Planum and the immediately surrounding area) and offer preliminary descriptions of terrains further afield that will be the subject of future mapping.

  3. Single Close Encounters do not make Eccentric Planetary Orbits

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1997-01-01

    The recent discovery of a planet in an orbit with eccentricity e = 0.63 +/- 0.08 around the solar-type star 16 Cyg B, together with earlier discoveries of other planets in orbits of significant eccentricity, raises the question of the origin of these orbits, so unlike the nearly circular orbits of our solar system. In this paper I consider close encounters between two planets, each initially in a nearly circular orbit (but with sufficient eccentricity to permit the encounter). Such encounters are described by a two-body approximation, in which the effect of the attracting star is neglected, and by the approximation that their separation vector follows a nearly parabolic path. A single encounter cannot produce the present state of these systems, in which one planet is in an eccentric orbit and the other has apparently been lost. Even if the requirement that the second planet be lost is dropped, nearly circular orbits cannot scatter into eccentric ones.

  4. Orbital perturbations of the Galilean satellites during planetary encounters

    SciTech Connect

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný and Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný and Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  5. Convectively Induced Turbulence Encountered During NASA's Fall-2000 Flight Experiments

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2002-01-01

    Aircraft encounters with atmospheric turbulence are a leading cause of in-flight injuries aboard commercial airliners and cost the airlines millions of dollars each year. Most of these injuries are due to encounters with turbulence in and around convection. In a recent study of 44 turbulence accident reports between 1990 and 1996, 82% of the cases were found to be near or within convective activity (Kaplan et al. 1999). According to NTSB accident reports, pilots' descriptions of these turbulence encounters include 'abrupt', 'in Instrument Meteorological Conditions (IMC)', 'saw nothing on the weather radar', and 'the encounter occurred while deviating around' convective activity. Though the FAA has provided guidelines for aircraft operating in convective environments, turbulence detection capability could decrease the number of injuries by alerting pilots of a potential encounter. The National Aeronautics and Space Administration, through its Aviation Safety Program, is addressing turbulence hazards through research, flight experiments, and data analysis. Primary focus of this program element is the characterization of turbulence and its environment, as well as the development and testing of hazard estimation algorithms for both radar and in situ detection. The ultimate goal is to operationally test sensors that will provide ample warning prior to hazardous turbulence encounters. In order to collect data for support of these activities, NASA-Langley's B-757 research aircraft was directed into regions favorable for convectively induced turbulence (CIT). On these flights, the airborne predictive wind shear (PWS) radar, augmented with algorithms designed for turbulence detection, was operated in real time to test this capability. In this paper, we present the results of two research flights when turbulence was encountered. Described is an overview of the flights, the general radar performance, and details of four encounters with severe turbulence.

  6. Formation of Centaurs’ Rings through Their Partial Tidal Disruption during Planetary Encounters

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Charnoz, Sébastien; Genda, Hidenori; Ohtsuki, Keiji

    2016-09-01

    Centaurs are minor planets orbiting between Jupiter and Neptune that have or had crossing orbits with one or more giant planets. Recent observations and reinterpretation of previous observations have revealed the existence of ring systems around 10199 Chariklo and 2060 Chiron. However, the origin of the ring systems around such a minor planet is still an open question. Here, we propose that the tidal disruption of a differentiated object that experiences a close encounter with a giant planet could naturally form diverse ring–satellite systems around the Centaurs. During the close encounter, the icy mantle of the passing object is preferentially ripped off by the planet's tidal force and the debris is distributed mostly within the Roche limit of the largest remnant body. Assuming the existence of a 20‑50 wt% silicate core below the icy mantle, a disk of particles is formed when the objects pass within 0.4–0.8 of the planet's Roche limit with the relative velocity at infinity 3‑6 km s‑1 and 8 hr initial spin period of the body. The resultant ring mass is 0.1%–10% of the central object's mass. Such particle disks are expected to spread radially, and materials spreading beyond the Roche limit would accrete into satellites. Our numerical results suggest that ring formation would be a natural outcome of such extreme close encounters, and Centaurs can naturally have such ring systems because they cross the orbits of the giant planets.

  7. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-01

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

  8. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Li, Zheng; Pittman, Erin N; Trinidad, Debra A; Romanoff, Lovisa C; Mulholland, James; Sjödin, Andreas

    2010-02-01

    We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen (13)C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86-115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM(2.5) samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM(2.5) samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method. PMID:19936717

  9. Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge; Torrey, Paul; Ellison, Sara L.; Patton, David R.; Bluck, Asa F. L.; Bansal, Gunjan; Hernquist, Lars

    2015-04-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter's impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.

  10. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-09-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m-3 and 1.2 μg m-3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer. This model behaviour can be explained by a combination of model under

  11. The STEREO Encounter with the Tail of Comet Elenin and Expectations for ISON

    NASA Astrophysics Data System (ADS)

    Galvin, A. B.; Kucharek, H.; Klecker, B.; Simunac, K.; Farrugia, C. J.; Wimmer-Schweingruber, R. F.; Berger, L.; Drews, C.; Vourlidas, A.

    2013-12-01

    The longest encounter to date of a space probe with a comet occurred in late July through mid August 2011 when the STEREO B (STB) observatory was immersed in the plasma environment of comet C/2010 X1 (Elenin). Closest approach was reached on July 31 at a distance of 7.4 million kilometers, with the nominal radial tail alignment occurring on August 12. Continuous observations of cometary ions are available for over three weeks. These ions were created over a broad range of solar wind conditions, including slow and fast solar wind, stream interaction regions, and an interplanetary coronal mass ejection. In the mass-per-charge range of water-group ions, the STB/PLASTIC instrument found that the major ion constituent was O+, with significant contributions from O+2 and C+. In the mass-per-charge range 23-36 amu/e there was a clear contribution by molecular ions. The composition is tracked on a daily basis and shows variations. There are also temporal variations in the speed distribution profiles. An abrupt decrease in the water-group ion intensity coincided with the passage of an interplanetary coronal mass ejection (ICME). STB/SECCHI imaged this same ICME as it interacted with the comet, observing a comet tail disconnection event. An opportunity for another comet tail passage by STEREO will occur with comet ISON in late November 2013. This comet's orbital plane is not near the ecliptic, hence this encounter, if it occurs, will be a shorter duration. Using the tools developed for the Elenin encounter, we will search for the ISON signatures in the in-situ data set and present any preliminary results available.

