Science.gov

Sample records for air masses transported

  1. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  2. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  3. VOC Composition of Air Masses Transported from Asia to the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Warneke, C.; Kuster, B.; Parrish, D.; Holloway, J.; Huebler, G.; Fehsenfeld, F.

    2002-12-01

    Airborne measurements of volatile organic compounds (VOCs) were performed using a proton-transfer-reaction mass spectrometer (PTR-MS) operated onboard a NOAA WP-3 aircraft during the Intercontinental Transport and Chemical Transformation (ITCT) experiment in 2002. Enhancements of acetone (CH3COCH3), methanol (CH3OH), acetonitrile (CH3CN) and in some cases benzene were observed in air masses that were impacted by outflow from Asia. The enhancement ratios with respect to carbon monoxide are compared to emission factors for fossil fuel combustion and biomass burning, which gives some insight into the sources responsible for the pollution. The observed mixing ratios for acetone, methanol and in particular acetonitrile were generally reduced in the marine boundary layer, suggesting the presence of an ocean uptake sink. The ocean uptake of acetonitrile was found to be particularly efficient in a zone with upwelling water off of the U.S. west coast. Reduced mixing ratios of acetone and methanol were observed in a stratospheric intrusion. This observation gives some information about the lifetime of these VOCs in the stratosphere. Enhanced concentrations of aromatic hydrocarbons were observed in air masses that were impacted by urban sources in California. The ratio between the concentrations of benzene, toluene and higher aromatics indicated the degree of photochemical oxidation. PTR-MS only gives information about the mass of the ions produced by proton-transfer reactions between H3O+ and VOCs in the instrument. The identification of VOCs was confirmed by coupling a gas-chromatographic (GC) column to the instrument and post-flight GC-PTR-MS analyses of canister samples collected during the flights.

  4. Large-scale transport of a CO-enhanced air mass from Europe to the Middle East

    NASA Technical Reports Server (NTRS)

    Connors, V. S.; Miles, T.; Reichle, H. G., Jr.

    1989-01-01

    On November 14, 1981, the shuttle-borne Measurement of Air Pollution from Satellites (MAPS) experiment observed a carbon monoxide (CO) enhanced air mass in the middle troposphere over the Middle East. The primary source of this polluted air was estimated by constructing adiabatic isentropic trajectories backwards from the MAPS measurement location over a 36 h period. The isentropic diagnostics indicate that CO-enhanced air was transported southeastward over the Mediterranean from an organized synoptic-scale weather regime, albeit of moderate intensity, influencing central Europe on November 12. Examination of the evolving synoptic scale vertical velocity and precipitation patterns during this period, in conjuction with Meteosat visible, infrared, and water vapor imagery, suggests that the presence of this disturbed weather system over Europe may have created upward transport of CO-enhanced air between the boundary-layer and midtropospheric levels, and subsequent entrainment in the large-scale northwesterly jet stream flow over Europe and the Mediterranean.

  5. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  6. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  7. Aerosols in polluted versus nonpolluted air masses Long-range transport and effects on clouds

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Van Valin, C. C.; Castillo, R. C.; Kadlecek, J. A.; Ganor, E.

    1986-01-01

    To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United States, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of cloud water were measured on Whiteface Mountain, NY, during the summers of 1981 and 1982. In several case studies, the data were cross-correlated with different air mass types - background continental, polluted continental, and maritime - that were advected to the sampling site. The results are the following: (1) Anthropogenic sources hundreds of kilometers upwind cause the small-particle (accumulation) mode number to increase from hundreds of thousands per cubic centimeter and the mass loading to increase from a few to several tens of micrograms per cubic meter, mostly in the form of sulfur aerosols. (2) A significant fraction of anthropogenic sulfur appears to act as cloud condensation nuclei (CCN) to affect the cloud drop concentration. (3) Clouds in Atlantic maritime air masses have cloud drop spectra that are markedly different from those measured in continental clouds. The drop concentration is significantly lower, and the drop size spectra are heavily skewed toward large drops. (4) Effects of anthropogenic pollutants on cloud water ionic composition are an increase of nitrate by a factor of 50, an increase of sulfate by more than one order of magnitude, and an increase of ammonium ion by a factor of 7. The net effect of the changes in ionic concentrations is an increase in cloud water acidity. An anion deficit even in maritime clouds suggests an unknown, possibly biogenic, source that could be responsible for a pH below neutral, which is frequently observed in nonpolluted clouds.

  8. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  9. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  10. Transport Regimes of Air Masses Affecting the Tropospheric Composition of the Canadian and European Arctic During RACEPAC 2014 and NETCARE 2014/2015

    NASA Astrophysics Data System (ADS)

    Bozem, H.; Hoor, P. M.; Koellner, F.; Kunkel, D.; Schneider, J.; Schulz, C.; Herber, A. B.; Borrmann, S.; Wendisch, M.; Ehrlich, A.; Leaitch, W. R.; Willis, M. D.; Burkart, J.; Thomas, J. L.; Abbatt, J.

    2015-12-01

    The Arctic is warming much faster than any other place in the world and undergoes a rapid change dominated by a changing climate in this region. The impact of polluted air masses traveling to the Arctic from various remote sources significantly contributes to the observed climate change, in contrast there are additional local emission sources contributing to the level of pollutants (trace gases and aerosol). Processes affecting the emission and transport of these pollutants are not well understood and need to be further investigated. We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories we analyze the transport regimes prevalent during spring (RACEPAC 2014 and NETCARE 2015) and summer (NETCARE 2014) in the observed region. Whereas the eastern part of the Canadian Arctic is affected by air masses with their origin in Asia, in the central and western parts of the Canadian and European Arctic air masses from North America are predominant at the time of the measurement. In general the more northern parts of the Arctic were relatively unaffected by pollution from mid-latitudes since air masses mostly travel within the polar dome, being quite isolated. Associated mixing ratios of CO and CO2 fit into the seasonal cycle observed at NOAA ground stations throughout the Arctic, but show a more mid-latitudinal characteristic at higher altitudes. The transition is remarkably sharp and allows for a chemical definition of the polar dome. At low altitudes, synoptic disturbances transport polluted air masses from mid-latitudes into regions of the polar dome. These air masses contribute to the Arctic pollution background, but also

  11. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  12. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  13. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  14. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  15. Transport solutions for cleaner air.

    PubMed

    Kelly, Frank J; Zhu, Tong

    2016-05-20

    In cities across the globe, road transport remains an important source of air pollutants that are linked with acute and chronic health effects. Decreasing vehicle emissions--while maintaining or increasing commuter journeys--remains a major challenge for city administrators. In London, congestion-charging and a citywide low-emission zone failed to bring nitrogen dioxide concentrations under control. In Beijing, controls on the purchase and use of cars have not decreased transport emissions to a sufficient extent. As cities continue to grow, not even zero-emission vehicles are the solution. Moving increasingly large numbers of people efficiently around a city can only be achieved by expanding mass transit systems. PMID:27199415

  16. Observation of the transport of polluted air masses from the northeastern United States to Cape Sable Island, Nova Scotia, Canada, during the 1993 NARE summer intensive

    NASA Astrophysics Data System (ADS)

    Knapp, K. G.; Balsley, B. B.; Jensen, M. L.; Hanson, H. P.; Birks, J. W.

    1998-06-01

    Vertical profiles of ozone, temperature, pressure, and water vapor mass mixing ratio obtained using a parafoil kite platform during the North Atlantic Regional Experiment (NARE) 1993 summer intensive at Cape Sable Island, Nova Scotia, Canada, demonstrate the of use of kite platforms for the collection of vertically and temporally resolved data over a fixed location. During the period August 8-28, 1993, 39 profiles of the lower atmosphere were collected. Data collected as part of this field campaign illustrate the complex vertical stratification and temporal variability of pollutants transported into the Maritime Provinces of Canada. Transport phenomena resulted in pollution events in which ozone at the ground level remained in the 20-40 parts per billion by volume (ppbv) range, while mixing ratios of 90-130 ppbv were observed above ˜300 m. Back trajectories indicate that these highly elevated levels of ozone are attributable to source regions in the heavily industrialized northeastern United States. Vertical stratification of the lower atmosphere was also present during transport of Canadian air to the sampling site, with layers of both elevated and diminished ozone observed, while marine air did not exhibit layering characteristic of air masses originating from continental source regions.

  17. Air transportation noise technology overview

    NASA Technical Reports Server (NTRS)

    Maggin, B.; Chestnutt, D.

    1973-01-01

    The NASA and DOT technology program planning for quieter air transportation systems is reviewed. To put this planning in context, the nature of the noise problem and the projected nature of the air transportation fleet are identified. The technology program planning reviewed here is discussed in relation to the following areas of activity: systems analysis, community acceptance, basic research and technology, and the various classes of civil aircraft, i.e. existing and advanced transports, powered-lift transports, and general aviation.

  18. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Dingding; Zhu, Xun; Liao, Qiang; Li, Jun; Fu, Qian

    A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.

  19. The effects of air mass transport, seasonality, and meteorology on pollutant levels at the Iskrba regional background station (1996-2014)

    NASA Astrophysics Data System (ADS)

    Poberžnik, Matevž; Štrumbelj, Erik

    2016-06-01

    Our main goal was to estimate the effects of long-range air transport on pollutant concentrations measured at the Iskrba regional background station (Slovenia). We cluster back-trajectories into categories and simultaneously model the effects of meteorology, seasonality, trends, and air mass trajectory clusters using a Bayesian statistical approach. This simplifies the interpretation of results and allows us to better identify the effects of individual variables, which is important, because pollutant concentrations, meteorology, and trajectories are seasonal and correlated. Similar to related work from other European sites, we find that slow and faster moving trajectories from eastern Europe and the northern part of the Balkan peninsula are associated with higher pollutant levels, while fast-moving trajectories from the Atlantic are associated with lower pollutant concentration. Overall, pollutant concentrations have decreased in the studied period.

  20. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  1. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  2. Rotorcraft air transportation

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.

    1983-01-01

    Intermodal relationships and the particular ways in which they affect public transportation applications of rotorcraft are addressed. Some aspects of integrated services and general comparisons with other transportation modes are reviewed. Two potential application scenarios are discussed: down-to-downtown rotorcraft service and urban public transport rotorcraft service. It is concluded that to integrate well with ground access modes community rotorcraft service should be limited stop service with published schedules, and operate on a few specific routes between a few specific destinations. For downtown-to-downtown service, time savings favorable to rotorcraft are benefits that reflect its more direct access, relatively higher line-haul travel speeds, and less circuitous travel. For the scenario of public transport within urban areas, first, improving cruise speeds has a limited potential due to allowing for a ""station spacing'' effect. Secondly, public acceptance of higher acceleration/deceleration rates may be just as effective as a technological innovation as achieving higher cruise speeds.

  3. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  4. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  5. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  6. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    PubMed

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques. PMID:25901845

  7. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... criteria for determining when U.S. flag air carriers are unavailable. See 48 CFR 47.403-1, or USAID... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation...

  8. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... criteria for determining when U.S. flag air carriers are unavailable. See 48 CFR 47.403-1, or USAID... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation...

  9. Urban Mass Transportation.

    ERIC Educational Resources Information Center

    Mervine, K. E.

    This bibliography is part of a series of Environmental Resource Packets prepared under a grant from EXXON Education Foundation. The most authoritative and accessible references in the urban transportation field are reviewed. The authors, publisher, point of view, level, and summary are given for each reference. The references are categorized…

  10. Mass transport contamination study

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1972-01-01

    A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.

  11. Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  12. Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia

    NASA Astrophysics Data System (ADS)

    Shin, S.-K.; Müller, D.; Lee, C.; Lee, K. H.; Shin, D.; Kim, Y. J.; Noh, Y. M.

    2015-06-01

    We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban

  13. Development of the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The major developments are outlined in the U.S. scheduled air transport industry both domestic and international, together with a brief history of the European air transport system. The role and formulation of the U.S. Civil Aeronautics Board, International Civil Aviation Organization, and International Air Transport Association are also covered.

  14. Financing the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Lloyd-Jones, D. J.

    1972-01-01

    The basic characteristics of the air transportation industry are outlined and it is shown how they affect financing requirements and patterns of production. The choice of financial timing is imperative in order to get the best interest rates available and to insure a fair return to investors. The fact that the industry cannot store its products has a fairly major effect on the amount of equipment to purchase, the amount of capital investment required, and the amount of return required to offset industry depriciation.

  15. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  16. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  17. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-09-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m-3 and 1.2 μg m-3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer. This model behaviour can be explained by a combination of model under

  18. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  19. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  20. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  1. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  2. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-02-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m-3 vs. 1.2 μg m-3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site

  3. Air ambulance medical transport advertising and marketing.

    PubMed

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services. PMID:21226561

  4. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  5. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.

    2015-05-01

    A climatology of air-mass origin in the tropical lower stratosphere is presented for the Goddard Earth Observing System Chemistry Climate Model. During late boreal summer and fall, air-mass fractions reveal that as much as 20% of the air in the tropical lower stratosphere last contacted the planetary boundary layer (PBL) over Asia; by comparison, the air-mass fractions corresponding to last PBL contact over North America and over Europe are negligible. Asian air reaches the extratropical tropopause within a few days of leaving the boundary layer and is quasi-horizontally transported into the tropical lower stratosphere, where it persists until January. The rapid injection of Asian air into the lower stratosphere—and its persistence in the deep tropics through late (boreal) winter—is important as industrial emissions over East Asia continue to increase. Hence, the Asian monsoon may play an increasingly important role in shaping stratospheric composition.

  6. Air medical transport of cardiac patients.

    PubMed

    Essebag, Vidal; Halabi, Abdul R; Churchill-Smith, Michael; Lutchmedial, Sohrab

    2003-11-01

    The air medical transport of cardiac patients is a rapidly expanding practice. For various medical, social, and economic indications, patients are being flown longer distances at commercial altitudes, including international and intercontinental flights. There are data supporting the use of short-distance helicopter flights early in the course of a cardiac event for patients needing emergent transfer for percutaneous coronary intervention or aortocoronary bypass. When considering elective long-distance air medical transport of cardiac patients for social or economic reasons, it is necessary to weigh the benefits against the potential risks of flight. A few recent studies suggest that long-distance air medical transport is safe under certain circumstances. Current guidelines for air travel after myocardial infarction do not address the use of medical escorts or air ambulances equipped with intensive care facilities. Further research using larger prospective studies is needed to better define criteria for safe long-distance air medical transport of cardiac patients. PMID:14605071

  7. The Market Demand for Air Transportation

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    Although the presentation will touch upon the areas of market for air transportation, the theoretical foundations of the demand function, the demand models, and model selection and evaluation, the emphasis of the presentation will be on a qualitative description of the factors affecting the demand for air transportation. The presentation will rely heavily on the results of market surveys carried out by the Port of New York Authority, the University of Michigan, and Census of Transportation.

  8. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  9. Statewide air medical transports for Massachusetts.

    PubMed

    Garthe, Elizabeth; Mango, Nicholas K; Prenney, Brad

    2002-01-01

    In 1997, the Massachusetts Department of Public Health (MDPH) established a process to centralize air medical transport information. This database is one of the first statewide, population-based sources for civilian rotary-wing air medical transports (U.S. Coast Guard, police, and military missions are not included). The purpose of this database is to facilitate MDPH review of air medical transport service utilization, with input from a multidisciplinary committee. This article discusses the challenges in producing uniform data from multiple service submissions and presents aggregate "baseline" utilization information for 1996. These data served as a starting point for later studies using data linkage. This indexed article is the first to report statewide, population-based data for all types of air medical helicopter transports. The only other indexed "statewide air medical transport" paper focused on scene transports to trauma centers in Pennsylvania. A previous article by the authors in the July-September 2000 Air Medical Journal provided an overview of air medical transports for fatal motor vehicle crashes for 1 region of the state. PMID:12585073

  10. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  11. Aerosol chemical components in Alaska air masses: 1. Aged pollution

    NASA Astrophysics Data System (ADS)

    Shaw, Glenn E.

    1991-12-01

    A 4-year Alaska chemical data set of aerosols or "dust" in the air clearly reveals a mixture of distinct aerosol components with different and interesting chemical composition, one or two being ascribed to pollution imported to Alaska by winds all the way from other continents. Of particular note is a strong chemical contrast between what we imagine to be highly scavenged, orographically lifted, northern Pacific air (Pacific marine air mass) and stagnant Arctic air (polar air mass), the latter containing seasonal average concentrations of between 2-4 times the concentration of the former, at least for pollution markers noncrustal vanadium, noncrustal manganese, arsenic, selenium, bromine, and antimony. The findings concur our old discovery that Arctic air is persistently polluted (Arctic haze), but Pacific air is relatively clean, in spite of the fact that Alaska is downwind of major pollution sources in the Orient. This is remarkable. In this the first of a two-part paper, we concentrate on the pollution component found primarily during incursion of Arctic polar air. Two major occurrences of visual haze with optical depths of approximately 0.2 and elevated aerosol concentration lasting about a month (spring 1985 and 1986) were affiliated with strong incoming transport of polar air, temperatures ranging from 10° to 20°C below normal (polar air) and air trajectory hindcasts leading back to industrial pollution sources in Eurasia. These long-range transport pollution events brought metal-rich aerosol of removal-resistant submicron particles. The size, chemistry, and meteorology all strongly suggest the presence of a well-aged (10-100 day) polluted air mass. An important implication is that in spring a large fraction of the Arctic polar air mass becomes charged with by-products of industrial pollution. In this multiyear chemical data set one finds a notable summer-winter contrast, changing by factors of 2 to 4 for pollution markers As, Se, Sb, and noncrustal

  12. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  13. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  14. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  15. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  16. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  17. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel. PMID:20669640

  18. Technology for future air transports

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    The requirements and opportunities for technological development in transport aircraft of the next generation are reviewed, focusing primarily on conventional, subsonic aircraft. Advances in computational aerodynamics and computer-aided design and manufacturing (in numerically controlled processes) are noted as well as improved wind tunnel testing and drag reduction techniques. Advances in aeroelasticity prediction have made it possible to use flexible, high-aspect-ratio wings without large weight penalties. Weight reduction may be achieved by the use of composite aircraft structures and superplastic forming combined with diffusion bonding, however composites require improvement in manufacturing techniques and mechanical properties in order to gain general acceptance. Propulsion systems can be improved in engine fuel efficiency, control, durability, environmental compatibility (exhaust and noise emissions), and fuel specifications. In avionics, due to the growth of low-cost, miniaturized packages, opportunities exist in the fields of digital controls, navigation, guidance and communication. Applications of new technologies to various aspects of flight safety are also outlined.

  19. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  20. International Air Transport and Federal Policy

    NASA Technical Reports Server (NTRS)

    Binder, R. H.

    1972-01-01

    The Federal policy which establishes guidelines for future U.S. participation in the international air transportation industry is discussed. The policy issues discussed include the following: (1) aircraft hijacking, both foreign and domestic, (2) relationship of scheduled services and charter services, (3) capacity problems, and (4) rate regulation.

  1. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  2. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  3. Efficient mass transport by optical advection

    NASA Astrophysics Data System (ADS)

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-10-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms.

  4. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  5. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  6. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  7. Mass partitioning effects in diffusion transport.

    PubMed

    Kojic, Milos; Milosevic, Miljan; Wu, Suhong; Blanco, Elvin; Ferrari, Mauro; Ziemys, Arturas

    2015-08-28

    Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes. PMID:26204522

  8. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL...