  12. The meaningful encounter: patient and next-of-kin stories about their experience of meaningful encounters in health-care.

    PubMed

    Gustafsson, Lena-Karin; Snellma, Ingrid; Gustafsson, Christine

    2013-12-01

    This study focuses on the meaningful encounters of patients and next of kin, as seen from their perspective. Identifying the attributes within meaningful encounters is important for increased understanding of caring and to expand and develop earlier formulated knowledge about caring relationships. Caring theory about the caring relationship provided a point of departure to illuminate the meaningful encounter in healthcare contexts. A qualitative explorative design with a hermeneutic narrative approach was used to analyze and interpret written narratives. The phases of the analysis were naïve interpretation, structure analysis on two different levels (narrative structure, and deep structure through metaphors) and finally a dialectic interpretation. The narratives revealed the meaning of the meaningful encounter as sharing, a nourishing fellowship, common responsibility and coming together, experienced as safety and warmth, that gives, by extension, life-changing moments, a healing force and dissipated insight. The meaningful encounter can be seen as a complex phenomenon with various attributes. Understanding the meaningful encounter will enable nurses to plan and provide professional care, based on caring science, focusing on patient and next-of-kin experiences. PMID:23181930

  13. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  14. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  15. A Numerical Simulation Study to Develop an Acceptable Wake Encounter Boundary for a B737-100 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Nguyen, Truc

    1993-01-01

    The National Aeronautics and Space Administration (NASA) is conducting research with the goal of enabling safe improvements in the capacity of the nation's air transportation system. The wake-vortex upset hazard is an important factor in establishing the minimum safe spacing between aircraft during landing and take-off operations, thus impacting airport capacity. A batch simulation study was conducted to assess the sensitivity of various safe landing criteria in the development of an acceptable wake encounter boundary. A baseline six-degree-of-freedom simulation of a B737-100 airplane was modified to include a wake model and the vortex-induced forces and moments. The guidance and control input for the airplane was provided by an auto-land system. The wake strength and encounter geometry were varied. A sensitivity study was also conducted to assess the effects of encounter modeling methods and accuracy.

  16. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system.

    PubMed

    Kudryavtsev, Andrey S; Makas, Alexey L; Troshkov, Mikhail L; Grachev, Mikhail А; Pod'yachev, Sergey P

    2014-06-01

    A method for fast simultaneous on-site determination of methyl mercaptan and dimethyl sulfide in air was developed. The target compounds were actively collected on silica gel, followed by direct flash thermal desorption, fast separation on a short chromatographic column and detection by means of mass spectrometer with atmospheric pressure chemical ionization. During the sampling of ambient air, water vapor was removed with a Nafion selective membrane. A compact mass spectrometer prototype, which was designed earlier at Trofimuk Institute of Petroleum Geology and Geophysics, was used. The minimization of gas load of the atmospheric pressure ion source allowed reducing the power requirements and size of the vacuum system and increasing its ruggedness. The measurement cycle is about 3 min. Detection limits in a 0.6 L sample are 1 ppb for methyl mercaptan and 0.2 ppb for dimethyl sulfide. PMID:24725876

  17. A MULTIRATE STOeRMER ALGORITHM FOR CLOSE ENCOUNTERS

    SciTech Connect

    Grazier, K. R.; Newman, W. I.; Sharp, P. W. E-mail: win@ucla.edu

    2013-04-15

    We present, analyze, and test a multirate Stoermer-based algorithm for integrating close encounters when performing N-body simulations of the Sun, planets, and a large number of test particles. The algorithm is intended primarily for accurate simulations of the outer solar system. The algorithm uses stepsizes H and h{sub i} , i = 1, ..., N{sub p} , where h{sub i} << H and N{sub p} is the number of planets. The stepsize H is used for the integration of the orbital motion of the Sun and planets at all times. H is also used as the stepsize for the integration of the orbital motion of test particles when they are not undergoing a close encounter. The stepsize h{sub i} is used to integrate the orbital motion of test particles during a close encounter with the ith planet. The position of the Sun and planets during a close encounter is calculated using Hermite interpolation. We tested the algorithm on two contrasting problems, and compared its performance with the existing method which uses the same stepsize for all bodies (this stepsize must be significantly smaller than H to ensure the close encounters are integrated accurately). Our tests show that the integration error for the new and existing methods are comparable when the stepsizes are chosen to minimize the error, and that for this choice of stepsizes the new method requires considerably less CPU time than the existing method.

  18. Kin encounter rate and inbreeding avoidance in canids

    USGS Publications Warehouse

    Geffen, E.; Kam, M.; Hefner, R.; Hersteinsson, P.; Angerbjorn, A.; Dalen, L.; Fuglei, E.; Noren, K.; Adams, J.R.; Vucetich, J.; Meier, T.J.; Mech, L.D.; Vonholdt, B.M.; Stahler, D.R.; Wayne, R.K.

    2011-01-01

    Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1-8% and 20-22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk. ?? 2011 Blackwell Publishing Ltd.

  19. Kin encounter rate and inbreeding avoidance in canids

    USGS Publications Warehouse

    Geffen, Eli; Kam, Michael; Hefner, Reuven; Hersteinsson, Pall; Angerbjorn, Anders; Dalen, Love; Fuglei, Eva; Noren, Karin; Adams, Jennifer R.; Vicetich, John; Meier, Thomas J.; Mech, L.D.; VonHoldt, Bridgett M.; Stahler, Daniel R.; Wayne, Robert K.

    2011-01-01

    Mating with close kin can lead to inbreeding depression through the expression of recessive deleterious alleles and loss of heterozygosity. Mate selection may be affected by kin encounter rate, and inbreeding avoidance may not be uniform but associated with age and social system. Specifically, selection for kin recognition and inbreeding avoidance may be more developed in species that live in family groups or breed cooperatively. To test this hypothesis, we compared kin encounter rate and the proportion of related breeding pairs in noninbred and highly inbred canid populations. The chance of randomly encountering a full sib ranged between 1–8% and 20–22% in noninbred and inbred canid populations, respectively. We show that regardless of encounter rate, outside natal groups mates were selected independent of relatedness. Within natal groups, there was a significant avoidance of mating with a relative. Lack of discrimination against mating with close relatives outside packs suggests that the rate of inbreeding in canids is related to the proximity of close relatives, which could explain the high degree of inbreeding depression observed in some populations. The idea that kin encounter rate and social organization can explain the lack of inbreeding avoidance in some species is intriguing and may have implications for the management of populations at risk.