  9. Computing Thermodynamic And Transport Properties Of Air

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Gupta, Roop N.; Lee, Kam-Pui

    1994-01-01

    EQAIRS computer program is set of FORTRAN 77 routines for computing thermodynamic and transport properties of equilibrium air for temperatures from 100 to 30,000 K. Computes properties from 11-species, curve-fit mathematical model. Successfully implemented on DEC VAX-series computer running VMS, Sun4-series computer running SunOS, and IBM PC-compatible computer running MS-DOS.

  10. Planning air transport network in Appalachia

    NASA Technical Reports Server (NTRS)

    Carter, E. C.; Morlok, E. K.

    1975-01-01

    Main issues to be considered in designing an air transport system are discussed, and a model for the selection of an optimal air network for a region is presented. It was desired to have the ability to consider a dense network of nodes and air routes and variations in schedules on routes, which in combination would represent virtually all conceivable alternatives. Linear and integer programming were chosen as the most promising analysis methodologies. Integer programming was found to be intractable, while linear programming provided efficient solutions. The model was applied to studying the feasibility of a STOL network in West Virginia. Based on allowable paths, an examination of intercity demands, and established growth points, desired levels of service expressed as minimum flights were determined for certain city pairs.

  11. The Effective Mass of a Ball in the Air

    ERIC Educational Resources Information Center

    Messer, J.; Pantaleone, J.

    2010-01-01

    The air surrounding a projectile affects the projectile's motion in three very different ways: the drag force, the buoyant force, and the added mass. The added mass is an increase in the projectile's inertia from the motion of the air around it. Here we experimentally measure the added mass of a spherical projectile in air. The results agree well…

  12. Identification and Tracking of Polluted Air Masses in the South-Central Coast Air Basin.

    NASA Astrophysics Data System (ADS)

    Moore, G. E.; Douglas, S. G.; Kessler, R. C.; Killus, J. P.

    1991-05-01

    Canister samples of air taken during the South-Central Coast Cooperative Air Monitoring Program (SCCCAMP) 1985 field study program were analyzed for concentrations of over 50 hydrocarbons as well as chlorofluorocarbons (CFCs), carbon monoxide, hydrogen, and methane. Additional evidence of location and timing of airmass origin was obtained by utilizing long-lived halocarbons such as F-12 as `tracers of opportunity' in conjunction with known source profiles. Wind trajectories were developed from hourly gridded wind fields produced by a diagnostic wind model utilizing observed wind data. These wind trajectories were used to determine how pollutants from major source areas might be transported to sampling sites. Particulate lidar height-distance traverses were made from aircraft that provided a view of pollutant layering. Mixing height and vertical pollutant concentration distributions were obtained in order to determine if observed pollutant concentrations were consistent with the degree of stagnation present and hypothesized transport pathway.Analyses to track specific polluted air masses were conducted for the 13 September, 21 September, 23-24 September, and 2-3 October 1985 intensive study periods. The analyses find that elevated ozone concentrations during these periods are primarily attributed to transport and storage of ozone-enriched air from Los Angeles. During one type of episode (2-3 October) ozone and ozone precursors are stored near the surface over the Santa Barbara Channel overnight and transported into coastal areas on the following day. In another type of episode (23-24 September) ozone is transported into the study domain from the San Fernando Valley and Los Angeles via flow around the Santa Monica Hills. Transport of pollutant-enriched air takes place in a layer 200-500 m aloft, in many places overlaying cleaner marine-layer air. This advected ozone is mixed down to contribute to ground-level ozone concentrations over terrain where the marine layer

  13. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  14. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  15. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  16. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  17. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  18. Texture mapping via optimal mass transport.

    PubMed

    Dominitz, Ayelet; Tannenbaum, Allen

    2010-01-01

    In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations. PMID:20224137

  19. Preliminary results of the MLAM (Multi-Layer Air Mass) Lagrangian transport model simulation of ANATEX (Across North America Tracer Experiment)

    SciTech Connect

    Davis, W.E.; Olsen, A.R.; Erb, T.A.

    1989-01-01

    The 1987 Across North America Tracer Experiment (ANATEX), for the study of regional to continental-scale transport and diffusion, released perfluorocarbon tracers for three hours every 2.5 days in January, February and March (Draxler et. al. 1985, 1987). The experiment resulted in 33 days of releases at two sites; Glasgow, Montana and St. Cloud, Minnesota. Each release consisted of approximately 50 kg of perfluoro-ortho-dimenthoyl-cyclohexane (PDCH) at St. Cloud and 83 kg of perfluoro-trimethyl-cyclohexane (PTCH) at Glasgow. The experiment included the release of a third tracer, 50 kg of perfluoro-methyl-cyclohexane (PMCH), every five days from St. Cloud; designed to serve as a means to distinguish consecutive releases from St. Cloud. A surface sampling network of 77 sampling sites, located east of 105/degree/ longitude in the United States and Canada, measured 24-hour average tracer concentrations out to a distance of 3000 km from Glasgow. The network, organized in eight arcs east of Glasgow, collected daily concentrations of each tracer from January 5 through March 29, 1987. The network design provides average daily surface footprint information for the three tracers. 8 refs., 2 figs.

  20. Preliminary results of the MLAM (Multi-Layer Air Mass) Lagrangian transport model simulation of ANATEX (Across North America Tracer Experiment)

    NASA Astrophysics Data System (ADS)

    Davis, William E.; Olsen, Anthony R.; Erb, Trudy A.

    1989-01-01

    The 1987 Across North America Tracer Experiment (ANATEX), for the study of regional to continental-scale transport and diffusion, released perfluorocarbon tracers for three hours every 2.5 days in January, February and March (Draxler et. al. 1985, 1987). The experiment resulted in 33 days of releases at two sites; Glasgow, Montana and St. Cloud, Minnesota. Each release consisted of approximately 50 kg of perfluoro ortho-dimenthoyl cyclohexane (PDCH) at St. Cloud and 83 kg of perfluoro trimethyl cyclohexane (PTCH) at Glasgow. The experiment included the release of a third tracer, 50 kg of perfluoro methyl cyclohexane (PMCH), every five days from St. Cloud; designed to serve as a means to distinguish consecutive releases from St. Cloud. A surface sampling network of 77 sampling sites, located east of 105 degree longitude in the United States and Canada, measured 24-hour average tracer concentrations out to a distance of 3000 km from Glasgow. The network, organized in eight arcs east of Glasgow, collected daily concentrations of each tracer from January 5 through March 29, 1987. The network design provides average daily surface footprint information for the three tracers.

  1. Oceanic mass transport by mesoscale eddies.

    PubMed

    Zhang, Zhengguang; Wang, Wei; Qiu, Bo

    2014-07-18

    Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation. PMID:25035491

  2. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  3. Proceedings of the Air Transportation Management Workshop

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard (Editor); Tashker, Michael G. (Editor); Boyle, Angela M. (Editor)

    1995-01-01

    The Air Transportation Management (ATM) Workshop was held 31 Jan. - 1 Feb. 1995 at NASA Ames Research Center. The purpose of the workshop was to develop an initial understanding of user concerns and requirements for future ATM capabilities and to initiate discussions of alternative means and technologies for achieving more effective ATM capabilities. The topics for the sessions were as follows: viewpoints of future ATM capabilities, user requirements, lessons learned, and technologies for ATM. In addition, two panel sessions discussed priorities for ATM, and potential contributions of NASA to ATM. The proceedings contain transcriptions of all sessions.

  4. Efficient mass transport by optical advection

    PubMed Central

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069

  5. [Long-haul intensive care transports by air].

    PubMed

    Graf, Jürgen; Seiler, Olivier; Pump, Stefan; Günther, Marion; Albrecht, Roland

    2013-03-01

    The need for inter-hospital transports over long distances aboard air ambulances or airlines has increased in recent years, both in the civil as well as the military sector. More often severely ill intensive care patients with multiple organ failure and appropriate supportive care (e.g. mechanical ventilation, catecholamines, dialysis, cardiac assist devices) are transported by air. Despite the fact that long-haul intensive care transports by air ambulance and airlines via Patient Transport Compartment (PTC) are considered established modes of transport they always provide a number of challenges. Both modes of transport have distinct logistical and medical advantages and disadvantages. These-as well as the principal risks of an air-bound long-haul intensive care transport -have to be included in the risk assessment and selection of means of transport. Very often long-haul intensive care transports are a combination of air ambulance and scheduled airlines utilizing the PTC. PMID:23504461

  6. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  7. Delft Mass Transport model DMT-2

    NASA Astrophysics Data System (ADS)

    Ditmar, Pavel; Hashemi Farahani, Hassan; Inacio, Pedro; Klees, Roland; Zhao, Qile; Guo, Jing; Liu, Xianglin; Sun, Yu; Riva, Ricardo; Ran, Jiangjun

    2013-04-01

    Gravity Recovery And Climate Experiment (GRACE) satellite mission has enormously extended our knowledge of the Earth's system by allowing natural mass transport of various origin to be quantified. This concerns, in particular, the depletion and replenishment of continental water stocks; shrinking of polar ice sheets; deformation of the Earth's crust triggered by large earthquakes, and isostatic adjustment processes. A number of research centers compute models of temporal gravity field variations and mass transport, using GRACE data as input. One of such models - Delft Mass Transport model - is being produced at the Delft University of Technology in collaboration with the GNSS Research Center of Wuhan University. A new release of this model, DMT-2, has been produced on the basis of a new (second) release of GRACE level-1b data. This model consists of a time-series of monthly solutions spanning a time interval of more than 8 years, starting from Feb. 2003. Each solution consists of spherical harmonic coefficients up to degree 120. Both unconstrained and optimally filtered solutions are obtained. The most essential improvements of the DMT-2 model, as compared to its predecessors (DMT-1 and DMT-1b), are as follows: (i) improved estimation and elimination of low-frequency noise in GRACE data, so that strong mass transport signals are not damped; (ii) computation of accurate stochastic models of data noise for each month individually with a subsequent application of frequency-dependent data weighting, which allows statistically optimal solutions to be compiled even if data noise is colored and gradually changes in time; (iii) optimized estimation of accelerometer calibration parameters; (iv) incorporation of degree 1 coefficients estimated with independent techniques; (v) usage of state-of-the-art background models to de-alias GRACE data from rapid mass transport signals (this includes the EOT11a model of ocean tides and the latest release of the AOD1B product describing

  8. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  9. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Air transportation advertisements and solicitations. 1510.7 Section 1510.7 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES PASSENGER CIVIL AVIATION SECURITY...

  10. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  11. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  12. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Air transportation advertisements and solicitations. 1510.7 Section 1510.7 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES PASSENGER CIVIL AVIATION SECURITY...

  13. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  14. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  15. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  16. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  17. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  18. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  19. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  20. Long-range transport of air pollution into the Arctic

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  1. Photoinduced mass transport in azo compounds

    NASA Astrophysics Data System (ADS)

    Klismeta, K.; Teteris, J.; Aleksejeva, J.

    2013-12-01

    The photoinduced changes of optical properties in azobenzene containing compound thin films were studied under influence of polarized and non-polarized 532 nm laser light. Under influence of light azo compounds experience trans-cis isomerisation process, that can be observed in the absorbance spectrum of the sample. If the light is linearly polarized, molecules align perpendicularly to the electric field vector and as a result photoinduced dichroism and birefringence is obtained. If a known lateral polarization modulation of the light beam is present, mass transport of the azobenzene containing compound occurs. By measuring the surface relief with a profilometer the direction of mass transport can be determined. The studies of this work show that direct holographic recording of surface relief gratings can be used in optoelectronics, telecommunications and data storage.

  2. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  3. Weighted multiplex network of air transportation

    NASA Astrophysics Data System (ADS)

    Varga, Imre

    2016-06-01

    In several real networks large heterogeneity of links is present either in intensity or in the nature of relationships. Therefore, recent studies in network science indicate that more detailed topological information are available if weighted or multi-layer aspect is applied. In the age of globalization air transportation is a representative example of huge complex infrastructure systems, which has been analyzed from different points of view. In this paper a novel approach is applied to study the airport network as a weighted multiplex taking into account the fact that the rules and fashion of domestic and international flights differ. Restricting study to only topological features and their correlations in the system (disregarding traffic) one can see reasons why simple network approximation is not adequate.

  4. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  5. UK airmisses involving commercial air transport, January-April 1991

    NASA Astrophysics Data System (ADS)

    In the introduction the following are briefly discussed: origination of an airmiss; purpose of airmiss reports; investigation of airmiss reports; categorization of airmisses; involvement of commercial air transport aircraft; airmisses related to flying hours. Tabulated statistics of the following are presented: the number of incidents of commercial air transport airmisses; commercial air transport aircraft involved in airmisses; commercial air transport airmisses related to flying hours. Reports on the commercial air transport airmisses from Jan. - Apr. 1991 are presented. These contain summaries of: pilot reports, transcripts of relevant RT frequencies; radar video recordings, and reports from appropriate air traffic control and operating authorities. The working groups discussion is summarized, and the risk and cause assessed.

  6. The role of mass transport in protein crystallization.

    PubMed

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments. PMID:26841759

  7. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  8. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  9. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  10. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  11. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  12. Energy and mass transport in the thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Spencer, N. W.

    1979-01-01

    Examples illustrating the effects of large scale energy and mass transport in the thermosphere discussed include: (1) The seasonal variations reveal temperature, composition, and ionospheric anomalies involving energy exchange between the thermosphere and mesosphere. (2) The midnight temperature maximum in the thermosphere is interpreted as a signature of tidal waves emanating from the mesosphere and momentum coupling associated with ion drag. (3) The ionospheric storm in the F region illustrates the intricate effects of large scale atmospheric winds driven by magnetospheric energization processes. (4) Atmospheric signatures of Joule heating and electric field momentum coupling are markedly different.

  13. Influence of Baseline Air Masses and Wildland Fires on Air Quality in the Western United States

    NASA Astrophysics Data System (ADS)

    Wigder, Nicole L.

    This dissertation focuses on several key uncertainties related to particulate matter (PM) and O3 concentrations in the western U.S. Each analysis conducted for this dissertation centers on data collected at the Mount Bachelor Observatory (MBO, 2.8 km a.s.l., 43.98° N, 121.69° W), a mountaintop research site in central Oregon, U.S. The first component of this dissertation is an analysis of the contribution of baseline O3 to observed O3 concentrations in two western U.S. urban areas, Enumclaw, Washington (WA) and Boise, Idaho, during 2004 -- 2010. I compared O3 data from two baseline sites (MBO and Cheeka Peak, WA) to O3 concentrations in the two urban areas on days when backward air mass trajectories showed transport between the baseline and urban sites. I found that the urban areas studied had relatively low O3 on the days with a strong influence from baseline air masses (28.3 -- 48.3 ppbv). These data suggested that there was low production of O3 from urban emissions on these days, which allowed me to quantify the impact of baseline O3 on urban O3 concentrations. A regression of the Boise and MBO O3 observations showed that free tropospheric air masses were diluted by 50% as they were entrained into the boundary layer at Boise. These air masses can contain high O3 concentrations (>70 ppbv) from Asian pollution sources or stratospheric intrusions, indicating that these sources can greatly contribute to urban surface O 3 concentrations. In addition, I found that the elevation and surface temperature of the urban areas studied impacted baseline O3 concentrations in these areas, with higher elevation and greater surface temperatures leading to greater O3 concentrations. The second and third components of this dissertation are analyses of the impact of wildland fires on PM and O3 concentrations in the western U.S. For both of these analyses, I calculated pollutant enhancement ratios for PM, O3, and other species in wildland fire plumes observed at MBO during 2004

  14. Air Cargo Transportation Route Choice Analysis

    NASA Technical Reports Server (NTRS)

    Obashi, Hiroshi; Kim, Tae-Seung; Oum, Tae Hoon

    2003-01-01

    Using a unique feature of air cargo transshipment data in the Northeast Asian region, this paper identifies the critical factors that determine the transshipment route choice. Taking advantage of the variations in the transport characteristics in each origin-destination airports pair, the paper uses a discrete choice model to describe the transshipping route choice decision made by an agent (i.e., freight forwarder, consolidator, and large shipper). The analysis incorporates two major factors, monetary cost (such as line-haul cost and landing fee) and time cost (i.e., aircraft turnaround time, including loading and unloading time, custom clearance time, and expected scheduled delay), along with other controls. The estimation method considers the presence of unobserved attributes, and corrects for resulting endogeneity by use of appropriate instrumental variables. Estimation results find that transshipment volumes are more sensitive to time cost, and that the reduction in aircraft turnaround time by 1 hour would be worth the increase in airport charges by more than $1000. Simulation exercises measures the impacts of alternative policy scenarios for a Korean airport, which has recently declared their intention to be a future regional hub in the Northeast Asian region. The results suggest that reducing aircraft turnaround time at the airport be an effective strategy, rather than subsidizing to reduce airport charges.

  15. Elemental composition of different air masses over Jeju Island, South Korea

    NASA Astrophysics Data System (ADS)

    Kang, Jeongwon; Choi, Man-Sik; Yi, Hi-Il; Jeong, Kap-Sik; Chae, Jung-Sun; Cheong, Chang-Sik

    2013-03-01

    We investigated the characteristics (concentrations and compositional changes) of atmospheric elements in total suspended particulates through source-receptor relationships using cluster analyses to classify air mass back-trajectories arriving at Gosan, Jeju Island, South Korea, from October 2003 to December 2008. Five trajectory clusters were chosen to explain the transport regimes. Continental outflows of natural and anthropogenic aerosols from Asian dust source regions and eastern China during the colder period could increase element concentrations at Gosan. Elemental levels at Gosan decreased in air masses that passed over marine regions (East China Sea, Pacific Ocean/southern side of Kyushu Island in Japan, and East Sea/southern side of South Korea) during the warmer rainy period due to lower source intensity and dilution by the marine air mass. Anthropogenic pollutants were often major components in air masses passing over marine regions. Air mass characterization by elemental concentration and composition revealed that enrichment by non-sea-salt sulfur in the air mass originated from eastern China, indicative of the main sulfur emitter in northeast Asia. The apportionment of V and Ni by principal component analysis as a marker of heavy oil combustion suggested different residence times and deposition rates from other anthropogenic components in the air. Regionally intermediate concentrations of pollutants were found in the atmosphere over the Korean peninsula.

  16. Interaction of mid-latitude air masses with the polar dome area during RACEPAC and NETCARE

    NASA Astrophysics Data System (ADS)

    Bozem, Heiko; Hoor, Peter; Koellner, Franziska; Kunkel, Daniel; Schneider, Johannes; Schulz, Christiane; Herber, Andreas; Borrmann, Stephan; Wendisch, Manfred; Ehrlich, Andre; Leaitch, Richard; Willis, Megan; Burkart, Julia; Thomas, Jennie; Abbatt, Jon

    2016-04-01

    We present aircraft based trace gas measurements in the Arctic during RACEPAC (2014) and NETCARE (2014 and 2015) with the Polar 6 aircraft of Alfred Wegener Institute (AWI) covering an area from 134°W to 17°W and 68°N to 83°N. We focus on cloud, aerosol and general transport processes of polluted air masses into the high Arctic. Based on CO and CO2 measurements and kinematic 10-day back trajectories as well as Flexpart particle dispersion modeling we analyze the transport regimes of mid-latitude air masses traveling to the high Arctic prevalent during spring (RACEPAC 2014, NETCARE 2015) and summer (NETCARE 2014). In general more northern parts of the high Arctic (Lat > 75°N) were relatively unaffected from mid-latitude air masses. In contrast, regions further south are influenced by air masses from Asia and Russia (eastern part of Canadian Arctic and European Arctic) as well as from North America (central and western parts of Canadian Arctic). The transition between the mostly isolated high Arctic and more southern regions indicated by tracer gradients is remarkably sharp. This allows for a chemical definition of the Polar dome based on the variability of CO and CO2 as a marker. Isentropic surfaces that slope from the surface to higher altitudes in the high Arctic form the polar dome that represents a transport barrier for mid-latitude air masses to enter the lower troposphere in the high Arctic. Synoptic-scale weather systems frequently disturb this transport barrier and foster the exchange between air masses from the mid-latitudes and polar regions. This can finally lead to enhanced pollution levels in the lower polar troposphere. Mid-latitude pollution plumes from biomass burning or flaring entering the polar dome area lead to an enhancement of 30% of the observed CO mixing ratio within the polar dome area.