  20. Calculating the probability of injected carbon dioxide plumes encountering faults

    SciTech Connect

    Jordan, P.D.

    2011-04-01

    One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

  1. Effects of information on perceived crowding and encounter norms.

    PubMed

    Kim, Sang-Oh; Shelby, Bo

    2011-05-01

    People receive information about visiting places from a variety of sources, and it is important to understand how information affects recreation experiences. This study examines how different information treatments describing a recreation place influence perceived crowding and encounter norms. The study location was the Jungmoeri area of Mudeungsan Provincial Park (MPP) in Korea. Data were collected from 50 college students utilizing a series of simulated moving pictures in a laboratory setting. Respondents were given information describing three different types of conditions and experiences (nature preserve, transition/buffer, and developed area), plus a no information control. Results showed that information influenced perceived crowding and encounter norms. For the range of encounter numbers depicted in the photos, the nature preserve treatment produced higher crowding ratings and lower tolerances for encounters, the developed area treatment produced lower crowding ratings and higher tolerances, and the transition/buffer and the control were in between. Information treatments also influence the perceived importance of encounter numbers, and importance was highest for the nature preserve. Management implications are discussed. PMID:21416374

  2. Meteorology Associated with Turbulence Encounters During NASA's Fall-2000 Flight Experiments

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2002-01-01

    Initial flight experiments have been conducted to investigate convectively induced turbulence and to test technologies for its airborne detection. Turbulence encountered during the experiments is described with sources of data measured from in situ sensors, groundbased and airborne Doppler radars, and aircraft video. Turbulence measurements computed from the in situ system were quantified in terms of RMS normal loads (sigma(sub Delta n)), where 0.20 g is less than or equal to sigma(sub Delta n) is less than or equal to 0.30 g is considered moderate and sigma(sub Delta n) is greater than 0.30 g is severe. During two flights, 18 significant turbulence encounters (sigma(sub Delta) is greater than or equal to 0.20 g) occurred in the vicinity of deep convection; 14 moderate and 4 severe. In all cases, the encounters with turbulence occurred along the periphery of cumulus convection. These events were associated with relatively low values of radar reflectivity, i.e. RRF is less than 35 dBz, with most levels being below 20 dBz. The four cases of severe turbulence occurred in precipitation and were centered at the interface between a cumulus updraft turret and a downwind downdraft. Horizontal gradients of vertical velocity at this interface were found to be strongest on the downwind side of the cumulus turrets. Furthermore, the greatest loads to the aircraft occurred while flying along, not orthogonal to, the ambient environmental wind vector. During the two flights, no significant turbulence was encountered in the clear air (visual meteorological conditions), not even in the immediate vicinity of the deep convection.

  3. Lifetime of binary asteroids versus gravitational encounters and collisions

    NASA Technical Reports Server (NTRS)

    Chauvineau, Bertrand; Farinella, Paolo; Mignard, F.

    1992-01-01

    We investigate the effect on the dynamics of a binary asteroid in the case of a near encounter with a third body. The dynamics of the binary is modeled as a two-body problem perturbed by an approaching body in the following ways: near encounters and collisions with a component of the system. In each case, the typical value of the two-body energy variation is estimated, and a random walk for the cumulative effect is assumed. Results are applied to some binary asteroid candidates. The main conclusion is that the collisional disruption is the dominant effect, giving lifetimes comparable to or larger than the age of the solar system.

  4. Value Encounters - Modeling and Analyzing Co-creation of Value

    NASA Astrophysics Data System (ADS)

    Weigand, Hans

    Recent marketing and management literature has introduced the concept of co-creation of value. Current value modeling approaches such as e3-value focus on the exchange of value rather than co-creation. In this paper, an extension to e3-value is proposed in the form of a “value encounter”. Value encounters are defined as interaction spaces where a group of actors meet and derive value by each one bringing in some of its own resources. They can be analyzed from multiple strategic perspectives, including knowledge management, social network management and operational management. Value encounter modeling can be instrumental in the context of service analysis and design.

  5. Police Encounters, Mental Illness and Injury: An Exploratory Investigation

    PubMed Central

    Kerr, Amy N.; Morabito, Melissa; Watson, Amy C.

    2010-01-01

    Police encounters are believed to be particularly dangerous for people with mental illness and police officers. Despite widespread concern among advocates, researchers and police professionals, little is known about the details of these interactions including the occurrence of injuries. In the current study, we explore injuries to people with mental illness and officers to determine the extent to which situational and individual factors predict injuries. Findings suggest that injuries during police calls involving persons with mental illness are infrequent and rarely require medical attention. Predictors of injuries in these calls are similar to those in police encounters with the general population. PMID:21113331

  6. Cloud encounter and particle density variabilities from GASP data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Holdeman, J. D.; Davis, R. E.

    1981-01-01

    Summary statistics and variability studies are presented for cloud encounter and particle number density data as part of the NASA Global Atmospheric Sampling Program (GASP) aboard commercial Boeing 747 airliners. On the average, cloud encounter is shown on about 15% of the 52,164 data samples available; this value varies with season, latitude, synoptic weather situation, and distance from the tropopause. The number density of particles (diameter greater than 3 microns) also varies with time and location, and depends on the horizontal extent of cloudiness.

  7. Preliminary science results of Voyager 1 Saturn encounter

    NASA Technical Reports Server (NTRS)

    Bane, D.

    1981-01-01

    Preliminary science results of the Voyager 1 encounter of the planet Saturn are reported. On August 22, 1980, the spacecraft was 109 million km (68 million mi) from Saturn. Closest approach to Saturn took place on November 12, at 3:46 p.m. (PDT), when the spacecraft passed 126,000 km (78,000 mi) from the cloud tops. Measurements of the atmosphere, wind speed, radiation, six surrounding rings, and the planet's old and newly found satellites were recorded. The encounter ended December 15, 1980. The spacecraft took more than 17,500 photographs of Saturn and its satellites.

  8. Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries.

    PubMed

    Li, Bing; Geng, Dongsheng; Lee, Xinjing Shannon; Ge, Xiaoming; Chai, Jianwei; Wang, Zhijuan; Zhang, Jie; Liu, Zhaolin; Hor, T S Andy; Zong, Yun

    2015-05-25

    We report 2D microporous carbon sheets with high surface area, derived from eggplant via simple carbonization and KOH activation, as low cost yet efficient bifunctional catalysts for high performance rechargeable zinc-air batteries. PMID:25920952

  9. EPA method to-15 VOCs in air collected in SUMMA (trade name) canisters and analyzed by gas chromatography/mass spectrometry. Final report

    SciTech Connect

    McClenny, W.A.; Oliver, K.D.; Adams, J.R.

    1996-04-18

    Method TO-15 is an addition to the EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air and consists of guidance for the sampling and analysis of volatile organic compounds (VOCs) in air. The method has undergone an initial review by the EPA and has been placed on the AMTIC bulletin board maintained by EPA`s Office of Air Quality Planning and Standards (OAQPS) for further comments before final review and formal acceptance as a new method. The method is a companion method to the previously published TO-14 method entitled, `Determination of Volatile Organic Compounds (VOCs) in Ambient Air Using SUMMA(TM) Polished Canister Sampling and Gas Chromatographic (GC) Analysis`. TO-15 differs from TO-14 in the following ways: (1) the water management system consists of the use of a small sample volume or a multisorbent/dry purge technique or both to dry the air sample; (2) the more extensive set of compounds given in Title III of the Clean Air Act Amemdments (CAAA) of 1990 constitutes the target list; (3) GC/MS techniques are recommended as the only means to identify and quantify target compounds; (4) method performance criteria are specified for acceptance of data, thereby allowing the use of alternate but equivalent sampling and analytical instrumentation; and (5) enhanced provisions for quality control are included.

  10. Room with a View: Ethical Encounters in Room 13

    ERIC Educational Resources Information Center

    Grube, Vicky

    2012-01-01

    In this article, the author describes ethical encounters in Room 13, a schoolroom where children made what they wanted, posed their own questions, and ran an art room like a small business. In Room 13 children had the responsibility to maintain all aspects of the art studio. Specific decisions fell to an annually elected management team, a small…

  11. Grassroots Leadership: Encounters with Power Dynamics and Oppression

    ERIC Educational Resources Information Center

    Kezar, Adrianna

    2011-01-01

    This article focuses on the nature of power dynamics that faculty and staff grassroots leaders encounter as they attempt to create change. I identified five distinctive types of power dynamics--"oppression," "silencing," "controlling," "inertia," and "micro-aggressions" from the most overt to more subtle and covert forms. Staff experience multiple…

  12. Beyond Dramatic Truth: Theatre within the Therapeutic Encounter

    ERIC Educational Resources Information Center

    Pendle, Andy; Rowe, Nick

    2010-01-01

    Recorded footage of counselling sessions with real clients can be a valuable educational resource that gives training counsellors the opportunity to analyse the theories and practices they encounter in their education. However, the use of such material raises complex ethical issues: what are the safeguards against the misuse of the material? Can…

  13. Potential for Inclusion of Information Encountering within Information Literacy Models

    ERIC Educational Resources Information Center

    Erdelez, Sanda; Basic, Josipa; Levitov, Deborah D.

    2011-01-01

    Introduction: Information encountering (finding information while searching for some other information), is a type of opportunistic discovery of information that complements purposeful approaches to finding information. The motivation for this paper was to determine if the current models of information literacy instruction refer to information…

  14. Intergenerational Educational Encounters: Part 2--Counseling Implications of the Model

    ERIC Educational Resources Information Center

    Gamliel, Tova; Reichental, Yael; Eyal, Nitza

    2007-01-01

    This second paper commences where Part 1 concluded in volume 33, number 1, 2006. The paper describes the relations reflected in the Model-of-Knowledge between all partners of the intergenerational encounters at school--children, old adults, and teachers. The Model-of-Knowledge represents a relatively balanced approach toward the generations'…

  15. Children's Encounters with Things: Schooling the Body

    ERIC Educational Resources Information Center

    Jones, Liz

    2013-01-01

    This article draws on work around matter and the material in order to examine how (extra)ordinary "things" are used to (re)produce formulaic and predictable performances within the context of an early years classroom. Using ethnographic data I focus on a series of encounters where oscillations between (in)animate objects and the child…

  16. Cross-Cultural Encounters as a Way of Overcoming Xenophobia.

    ERIC Educational Resources Information Center

    Scheunpflug, Annette

    1997-01-01

    Examines the educational potential of cross-cultural travel to overcome xenophobia, stating that international encounters must not be a replacement for dealing with the conditions that create societal prejudice. Asserts that a precondition for change in a person's perception of foreign peoples and cultures lies in the alteration of that person's…

  17. Unethical Behaviours Preservice Teachers Encounter on Social Networks

    ERIC Educational Resources Information Center

    Deveci Topal, Arzu; Kolburan Gecer, Aynur

    2015-01-01

    The development of web 2.0 technology has resulted in an increase in internet sharing. The scope of this study is social networking, which is one of the web 2.0 tools most heavily used by internet users. In this paper, the unethical behaviours that preservice teachers encounter on social networks and the ways to deal with these problems are…

  18. One-to-One Encounters: Facilitators, Participants, and Friendship

    ERIC Educational Resources Information Center

    Higgins, Lee

    2012-01-01

    In this article, I explore the claim that one-to-one encounters between community music facilitators and music participants can be described as friendships. By exploring the relational structure through the call and the welcome, I make some general comments on friendship before finally tackling the question lying at the heart of this article: How…

  19. Supervision Challenges Encountered during Kenyan University Students' Practicum Attachment

    ERIC Educational Resources Information Center

    Kathuri-Ogola, Lucy; VanLeeuwen, Charlene; Kabaria-Muriithi, Joan; Weeks, Lori E.; Kieru, Jane; Ndayala, Phoebe

    2015-01-01

    There is little published research that examines the supervision experience of field attachment supervisors in Kenya. In this study, we identify the challenges encountered by field supervisors during student field attachments with community organizations. Fifteen organizations that had hosted third year students from the Department of Community…

  20. Numerical Modeling of Cometary Meteoroid Streams Encountering Mars and Venus

    NASA Technical Reports Server (NTRS)

    Christou, A. A.; Vaubaillon, J.