  17. Air Transport of Spent Nuclear Fuel (SNF) Assemblies

    SciTech Connect

    Haire, M.J.; Moses, S.D.; Shapovalov, V.I.; Morenko, A.

    2007-07-01

    Sometimes the only feasible means of shipping research reactor spent nuclear fuel (SNF) among countries is via air transport because of location or political conditions. The International Atomic Energy Agency (IAEA) has established a regulatory framework to certify air transport Type C casks. However, no such cask has been designed, built, tested, and certified. In lieu of an air transport cask, research reactor SNF has been transported using a Type B cask under an exemption with special arrangements for administrative and security controls. This work indicates that it may be feasible to transport commercial power reactor SNF assemblies via air, and that the cost is only about three times that of shipping it by railway. Optimization (i.e., reduction) of this cost factor has yet to be done. (authors)

  18. Structural Properties of the Brazilian Air Transportation Network.

    PubMed

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network. PMID:26312421

  19. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  20. Physiology and behavior of dogs during air transport

    PubMed Central

    Bergeron, Renée; Scott, Shannon L.; Émond, Jean-Pierre; Mercier, Florent; Cook, Nigel J.; Schaefer, Al L.

    2002-01-01

    Twenty-four beagles were used to measure physiological and behavioral reactions to air transport. Each of 3 groups of 4 sedated (with 0.5 mg/kg body weight of acepromazine maleate) and 4 non-sedated (control) dogs was flown on a separate flight between Montreal, Quebec, and Toronto, Ontario, after being transported by road from Quebec City to Montreal. Saliva and blood samples were taken before ground and air transport and after air transport. The heart rate was monitored during the whole experiment except during ground transport, and behavior was monitored by video during air transport. Sedation did not affect any of the variables measured. The mean plasma cortisol concentration was significantly higher (P < 0.05) after ground transport than at baseline (225.3 vs 134.5 nmol/L); the mean salivary cortisol concentration was significantly higher (P < 0.05) after both ground and air transport than at baseline (16.2 and 14.8, respectively, vs 12.6 nmol/L). The mean neutrophil count was significantly higher (P < 0.05) after both ground and air transport than at baseline (80.6 and 81.4, respectively, vs 69.5 per 100 white blood cells), whereas the mean lymphocyte count was significantly lower (P < 0.05) (13.2 and 13.7, respectively, vs 22.4 per 100 white blood cells). Loading and unloading procedures caused the largest increase in heart rate. On average, the dogs spent more than 50% of the time lying down, and they remained inactive for approximately 75% of the time, except during take-off. These results suggest that transportation is stressful for dogs and that sedation with acepromazine, at the dosage and timing used, does not affect the physiological and behavioral stress responses of dogs to air transport. PMID:12146895

  1. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  2. Investigation of air transportation technology at MIT

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1983-01-01

    A summary of the research done by the Massachusetts Institute of Technology is addressed including Loran-C for guidance in flying approaches, an air traffic control simulator for the Manned Vehicle Simulation Research Facility, and an air traffic collision model theory.

  3. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented. PMID:17716909

  4. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  5. Journal of Air Transportation, Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2007-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy

  6. Journal of Air Transportation; Volume 9, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2004-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  7. Journal of Air Transportation, Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor); Lucas, Sarah (Editor); Scarpellini-Metz, Nanette (Editor)

    2005-01-01

    The mission of the Journal of Air Transportation (JA is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  8. Community rotorcraft air transportation benefits and opportunities

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

    1981-01-01

    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

  9. Studies in the demand for short haul air transportation

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Gosling, G.; Taghavi, S.

    1975-01-01

    Demand is analyzed in a short haul air transportation corridor. Emphasis is placed on traveler selection from available routes. Model formulations, estimation techniques, and traffic data handling are included.

  10. Transportation by Air-On the Ground

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Rolair air flotation system is a spinoff of NASA/General Motors technology developed for the Apollo Program. It allows heavy loads to be moved easily by separating the load from the ground by a thin air cushion, virtually eliminating surface friction. Rolair Systems, Inc. was formed by former General Motors engineers and has successfully employed the system for both aerospace and nonaerospace industries.

  11. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  12. Ions in oceanic and continental air masses

    SciTech Connect

    Tanner, D.J.; Eisele, F.L. )

    1991-01-20

    Measurements of tropospheric ions and several trace atmospheric neutral species have been performed at Cheeka Peak Research Station and at Mauna Loa Observatory. Two new positive ion species at masses 114 and 102 have been identified as protonated caprolactam and a saturated 6-carbon primary amine, respectively. In the negative ion spectrum, methane sulfonic acid (MSA) has been identified as the parent species responsible for an ion commonly observed at mass 95 during these two studies. The diurnal variations of gas phase H{sub 2}SO{sub 4} and MSA were also measured at Cheeka Peak and have typically been found to be present in the sub-ppt range. Ion assisted measurements at Mauna Loa Observatory of pyridine and ammonia indicate concentrations of 2.5 and 70 ppt, respectively, with at least a factor of 2 uncertainty. Interesting variations and potential sources of several of the observed ions are also discussed.

  13. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  14. Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012

    NASA Astrophysics Data System (ADS)

    Rolf, C.; Afchine, A.; Bozem, H.; Buchholz, B.; Ebert, V.; Guggenmoser, T.; Hoor, P.; Konopka, P.; Kretschmer, E.; Müller, S.; Schlager, H.; Spelten, N.; Sumińska-Ebersoldt, O.; Ungermann, J.; Zahn, A.; Krämer, M.

    2015-08-01

    Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is annually observed by satellites and occasionally observed by balloon-borne measurements. However, in situ measurements of dehydrated air masses in the Antarctic vortex are very rare. Here, we present detailed observations with the in situ and GLORIA remote sensing instrument payload aboard the German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S in an altitude between 12 and 13 km in the lowermost stratosphere. The dehydration can be traced back to individual ice formation events above the Antarctic Peninsula and Plateau, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high-resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic lowermost stratosphere down to 7 km. With the help of a backward trajectory analysis, a midlatitude origin of the moist filaments in the vortex can be identified, while the dry air masses down to 7 km have stratospheric origins. Antarctic stratosphere-troposphere exchange (STE) and transport of dehydrated air masses into the troposphere are investigated. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic exchange of air masses across the thermal tropopause. The transport into the troposphere is caused by air masses that are detached from the potential vorticity (PV) structure by Rossby wave breaking events and subsequently transported diabatically across the dynamical tropopause. Once transported to the troposphere, air masses with stratospheric origin can reach near-surface levels within several days.

  15. Environic implications of lighter than air transportation

    NASA Technical Reports Server (NTRS)

    Horsbrugh, P.

    1975-01-01

    The advent of any new system of transportation must now be reviewed in the physical context and texture of the landscape. Henceforward, all transportation systems will be considered in respect of their effects upon the environment to ensure that they afford an environic asset as well as provide an economic benefit. The obligations which now confront the buoyancy engineers are emphasized so that they may respond to these ethical and environic urgencies simultaneously with routine technical development.

  16. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88...

  17. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  18. Journal of Air Transportation, Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Unal, Mehmet (Editor); Gudmundsson, Sveinn Vidar (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    Topics discussed include: Mitigation Alternatives for Carbon Dioxide Emissions by the Air Transport Industry in Brazil; Air Transport Regulation Under Transformation: The Case of Switzerland; An Estimation of Aircraft Emissions at Turkish Airports; Guide to the Implementation of Iso 14401 at Airports; The Impact of Constrained Future Scenarios on Aviation and Emissions; The Immediate Financial Impact of Transportation Deregulation on the Stockholders of the Airline Industry; Aviation Related Airport Marketing in an Overlapping Metropolitan Catchment Area: The Case of Milan's Three Airports; and Airport Pricing Systems and Airport Deregulation Effects on Welfare.

  19. New hazmat transportation regulations for air

    SciTech Connect

    Pickett, L.J.

    1994-12-31

    This presentation focuses on the eighth edition of UN recommendations on the transport of hazardous materials. The 1995--1996 edition of the ICAO technical instructions are evaluated. The author discusses the different classes of hazardous materials, focusing on flammability, combustibility, and the properties of self-reactive substances.

  20. GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS

    EPA Science Inventory

    A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...

  1. Computational Modeling of Transport Limitations in Li-Air Batteries

    SciTech Connect

    Ryan, Emily M.; Ferris, Kim F.; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2013-02-22

    In this paper we investigate transport limitations in the electrodes of lithium-air batteries through computational modeling. We use meso-scale models to consider the effects of dendrites on the current and potential at the anode surface, and to investigate the effects of reaction and transport parameters on the formation of precipitates in the cathode. The formation of dendrites on the anode surface during cycling reduces the transport of ions and can lead to short circuits in the cell. Growth of precipitates in the cathode reduces the specific capacity of the cell due to surface passivation and pore clogging. Both of these degradation mechanisms depend on meso-scale phenomena, such as the pore-scale reactive transport in the cathode. To understand the effects of the meso-scale transport and precipitation on the performance and lifetime of Li-air batteries, meso-scale modeling is needed that is able to resolve the electrodes and their microstructures.

  2. The promise of advanced technology for future air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1978-01-01

    Progress in all weather 4-D navigation and wake vortex attenuation research is discussed and the concept of time based metering of aircraft is recommended for increased emphasis. The far term advances in aircraft efficiency were shown to be skin friction reduction and advanced configuration types. The promise of very large aircraft, possibly all wing aircraft is discussed, as is an advanced concept for an aerial relay transportation system. Very significant technological developments were identified that can improve supersonic transport performance and reduce noise. The hypersonic transport was proposed as the ultimate step in air transportation in the atmosphere. Progress in the key technology areas of propulsion and structures was reviewed. Finally, the impact of alternate fuels on future air transports was considered and shown not to be a growth constraint.

  3. Emerging Climate-data Needs in the Air Transport Sector

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.

    2014-12-01

    This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.

  4. Comment on "Improved ray tracing air mass numbers model"

    NASA Astrophysics Data System (ADS)

    van der Werf, Siebren Y.

    2008-01-01

    Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.

  5. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    A preliminary set of operating cost relationships are presented for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  6. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    Presented is a preliminary set of operating cost relationships for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  7. Warm-air advection, air mass transformation and fog causes rapid ice melt

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Shupe, Matthew D.; Brooks, Ian M.; Persson, P. Ola G.; Prytherch, John; Salisbury, Dominic J.; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara J.; Johnston, Paul E.; Sotiropoulou, Georgia; Wolfe, Dan

    2015-07-01

    Direct observations during intense warm-air advection over the East Siberian Sea reveal a period of rapid sea-ice melt. A semistationary, high-pressure system north of the Bering Strait forced northward advection of warm, moist air from the continent. Air-mass transformation over melting sea ice formed a strong, surface-based temperature inversion in which dense fog formed. This induced a positive net longwave radiation at the surface while reducing net solar radiation only marginally; the inversion also resulted in downward turbulent heat flux. The sum of these processes enhanced the surface energy flux by an average of ~15 W m-2 for a week. Satellite images before and after the episode show sea-ice concentrations decreasing from > 90% to ~50% over a large area affected by the air-mass transformation. We argue that this rapid melt was triggered by the increased heat flux from the atmosphere due to the warm-air advection.

  8. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  9. Forecasting the demand potential for STOL air transportation

    NASA Technical Reports Server (NTRS)

    Fan, S.; Horonjeff, R.; Kanafani, A.; Mogharabi, A.

    1973-01-01

    A process for predicting the potential demand for STOL aircraft was investigated to provide a conceptual framework, and an analytical methodology for estimating the STOL air transportation market. It was found that: (1) schedule frequency has the strongest effect on the traveler's choice among available routes, (2) work related business constitutes approximately 50% of total travel volume, and (3) air travel demand follows economic trends.

  10. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  11. Evaluation of the impact of transportation changes on air quality

    NASA Astrophysics Data System (ADS)

    Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F. J.; Močnik, G.; Alados-Arboledas, L.

    2015-08-01

    Transport regulation at local level for the abatement of air pollution has gained significant traction in the EU. In this work, we analyze the effect of different transportation changes on air quality in two similarly sized cities: Granada (Spain) and Ljubljana (Slovenia). Several air pollutants were measured at both sites before and after the implementation of the changes. In Ljubljana, a 72% reduction of local black carbon (BC), from 5.6 to 1.6 μg/m3, was observed after the restriction was implemented. In Granada, statistically significant reductions of 1.3 μg/m3 (37%) in BC and of 15 μg/m3 (33%) in PM10 concentrations were observed after the public transportation re-organization. However, the improvement observed in air quality was very local since other areas of the cities did not improve significantly. We show that closing streets to private traffic, renewal of the bus fleet and re-organization of the public transportation significantly benefit air quality.

  12. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  13. Air transport and the fate of pneumothorax in pleural adhesions.

    PubMed Central

    Haid, M M; Paladini, P; Maccherini, M; Di Bisceglie, M; Biagi, G; Gotti, G

    1992-01-01

    Air travel is contraindicated in patients with a pneumothorax but was necessary because of the exigencies of war in three patients. Three patients with high velocity missile injuries to the chest and pleural adhesions are reported. All had to be evacuated by air, without an intercostal drain or oxygen supplement, from the war stricken area of Northern Somalia (Horn of Africa) to Mogadishu. Two patients with a partial pneumothorax flew on military transport aeroplanes at an altitude of 3000 m in a non-pressurised cabin and recovered rapidly after a few days in hospital. One patient, transported on a small Cessna aeroplane, died after developing bilateral tension pneumothoraces. Images PMID:1481187

  14. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  15. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  16. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  17. Investigation of air transportation technology at Princeton University, 1986

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  18. The transport sector as a source of air pollution

    NASA Astrophysics Data System (ADS)

    Colvile, R. N.; Hutchinson, E. J.; Mindell, J. S.; Warren, R. F.

    Transport first became a significant source of air pollution after the problems of sooty smog from coal combustion had largely been solved in western European and North American cities. Since then, emissions from road, air, rail and water transport have been partly responsible for acid deposition, stratospheric ozone depletion and climate change. Most recently, road traffic exhaust emissions have been the cause of much concern about the effects of urban air quality on human health and tropospheric ozone production. This article considers the variety of transport impacts on the atmospheric environment by reviewing three examples: urban road traffic and human health, aircraft emissions and global atmospheric change, and the contribution of sulphur emissions from ships to acid deposition. Each example has associated with it a different level of uncertainty, such that a variety of policy responses to the problems are appropriate, from adaptation through precautionary emissions abatement to cost-benefit analysis and optimised abatement. There is some evidence that the current concern for road transport contribution to urban air pollution is justified, but aircraft emissions should also give cause for concern given that air traffic is projected to continue to increase. Emissions from road traffic are being reduced substantially by the introduction of technology especially three-way catalysts and also, most recently, by local traffic reduction measures especially in western European cities. In developing countries and Eastern Europe, however, there remains the possibility of great increase in car ownership and use, and it remains to be seen whether these countries will adopt measures now to prevent transport-related air pollution problems becoming severe later in the 21st Century.

  19. Electric current induced forward and anomalous backward mass transport

    NASA Astrophysics Data System (ADS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-05-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  1010 A m‑2. In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport.

  20. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  1. ANALYTICAL DIFFUSION MODEL FOR LONG DISTANCE TRANSPORT OF AIR POLLUTANTS

    EPA Science Inventory

    A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season, or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is de...

  2. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  3. Acoustophoretic contactless transport and handling of matter in air.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-07-30

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1-10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air. PMID:23858454

  4. Acoustophoretic contactless transport and handling of matter in air

    PubMed Central

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-01-01

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1–10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid–liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air. PMID:23858454

  5. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  6. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  7. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  8. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  9. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  10. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  11. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  12. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  13. An air-breathing ballistic space transporter for Europe

    NASA Technical Reports Server (NTRS)

    Kramer, P. A.; Buehler, R. D.

    1985-01-01

    With increasing transport requirements, reusable space transporters again receive serious consideration in Europe as successors to the Ariane family. The paper deals with a hydrogen-ramjet-propelled, 1-1/2-stage reusable ballistic space transporter with vertical take-off and landing and using liquid hydrogen/oxygen rockets. This novel concept was developed in a theoretical study at the University of Stuttgart. The results are compared with recently published studies of several other European space transporter concepts. The data derived for the Istra - concept are: 15.4 Mg payload into low Earth-orbit, 155 Mg gross lift-off mass, 10% payload ratio, which represents a 57% propellant saving, and 44% reduction in dry mass (structure and engines) compared with comparable two-stage pure rocket concepts.

  14. Mass transport by mode-2 internal solitary-like waves

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek

    2016-05-01

    We present the first three-dimensional numerical simulations of the mass transport capabilities of mode-2 waves formed by a lock-release mechanism with both single and double pycnocline stratifications. Single pycnoclines and double pycnoclines with a small spacing between the pycnocline centres were found to exhibit large Lee instabilities which formed during the collapse of the intermediate density region. These instabilities led to the generation of vorticity dipoles across the mid-depth, and thereby contributed to the reduction in the mass transported by the wave. A double pycnocline with a separation of approximately 12% of the depth between the two pycnocline centres was found to transport a passive tracer optimally for the longest time-period. Increasing Schmidt number correlated with increasing mass transport, while decreasing the tracer diffusivity led to increasing mass transport, but only when a trapped core existed. Contrasted two-dimensional simulations reveal that in certain cases, most noticeably the optimal transport case, the mass transport is significantly different from the corresponding three-dimensional simulation.

  15. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  16. Mass Transportation Operators' Beliefs about Visual Impairment.

    ERIC Educational Resources Information Center

    Almon, Pamela A.

    2001-01-01

    A study investigated 171 mass transit operators' beliefs about blindness and the factors that may influence their beliefs. There were statistically significant differences among transit operators' beliefs on the basis of the operators' ethnicity. White participants had significantly fewer irrational beliefs about blindness than Hispanic and…

  17. Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research

    NASA Astrophysics Data System (ADS)

    Kusche, Jürgen; Klemann, Volker; Sneeuw, Nico

    2014-11-01

    This Special Issue on "Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress due to Interdisciplinary Research" reports a number of findings resulting from a collaborative effort run from 2006 until 2013, in the framework of the DFG Priority Program 1257 "Mass Distribution and Mass Transport in the Earth System". Contributions have been arranged along five lines, i.e. (1) improvements in geodesy: satellite mass monitoring through gravimetry and altimetry, (2) applications in large-scale hydrology, (3) applications in solid Earth research, (4) applications in cryospheric research, (5) applications in ocean sciences.

  18. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  19. 77 FR 53779 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...This action extends the comment period of an NPRM on the reporting of incidents involving animals during air transport that was published in the Federal Register on June 29, 2012. See 77 FR 38747. The Department of Transportation is extending the period for interested persons to submit comments on this rulemaking from August 28, 2012, to September 27, 2012. This extension is a result of a......

  20. Vehicle expectations in air transportation for the year 2000

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.