    2011-01-01

    We have simulated numerically the existence of meteoroid streams that encounter the orbits of Mars and Venus, potentially producing meteor showers at those planets. We find that 17 known comets can produce such showers, the intensity of which can be determined through observations. Six of these streams contain dense dust trails capable of producing meteor outbursts.

  1. Exploring Festival Performance as a State of Encounter

    ERIC Educational Resources Information Center

    O’Grady, Alice; Kill, Rebekka

    2013-01-01

    This article outlines the activities of the research network "Festival Performance as a State of Encounter", which was funded by the Arts and Humanities Research Council as part of the Beyond Text strategic programme. The network was formulated in 2008, and a range of different events were organized over the course of two years to explore the…

  2. Technology Mediated Information Sharing (Monitor Sharing) in Primary Care Encounters

    ERIC Educational Resources Information Center

    Asan, Onur

    2013-01-01

    The aim of this dissertation study was to identify and describe the use of electronic health records (EHRs) for information sharing between patients and clinicians in primary-care encounters and to understand work system factors influencing information sharing. Ultimately, this will promote better design of EHR technologies and effective training…

  3. The Classroom as a Service Encounter: Suggestions for Value Creation.

    ERIC Educational Resources Information Center

    Chung, Ed; McLarney, Carolan

    2000-01-01

    Conceives of the classroom as a service encounter between marketer (instructor) and stakeholders (students), making stakeholder satisfaction the key to meeting learning goals. Suggests ways to create value in the classroom: understanding what stakeholders need and want, efficiently delivering services, and demonstrating product leadership. (SK)

  4. The Validation of an Encounter Group Outcome Measure.

    ERIC Educational Resources Information Center

    Shadish, William R.; Zarle, Thomas

    1979-01-01

    This study further investigates the validity of the McMillan Affective Relationship Scale (MARS) by (1) examining its relationship to other commonly used scales; (2) determining whether it was sensitive to change over time for encounter group participants; and (3) attempting to determine whether pretesting on MARS was a possible source of…

  5. Diseases encountered during war and rebuilding: lessons from past conflicts.

    PubMed

    Elston, Dirk M

    2003-07-01

    As we face the task of helping to rebuild Iraq, it is worthwhile to review our experience with past humanitarian aid missions and past conflicts. These efforts serve as models for the types of problems we may encounter today. It also is critical to review available data concerning the unique aspects of cutaneous diseases in that part of the world. PMID:12889713

  6. Storying Practices of Witnessing: Refiguring Quality in Everyday Pedagogical Encounters

    ERIC Educational Resources Information Center

    Nxumalo, Fikile

    2016-01-01

    This article seeks to contribute towards an unsettling of dominant framings of quality pedagogical practices. The author puts to work the figure of the modest witness as a way of storying everyday pedagogical encounters in childhood settings that might refigure quality in practice as materialized more-than-human becomings. Working within the…

  7. Identifying Satisfied/Dissatisfied Service Encounters in Higher Education

    ERIC Educational Resources Information Center

    Chahal, Hardeep; Devi, Pinkey

    2013-01-01

    Purpose: This paper seeks to explore satisfactory and dissatisfactory service encounters in higher education. Design/methodology/approach: The data are collected through the well established critical incident technique (CIT) method. All the satisfied and dissatisfied critical incidents are then grouped on the basis of Bitner et al.'s…

  8. Reconsidering Children's Encounters with Nature and Place Using Posthumanism

    ERIC Educational Resources Information Center

    Malone, Karen

    2016-01-01

    This article explores and reconsiders the view of children's encounters with place as central to a place-based pedagogy that seeks to dismantle rather than support constructions of a nature-culture binary. I unpack the current fervour for reinserting the child in nature and nature-based education as a significant phenomenon in environmental and…

  9. Tips for Novice Researchers: Operational Difficulties Encountered in Underdeveloped Countries.

    ERIC Educational Resources Information Center

    Belcher El-Nahhas, Susan M.

    This paper provides a general overview of the type of problems encountered in the field of research so that individuals who are contemplating conducting research in an underdeveloped country for the first time are better prepared, and hence, better able to complete their research. The paper recounts a female researcher's personal experiences in…

  10. Couples' Long-Term Evaluations of Their Marriage Encounter Experience.

    ERIC Educational Resources Information Center

    Lester, Mary Ellen; Doherty, William J.

    1983-01-01

    Surveyed 189 couples to see how they felt about their Marriage Encounter experience four years later. Results indicated that about 80 percent of the couples reported a totally positive experience. The most frequently cited positive aspect was the "dialogue." A significant minority of couples experienced negative consequences. (Author/JAC)

  11. Fertile Zones of Cultural Encounter in Computer Science Education

    ERIC Educational Resources Information Center

    Kolikant, Yifat Ben-David; Ben-Ari, Mordechai

    2008-01-01

    We explain certain learning difficulties in computer science education as resulting from a clash between the students' culture as computer users and the professional computing culture. We propose the concept of fertile zones of cultural encounter as a way of overcoming these learning difficulties. This pedagogical approach aims to bridge the gap…

  12. Automated Scheduling of Science Activities for Titan Encounters by Cassini

    NASA Technical Reports Server (NTRS)

    Ray, Trina L.; Knight, Russel L.; Mohr, Dave

    2014-01-01

    In an effort to demonstrate the efficacy of automated planning and scheduling techniques for large missions, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] and CLASP (Compressed Large-scale Activity Scheduling and Planning) [2] to the domain of scheduling high-level science goals into conflict-free operations plans for Titan encounters by the Cassini spacecraft.

  13. What Are Our Expectations Telling Us?: Encounters with the NMAI

    ERIC Educational Resources Information Center

    Isaac, Gwyneira

    2006-01-01

    The aim of this article is to move beyond issues of representation and to address how museum meanings are made on the ground in ongoing encounters between displays and the ideational worlds their audiences bring with them into the museum space. In particular, the author explores how contrasting expectations about exhibits can serve as an…

  14. Addressing Problems Encountered in Case-Based Teaching

    ERIC Educational Resources Information Center

    Turgeon, A. J.

    2007-01-01

    TURF 436 (Case Studies in Turfgrass Management) is the capstone course for turfgrass science majors at the Pennsylvania State University. Students are introduced to problems and complex problematic situations encountered in the management of golf and sports turf and in professional lawn-care operations. Following completion of the orientation case…

  15. In "the Event" That Art and Teaching Encounter

    ERIC Educational Resources Information Center

    Garoian, Charles R.

    2014-01-01

    In this writing, I explore the performative correspondences between the complex, disparate, and disjunctive encounters, alliances, and movements that characterize the making of art and the making of teaching that--according to philosophers Deleuze and Guattari--are constituted by the "plane of consistency," "zone of…

  16. The Aboriginal-White Encounter: Towards Better Communication.

    ERIC Educational Resources Information Center

    Bain, Margaret S.

    The research reported here seeks to explain communication failure between Whites and Aboriginals in Australia, based on an examination of fundamental concepts underlying the world view of each group. The research arose from the observation that in Aboriginal-White encounters, each group had different expectations of and conclusions about the same…

  17. Development of a Behavioral Affective Relationship Scale for Encounter Research.

    ERIC Educational Resources Information Center

    Shadish, William R., Jr.; Zarle, Thomas

    The paper outlines several studies over a two-year period to develop a self-report and observer-rating measure of sensitivity/encounter group outcome. The initial form of the scale was taken from McMillan (1971) who developed a measure of 16 categories of group outcome; McMillan's work indicated the scale had high reliability. Subsequent study…

  18. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  19. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-02-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m-3 vs. 1.2 μg m-3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site

  20. Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia

    NASA Astrophysics Data System (ADS)

    Shin, S.-K.; Müller, D.; Lee, C.; Lee, K. H.; Shin, D.; Kim, Y. J.; Noh, Y. M.

    2015-06-01

    We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban

  1. The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions

    NASA Astrophysics Data System (ADS)

    Rosswog, S.; Piran, T.; Nakar, E.

    2013-04-01

    We explore the multimessenger signatures of encounters between two neutron stars (ns2) and between a neutron star and a stellar mass black hole (nsbh). We focus on the differences between gravitational-wave-driven binary mergers and dynamical collisions that occur, for example, in globular clusters. Our discussion is based on Newtonian hydrodynamics simulations that incorporate a nuclear equation of state and a multiflavour neutrino treatment. For both types of encounters we compare the gravitational wave and neutrino emission properties. We also calculate the rates at which nearly unbound mass is delivered back to the central remnant in a ballistic-fallback-plus-viscous-disc model and we analyse the properties of the dynamically ejected matter. Last but not least we address the electromagnetic transients that accompany each type of encounter. We find that dynamical collisions are at least as promising as binary mergers for producing (short) gamma-ray bursts, but they also share the same possible caveats in terms of baryonic pollution. All encounter remnants produce peak neutrino luminosities of at least ˜1053 erg s-1, some of the collision cases exceed this value by more than an order of magnitude. The canonical ns2 merger case ejects more than 1 per cent of a solar mass of extremely neutron-rich (Ye ˜ 0.03) material, an amount that is consistent with double neutron star mergers being a major source of r-process in the galaxy. nsbh collisions eject very large amounts of matter (˜0.15 M⊙) which seriously constrains their admissible occurrence rates. The compact object collision rate (sum of ns2 and nsbh) must therefore be less, likely much less, than 10 per cent of the ns2 merger rate. The radioactively decaying ejecta produce optical-ultraviolet `macronova' which, for the canonical merger case, peak after ˜0.4 d with a luminosity of ˜5 × 1041 erg s-1. ns2 (nsbh) collisions reach up to two (four) times larger peak luminosities. The dynamic ejecta deposit a

  2. Elbow mass flow meter

    DOEpatents

    McFarland, Andrew R.; Rodgers, John C.; Ortiz, Carlos A.; Nelson, David C.

    1994-01-01

    Elbow mass flow meter. The present invention includes a combination of an elbow pressure drop generator and a shunt-type mass flow sensor for providing an output which gives the mass flow rate of a gas that is nearly independent of the density of the gas. For air, the output is also approximately independent of humidity.

  3. Monitoring Air Pollution In and Around the Premises of Industrial Parks Using Two Types of Electronic Nose and Gas Chromatography-Ion Trap Mass Spectrometry

    SciTech Connect

    Liu, Jen Yu; Ling, Yong Chien, Sr.

    2004-03-31

    Two types of electronic nose and GC-MS were used to monitor air pollution in the premises of seven industrial parks. Real-time analysis of air at the sites was performed using portable electronic noses. Air samples were analyzed from the up and down stream direction along the wind flow to investigate the effect or distribution of the pollutants on the surrounding environment. The advantage of multisensors in spatially resolved sensing for direct multicomponent analysis was explored to minimize tedious sample preparation procedure. Electronic nose could give characteristic odor fingerprints, which were correlated with the pollutants analyzed using GC-MS providing detailed diagnostic information such as the presence of hydrocarbons, halocarbons, phenols, nitrogenous benzenes, sulfur compounds, lipid-derived compounds, polysiloxanes, etc. Subsequent principal component analysis helped in identifying the source of pollutants. The applicability of the electronic nose was demonstrated confirming it to be a simple and rapid screening method for identifying the pollutant source.

  4. Binary-black-hole encounters, gravitational bursts, and maximum final spin.

    PubMed

    Washik, Matthew C; Healy, James; Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A

    2008-08-01

    The spin of the final black hole in the coalescence of nonspinning black holes is determined by the "residual" orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole, and the gravitational bursts in a sequence of equal mass encounters. The initial orbital configurations range from those producing an almost direct infall to others leading to numerous orbits before infall, with multiple bursts of radiation. Our sequence consists of orbits with fixed impact parameter. What varies is the initial linear momentum of the black holes. For this sequence, the final black hole of mass M_{h} gets a maximum spin parameter a/M_{h} approximately 0.823, with this maximum occurring for initial orbital angular momentum L/M_{h};{2} approximately 1.176. PMID:18764445

  5. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  6. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  7. The secular evolution of the Kuiper belt after a close stellar encounter

    NASA Astrophysics Data System (ADS)

    Punzo, D.; Capuzzo-Dolcetta, R.; Portegies Zwart, S.