    1980-01-01

    This paper is intended to provide an overview of the air transportation system for the year 2000 in terms of vehicle expectations. Emphasis is placed on civil air transportation with the time period approached from the standpoint of evolutionary changes for the near term and also with the assumption of more revolutionary changes for the far term. The view along the evolutionary path begins with a historical review of airline market growth and the impact that technologies have had on airplane designs. Projections of the life expectancy of existing, derivative, and new airplanes are examined in terms of their productivity and fuel efficiency in view of the present and projected fuel usage and availability. The factors influencing airline growth are outlined and some views on whether another new generation of subsonic airplanes are in the offing are given along with an assessment of the economic viability of an advanced commercial supersonic transport in terms of its higher speed, higher productivity, and higher fuel usage. With regard to revolutionary changes, major technology breakthroughs are assumed to occur at a specified date. As an example, the impact of a dramatic reduction in skin friction drag is examined in terms of its effect on the airplane configuration, its propulsion systems, it projected fuel usage, and the air transportation system in which it must operate.

  1. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  2. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  3. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  4. Mass-Transport Properties In Growth Of Crystals From Vapors

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1992-01-01

    Brief report summarizes results of experimental and theoretical studies of mass-transport properties of GeSe/Gel4 and Hg0.8Cd0.2Te systems in connection with growth of crystals in closed ampoules. Primary emphasis in studies was on thermochemical analyses, on development of mathematical models to predict diffusion-limited mass transport, and on comparison of theoretically predicted with experimental fluxes. Results applied to design, preparation, performance, and analysis of crystal-growth experiments of semiconducting materials on Earth and in outer space. Model extended to predict mass flux and overall composition of transport products of Hg0.8Cd0.2Te transport system.

  5. Lithium mass transport in ceramic breeder materials

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H{sub 2} to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400{degree}C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T{sub 2}O(g) above Li{sub 2}O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs.

  6. Review of maritime transportation air emission pollution and policy analysis

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Liu, Dahai; Dai, Guilin

    2009-09-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the ‘bottom up’ approach, the ‘top down’ approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  7. Investigation of air transportation technology at Princeton University, 1984

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  8. Journal of Air Transportation, Volume 11, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2006-01-01

    Topics covered include: Analysis of System-wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example; Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion; The Development of Jomo Kenyatta International Airport as a Regional Aviation Hub; Corporate Social Responsibility in Aviation; The Competitive Effects of Airline Mergers and Acquisitions: More Capital Market Evidence; and The Competitive Position of Hub Airports in the Transatlantic Market.

  9. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  10. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  11. Development of an Air Transport Type A Fissile Package

    SciTech Connect

    Blanton, P.; Ebert, K.

    2011-07-13

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  12. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  13. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air...-share service on Internet Web sites and elsewhere by air carriers, their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C. 41712. FOR FURTHER...

  14. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  15. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  16. Mass transport limitation in implantable defibrillator batteries

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Tam, G.; Scott, E.; Norton, J.; Chen, K.

    Using cells with lithium reference electrodes, the power-limiting behavior in the lithium-SVO cell was shown to be due to a rapid voltage transition at the anode. A novel test cell was developed to explore the influence of current density, bulk LiAsF 6 concentration, separator type and separator proximity to the anode on the time to onset ( τ) of the anode polarization. The results were found to follow a relationship, iτ1/2∝ Cbulk, consistent with the Sand equation. This relationship also predicts that the critical concentration of LiAsF 6, at which onset of the anode polarization occurs, is near the solubility limit of LiAsF 6 in our system (around 3.5-4.0 M). This general phenomenon was found to be quantitatively similar for two dissimilar separator types, and the anode polarization could also be induced in the absence of separator at high concentration and current density. However, it appears that τ decreases with closer proximity of the separator to the anode surface (i.e. cell stack pressure), suggesting that the effect of separator is to inhibit convective transport to and from the Li surface.

  17. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  18. Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers

    PubMed Central

    Ferrari, Mauro

    2010-01-01

    The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance to a prescribed logic. These are referred to as Logic-Embedded Vectors “(LEV)” in the following. Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for the lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the blood stream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed ‘transport oncophysics’ unveils a new promising frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects. PMID:20079548

  19. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  20. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  1. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  2. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  3. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  4. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  5. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  6. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  7. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  8. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  9. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  10. A portfolio evaluation framework for air transportation improvement projects

    NASA Astrophysics Data System (ADS)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  11. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  12. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    NASA Astrophysics Data System (ADS)

    Friedman, Irving; Harris, Joyce M.; Smith, George I.; Johnson, Craig A.

    2002-10-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (δD) and oxygen-18 (δ18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  13. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  14. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  15. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  16. A multi-resolution approach for optimal mass transport

    NASA Astrophysics Data System (ADS)

    Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen

    2007-09-01

    Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.

  17. Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal mission 2012

    NASA Astrophysics Data System (ADS)

    Rolf, Christian; Afchine, Armin; Bozem, Heiko; Buchholz, Bernhard; Ebert, Volker; Guggenmoser, Tobias; Hoor, Peter; Konopka, Paul; Kretschmer, Erik; Müller, Stefan; Schlager, Hans; Spelten, Nicole; Suminska-Ebersoldt, Olga; Ungermann, Jörn; Zahn, Andreas; Krämer, Martina

    2015-04-01

    Dehydration in the Antarctic winter stratosphere is a well-known phenomenon and occasionally observed by ballon-borne and satellite measurements. However, in-situ measurements of dehydration in the Antarctic vortex are very rare. Here, we present detailed in-situ observations with the FISH, HAI, FAIRO, TRIHOP, and GLORIA payload aboard the new German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv were observed in a region up to 47°S and at 12 to \\unit{13}{ km} altitude only, which has never been observed by satellites before. The dehydration can be traced back to individual ice formation events, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air down to the tropopause are detected with the high resolution limb sounder GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic troposphere down to \\unit{7}{ km}. With the help of a backward trajectory analysis, a tropospheric origin of the moist filaments in the vortex can be identified, while the dry air masses in the troposphere have stratospheric origin. The transport pathways of Antarctic stratosphere/troposphere exchange are investigated and the irrelevant role of the Antarctic thermal tropopause as a transport barrier is confirmed. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with isentropic interchange of air masses crossing the weak tropopause and subsequent subsidence due to radiative cooling. Once transported to the troposphere, air masses are able to reach near surface levels within 1-2 months.

  18. Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012

    NASA Astrophysics Data System (ADS)

    Rolf, C.; Afchine, A.; Bozem, H.; Buchholz, B.; Ebert, V.; Guggenmoser, T.; Hoor, P.; Konopka, P.; Kretschmer, E.; Müller, S.; Schlager, H.; Spelten, N.; Sumińska-Ebersoldt, O.; Ungermann, J.; Zahn, A.; Krämer, M.

    2015-03-01

    Dehydration in the Antarctic winter stratosphere is a well-known phenomenon that is occasionally observed by balloon-borne and satellite measurements. However, in-situ measurements of dehydration in the Antarctic vortex are very rare. Here, we present detailed observations with the in-situ and GLORIA remote sensing instrument payload aboard the new German aircraft HALO. Strongly dehydrated air masses down to 1.6 ppmv of water vapor were observed as far north as 47° S and between 12 and 13 km in altitude, which has never been observed by satellites. The dehydration can be traced back to individual ice formation events, where ice crystals sedimented out and water vapor was irreversibly removed. Within these dehydrated stratospheric air masses, filaments of moister air reaching down to the tropopause are detected with the high resolution limb sounder, GLORIA. Furthermore, dehydrated air masses are observed with GLORIA in the Antarctic troposphere down to 7 km. With the help of a backward trajectory analysis, a tropospheric origin of the moist filaments in the vortex can be identified, while the dry air masses in the troposphere have stratospheric origins. The transport pathways of Antarctic stratosphere/troposphere exchange are investigated and the irrelevant role of the Antarctic thermal tropopause as a transport barrier is confirmed. Further, it is shown that the exchange process can be attributed to several successive Rossby wave events in combination with an isentropic interchange of air masses across the weak tropopause and subsequent subsidence due to radiative cooling. Once transported to the troposphere, air masses with stratospheric origin are able to reach near-surface levels within 1-2 months.

  19. Degree-1 Surface Mass Transport and Geocenter Motion

    NASA Astrophysics Data System (ADS)

    Wu, X.

    2015-12-01

    The longest-wavelength and hemisphere asymmetric surface mass transport is characterized by three degree-one spherical harmonic components. Such mass transport modes cause geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. GRACE's K-band ranging data system is not sensitive to these three variation modes. For a complete spherical harmonic spectral coverage of mass transport, degree-1 surface mass changes estimated through geocenter motion or degree-1 mass/deformation signatures from other space geodetic techniques should be combined with GRACE's time-variable gravity data. The degree-1 coefficients are critically important for mass variation assessments over large regions. For example, 1 mm error in geocenter motion can result in an error of 190 gigatons of global oceanic water mass change or, equivalently, an error of 0.5 mm of global mean sea level change when the geocenter motion is converted to degree-1 mass and combined with GRACE data. Yet, several different methods of geocenter motion estimation differ in results by more than 1 mm in annual amplitude. These differences have to be resolved after 13 years of successful GRACE operation. Recently, the difference between results from direct satellite laser ranging (SLR) determination and from a global inversion of Global Navigation Satellite System (GNSS) deformation measurements, GRACE, and an ocean bottom pressure (OBP) model has been largely reconciled as due to SLR's sparse station distribution. This result and our current efforts to examine possible systematic errors in GNSS data and the OBP model will be discussed along with a future perspective.

  20. Mass transfer and transport in a geologic environment

    SciTech Connect

    Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.; Ahn, J.; Kajiwara, S.; Kim, C.L.; Kimura, H.; Lung, H.; Williams, W.J.; Zavoshy, S.J.

    1985-04-01

    This report is in a continuing series of reports that present analytic solutions for the dissolution and hydrogeologic transport of radionuclides from geologic repositories of nuclear waste. Previous reports have dealt mainly with radionuclide transport in the far-field, away from the effects of the repository. In the present report, the emphasis is on near-field processes, the transfer and transport of radionuclides in the vicinity of the waste packages. The primary tool used in these analyses is mass transfer theory from chemical engineering. The thrust of our work is to develop methods for predicting the performance of geologic repositories. The subjects treated in the present report are: radionuclide transport from a spherical-equivalent waste form through a backfill; analysis of radionuclide transport through a backfill using a non-linear sorption isotherm; radionuclide transport from a prolate spheroid-equivalent waste form with a backfill; radionuclide transport from a spherical-equivalent waste form through a backfill, where the solubility, diffusivity and retardation coefficients are temperature dependent; a coupled near-field, far-field analysis where dissolution and migration rates are temperature dependent; transport of radionuclides from a point source in a three-dimensional flow field; and a general solution for the transport of radioactive chains in geologic media. There are several important results from the numerical evaluations. First, radioactive decay, higher sorption in the rock and the backfill steepens the gradient for mass transfer, and lead to higher dissolution rates. This is contrary to what was expected by some other workers, but is shown clearly in the analytical solutions. Second, the backfill serves to provide sorption sites so that there is a delay in the arrival of radionuclides in the rock, although this effect is not so important for the steady-state transport of long-lived radionuclides.

  1. Analysis of air mass trajectories in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2015-11-01

    Air masses reaching the Iberian Peninsula, which is located between two continents and two seas, have been classified. 24-h backward air trajectories were calculated each hour for three years using the METEX model at a site in the centre of the northern plateau of the Iberian Peninsula where the air flow has scarcely been investigated to date. Rather than the usual Euclidean geometry, spherical trigonometry, together with the kernel regression method, was considered to calculate trajectory distances to the site. Numerical indicators allow for an accurate description of the results. Ranges surrounding the site from E to S evidenced a restriction in the movement of the arriving flow. However, the range to the N showed only a slight effect. A noticeable seasonal contrast was observed between winter, whose distances were the greatest, and summer, which displayed the shortest distances. Trajectory clusters, initially not considered in the METEX model, were obtained with different metrics to determine the air mass pathways reaching the site. Five clusters of trajectories were selected so as to easily explain the directions and distances covered. Regional and long range transport were observed in clusters from the NE, NW and SW. The NE cluster presented an orographic deviation and local processes were limited to the SE cluster. Finally, seasonal analysis revealed singular behaviour during autumn, when local processes centred on the N-S direction.

  2. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  3. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  4. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  5. Transport of continental air to the subantarctic Indian Ocean

    NASA Technical Reports Server (NTRS)

    Balkanski, Yves J.; Jacob, Daniel J.

    1990-01-01

    The occurrence of high Rn-222 episodes (radonic storms) observed at three islands (Crozet, Kerguelen, and Amsterdam) in the subantarctic Indian Ocean is simulated using a three-dimensional chemical tracer model. The chemical tracer model is described and the simulated time series of Rn-222 concentrations at the three islands are compared to observations. The origin, seasonal frequencies, and periodicities of the storms are examined. It is found that the storms are due to fast boundary layer advection of air from South Africa, made possible by the conjunction of a subtropical high SE of Madagascar and a midlatitudes low off the southern tip of Africa. The implications of the results for the transport of continental air to the subantarctic Indian Ocean are discussed.

  6. Air transportation in the California Corridor of 2010

    NASA Technical Reports Server (NTRS)

    Cameron, M.; Mahaffy, K.; Yanagi, G.; Lechmanski, L.; Riddle, T.; Howard, K.; Chan, C.; Gorman, M.; Bauer, B.

    1989-01-01

    The topic of the 1988-1989 NASA/USRA Advanced Design Project at California Polytechnic State University, San Luis Obispo, was the development of an air transportation system to meet the needs of the California Corridor for the year 2010. As aircraft design is taught by two instructors having different philosophies about the teaching process, the two classes took different approaches to address the problem. The first part of this summary (California Air Transit System) represents the work done by the students of Professor A. E. Andreoli, who followed a systems approach, emphasizing the determination of the proper mission. The second part of the summary (Four Aircraft to Service the California Corridor) contains the four aircraft designed by Dr. D. R. Sandlin's class based on specifications determined from work done in previous years.

  7. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  8. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  9. Air transportation systems for the California corridor of 2010

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In 1986 NASA and USRA identified Cal Poly as one of seven 'Centers of Aircraft Design Education', and accepted a proposal from Cal Poly to conduct a three-year study of the potential for Lighter-Than-Air (LTA), Vertical Take-Off and Landing (VTOL), and Short Take-Off and landing (STOL) aircraft concepts for air transportation within the California corridor. The project emphasizes configurations that are both innovative and unconventional in design for use in the 2010 time period. The topic of LTA/VTOL/STOL aircraft was selected because it is consistent with the mission of the NASA Ames Research Center and is a broad topic that succeeding classes at Cal Poly can continue to iterate and refine to produce meaningful results for NASA. Along with studying the technical issues normally involved in any aircraft design problem, the topics of safety, noise, public acceptance, and economic viability in commercial operations are also addressed.

  10. Critical care air transport team (CCATT) nurses' deployed experience.

    PubMed

    Brewer, Theresa L; Ryan-Wenger, Nancy A

    2009-05-01

    The objective of this study was to use descriptive and phenomenological methods with Critical Care Air Transport Team (CCATT) nurses to identify knowledge and skills required to provide care for critically ill patients in a combat environment. Unstructured interviews, focus groups, written narratives, group interviews, participant observation, and review of in-flight documentation of care were used to obtain data from 23 registered nurses who had deployed with CCATT missions. Dimensions that emerged from the data included: clinical and operational competence, personal, physical, and psychosocial readiness, soldier and survival skills, leadership, administrative concerns, group identification and integration, aircraft air and evacuation familiarity, and nurse characteristics. This information should be shared with CCATT trainers and unit personnel to better prepare them for the realities of future deployments. Future research could incorporate these data into a self-assessment scale to evaluate CCATT nurses' readiness for future deployments. PMID:20731282

  11. Numerical simulation of mass transport in internal solitary waves

    NASA Astrophysics Data System (ADS)

    Salloum, Maher; Knio, Omar M.; Brandt, Alan

    2012-01-01

    A computational study of mass transport by large-amplitude, mode-2 internal solitary waves propagating on a pycnocline between two layers of different densities was conducted. The numerical model is based on the simulation of a vorticity-based formulation of the two-dimensional Navier-Stokes equations in the Boussinesq limit. Numerical experiments are conducted of the collapse of an initially mixed region, which leads to the generation of a train of internal solitary waves. The peak wave amplitude, a, is achieved by the leading wave, which encloses an intrusional bulge. The wave amplitude decays as it moves away from the collapsing mixing region. When the amplitude drops below a critical value, the wave is no longer able to transport mass and sharp-nosed intrusion is left behind. Mass transport by the leading wave, and by the trailing wave train and intrusion, is analyzed by tracking the motion of Lagrangian particles initially concentrated in the mixed region. Results indicate that for moderate wave amplitudes, a gradual decay in the wave amplitude occurs as the wave propagates, but the structure of the bulge is essentially maintained during this process. In contrast, for large-amplitude waves, the motion around the bulge is substantially more complex, exhibiting periodic shedding of vortex structures in the wake of the bulge and entrainment of external fluid into its core. It is shown that these motions have substantial impact on mass transport by the wave train, which is quantified through detailed analysis of the Lagrangian particle distributions.

  12. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  13. Fuel conservative propulsion concepts for future air transports

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Witherspoon, J. W.

    1976-01-01

    The results of a feasibility study of proposed fuel conservative propulsion concepts for air transports with an assumed Mach 0.8 cruise capability are summarized. All engines considered are based on projected 1985 technology. Operating fuel requirements, propulsion operating costs, and noise characteristics are compared with those of a present technology turbofan engine. The study indicates that an advanced Brayton cycle gas generator in a turbofan engine or geared to an advanced multibladed, small diameter propeller with a projected efficiency of 80% at Mach 0.8 offers the greatest potential for energy conservation.

  14. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  15. Journal of Air Transportation, Volume 10, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    The following topics are discussed: The Effects of Safety Information on Aeronautical Decision Making; Design, Development, and Validation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats; Discovering the Regulatory Considerations of the Federal Aviation Administration: Interviewing the Aviation Rulemaking Advisory Committee; How to Control Airline Routes from the Supply Side: The Case of TAP; An Attempt to Measure the Traffic Impact of Airline Alliances; and Study Results on Knowledge Requirements for Entry-level Airport Operations and Management Personnel.

  16. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  17. Permanent internal pacemaker safety in air medical transport.

    PubMed

    Gordon, R S; O'Dell, K B

    1991-02-01

    Helicopter and fixed-wing air medical transportation provides an important role in the management of critically-ill patients. As the use of cardiac pacemakers continues to grow, knowledge of their expanding capabilities and sophistication is important. The environments of our "airborne intensive care units" are subject to many sources of electromagnetic and vibrational interference. Although pacemaker shielding mechanisms have become quite elaborate, further studies are needed to define their reliability in modern aircraft. Further, the possible effects of electromagnetic and vibrational interference upon inflight reprogramming require further study. PMID:10109075

  18. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  19. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  20. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  1. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  2. Characteristics of dimethylsulfide, ozone, aerosols, and cloud condensation nuclei in air masses over the northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nagao, Ippei; Matsumoto, Kiyoshi; Tanaka, Hiroshi

    1999-05-01

    Long-term measurements of several trace gases and aerosols were carried out from December 1994 to October 1996 at Ogasawara Hahajima Island over the northwestern Pacific Ocean. The continental impact on the concentrations of sulfur compounds, ozone (O3), and cloud condensation nuclei (CCN) was estimated on the basis of the classification of air mass into seven types by isentropic trajectory analysis. From May to October, the air mass originating from the central North Pacific Ocean is predominant and regarded as the clean marine air for the concentrations of sulfur compounds and CCN. From the results of the molar ratio of methane sulfonic acid to non-sea-salt sulfate (NSS) and the positive correlation between dimethylsulfide (DMS) and CCN in this air mass it can be concluded that DMS largely contributes to the production of NSS and CCN. On the other hand, continental and anthropogenic substances are preferably transported to the northwestern Pacific Ocean by the predominant continental air mass from November to March. The enhancement of concentrations by the outflow from the Asian continent are estimated by a factor of 2.8 for O3, 3.9 for SO2, 3.5 for CCN activated at 0.5% supersaturation (0.5% CCN), 4.7 for 1.0% CCN, and 5.5 for NSS. Moreover, the CCN supersaturation spectra are also affected by the continental substances resulting in factor 2 of enhancement of cloud droplet number concentration. The diurnal variations of DMS and O3 for each air mass show a pattern of daytime minimum and nighttime maximum, which are typically found in remote ocean, even though those amplitudes are different for each air mass. Consequently, it can be concluded that the influence of nitric oxides (NOx) for the daytime O3 production and nitrate (NO3) radical for the nighttime oxidation of DMS are small even in the continental air mass.