    2014-11-01

    We show the effects of the perturbation caused by a passing by star on the Kuiper belt objects (KBOs) of our Solar system. The dynamics of the Kuiper belt (KB) is followed by direct N-body simulations. The sampling of the KB has been done with N up to 131 062, setting the KBOs on initially nearly circular orbits distributed in a ring of surface density Σ ˜ r-2. This modellization allowed us to investigate the secular evolution of the KB upon the encounter with the perturbing star. Actually, the encounter itself usually leads towards eccentricity and inclination distributions similar to observed ones, but tends also to excite the low-eccentricity population (e ≲ 0.1 around a ˜ 40 au from the Sun), depleting this region of low eccentricities. The following long-term evolution shows a `cooling' of the eccentricities repopulating the low-eccentricity area. In dependence on the assumed KBO mass spectrum and sampled number of bodies, this repopulation takes place in a time that goes from 0.5 to 100 Myr. Due to the unavoidable limitation in the number of objects in our long-term simulations (N ≤ 16 384), we could not consider a detailed KBO mass spectrum, accounting for low-mass objects, thus our present simulations are not reliable in constraining correlations among inclination distribution of the KBOs and other properties, such as their size distribution. However, our high-precision long-term simulations are a starting point for future larger studies on massively parallel computational platforms which will provide a deeper investigation of the secular evolution (˜100 Myr) of the KB over its whole mass spectrum.

  8. SOURCE APPORTIONMENT OF AIR POLLUTION IN CHINA: EXTENDING THE USEFULNESS OF RECEPTOR MODELING BY COMBINING MULTIVARIATE AND CHEMICAL MASS BALANCE MODELS

    EPA Science Inventory

    This research explores the possibility of using a two step method of identify and quantify air pollution emissions in an urban environment. he procedure was a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace el...

  9. Estimating the encounter rate variance in distance sampling

    USGS Publications Warehouse

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  10. Resurrecting the buried self: fairy tales and the analytic encounter.

    PubMed

    Jacobs, Linda

    2011-12-01

    The author uses the lens of myth and fairy tales to examine the narratives generated by the analytic experience. Fairy tales are understood as representing fundamental developmental conflicts, accounting for their enduring power over time. The analytic encounter is seen as an analogue of the fairy tale in which the hidden self, damaged by loss and abandonment, reemerges only through the redemptive power of [an] other's love. Clinical material is presented in which hidden parts of the patient's self are projected into the analyst for safekeeping; these hidden parts resonate with the analyst's own lost, unrealized potential and form an intersubjective experience which the author believes is transformative. The patient's dormant powers emerge in a newly experienced atmosphere of recognition, and in this way, the analytic encounter resembles the fairy tale in providing an identificatory bond and a protective space for the patient's hidden vitality. PMID:22221045

  11. Paramedics' experiences and coping strategies when encountering critical incidents.

    PubMed

    Avraham, Nira; Goldblatt, Hadass; Yafe, Eli

    2014-02-01

    Paramedics frequently encounter critical incidents (CIs). Their emotional, cognitive, and behavioral responses to these encounters present them with a variety of difficulties on the way to, during, and after events. The aim of our study was to examine how paramedics working in a large emergency service organization in Israel experienced CIs and the coping strategies they used to deal with these experiences. We interviewed 15 paramedics from this organization. Through data analysis, we revealed two main themes: (1) between connection and detachment and (2) between control and lack of control of the situation. Paramedics, who connected with their feelings regarding the patient and/or the family in different CIs, as well as those who sensed a lack of control, experienced difficult and negative emotions. To achieve detachment, they used a variety of coping strategies. Those who experienced cognitive and functional control of the situation reported a positive and empowering experience. PMID:24495988

  12. Preliminary imaging results from the second Mercury encounter

    NASA Technical Reports Server (NTRS)

    Strom, R. G.; Murray, B. C.; Belton, M. J. S.; Danielson, G. E.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Trask, N.; Guest, J. E.

    1975-01-01

    The second Mercury encounter has resulted in the acquisition of about 360 pictures of the south polar regions which provide a reliable cartographic and geologic tie between the two sides of the planet photographed on the first encounter. Stereoscopic coverage of large areas of the southern hemisphere was obtained by combining Mercury 1 and 2 pictures taken at different viewing angles. The south polar regions consist of heavily cratered terrain and intercrater plains interspersed with patches of smooth plains. No large areas of smooth plains similar to those surrounding Caloris occur in the south polar regions. No new types of terrain have been recognized, but lobate scarps are common. The second largest basin seen by Mariner 10 has been confirmed on the new photography. At high solar elevations the surface displays an abundance of rays and rayed craters.

  13. Characterizing the initial encounter complex in cadherin adhesion

    PubMed Central

    Sivasankar, Sanjeevi; Zhang, Yunxiang; Nelson, W. James; Chu, Steven

    2009-01-01

    Summary Cadherins are Ca2+-dependent cell-cell adhesion proteins with an extracellular region of five domains (EC1 to EC5). Adhesion is mediated by “strand-swapping” of a conserved tryptophan residue in position 2 between EC1 domains of opposing cadherins, but the formation of this structure is not well understood. Using single molecule Fluorescence Resonance Energy Transfer (FRET) and single molecule force measurements with the Atomic Force Microscope (AFM), we demonstrate that cadherins initially interact via EC1 domains without swapping tryptophan-2 to form a weak Ca2+ dependent initial encounter complex that has 25% of the bond strength of a strand-swapped dimer. We suggest that cadherin dimerization proceeds via an induced fit mechanism where the monomers first form a tryptophan-2 independent initial encounter complex and then undergo subsequent conformational changes to form the final strand-swapped dimer. PMID:19646884

  14. Medical encounters and exchange in early Canadian missions.

    PubMed

    Parsons, Chris

    2008-01-01

    The exchange of medical and pharmaceutical knowledge was an important facet of the encounter between native and newcomer in early Canada. Throughout New France Récollet and Jesuit missionaries were given privileged access both to indigenous peoples and indigenous plants. Curiously, however, when it came to describing medical treatments, it was people, rather than medicinal plants, that were targets of what might be called "the descriptive enterprise." Attempting to divide suspect shamanic remedies from those deemed natural, missionary observers carefully documented the context of medical treatments rather than simply the specific remedy applied for treatment. Using records left by early Canadian missionaries this paper will look at the peculiar character of medical exchange in the missions of seventeenth and eighteenth-century New France to look at the interpersonal encounters that formed a constitutive element of colonial botany and framed the way in which indigenous knowledge was represented to metropolitan audiences. PMID:19569387

  15. Voyager Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Carlisle, G.; Hill, M.

    1981-01-01

    The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.

  16. Extra-solar Oort cloud encounters and planetary impact rates

    SciTech Connect

    Stern, A.

    1987-01-01

    Upper limits are estimated to the number density of extra-solar Oort clouds (ESOC) through which the solar system might pass and to the probable number of attendant planetary impacts by comets. All stars are assumed to have Oort clouds. The model is based on the observed stellar spatial density and the ratio of the total number density to the observed number density. It is estimated that 486 close stellar passages and 12,160 ESOC encounters may have occurred. Each encounter would have produced a shower of hyperbolic comets, with the results of 1-3 ESOC impacts with the earth. It is concluded that the great majority of terrestrial cratering events by comets have and will come from solar Oort cloud comets. 19 references.

  17. Kinetics of Diffusing Polymer Encounter in Confined Cellular Microdomains

    NASA Astrophysics Data System (ADS)

    Amitai, A.; Kupka, I.; Holcman, D.

    2013-12-01

    We study the mean first time that two monomers, located on the same polymer, encounter in a confined microdomain. Approximating the confined geometry by a harmonic potential well, we obtain an asymptotic expression for the mean first encounter time (MFETC) as a function of the radius ɛ around one monomer. By studying the end-to-end distance of the polymer in a ball using the Edwards' formalism, we derive an other estimation of the MFETC. We validate the asymptotic formulas using Brownian simulations and derive their range of validity in terms of the polymer length. We apply the present models to compute the mean time for a gene located far away from a promoter site to be activated during looping in confined genomic territories.

  18. Hotspots on Io During the Ganymede 2 Encounter

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Near Infrared Mapping Spectrometer (NIMS) on the Galileo spacecraft imaged Io at high spectral resolution at a range of 439,000 km (275,000 miles) during the G2 encounter on 6 September 1996. This image shows, on the right, Io as seen by NIMS, centered on 150 W longitude. The image on the left shows the same view point from Voyager data (from the encounters in 1979 and 1980). The NIMS image can be compared to the NIMS hotspot image from the G1 orbit (June 1996) to monitor changes on Io. The most dramatic feature of the G2 image is the hotspot at Malik Patera. Preliminary analysis of the data yields a temperature of at least 1000 K (727 C) for this hotspot, an increase of more than 300 K from the G1 encounter. In the overlap area of the G1 and G2 images all the hotspots seen during the G1 encounter are also seen in the G2 image. Other hotspots were seen, including one at the Pele plume origin site. This image is at the 4 micron band to best view the Malik hotspot. Most of the other hotspots are best seen at longer wavelengths. NIMS is continuing to observe Io to monitor volcanic activity throughout the Galileo mission.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  19. An Overview of MESSENGER's First Encounter with Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Slavin, J. A.; Acuna, M. H.; Korth, H.; Zurbuchen, T. H.; Raines, J. M.; Gloecker, G.; Gold, R. E.; Ho, G. C.; Krimigis, S. M.; Livi, S. A.; Baker, D. N.; Schriver, D.; Travnicek, P.; Benna, M.; Boardsen, S. A.; McNutt, R. L.; Solomon, S. C.

    2008-05-01

    As the MESSENGER spacecraft performed a gravity assist at Mercury on 14 January 2008, observations were made of Mercury's magnetic field, plasma, and energetic particle environment, including the first-ever ion observations at the planet. Mercury's magnetosphere presents a particularly stiff test of theories of the solar wind interaction with magnetized bodies because both the spatial and temporal kinetic and fluid scales overlap to a considerable degree. This overview provides the context for detailed analyses of the many varied phenomena observed as well as quantitative comparisons with fluid and hybrid simulations of Mercury's magnetosphere for this encounter. The magnetosphere was not as dynamic for MESSENGER's first encounter as it was for the comparable Mariner 10 encounter I. The MESSENGER trajectory passed through the system from the nightside dusk flank, across midnight near the planet, and through the bow shock in the morning sector. The inbound shock crossing was typical of flank shocks at smaller obstacles, but there was a prolonged period of intense magnetic turbulence in the sheath prior to the magnetopause crossing, including multiple flux rope signatures. The inbound magnetopause transit occurred near the center of the tail and included structures indicative of Kelvin-Helmholtz instability at the flank magnetopause. Multiple inclusions of proton plasmas were found close to the planet. Three distinct transitions were observed on the outbound trajectory. The first is attributed to an outer layer of solar wind plasma within the magnetosphere. This was followed by a well-defined magnetopause and subsequently by an encounter with a shock displaying many features of a dynamic re-formation typical of quasi- parallel shocks.

  20. Scientific misconduct encountered by APAME journals: an online survey.

    PubMed

    Looi, Lai-Meng; Wong, Li Xuan; Koh, Cing Chai

    2015-12-01

    In June 2015, invitations were sent by email to 151 APAME journals to participate in an online survey with an objective of gaining insight into the common publication misconduct encountered by APAME editors. The survey, conducted through SurveyMonkey over a 20-day-period, comprised 10 questions with expansions to allow anecdotes limited to 400 characters, estimated to take less than 10 minutes to complete. Only one invitation was issued per journal, targeting (in order of priority) editors, editorial board members and editorial staff, and limited by email availability. 54 (36%) journals responded. 98% of respondents held Editor or Editorial Board positions. All respondent journals have editorial policies on publication ethics and 96% provide instructions related to ethics. 45% use anti-plagiarism software to screen manuscripts, the most popular being iThenticate, CrossCheck and Turnitin. Up to 50% of journals had encountered studies without IRB approval. Author misconduct encountered were (in rank order): plagiarism (75%), duplicate publication (58%), unjustified authorship (39%), authorship disputes (33%), data falsification (29%), data/image manipulation (27%), conflict of interest (25%), copyright violation (17%) and breach of confidentiality (10%). Reviewer misconduct encountered were: conflict of interest (19%), plagiarism (17%), obstructive behavior (17%), abusive language (13%) and breach of confidentiality (13%). Notwithstanding the limitations of the survey and the response rate, a few insights have been gained: (1) the need for strengthening the ethical culture of researchers/authors and reviewers, (2) anti-plagiarism software can improve plagiarism detection by about 15%, and (3) the need for technical support to detect plagiarism, duplicate publication and image manipulation. PMID:26712665