  3. Optimal mass transport for shape matching and comparison.

    PubMed

    Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng

    2015-11-01

    Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n(2)) to O(n) . For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265

  4. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  5. Emissions and Air Quality Impacts of Freight Transportation

    NASA Astrophysics Data System (ADS)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  6. Mass transport by buoyant bubbles in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Pope, Edward C. D.; Babul, Arif; Pavlovski, Georgi; Bower, Richard G.; Dotter, Aaron

    2010-08-01

    We investigate the effect of three important processes by which active galactic nuclei (AGN)-blown bubbles transport material: drift, wake transport and entrainment. The first of these, drift, occurs because a buoyant bubble pushes aside the adjacent material, giving rise to a net upward displacement of the fluid behind the bubble. For a spherical bubble, the mass of upwardly displaced material is roughly equal to half the mass displaced by the bubble and should be ~ 107-9 Msolar depending on the local intracluster medium (ICM) and bubble parameters. We show that in classical cool-core clusters, the upward displacement by drift may be a key process in explaining the presence of filaments behind bubbles. A bubble also carries a parcel of material in a region at its rear, known as the wake. The mass of the wake is comparable to the drift mass and increases the average density of the bubble, trapping it closer to the cluster centre and reducing the amount of heating it can do during its ascent. Moreover, material dropping out of the wake will also contribute to the trailing filaments. Mass transport by the bubble wake can effectively prevent the buildup of cool material in the central galaxy, even if AGN heating does not balance ICM cooling. Finally, we consider entrainment, the process by which ambient material is incorporated into the bubble. Studies of observed bubbles show that they subtend an opening angle much larger than predicted by simple adiabatic expansion. We show that bubbles that entrain ambient material as they rise will expand faster than the adiabatic prediction; however, the entrainment rate required to explain the observed opening angle is large enough that the density contrast between the bubble and its surroundings would disappear rapidly. We therefore conclude that entrainment is unlikely to be a dominant mass transport process. Additionally, this also suggests that the bubble surface is much more stable against instabilities that promote

  7. A design methodology for evolutionary air transportation networks

    NASA Astrophysics Data System (ADS)

    Yang, Eunsuk

    The air transportation demand at large hubs in the U.S. is anticipated to double in the near future. Current runway construction plans at selected airports can relieve some capacity and delay problems, but many are doubtful that this solution is sufficient to accommodate the anticipated demand growth in the National Airspace System (NAS). With the worsening congestion problem, it is imperative to seek alternative solutions other than costly runway constructions. In this respect, many researchers and organizations have been building models and performing analyses of the NAS. However, the complexity and size of the problem results in an overwhelming task for transportation system modelers. This research seeks to compose an active design algorithm for an evolutionary airline network model so as to include network specific control properties. An airline network designer, referred to as a network architect, can use this tool to assess the possibilities of gaining more capacity by changing the network configuration. Since the Airline Deregulation Act of 1978, the airline service network has evolved into a distinct Hub-and-Spoke (H&S) network. Enplanement demand on the H&S network is the sum of Origin-Destination (O-D) demand and transfer demand. Even though the flight or enplanement demand is a function of O-D demand and passenger routings on the airline network, the distinction between enplanement and O-D demand is not often made. Instead, many demand forecast practices in current days are based on scale-ups from the enplanements, which include the demand to and from transferring network hubs. Based on this research, it was found that the current demand prediction practice can be improved by dissecting enplanements further into smaller pieces of information. As a result, enplanement demand is decomposed into intrinsic and variable parts. The proposed intrinsic demand model is based on the concept of 'true' O-D demand which includes the direction of each round trip

  8. Innovations in transportation and air quality: Twelve exemplary projects. Congestion mitigation and Air Quality Improvement Program

    SciTech Connect

    1996-07-01

    Since its creation, the Congestion Mitigation and Air Quality Improvement (CMAQ) Program has spurred innovation in the types of programs and projects supported by Federal transportation dollars. The projects mentioned in this brochure show that the CMAQ program has been in the forefront of ISTEA`s effort to revamp the transportation planning process toward an intermodal focus. The CMAQ program is multimodal by design; it is a virtual requirement that new players beyond the highway and transit communities be a part of its implementation. Its success in meeting the congressional mandates of ISTEA is also documented by its unprecendented flexibility and robust spending rates. CMAQ funding needs now compete on an event footing with more traditional transportation programs for congressionally set spending authority.

  9. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrometry.

    PubMed

    Feilberg, Anders; Adamsen, Anders P S; Lindholst, Sabine; Lyngbye, Merete; Schäfer, Annette

    2010-01-01

    Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and selectivity were tested on synthetic samples of selected odorous compounds, and linearity and detection limits in the lower ppb range were demonstrated for all compounds tested (methanethiol, dimethyl sulfide, carboxylic acids, 4-methylphenol, aldehydes, indole, and skatole) except trimethylamine. The method was applied in situ at two full-scale filters installed at swine houses. The results have been compared with analyses by thermal desorption gas chromatography-mass spectrometry (TD-GC/MS), and odor was measured by olfactometry. By comparison with TD-GC/MS, observed MIMS signals were assigned to 4-methylphenol, 4-ethylphenol, indole, skatole, the sum of volatile reduced organic sulfur compounds (ROS), and three subgroups of carboxylic acids. The removal rates were observed to be related to air-water partitioning with removal efficiencies in the range of 0 to 50% for low-soluble organic sulfur compounds and high removal efficiencies (typically 80-100%) for more soluble phenols and carboxylic acids. Based on the results and published odor threshold values, it is estimated that the low removal efficiency of ROS is the main limitation for achieving a higher odor reduction. PMID:20400604

  10. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  11. Determination of O₂ Mass Transport at the Pt | PFSA Ionomer Interface under Reduced Relative Humidity.

    PubMed

    Novitski, David; Holdcroft, Steven

    2015-12-16

    Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients. PMID:26583742

  12. Thermal analysis of Perforated Metal Air Transportable Package (PMATP) prototype.

    SciTech Connect

    Oneto, Robert; Levine, Howard; Mould, John; Pierce, Jim Dwight

    2003-08-01

    Sandia National Laboratories (SNL) has designed a crash-resistant container, the Perforated Metal Air Transportable Package (PMATP), capable of surviving a worst-case plane crash, including both impact and subsequent fire, for the air transport of plutonium. This report presents thermal analyses of the full-scale PMATP in its undamaged (pre-test) condition and in bounding post-accident states. The goal of these thermal simulations was to evaluate the performance of the package in a worst-case post-crash fire. The full-scale package is approximately 1.6 m long by 0.8 m diameter. The thermal analyses were performed with the FLEX finite element code. This analysis clearly predicts that the PMATP provides acceptable thermal response characteristics, both for the post-accident fire of a one-hour duration and the after-fire heat-soak condition. All predicted temperatures for the primary containment vessel are well within design limits for safety.

  13. Test Report for Perforated Metal Air Transportable Package (PMATO) Prototype.

    SciTech Connect

    Bobbe, Jeffery G.; Pierce, Jim Dwight

    2003-06-01

    A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.

  14. High-Altitude Air Mass Zero Calibration of Solar Cells

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.; Snyder, David B.

    2005-01-01

    Air mass zero calibration of solar cells has been carried out for several years by NASA Glenn Research Center using a Lear-25 aircraft and Langley plots. The calibration flights are carried out during early fall and late winter when the tropopause is at the lowest altitude. Measurements are made starting at about 50,000 feet and continue down to the tropopause. A joint NASA/Wayne State University program called Suntracker is underway to explore the use of weather balloon and communication technologies to characterize solar cells at elevations up to about 100 kft. The balloon flights are low-cost and can be carried out any time of the year. AMO solar cell characterization employing the mountaintop, aircraft and balloon methods are reviewed. Results of cell characterization with the Suntracker are reported and compared with the NASA Glenn Research Center aircraft method.

  15. Characterizing saturated mass transport in fractured cementitious materials

    NASA Astrophysics Data System (ADS)

    Akhavan, Alireza

    Concrete, when designed and constructed properly, is a durable material. However in aggressive environments concrete is prone to gradual deterioration which is due to penetration of water and aggressive agents (e.g., chloride ions) into concrete. As such, the rate of mass transport is the primary factor, controlling the durability of cementitious materials. Some level of cracking is inevitable in concrete due to brittle nature of the material. While mass transport can occur through concrete’s porous matrix, cracks can significantly accelerate the rate of mass transport and effectively influence the service life of concrete structures. To allow concrete service life prediction models to correctly account for the effect of cracks on concrete durability, mass transport thru cracks must be characterized. In this study, transport properties of cracks are measured to quantify the saturated hydraulic permeability and diffusion coefficient of cracks as a function of crack geometry (i.e.; crack width, crack tortuosity and crack wall roughness). Saturated permeability and diffusion coefficient of cracks are measured by constant head permeability test, electrical migration test, and electrical impedance spectroscopy. Plain and fiber reinforced cement paste and mortar as well as simulated crack samples are tested. The results of permeability test showed that the permeability of a crack is a function of crack width squared and can be predicted using Louis formula when crack tortuosity and surface roughness of the crack walls are accounted for. The results of the migration and impedance tests showed that the diffusion coefficient of the crack is not dependent on the crack width, but is primarily a function of volume fraction of cracks. The only parameter that is changing with the crack width is the crack connectivity. Crack connectivity was found to be linearly dependent on crack width for small crack and constant for large cracks (i.e.; approximately larger than 80 µm). The

  16. Evidence of rapid production of organic acids in an urban air mass

    NASA Astrophysics Data System (ADS)

    Veres, Patrick R.; Roberts, James M.; Cochran, Anthony K.; Gilman, Jessica B.; Kuster, William C.; Holloway, John S.; Graus, Martin; Flynn, James; Lefer, Barry; Warneke, Carsten; de Gouw, Joost

    2011-09-01

    Gas-phase acids (nitric, formic, acrylic, methacrylic, propionic, and pyruvic/butryic acid) were measured using negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) in Pasadena, CA as part of the CalNex 2010 (Research at the Nexus of Air Quality and Climate Change) study in May-June 2010. Organic acid concentrations ranged from a few parts per trillion by volume (pptv) to several parts per billion by volume (ppbv), with the largest concentrations observed for formic and propionic acids. Photochemically processed urban emissions transported from Los Angeles were frequently sampled during the day. Analysis of transported emissions demonstrates a strong correlation of organic acid concentrations with both nitric acid and odd oxygen (Ox = O3 + NO2) showing that the organic acids are photochemically and rapidly produced from urban emissions.

  17. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  18. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Supplementary regulations of the Air Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN...

  19. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Supplementary regulations of the Air Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN...

  20. The negative role of turbulence in estuarine mass transport

    NASA Astrophysics Data System (ADS)

    Nunes Vaz, Richard A.; Lennon, Geoffrey W.; de Silva Samarasinghe, Jayantha R.

    1989-04-01

    It is competition between the various stratifying and mixing influences which determines the character of stratification in an estuary. Borrowing concepts which have been successfully applied to the discussion of stratification in shelf seas, a quantitative basis for determining the potential energy associated with vertical structure in estuaries is derived. The formulation, along similar lines to that of Bowden (1981), provides a simple but comprehensive method of incorporating many relevant stratifying and mixing influences in a given problem, and is also shown to be capable of rearrangement into forms akin to the estuarine Richardson number which is commonly found in discussions of estuarine statification. The paper argues, based on a survey of the literature, that in wide, relatively well-mixed estuaries, the greatest longitudinal mass flux occurs at times when stratification is most developed, that is, when the turbulent kinetic energy in the water column is at a minimum. Modulation of turbulence, principally at various tidal frequencies, causes a pulsing of the mass flux in which the contribution of each pulse increases non-linearly as the period of the modulation increases. Some, possibly significant, changes to the state of stratification and to the corresponding mass transport may occur in association with slack water periods. However, the spring-neap cycle is proposed to have a far greater influence on stratification, mass transport and the long-term mass balance in estuaries, and recent observational studies lend support to this position.

  1. Influence of air mass origin on aerosol properties at a remote Michigan forest site

    NASA Astrophysics Data System (ADS)

    VanReken, T. M.; Mwaniki, G. R.; Wallace, H. W.; Pressley, S. N.; Erickson, M. H.; Jobson, B. T.; Lamb, B. K.

    2015-04-01

    The northern Great Lakes region of North America is a large, relatively pristine area. To date, there has only been limited study of the atmospheric aerosol in this region. During summer 2009, a detailed characterization of the atmospheric aerosol was conducted at the University of Michigan Biological Station (UMBS) as part of the Community Atmosphere-Biosphere Interactions Experiment (CABINEX). Measurements included particle size distribution, water-soluble composition, and CCN activity. Aerosol properties were strongly dependent on the origin of the air masses reaching the site. For ∼60% of the study period, air was transported from sparsely populated regions to the northwest. During these times aerosol loadings were low, with mean number and volume concentrations of 1630 cm-3 and 1.91 μm3 cm-3, respectively. The aerosol during clean periods was dominated by organics, and exhibited low hygroscopicities (mean κ = 0.18 at s = 0.3%). When air was from more populated regions to the east and south (∼29% of the time), aerosol properties reflected a stronger anthropogenic influence, with 85% greater particle number concentrations, 2.5 times greater aerosol volume, six times more sulfate mass, and increased hygroscopicity (mean k = 0.24 at s = 0.3%). These trends are have the potential to influence forest-atmosphere interactions and should be targeted for future study.

  2. 75 FR 12328 - Application of Charter Air Transport, Inc. for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority AGENCY... it should not issue an order finding Charter Air Transport, Inc., fit, willing, and able,...

  3. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  4. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  5. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  6. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  7. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  8. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  9. Optimum periodicity of repeated contractile actions applied in mass transport

    PubMed Central

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications. PMID:25622949

  10. Miocene mass-transport sediments, Troodos Massif, Cyprus

    USGS Publications Warehouse

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  11. Rotational hydrodynamic diffusion system to study mass transport across boundaries.

    PubMed

    Mamidi, Sai Sree; Meas, Bo; Farhat, Tarek R

    2008-11-01

    The design and operation of a new mass transport technique is presented. Rotational hydrodynamic diffusion system (RHDS) is a method that can be adapted for analytical laboratory analysis as well as industrial-scale separation and purification. Although RHDS is not an electrochemical technique, its concept is derived from hydrodynamic rotating disk electrode voltammetry. A diffusion advantage gained using the RHDS is higher flux of probe molecules across the boundary (e.g., membrane or porous media) with increased rotation rate compared to the static two-half-cell (THC) method. The separation concept of RHDS differs from pressurized, agitated, electrodialysis, and reversed osmosis systems in design and theory. The detection mechanism of the RHDS opens the possibility to study mass transport properties of a large variety of molecules using different types of ultrathin membranes. Therefore, the RHDS is a potential alternative to classical mass transport detection methods such as THC, impedance spectroscopy, and cyclic and rotating disk electrode voltammetry. Theoretical analysis on the rotational hydrodynamic flux is derived and compared to experimental flux measured using HCl, KCl, KNO 3, Ni(NO 3) 2, LiCl, camphor sulfonic acid, and K 3Fe(CN) 6 ionic solutions. Values of effective diffusion coefficients of salts across Nucleopore membranes of thickness 6.0 and 10 mum with pore size 0.1 and 0.2 mum, respectively, are presented and discussed. PMID:18844370

  12. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  13. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  14. RWPV bioreactor mass transport: earth-based and in microgravity

    NASA Technical Reports Server (NTRS)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  15. A methodology for long-range prediction of air transportation

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; English, J. M.

    1980-01-01

    A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first was a new technique for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

  16. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  17. Universal bursty behavior in the air transportation system.

    PubMed

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α=2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality. PMID:26764752

  18. Fatigue and associated performance decrements in air transport operations

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.; Orlady, H. W.

    1981-01-01

    A study of safety reports was conducted to examine the hypothesis that fatigue and associated performance decrements occur in air transport operations, and that these are associated with some combination of factors: circadian desynchronosis, duty time; pre-duty activity; sleep; work scheduling; workload; and environmental deprivation. The findings are based on a selected sample of reported incidents in which the reporter associated fatigue with the occurrence. In comparing the fatigue reports with a control set, significant performance decrements were found to exist related to time-of-day, awareness and attention to duty, less significantly, final phases of flights. The majority of the fatigue incidents involved such unsafe events as altitude deviations, takeoffs and landing without clearance, and the like. Considerations of duty and sleep are the major factors in the reported fatigue conditions.

  19. The Economic Effect of Competition in the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Hubbard, H. B.

    1972-01-01

    The air transportation industry has been described as a highly-competitive, regulated oligopoly or as a price-regulated cartel with blocked entry, resulting in excessive service and low load factors. The current structure of the industry has been strongly influenced by the hypotheses that increased levels of competition are desirable per se, and that more competing carriers can be economically supported in larger markets, in longer haul markets, with lower unit costs, and with higher fare levels. An elementary application of competition/game theory casts doubt on the validity of these hypotheses, but rather emphasizes the critical importance of the short-term non-variable costs in determining economic levels of competition.

  20. Universal bursty behavior in the air transportation system

    NASA Astrophysics Data System (ADS)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α =2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  1. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  2. A global assessment of accelerations in surface mass transport

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Heflin, Michael B.

    2015-08-01

    Water mass transport in the Earth's dynamic surface layer of atmosphere, cryosphere, and hydrosphere driven by various global change processes has complex spatiotemporal patterns. Here we determine global patterns and regional mean values of accelerations in surface mass variations during the Gravity Recovery and Climate Experiment (GRACE) mission's data span from 2002.2 to 2015.0. GRACE gravity data are supplemented by surface deformation from 607 Global Navigation Satellite System stations, an ocean bottom pressure model, satellite laser ranging, and loose a priori knowledge on mass variation regimes incorporating high-resolution geographic boundaries. While Greenland and West Antarctica have strong negative accelerations, Alaska and the Arctic Ocean show significant positive accelerations. In addition, the accelerations are not constant in time with some regions showing considerable variability due to irregular interannual changes. No evidence of significant nonsteric mean sea level acceleration has been found, but the uncertainty is quite large.

  3. Mass transfer of VOCs in laboratory-scale air sparging tank.

    PubMed

    Chao, Keh-Ping; Ong, Say Kee; Huang, Mei-Chuan

    2008-04-15

    Volatilization of VOCs was investigated using a 55-gal laboratory-scale model in which air sparging experiments were conducted with a vertical air injection well. In addition, X-ray imaging of an air sparging sand box showed air flows were in the form of air bubbles or channels depending on the size of the porous media. Air-water mass transfer was quantified using the air-water mass transfer coefficient which was determined by fitting the experimental data to a two-zone model. The two-zone model is a one-dimensional lumped model that accounts for the effects of air flow type and diffusion of VOCs in the aqueous phase. The experimental air-water mass transfer coefficients, KGa, obtained from this study ranged from 10(-2) to 10(-3)1/min. From a correlation analysis, the air-water mass transfer coefficient was found to be directly proportional to the air flow rate and the mean particle size of soil but inversely proportional to Henry's constant. The correlation results implied that the air-water mass transfer coefficient was strongly affected by the size of porous media and the air flow rates. PMID:17804158

  4. Study of the Tropospheric Aerosol Structure Under Changing of the Air Mass Type from Lidar Observations in Tomsk

    NASA Astrophysics Data System (ADS)

    Samoilova, S. V.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. É.

    2016-04-01

    The aerosol optical characteristics in the main tropospheric layers are investigated based on joint interpretation of data of multi-frequency lidar sensing (110 sessions) and results of modeling of back air mass trajectories. Methodical problems for separating layers with different scattering properties and estimating their vertical boundaries are considered. Three optical criteria are simultaneously used to distinguish aerosol layers from cloud formations, including the gradient of the backscattering coefficient, optical depth, and the depolarization ratio. High values of the lidar ratio (66 sr) and of the Angstrom exponent (1.62) in the shortwavelength spectral range are observed in the boundary layer for Arctic transport. At the same time, low values of these optical parameters are characteristic for Asian transport: the lidar ratio is 54 sr and the Angstrom exponent is 1.1, which is explained by different relative contributions of the coarse and fine aerosol fractions to the air mass.

  5. On Matrix-Valued Monge–Kantorovich Optimal Mass Transport

    PubMed Central

    Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen

    2016-01-01

    We present a particular formulation of optimal transport for matrix-valued density functions. Our aim is to devise a geometry which is suitable for comparing power spectral densities of multivariable time series. More specifically, the value of a power spectral density at a given frequency, which in the matricial case encodes power as well as directionality, is thought of as a proxy for a “matrix-valued mass density.” Optimal transport aims at establishing a natural metric in the space of such matrix-valued densities which takes into account differences between power across frequencies as well as misalignment of the corresponding principle axes. Thus, our transportation cost includes a cost of transference of power between frequencies together with a cost of rotating the principle directions of matrix densities. The two endpoint matrix-valued densities can be thought of as marginals of a joint matrix-valued density on a tensor product space. This joint density, very much as in the classical Monge–Kantorovich setting, can be thought to specify the transportation plan. Contrary to the classical setting, the optimal transport plan for matrices is no longer supported on a thin zero-measure set. PMID:26997667

  6. A Program in Air Transportation Technology (Joint University Program)

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1996-01-01

    The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.

  7. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  8. On the pathways and timescales of intercontinental air pollution transport

    NASA Astrophysics Data System (ADS)

    Stohl, Andreas; Eckhardt, Sabine; Forster, Caroline; James, Paul; Spichtinger, Nicole

    2002-12-01

    This paper presents results of a 1-year simulation of the transport of six passive tracers, released over the continents according to an emission inventory for carbon monoxide (CO). Lagrangian concepts are introduced to derive age spectra of the tracer concentrations on a global grid in order to determine the timescales and pathways of pollution export from the continents. Calculating these age spectra is equivalent to simulating many (quasi continuous) plumes, each starting at a different time, which are subsequently merged. Movies of the tracer dispersion have been made available on an Internet website. It is found that emissions from Asia experience the fastest vertical transport, whereas European emissions have the strongest tendency to remain in the lower troposphere. European emissions are transported primarily into the Arctic and appear to be the major contributor to the Arctic haze problem. Tracers from an upwind continent first arrive over a receptor continent in the upper troposphere, typically after some 4 days. Only later foreign tracers also arrive in the lower troposphere. Assuming a 2-day lifetime, the domestic tracers dominate total tracer columns over all continents except over Australia where foreign tracers account for 20% of the tracer mass. In contrast, for a 20-day lifetime even continents with high domestic emissions receive more than half of their tracer burden from foreign continents. Three special regions were identified where tracers are transported to, and tracer dilution is slow. Future field studies therefore should be deployed in the following regions: (1) In the winter, the Asia tracer accumulates over Indonesia and the Indian Ocean, a region speculated to be a stratospheric fountain. (2) In the summer, the highest concentrations of the Asia tracer are found in the Middle East. (3) In the summer, the highest concentrations of the North America tracer are found in the Mediterranean.

  9. Survey of projected growth and problems facing air transportation, 1975 - 1985

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  10. Proceedings of the Monterey Conference on Planning for Rotorcraft and Commuter Air Transportation

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.

    1983-01-01

    Planning and technological issues involved in rotorcraft and commuter fixed-wing air transportation are discussed. Subject areas include the future community environment, aircraft technology, community transportation planning, and regulatory perspectives.

  11. Updated Delft Mass Transport model DMT-2: computation and validation

    NASA Astrophysics Data System (ADS)

    Hashemi Farahani, Hassan; Ditmar, Pavel; Inacio, Pedro; Klees, Roland; Guo, Jing; Guo, Xiang; Liu, Xianglin; Zhao, Qile; Didova, Olga; Ran, Jiangjun; Sun, Yu; Tangdamrongsub, Natthachet; Gunter, Brian; Riva, Ricardo; Steele-Dunne, Susan

    2014-05-01

    A number of research centers compute models of mass transport in the Earth's system using primarily K-Band Ranging (KBR) data from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. These models typically consist of a time series of monthly solutions, each of which is defined in terms of a set of spherical harmonic coefficients up to degree 60-120. One of such models, the Delft Mass Transport, release 2 (DMT-2), is computed at the Delft University of Technology (The Netherlands) in collaboration with Wuhan University. An updated variant of this model has been produced recently. A unique feature of the computational scheme designed to compute DMT-2 is the preparation of an accurate stochastic description of data noise in the frequency domain using an Auto-Regressive Moving-Average (ARMA) model, which is derived for each particular month. The benefits of such an approach are a proper frequency-dependent data weighting in the data inversion and an accurate variance-covariance matrix of noise in the estimated spherical harmonic coefficients. Furthermore, the data prior to the inversion are subject to an advanced high-pass filtering, which makes use of a spatially-dependent weighting scheme, so that noise is primarily estimated on the basis of data collected over areas with minor mass transport signals (e.g., oceans). On the one hand, this procedure efficiently suppresses noise, which are caused by inaccuracies in satellite orbits and, on the other hand, preserves mass transport signals in the data. Finally, the unconstrained monthly solutions are filtered using a Wiener filter, which is based on estimates of the signal and noise variance-covariance matrices. In combination with a proper data weighting, this noticeably improves the spatial resolution of the monthly gravity models and the associated mass transport models.. For instance, the computed solutions allow long-term negative trends to be clearly seen in sufficiently small regions notorious

  12. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  13. Quantifying the contribution of long-range transport to Particulate Matter (PM) mass loadings at a suburban site in the North-Western Indo Gangetic Plain (IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-04-01

    Many sites in the densely populated Indo Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan) to coarse mode PM varied between 9 and 57% of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP) were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air

  14. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    NASA Technical Reports Server (NTRS)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  15. Simulating the fate and transport of TCE from groundwater to indoor air.

    PubMed

    Yu, Soonyoung; Unger, Andre J A; Parker, Beth

    2009-07-21

    This work provides an exploratory analysis on the relative importance of various factors controlling the fate and transport of volatile organic contaminants (in this case, TCE) from a DNAPL source zone located below the water table and into the indoor air. The analysis is conducted using the multi-phase compositional model CompFlow Bio, with the base scenario problem geometry reminiscent of a field experiment conducted by Rivett [Rivett, M.O., (1995), Soil-gas signatures from volatile chlorinated solvents: Borden field experiments. Groundwater, 33(1), 84-98.] at the Borden aquifer where groundwater was observed to transport a contaminant plume a substantial distance without vertical mass transport of the contaminant across the capillary fringe and into the vadose zone. Results for the base scenario model indicate that the structure of the permeability field was largely responsible for deflecting the groundwater plume upward towards the capillary fringe, permitting aqueous phase diffusion to transport the TCE into the vadose zone. Alternative permeability realizations, generated as part of a Monte Carlo simulation process, at times deflected the groundwater plume downwards causing the extended thickness of the saturated zone to insulate the vadose zone from exposure to the TCE by upward diffusive transport. Comparison of attenuation coefficients calculated using the CompFlow Bio and Johnson and Ettinger [Johnson, P.C. and Ettinger, R.A., (1991), Heuristic model for predicting the intrusion rate of contaminant vapors into buildings. Environmental Science and Technology, 25, 1445-1452.] heuristic model exhibited fortuitous agreement for the base scenario problem geometry, with this agreement diverging for the alternative permeability realizations as well as when parameters such as the foundation slab fracture aperture, the indoor air pressure drop, the capillary fringe thickness, and the infiltration rate were varied over typical ranges. PMID:19525028

  16. Enantiomeric signatures of organochlorine pesticides in Asian, trans-Pacific, and western U.S. air masses.

    PubMed

    Genualdi, Susan A; Simonich, Staci L Massey; Primbs, Toby K; Bidleman, Terry F; Jantunen, Liisa M; Ryoo, Keon-Sang; Zhu, Tong

    2009-04-15

    The enantiomeric signatures of organochlorine pesticides were measured in air masses from Okinawa, Japan and three remote locations in the Pacific Northwestern United States: Cheeka Peak Observatory (CPO), a marine boundary layer site on the Olympic Peninsula of Washington at 500 m above sea level (m.a.s.l); Mary's Peak Observatory (MPO), a site at 1250 m.a.s.l in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2763 m.a.s.l in Oregon's Cascade range. The enantiomeric signatures of composite soil samples, collected from China, South Korea, and the western U.S. were also measured. The data from chiral analysis was expressed asthe enantiomeric fraction, defined as (+) enantiomer/(sum of the (+) and (-) enantiomers), where a racemic composition has EF = 0.5. Racemic alpha-hexachlorocyclohexane (alpha-HCH) was measured in Asian air masses at Okinawa and in Chinese and South Korean soils. Nonracemic alpha-HCH (EF = 0.528 +/- 0.0048) was measured in regional air masses at CPO, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the alpha-HCH EFs were significantly more racemic (EF = 0.513 +/- 0.0003, p < 0.001). Racemic alpha-HCH was consistently measured at MPO and MBO in trans-Pacific air masses that had spent considerable time in the free troposphere. The alpha-HCH EFs in CPO, MPO, and MBO air masses were negatively correlated (p = 0.0017) with the amount of time the air mass spent above the boundary layer, along the 10-day back air mass trajectory, prior to being sampled. This suggests that, on the West coast of the U.S., the alpha-HCH in the free troposphere is racemic. Racemic signatures of cis- and trans-chlordane were measured in air masses at all four air sampling sites, suggesting that Asian and U.S. urban areas continue to be sources of chlordane that has not yet been biotransformed. PMID:19475954

  17. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGESBeta

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; Lin, Hai -Qing; Ho, Kai -Ming; Thiel, Patricia A.; Tringides, Michael C.

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  18. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  19. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  20. Mathematical modeling of heat exchange between mine air and rock mass during fire

    SciTech Connect

    A.E. Krasnoshtein; B.P. Kazakov; A.V. Shalimov

    2006-05-15

    Solution of problems on heat exchange between ventilating air and rock mass and on gas admixture propagation in mine workings serve as a base for considering changes in heat-gas-air state at a mine after inflammation. The presented mathematical relations allow calculation of a varied velocity and movement direction of air flows, their temperatures and smoking conditions during fire.

  1. The world's air transportation services : data as to passengers, mail, and goods carried by American and European transportation services

    NASA Technical Reports Server (NTRS)

    1922-01-01

    This report presents detailed descriptions, statistics, and graphs on European and American air transport. The European countries listed are Belgium, Czecho-Slovakia, Denmark, France, Germany, Great Britain, Holland, and Italy.

  2. Smogbusters: Grassroots Action for Clean Air and Sustainable Transport in Australia

    ERIC Educational Resources Information Center

    Manners, Eric; Wake, David; Carlisle, Rachel

    2009-01-01

    Smogbusters was a national, community-based, government-funded community education program promoting clean air and sustainable transport in Australia from 1994 to 2002. Smogbusters aimed to improve air quality primarily by raising awareness about motor vehicle transport and its negative impacts on health, the environment and communities, and by…

  3. 78 FR 15664 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Rule (CAIR), 70 FR 25172 (May 12, 2005); and Transport Rule or Cross-State Air Pollution Rule, 76 FR... our July 30, 2012 proposal for Arizona regarding interstate transport for the 2006 PM 2.5 NAAQS (77 FR... significant deterioration of air quality for the 2006 PM 2.5 NAAQS (78 FR 4337). We will act on the...

  4. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  5. Vertical air mass exchange driven by the local circulation on the northern slope of Mount Everest

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Zou, Han; Ma, Shupo; Li, Peng; Zhu, Jinhuan; Huo, Cuiping

    2011-01-01

    To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.

  6. Identification of terms to define unconstrained air transportation demands

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Kuhilhau, A. R.

    1982-01-01

    The factors involved in the evaluation of unconstrained air transportation systems were carefully analyzed. By definition an unconstrained system is taken to be one in which the design can employ innovative and advanced concepts no longer limited by present environmental, social, political or regulatory settings. Four principal evaluation criteria are involved: (1) service utilization, based on the operating performance characteristics as viewed by potential patrons; (2) community impacts, reflecting decisions based on the perceived impacts of the system; (3) technological feasibility, estimating what is required to reduce the system to practice; and (4) financial feasibility, predicting the ability of the concepts to attract financial support. For each of these criteria, a set of terms or descriptors was identified, which should be used in the evaluation to render it complete. It is also demonstrated that these descriptors have the following properties: (a) their interpretation may be made by different groups of evaluators; (b) their interpretations and the way they are used may depend on the stage of development of the system in which they are used; (c) in formulating the problem, all descriptors should be addressed independent of the evaluation technique selected.

  7. Angular momentum transport within evolved low-mass stars

    SciTech Connect

    Cantiello, Matteo; Bildsten, Lars; Paxton, Bill; Mankovich, Christopher; Christensen-Dalsgaard, Jørgen

    2014-06-10

    Asteroseismology of 1.0-2.0 M {sub ☉} red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the helium burning clump. The inferred rotation rates are 10-30 days for the ≈0.2 M {sub ☉} He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the Modules for Experiments in Stellar Evolution code, we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239.

  8. Mass Flux of ZnSe by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.

    1995-01-01

    Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.

  9. Unexpected high 35S concentration revealing strong downward transport of stratospheric air during the monsoon transitional period in East Asia

    NASA Astrophysics Data System (ADS)

    Lin, Mang; Zhang, Zhisheng; Su, Lin; Su, Binbin; Liu, Lanzhong; Tao, Jun; Fung, Jimmy C. H.; Thiemens, Mark H.

    2016-03-01

    October is the monsoon transitional period in East Asia (EA) involving a series of synoptic activities that may enhance the downward transport of stratospheric air to the planetary boundary layer (PBL). Here we use cosmogenic 35S in sulfate aerosols (35SO42-) as a tracer for air masses originating from the stratosphere and transported downward to quantify these mixing processes. From 1 year 35SO42- measurements (March 2014 to February 2015) at a background station in EA we find remarkably enhanced 35SO42- concentration (3150 atoms m-3) in October, the highest value ever reported for natural sulfate aerosols. A four-box 1-D model and meteorological analysis reveal that strong downward transport from the free troposphere is a vital process entraining aged stratospheric air masses to the PBL. The aged stratospheric masses are accumulated in the PBL, accelerating the SO2 transformation to SO42-. Implications for the tropospheric O3 budget and the CO2 biogeochemical cycle are discussed.

  10. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

    NASA Astrophysics Data System (ADS)

    Feng, Xiao; Li, Qi; Zhu, Yajie; Hou, Junxiong; Jin, Lingyan; Wang, Jingjie

    2015-04-01

    In the paper a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented. The model was developed from 13 different air pollution monitoring stations in Beijing, Tianjin, and Hebei province (Jing-Jin-Ji area). The air mass trajectory was used to recognize distinct corridors for transport of "dirty" air and "clean" air to selected stations. With each corridor, a triangular station net was constructed based on air mass trajectories and the distances between neighboring sites. Wind speed and direction were also considered as parameters in calculating this trajectory based air pollution indicator value. Moreover, the original time series of PM2.5 concentration was decomposed by wavelet transformation into a few sub-series with lower variability. The prediction strategy applied to each of them and then summed up the individual prediction results. Daily meteorological forecast variables as well as the respective pollutant predictors were used as input to a multi-layer perceptron (MLP) type of back-propagation neural network. The experimental verification of the proposed model was conducted over a period of more than one year (between September 2013 and October 2014). It is found that the trajectory based geographic model and wavelet transformation can be effective tools to improve the PM2.5 forecasting accuracy. The root mean squared error (RMSE) of the hybrid model can be reduced, on the average, by up to 40 percent. Particularly, the high PM2.5 days are almost anticipated by using wavelet decomposition and the detection rate (DR) for a given alert threshold of hybrid model can reach 90% on average. This approach shows the potential to be applied in other countries' air quality forecasting systems.

  11. Experimental Studies on Mass Transport of Cadmium-Zinc Telluride by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1995-01-01

    Experimental studies on mass transport of ternary compound, Cd(1-x)Zn(x)Te by physical vapor transport (PVT) for source compositions up to X = 0.21 are presented. The effect of thermochemical (temperatures, vapor composition) and other factors (preparation of the source, crystal growth rate, temperature gradient) on composition and composition profiles of the grown crystals were investigated. A steep decrease in the mass flux with an increase in X(crystal) for X less than 0.1, and a difference in composition between the source and the deposited material have been observed. The composition profiles of the crystals were found to depend on the density and pretreatment of the source, and on the temperature gradient in the source zone. The homogeneity of the crystals improves at low undercoolings and/or when an appropriate excess of metal constituents is present in the vapor phase. The experimental results are in good agreement with our thermochemical model of this system.

  12. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  13. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  14. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  15. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  16. Effects of Asian air pollution transport and photochemistry on carbon monoxide variability and ozone production in subtropical coastal south China

    NASA Astrophysics Data System (ADS)

    Chan, C. Y.; Chan, L. Y.; Lam, K. S.; Li, Y. S.; Harris, J. M.; Oltmans, S. J.

    2002-12-01

    Surface ozone and carbon monoxide (CO) measured from a relatively remote coastal station in Hong Kong are analyzed to study the effects of pollutant transport and associated ozone production on CO and ozone variations in the subtropical south China region. CO and ozone concentrations show a common minimum in summer and in the maritime air masses from the South China Sea and Pacific Ocean. They have higher values in other seasons and in the continental air masses that have passed over mainland Asia and the East Asian coast. CO shows the maximum monthly median of 457-552 ppbv in winter while ozone shows a maximum of 40-50 ppbv in autumn and a distinct peak of 41-43 ppbv in spring. The CO concentrations especially in the continental air masses (median of 277 to 428 ppbv) are very high when compared with measurements in most parts of the world. This suggests that the south China region is under the strong influence of pollutant transport from the Asian continent and East Asian coast. Ozone and CO show strong positive correlations in the polluted maritime air masses and from late spring to early autumn (May-September) with the linear regression slopes of the ozone-CO plot from 0.08 to 0.22 (with respective standard errors from 0.01 to 0.03). The strong correlations and slopes plus the high CO levels indicate that there is substantial ozone production from pollution in the polluted maritime air masses and in the late spring to early autumn period.

  17. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  18. Chemical compositions and radiative properties of dust and anthropogenic air masses study in Taipei Basin, Taiwan, during spring of 2004

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Yu; Fang, Guor-Cheng; Chou, Charles C.-K.; Chen, Wei-Nai

    Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM 10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00'N, 121°32'E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m 2 g -1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m 2 g -1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3-2.3 m 2 g -1), which were similar to the previous measurements with

  19. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  20. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  1. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  2. Some considerations for air transportation analysis to non-urban areas.

    NASA Technical Reports Server (NTRS)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  3. United States International Air Transport Policy, the Promise and the Reality

    NASA Technical Reports Server (NTRS)

    Landry, J. E.; Phillips, G.

    1972-01-01

    The United States international air transportation policy is discussed. The major departure of the current policy lies in the relationship between scheduled and charter services. Various provisions of the transportation charter are analyzed to show the restrictions as well as the benefits the legislation holds for commercial aviation. It is stated that a group of full service carriers can meet the full spectrum of demands for air transportation more efficiently than two or more groups.

  4. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    SciTech Connect

    Luna, Robert E.; Wangler, Michael W.; Selling, Hendrik A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations.

  5. Air Mass Origin in the Arctic and its Response to Future Warming

    NASA Technical Reports Server (NTRS)

    Orbe, Clara; Newman, Paul A.; Waugh, Darryn W.; Holzer, Mark; Oman, Luke; Polvani, Lorenzo M.; Li, Feng

    2014-01-01

    We present the first climatology of air mass origin in the Arctic in terms of rigorously defined air mass fractions that partition air according to where it last contacted the planetary boundary layer (PBL). Results from a present-day climate integration of the GEOSCCM general circulation model reveal that the Arctic lower troposphere below 700 mb is dominated year round by air whose last PBL contact occurred poleward of 60degN, (Arctic air, or air of Arctic origin). By comparison, approx. 63% of the Arctic troposphere above 700 mb originates in the NH midlatitude PBL, (midlatitude air). Although seasonal changes in the total fraction of midlatitude air are small, there are dramatic changes in where that air last contacted the PBL, especially above 700 mb. Specifically, during winter air in the Arctic originates preferentially over the oceans, approx. 26% in the East Pacific, and approx. 20% in the Atlantic PBL. By comparison, during summer air in the Arctic last contacted the midlatitude PBL primarily over land, overwhelmingly so in Asia (approx. 40 %) and, to a lesser extent, in North America (approx. 24%). Seasonal changes in air-mass origin are interpreted in terms of seasonal variations in the large-scale ventilation of the midlatitude boundary layer and lower troposphere, namely changes in the midlatitude tropospheric jet and associated transient eddies during winter and large scale convective motions over midlatitudes during summer.

  6. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Lee, Kam-Pui; Thompson, Richard A.; Yos, Jerrold M.

    1991-01-01

    A self-consistent set of equilibrium air values were computed for enthalpy, total specific heat at constant pressure, compressibility factor, viscosity, total thermal conductivity, and total Prandtl number from 500 to 30,000 K over a range of 10(exp -4) atm to 10(exp 2) atm. The mixture values are calculated from the transport and thermodynamic properties of the individual species provided in a recent study by the authors. The concentrations of the individual species, required in the mixture relations, are obtained from a free energy minimization calculation procedure. Present calculations are based on an 11-species air model. For pressures less than 10(exp -2) atm and temperatures of about 15,000 K and greater, the concentrations of N(++) and O(++) become important, and consequently, they are included in the calculations determining the various properties. The computed properties are curve fitted as a function of temperature at a constant value of pressure. These curve fits reproduce the computed values within 5 percent for the entire temperature range considered here at specific pressures and provide an efficient means for computing the flowfield properties of equilibrium air, provided the elemental composition remains constant at 0.24 for oxygen and 0.76 for nitrogen by mass.

  7. Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach.

    PubMed

    Aggarwal, Preeti; Jain, Suresh

    2015-10-01

    This study adopted an integrated 'source-to-receptor' assessment paradigm in order to determine the effects of emissions from passenger transport on urban air quality and human health in the megacity, Delhi. The emission modeling was carried out for the base year 2007 and three alternate (ALT) policy scenarios along with a business as usual (BAU) scenario for the year 2021. An Activity-Structure-Emission Factor (ASF) framework was adapted for emission modeling, followed by a grid-wise air quality assessment using AERMOD and a health impact assessment using an epidemiological approach. It was observed that a 2021-ALT-III scenario resulted in a maximum concentration reduction of ~24%, ~42% and ~58% for carbon monoxide (CO), nitrogen dioxide (NO2) and particulate matter (PM), respectively, compared to a 2021-BAU scenario. Further, it results in significant reductions in respiratory and cardiovascular mortality, morbidity and Disability Adjusted Life Years (DALY) by 41% and 58% on exposure to PM2.5 and NO2 concentrations when compared to the 2021-BAU scenario, respectively. In other words, a mix of proposed policy interventions namely the full-phased introduction of the Integrated Mass Transit System, fixed bus speed, stringent vehicle emission norms and a hike in parking fees for private vehicles would help in strengthening the capability of passenger transport to cater to a growing transport demand with a minimum health burden in the Delhi region. Further, the study estimated that the transport of goods would be responsible for ~5.5% additional VKT in the 2021-BAU scenario; however, it will contribute ~49% and ~55% additional NO2 and PM2.5 concentrations, respectively, in the Delhi region. Implementation of diesel particulate filters for goods vehicles in the 2021-ALT-IV-O scenario would help in the reduction of ~87% of PM2.5 concentration, compared to the 2021-BAU scenario; translating into a gain of 1267 and 505 DALY per million people from exposure to PM2.5 and NO

  8. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  9. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  10. Air mass origin and its influence on radionuclide activities ( 7Be and 210Pb) in aerosol particles at a coastal site in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Dueñas, C.; Orza, J. A. G.; Cabello, M.; Fernández, M. C.; Cañete, S.; Pérez, M.; Gordo, E.

    2011-07-01

    Studies of radionuclide activities in aerosol particles provide a means for evaluating the integrated effects of transport and meteorology on the atmospheric loadings of substances with different sources. Measurements of aerosol mass concentration and specific activities of 7Be and 210Pb in aerosols at Málaga (36° 43' 40″ N; 4° 28' 8″ W) for the period 2000-2006 were used to obtain the relationships between radionuclide activities and airflow patterns by comparing the data grouped by air mass trajectory clusters. The average concentration values of 7Be and 210Pb over the 7 year period have been found to be 4.6 and 0.58 mBq m -3, respectively, with mean aerosol mass concentration of 53.6 μg m -3. The identified air flow types arriving at Málaga reflect the transitional location of the Iberian Peninsula and show significant differences in radionuclide activities. Air concentrations of both nuclides and the aerosol mass concentration are controlled predominantly by the synoptic scenarios leading to the entrance of dust-laden continental flows from northern Africa and the arrival of polar maritime air masses, as implied by the strong correlations found between the monthly frequencies of the different air masses and the specific activities of both radionuclides. Correlations between activity concentrations and precipitation are significant though lower than with air masses.

  11. Restricted mass transport effects on free radical reactions

    NASA Astrophysics Data System (ADS)

    Buchanan, A. C., III; Britt, P. F.; Thomas, K. B.

    Coal possesses a complex chemical and physical structure. The cross-linked, network structure can lead to alterations in normal thermally-induced, free-radical decay pathways as a consequence of restrictions on mass transport. Moreover, in coal liquefaction, access of an external hydrogen donor to a reactive radical site can be hindered by the substantial domains of microporosity present in coals. However, previous work indicates that diffusion effects do not appear to be playing an important role in this coal conversion chemistry. Several possible explanations for this phenomenon were advanced including the potential involvement of a hydrogen hopping/radical relay mechanism recently discovered model systems in the authors' laboratories. The authors have employed silica-anchored compounds to explore the effects of restricted mass transport on the pyrolysis mechanisms of coal model compounds. In studies of two-component systems, cases have been discovered where radical centers can be rapidly relocated in the diffusionally constrained environment as a consequence of rapid serial hydrogen atom transfers. This chemistry can have substantial effects on thermal decomposition rates and on product selectivities. In this study, the authors examine additional surfaces to systematically investigate the impact of molecular structure on the hydrogen atom transfer promoted radical relay mechanism. Silica-attached 1,3-diphenylpropane (approximately Ph(CH2)3Ph, or approximately DPP) was chosen as the thermally reactive component, since it can be considered prototypical of linkages in coal that do not contain weak bonds easily cleaved at coal liquefaction temperatures (ca. 4000 C), but which crack at reasonable rates if benzylic radicals can be generated by hydrogen abstraction. The rate of such hydrogen transfers under restricted diffusion will be highly dependent on the structure and proximity of neighboring molecules.

  12. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models

  13. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  14. Screening for sarin in air and water by solid-phase microextraction-gas chromatography/mass spectrometry.

    SciTech Connect

    Schneider, J. F.; Boparai, A. S.; Reed, L. L.

    2001-10-01

    A method of screening air and water samples for the chemical-warfare agent Sarin is developed using solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS). The SPME field kit sampler is ideal for collecting air and water samples in the field and transporting samples safely to the laboratory. The sampler also allows the sample to be introduced into the GC-MS system without further sample preparation. Results of the tests with Sarin using the SPME technique indicate that a sample collection time of 5 min is sufficient to detect 100 ng/L of Sarin in air. For water samples, Sarin is detected at a concentration of 12 {mu}g/mL or higher. This method is ideal for screening samples for quick response situations.

  15. Materials with engineered mesoporosity for programmed mass transport

    NASA Astrophysics Data System (ADS)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  16. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  17. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  18. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  19. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  20. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  1. Mass transport and element mobilisation during large-scale metasomatism

    NASA Astrophysics Data System (ADS)

    Putnis, C. V.; Austrheim, H.; Jamtveit, B.; Engvik, A. K.; Putnis, A.

    2009-04-01

    Replacement textures commonly occur in relation to fluid-driven large scale metasomatism and metamorphism and these processes are often related to mineralisation. For example, the albitisation of gabbroic rocks in the Bamble District, southern Norway is associated with ore deposits. Similar albitised rocks are also characteristic of the Curnamona Province, Australia, which includes large areas of mineralisation such as the Pb, Zn, Ag of the Broken Hill deposits as well as Cu, Au and U deposits. The main question addressed here is the mechanism of mass transport and hence element mobilisation. An indication of the former presence of fluids within a rock can be seen in mineral textures, such as porosity, replacement rims, replacement induced fracturing and crystallographic continuity across sharp compositional boundaries. Such textural observations from natural rocks as well as experimental products show that during mineral-fluid interaction, the crystallographic relations between parent and product phases control the nucleation of the product, and hence a coupling between dissolution and reprecipitation. If the rate of nucleation and growth of the product equals the dissolution rate, a pseudomorphic replacement takes place. The degree of epitaxy (or lattice misfit) at the interface, the relative solubility of parent and product phases and the molar volume changes control the microstructure of the product phase. The key observation is that these factors control the generation of porosity as well as reaction induced fracturing ahead of the main reaction interface. Porosity is generated whenever the amount of parent dissolved is greater than the amount of product reprecipitated, irrespective of the molar volume changes of the solid reactants and products. This porosity is occupied by the fluid phase during the reaction, and provides a mechanism of mass transport and fluid movement between reaction interface and the surrounding phases. The reaction-induced fracturing

  2. Use of Chiral Signatures of Organochlorine Pesticides in Asian, Trans-Pacific, and Western U.S. Air Masses to Identify Source Regions

    NASA Astrophysics Data System (ADS)

    Simonich, S.; Genualdi, S.; Primbs, T.; Ryoo, K.; Bidleman, T.; Jantunen, L.

    2008-12-01

    Chiral signatures of organochlorine pesticides were measured in air masses on Okinawa Japan and three remote locations in the Pacific Northwestern U.S.: Cheeka Peak Observatory (CPO), a coastal site on the Olympic Peninsula of Washington at 500 m; Mary's Peak Observatory (MPO), a site at 1250 m in Oregon's Coast range; and Mt. Bachelor Observatory (MBO), a site at 2300 m in Oregon's Cascade range. The chiral signature of composite soil samples collected from agricultural areas in China and South Korea were also measured. Racemic alpha-HCH was measured in Asian air masses and soil from China and South Korea. Non-racemic (enantiomer fraction (EF) = 0.528 ± 0.0048) alpha-HCH was measured in regional air masses at CPO, a marine boundary layer site, and may reflect volatilization from the Pacific Ocean and regional soils. However, during trans-Pacific transport events at CPO, the EFs were significantly (p-value <0.001) more racemic (EF = 0.513 ± 0.0003). Racemic alpha-HCH was consistently measured in trans- Pacific air masses at MPO and MBO. The alpha-HCH EFs in CPO, MPO, and MBO air masses were positively correlated (p-value = 0.0017) with the amount of time the air mass spent above the boundary layer along the 10-day back air mass trajectory prior to being sampled. This suggests that the alpha-HCH in the free troposphere is racemic. The racemic signatures of cis and trans chlordane in air masses at all four air sampling sites suggest that Asian and U.S. urban areas continue to be sources of chlordanes that have not yet undergone biotransformation.

  3. Turbulence and mass-transports in stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Ghate, Virendra P.

    Boundary layer (BL) stratocumulus clouds are an important factor in the earth's radiation budget due to their high albedo and low cloud top heights. Continental BL stratocumulus clouds are closely coupled to the diurnal cycle and the turbulence in the BL affecting the surface energy and moisture budgets. In this study the turbulence and mass-transport structures in continental BL stratocumulus clouds are studied using data from the Atmospheric Radiation Measurements (ARM)'s Southern Great Plains (SGP) observing facility located at Lamont, Oklahoma. High temporal (4 sec) and spatial (45 m) resolution observations from a vertically pointing 35 GHz cloud Doppler radar were used to obtain the in-cloud vertical velocity probability density function (pdf) in the absence of precipitation size hydrometeors. A total of 70 hours of radar data were analyzed to report half-hourly statistics of vertical velocity variance, skewness, updraft fraction, downdraft and velocity binned mass-flux at five cloud depth normalized levels. The variance showed a general decrease with increase in height in the cloud layer while the skewness is weakly positive in the cloud layer and negative near cloud top. The updraft fraction decreases with height with the decrease mainly occurring in the upper half of the cloud layer. The downdraft fraction increases with decrease in height with the increase being almost linear. The velocity of eddies responsible for maximum mass-transport decreases from of 0.4 ms-1 near cloud base to 0.2 ms-1 near cloud top. The half-hour periods were then classified based on the surface buoyancy flux as stable or unstable and it was found that the variance near cloud top is higher during the stable periods as compared to the unstable periods. Classification was also made based on the cloud depth to BL depth ratio (CBR) being greater or less than 0.3. The variance profile was similar for the classification while the skewness was almost zero during periods with CBR less 0

  4. Mass transport analysis in the near field of geologic repository

    NASA Astrophysics Data System (ADS)

    Lim, Doo-Hyun

    A two-dimensional model for the groundwater flow and the contaminant transport has been developed. A water-saturated, deep geologic repository for high-level radioactive wastes (HLW) is considered. The region containing a waste canister, a backfill material around the canister, and the near-field rock (NFR) surrounding the backfill is considered. Discrete-Fracture Network (DFN) is generated in the NFR based on distribution functions of the fracture geometry parameters by random sampling. Flow-bearing fracture network is identified, and is transformed into an equivalent continuous porous medium in two different ways without calculating flow rates through individual fractures. The first transformation is applied locally, generating a heterogeneous porous medium. The second transformation is applied for the entire NFR, resulting in a homogeneous porous medium. While the heterogeneous porous medium is considered to represent characteristics of water flow in DFN better than the homogeneous porous medium, the homogeneous porous medium was often used in previous performance assessment studies for its simplicity. After these transformations, the spatial distribution of groundwater flow rate is calculated by a finite element method. The numerical results for the total discharge at the outer boundary of the homogenized NFR after the second transformation are benchmarked by analytical solutions with a relative difference smaller than 0.55%. The contaminant transport is simulated by a random-walk particle-tracking method, based on the obtained flow-rate distribution. Previous study for a step equation that determines the movement of contaminant particles has been critically reviewed. Numerical results obtained by the first and second transformations have been compared. The second transformation gives smaller mean values of the residence time of particles in the NFR and greater mean values of the mass absorption rate at the outer boundary of NFR than the first one does. Thus

  5. Problems and issues for short-haul air transportation.

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr.

    1972-01-01

    The problems of developing an efficient short-haul air system are not primarily technical, but economic and political. The key issues are whether the community will accept new and expanded air facilities, what standards of service the passengers will demand and how the system will evolve. The solutions recommended are national in scope and require the federal government to take a leading role.

  6. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  7. The Analysis of PPM Levels of Gases in Air by Photoionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Driscoll, John N.; Warneck, Peter

    1973-01-01

    Discusses analysis of trace gases in air by photoionization mass spectrometer. It is shown that the necessary sensitivity can be obtained by eliminating the UV monochromator and using direct ionization with a hydrogen light source. (JP)

  8. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  9. Journal of Air Transportation World Wide, Volume 3, No. 1. Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor)

    1998-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  10. Journal of Air Transportation World Wide, Volume 2, No. 1. Volume 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor)

    1997-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a key focal point of the journal will be in the area of aviation administration and policy.

  11. Journal of Air Transportation World Wide, Volume 4, No. 2. Volume 4

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    1999-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  12. Journal of Air Transportation World Wide, Volume 5, No. 2. Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Browen, Brent D.

    2000-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  13. Charge and discharge of polar cold air mass in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Kanno, Yuki; Abdillah, Muhammad Rais; Iwasaki, Toshiki

    2015-09-01

    This study shows the variability of polar cold air mass amount below potential temperature of 280 K, and north of 45°N can be understood with a concept of charge and discharge, where anomalously large daily discharge indicates an intermittent occurrence of cold air outbreak. The polar cold air mass amount north of 45°N gradually charges up due to diabatic cooling but dramatically discharges due to cold air outbreak with a pulse width of about 5 days. Cold air outbreaks tend to bring colder winter in East Asia and the east coast of North America, while warmer winter prevails on the northern side of these regions. The cold air mass amount south of 45°N increases just after a cold air outbreak but returns to the normal level soon because of its life time of about 3 days. Therefore, monthly mean of total cold air mass amount in the Northern Hemisphere is negatively correlated with the monthly mean discharge.

  14. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  15. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  16. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  17. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  18. Pan American Airways/Naval Air Transport Service/destroyer base site showing brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing brick and concrete paving of patio, and circular planters. View facing east. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  19. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  20. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  1. Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion

    NASA Technical Reports Server (NTRS)

    Correnti, Vincenzo; Ignaccolo, Matteo; Capri, Salvatore; Inturri, Giuseppe

    2006-01-01

    The volume of air traffic worldwide is still in constant growth despite unfair events that sometimes occur. The demand for regional air transport is also increasing, thanks in part to the use of new vehicles purposely designed for short range flights which make this means of transport more attractive than in the past. This paper studies the possibility of using aircraft capable of vertical or short takeoff or landing (V/STOL), in particular the tiltrotor, in the regional air transport market and the impact on airport capacity that the use of this craft would have. With this in mind the advantages and disadvantages of using this vehicle are identified, as well as the changes to be made to the air transport system in order to exploit its full potential.

  2. Mass transport, faceting and behavior of dislocations in GaN

    SciTech Connect

    Nitta, S.; Kashima, T.; Kariya, M.; Yukawa, Y.; Yamaguchi, S.; Amano, H.; Akasaki, I.

    2000-07-01

    The behavior of threading dislocations during mass transport of GaN was investigated in detail by transmission electron microscopy. Mass transport occurred at the surface. Therefore, growing species are supplied from the in-plane direction. The behavior of threading dislocations was found to be strongly affected by the mass transport process as well as the high crystallographic anisotropy of the surface energy of the facets particular to GaN.

  3. 77 FR 38747 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Privacy Act statement in the Federal Register published on April 11, 2000 (65 FR 19477-78), or you may... implementing section 710 of AIR-21. See 68 FR 47798. The rule required air carriers that provide scheduled... regulations. See 70 FR 7392. The rule is codified at 14 CFR 234.13. Section 234.13 requires air carriers...

  4. The latent fingerprint in mass transport of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  5. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.

  6. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  7. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  8. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Astrophysics Data System (ADS)

    Gordon, S.

    1982-07-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  9. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  10. A proposed method for quantifying low-air-loss mattress performance by moisture transport.

    PubMed

    Figliola, Robert S

    2003-01-01

    Because they are believed to control the microclimate of the skin by removing or reducing perspiration accumulation and providing localized cooling, low-air-loss mattress systems are used for the treatment and prevention of pressure ulcers. However, no clear, universally agreed upon definition exists for their design, and reproducible standards on which to base their performance or assess their anticipated clinical effect are lacking. A clinically relevant, reproducible, mechanistic, controlled laboratory test methodology was developed to assess and compare the moisture transport properties of a variety of low-air-loss products by measuring and balancing the complete moisture transport into and out of low-air-loss mattress systems. Using a controlled and defined operating environment, the low-air-loss system is moisture- and weight-loaded using a patient skin moisture analog. Moisture and air transport properties into and out of the environment are measured. Total moisture balance, comparing total moisture change of the analog against the time-based moisture transport data, validates the results. Using mattresses from various manufacturers, time-based data using the study method showed important differences in low-air-loss characteristics related to mattress system design, performance, and function. The observed time-averaged moisture transport performance values indicate that several systems meet an acceptable minimum level of performance, but performance levels between different low-air-loss mattress systems vary markedly. PMID:12532032

  11. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  12. Identifying and quantifying transported vs. local sources of New York City PM 2.5 fine particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Lall, Ramona; Thurston, George D.

    New York City (NYC) is presently in violation of the nation's PM 2.5 annual mass standard, and will have to take actions to control the sources contributing to these violations. This paper seeks to differentiate the impact of long-range transported aerosols on the air quality of downtown NYC, so that the roles of local sources can more clearly be evaluated. Past source apportionment studies have considered single sites individually in their source apportionment analyses to identify and determine sources affecting that site, often finding secondary sulfates to be an important contributor, but not being able to quantify the portion that is transported vs. local. In this study, a rural site located in Sterling Forest, NY, which is near to the NYC area, but unaffected by local NYC sources, is instead used as a reference to separate the portion of the aerosol that is transported to our Manhattan, NYC site before conducting the source apportionment analysis. Sterling Forest is confirmed as a background site via elemental comparisons with NYC during regional transport episodes of Asian and Sahara sandstorm dusts, as well as by comparisons with a second background site in Chester, NJ. Two different approaches that incorporate Sterling Forest background data into the NYC source apportionment analysis are then applied to quantify local vs. transported aerosols. Six source categories are identified for NYC: regional transported sulfate, trans-continental desert dust, traffic, residual oil, "local" dust and World Trade Center fires pollution. Of these, the transported sulfates and trans-continental desert dust accounted for nearly half of the total PM 2.5 mass in Manhattan during 2001, with more than half coming from these transported sources during the summer months. More than 90% of the Manhattan elemental carbon was found to be of local origins. Conversely, roughly 90% of the NYC sulfate mass was identified as transported into the city. Our results indicate that transported

  13. Impact of Clean Air Regulations on Nitrogen Fate and Transport in Neuse River Basin

    EPA Science Inventory

    We investigated impacts of Clean Air Act (CAA) nitrogen emissions regulations on the fate and transport of nitrogen for two watersheds in the Neuse River Basin. The Soil and Water Assessment Tool (SWAT) and the Community Multi-Scale Air Quality (CMAQ) models were used. Two scenar...

  14. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  15. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  16. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  17. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Wet leasing of aircraft and other...: CERTIFICATION AND OPERATIONS CERTIFICATION: AIR CARRIERS AND COMMERCIAL OPERATORS Certification, Operations... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  18. The Relationship of Land Use and Transportation Planning to Air Quality Management.

    ERIC Educational Resources Information Center

    Hagevik, George, Ed.

    Due to a lack of communication between urban, regional, and transportation planning agencies and air pollution control agencies, cooperative efforts in environmental planning have been nearly non-existent. This traditional lack of communication and understanding serves to obscure the fact that air pollution control agencies and planning agencies…

  19. Critical Mass Academic Planning. AIR Forum Paper 1978.

    ERIC Educational Resources Information Center

    Jones, Larry R.

    Methods of academic resource planning for research-oriented colleges and universities are explored. Focus is on resource allocation that is not strictly related to overall institutional enrollment level, but with the desirability of maintaining a minimum or "critical mass" levels of program breadth and quality. The purpose of critical mass…

  20. Piloted methane/air jet flames : transport effects and aspects of scalar structure.

    SciTech Connect

    Karpetis, Adionos N.; Chen, J. Y.; Barlow, Robert S.; Frank, Jonathan H.

    2005-02-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  1. Piloted methane/air jet flames: Transport effects and aspects of scalar structure

    SciTech Connect

    Barlow, R.S.; Frank, J.H.; Karpetis, A.N.; Chen, J.-Y.

    2005-12-01

    Previously unpublished results from multiscalar point measurements in the series of piloted CH{sub 4}/air jet flames [R.S. Barlow, J.H. Frank, Proc. Combust. Inst. 27 (1998) 1087-1095] are presented and analyzed. The emphasis is on features of the data that reveal the relative importance of molecular diffusion and turbulent transport in these flames. The complete series A-F is considered. This includes laminar, transitional, and turbulent flames spanning a range in Reynolds number from 1100 to 44,800. Results on conditional means of species mass fractions, the differential diffusion parameter, and the state of the water-gas shift reaction all show that there is an evolution in these flames from a scalar structure dominated by molecular diffusion to one dominated by turbulent transport. Long records of 6000 single-point samples at each of several selected locations in flame D are used to quantify the cross-stream (radial) dependence of conditional statistics of measured scalars. The cross-stream dependence of the conditional scalar dissipation is determined from 6000-shot, line-imaging measurements at selected locations. The cross-stream dependence of reactive scalars, which is most significant in the near field of the jet flame, is attributed to radial differences in both convective and local time scales of the flow. Results illustrate some potential limitations of common modeling assumptions when applied to laboratory-scale flames and, thus, provide a more complete context for interpretation of comparisons between experiments and model calculations.

  2. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  3. Effect of air sparging on fate and transport of trichloroethylene in chambers with alfalfa plants

    SciTech Connect

    Zhang, Q.; Hu, J.; Erickson, L.E.; Davis, L.C.

    1997-12-31

    To study the effect of air sparging in soil with trichloroethylene present as a dense nonaqueous phase, air was supplied through pipes installed at the bottom of two chambers planted with alfalfa. Air input rate was 2.14 L/m{sup 2}/day. The fate of trichloroethylene (TCE) was investigated by monitoring TCE concentration in both outflow groundwater and soil gas. Comparison of these results with those of the previous study without air sparging indicates that air sparging appreciably increases the groundwater concentration of TCE. The soil gas at the surface shows even greater concentration difference. The flux of TCE to the atmosphere is increased significantly by air input. Accordingly, the authors can conclude that air sparging improved mass transfer of TCE from the nonaqueous phase to groundwater phase. Air sparging appeared to negatively impact the health of the alfalfa because of the elevated TCE present in the vadose zone of the chamber.

  4. Assessment of the impact of advanced air-transport technology

    NASA Technical Reports Server (NTRS)

    Maxwell, R. L.; Dickinson, L. V., Jr.

    1981-01-01

    The long term prospects for commercial supersonic transportation appear attractive enough to keep supersonic research active and reasonably healthy. On the other hand, the uncertainties surrounding an advanced supersonic transport, (AST) specifically fuel price, fuel availability and noise, are too significant to warrant an accelerated research and development program until they are better resolved. It is estimated that an AST could capture about $50 billion (1979 dollars) of the potential $150 billion in sales up to the year 2010.

  5. Conclusions and recommendations. [for problems in energy situation, air transportation, and hydrogen fuel

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conclusions and recommendations are presented for an analysis of the total energy situation; the effect of the energy problem on air transportation; and hydrogen fuel for aircraft. Properties and production costs of fuels, future prediction for energy and transportation, and economic aspects of hydrogen production are appended.

  6. 75 FR 13332 - Application of Charter Air Transport, Inc. for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority Correction In notice document 2010-5555 appearing on page 12328 in the issue of Monday, March 15, 2010, make...

  7. The Role of the Federal Government in the Development of the US Air Transportation System

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    Reviewed are the roles of the various Federal agencies in the regulation, control, and development of the Air System, with major emphasis on the Department of Transportation (Office of the Secretary, Federal Aviation Administration, and National Transportation Safety Board) and the Civil Aeronautics Board.

  8. 14 CFR 221.61 - Rules and regulations governing foreign air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Rules and regulations governing foreign air transportation. 221.61 Section 221.61 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Governing Tariffs § 221.61 Rules and...

  9. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS...

  10. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  11. Air transport in connection with the Hiroshima-Nagasaki dose-reevaluation effort

    SciTech Connect

    Estes, G.P.; Little, R.C.; Seamon, R.E.; Soran, P.D.

    1982-07-01

    During calendar year 1981 one man-year of effort on the part of the Monte Carlo Group at Los Alamos was committed to the renormalization of cross sections for use in air-over-ground calculations. Calculations of the Army Pulsed Reactor Division (APRD) measurements, the Oak Ridge National Laboratory (ORNL) broomstick experiments, and the Lawrence Livermore National Laboratory (LLNL) pulsed sphere experiments carried out with the view to renormalizing the air transport cross sections are described in this report. On the basis of our calculations, it is impossible to conclude that there is anything grossly in error with the air transport cross sections.

  12. Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy

    SciTech Connect

    Tsilingiris, P.T.

    2010-02-15

    In the present investigation efforts have been devoted towards developing an analysis suitable for heat and mass transfer processes modeling in solar distillation systems, when they are operating at higher temperatures. For this purpose the use of Lewis relation is not new although its validity is based on the assumptions of identical boundary layer concentration and temperature distributions, as well as low mass flux conditions, which are not usually met in solar distillation systems operating at higher temperatures associated with considerable mass transfer rates. The present analysis, taking into consideration these conditions and the temperature dependence of all pertinent thermophysical properties of the saturated binary mixture of water vapor and dry air, leads to the development of an improved predictive accuracy model. This model, having undergone successful first order validation against earlier reported measurements from the literature, appears to offer more accurate predictions of the transport processes and mass flow rate yield of solar stills when operated at elevated temperatures. (author)

  13. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2013-02-01

    Recently, two Types of Ice Clouds (TICs) properties have been characterized using ISDAC airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (<10 L-1) and larger (>110 μm) ice crystals, a larger ice supersaturation (>15%) and a fewer ice nuclei (IN) concentration (<2 order of magnitude) when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B) because of the reduced competition for the same available moisture. Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  14. On the relationship between Arctic ice clouds and polluted air masses over the North Slope of Alaska in April 2008

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Pelon, J.; Girard, E.; Ancellet, G.; Blanchet, J. P.; Delanoë, J.

    2014-02-01

    Recently, two types of ice clouds (TICs) properties have been characterized using the Indirect and Semi-Direct Aerosol Campaign (ISDAC) airborne measurements (Alaska, April 2008). TIC-2B were characterized by fewer (< 10 L-1) and larger (> 110 μm) ice crystals, and a larger ice supersaturation (> 15%) compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of ice nuclei (IN) through acidification, resulting in a smaller concentration of larger ice crystals and leading to precipitation (e.g., cloud regime TIC-2B). Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008) and TIC-2B (15 April 2008) is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from three potential SO2 emission sources into Alaska: eastern China and Siberia where anthropogenic and biomass burning emissions, respectively, are produced, and the volcanic region of the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China and Siberia over Alaska, most probably with the contribution of acidic volcanic aerosol during the TIC-2B period. Observation Monitoring Instrument (OMI) satellite observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results support the hypothesis that acidic coating on IN could be at the origin of the formation of TIC-2B.

  15. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  16. Analysis of operational requirements for medium density air transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market was studied to determine the aircraft design and operational requirements. The impact of operational characteristics on the air travel system and the economic viability of the study aircraft were also evaluated. Medium density is defined in terms of numbers of people transported (20 to 500 passengers per day on round trip routes), and frequency of service ( a minumium of two and maximum of eight round trips per day) for 10 regional carriers. The operational characteristics of aircraft best suited to serve the medium density air transportation market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations could be conducted. The impact of selected aircraft on the medium density market, economics, and operations is ascertained. Research and technology objectives for future programs in medium density air transportation are identified and ranked.

  17. Transport dynamics of mass failures along weakly cohesive clinoform foresets

    NASA Astrophysics Data System (ADS)

    Abeyta, A.; Paola, C.

    2012-12-01

    The initiation mechanisms of sediment gravity flows are poorly understood. Previous studies have created sediment gravity flows by releasing dense water-sediment mixtures into ambient water. One limitation to these studies is that the slurries are premixed and are injected into the water column such that the initial properties of the flow - density, composition and momentum flux - are predetermined. This precludes observation of the processes that initiate the flows and set these initial conditions. As a result, there is a gap in our understanding of how submarine gravity flows initiate and what sets their initial conditions. Here we use a new experimental method that allows a range of gravity flows to self-generate. Building a clinoform using a cohesive mixture of walnut-shell sand and kaolinte, allows the foreset to build up and fail episodically, generating spontaneous sediment gravity flows. Slopes undergo a series of morphological changes prior to failure. The slope develops a concave shape that becomes exaggerated as deposition continues. This morphology leaves the slope in a metastable state. Either of two mechanisms triggers destabilization of the slope: slumping or bed-load transport. Once the slope is destabilized, failure is initiated. We also investigated the influence of clinoform progradation rates on failure size and frequency. We conducted experiments over a range of water and sediment discharge rates (0.007 to 0.036 liters of water per second, 0.50 to 1.28 g/s sediment). Neither failure size nor failure frequency changes with discharge rate; instead, increases in sediment supply are taken up by changes in the partitioning of sediment between the steep upper foreset and the more gradual delta-front apron below. Sediment is delivered to the delta-front apron by a form of semi-continuous slow creep along the foreset. This slow creep is a failure mode that has been under-appreciated in the submarine mass-flow literature. The independence of failure

  18. Transporting Students into Thin Air: Using Science to Enhance Reading

    ERIC Educational Resources Information Center

    Bricker, Patricia; Rogowski, Nick; Hedt, Melissa; Rolfe, Nadeen

    2010-01-01

    The "Into Thin Air" unit, based on the book by Jon Krakauer, was designed as an interdisciplinary unit for a small group of academically gifted sixth-grade students. It included hands-on, minds-on activities that would immerse students in the scientific, social, and personal struggles people face while attempting to climb the world's tallest…

  19. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    NASA Technical Reports Server (NTRS)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  20. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  1. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  2. 78 FR 59880 - Enhanced Consumer Protections for Charter Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Privacy Act statement in the Federal Register published on April 11, 2000 (65 FR 19477-78), or you may....'' 31 FR 4771, March 22, 1966. Clearly the CAB and the Department, as well as the DOD, considered... transportation by airlines. There is a special category in Part 241 for reporting of ``Nonscheduled...

  3. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  4. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  5. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  6. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  7. MODELING TRANSPORT BY CONVECTIVE CLOUDS FOR REGIONAL AIR POLLUTION MODELS

    EPA Science Inventory

    A model is developed to account for regional scale vertical transport of pollutants from the mixed layer to the overlying free troposphere by an ensemble of non-precipitating cumulus convective clouds. The model determines acceptable cloud classes for given atmospheric state repr...

  8. Conflict Detection and Resolution for Future Air Transportation Management

    NASA Technical Reports Server (NTRS)

    Krozel, Jimmy; Peters, Mark E.; Hunter, George

    1997-01-01

    With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.

  9. Integrated mass transportation system study/definition/implementation program definition

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Deptula, D. A.; Yorke, G. G.

    1975-01-01

    Specific actions needed to plan and effect transportation system improvements are identified within the constraints of limited financial, energy and land use resources, and diverse community requirements. A specific program is described which would develop the necessary generalized methodology for devising improved transportation systems and evaluate them against specific criteria for intermodal and intramodal optimization. A consistent, generalized method is provided for study and evaluation of transportation system improvements.

  10. Analysis of Ozone Transportation in Tlaxcala-Puebla Mexico Air Basin

    NASA Astrophysics Data System (ADS)

    Barrera-Huertas, H.; Torres, R.; Ruiz-Suárez, L. G.; Garcia, J.; Gutierrez, W.; Torres, A.

    2014-12-01

    Preliminary results of an investigation conducted between March and April 2012 on the influence of air pollutants transport in the Puebla-Tlaxcala Valley airshed are presented. The campaign included ozone (O3), nitrogen dioxide (NO2) and meteorological variables monitoring at surface in Huaquechula, Chipilo and Amozoc rural sites, and measurements of O3 vertical profile O3 and meteorology in Chipilo. The synoptic conditions during the campaign showed dominance of "Norte" conditions favoring air masses circulation from Pacific Ocean crossing southern Mexican Plateau to the Gulf of Mexico that influences the establishment of evening southeasterly winds in the Puebla-Tlaxcala Valley. Wind roses and contaminants analysis in surface for O3 during entire campaign indicates that before noon the movement of air masses was dominated by runoff of Malinche toward the southeast and south of the valley; and in the afternoon a regional pattern of winds from southwest Valley prevails coming from Cuautla Valley and south of Morelos State. The analysis of three representative days of atmospheric circulation in the valley as well as anthropogenic diurnal activity, a rate of morning increase in O3 concentrations similar at all three sites was observed, even in the absence of precursors such as NO2 during some weekends. By analyzing and engage data from O3 vertical profile and surface meteorology data, we could infer that there are minimal ozone contributions from local sources, but important from regional origin, and even O3 entrainment in height brought to the surface when mixing layer is growing. The back trajectory analysis from Chipilo at noon indicates that could be additional contributions of O3 from both Cuautla Valley and other areas of pollutants emission such as Tula, (in the north of Mexico City), and that weekend effect with the occurrence of high O3 levels observed there extends to this region. Although interbasin exchange of pollutants between the Puebla-Tlaxcala Valley

  11. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Zhu, T.; Zhang, Q. H.; Li, C. C.; Shu, H. L.; Ying, Y.; Dai, Z. P.; Wang, X.; Liu, X. Y.; Liang, A. M.; Shen, H. X.; Yi, B. Q.

    2012-06-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000-2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Each CT was characterized with distinct local meteorology and air mass origin. CT 1 (high pressure to the west with a strong pressure gradient) was characterized by a northwestern air mass origin, with the smallest local and southeasterly air mass sources, and CT 6 (high pressure to the northwest) had air mass sources mostly from the north and east. On the contrary, CTs 5, 8, and 9 (weak pressure field, high pressure to the east, and low pressure to the northwest, respectively) were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, NOx, O3, AOD, and low visibility) was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1σ) in Beijing for CTs 1 and 6 during 2000-2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, low visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005-2009 were 90.3 ± 76.3 μg m-3, 111.7 ± 89.6 μg m-3, 173.4 ± 105.8 μg m-3, 158.4 ± 90.0 μg m-3, and 151.2 ± 93.1 μg m-3, respectively. Analysis of the relationship between

  12. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  13. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  14. Numerical investigation of interfacial transport resistance due to water droplets in proton exchange membrane fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2013-12-01

    Oxygen transport resistance at the air flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton exchange membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated air flow channel using a commercially available package, COMSOL Multiphysics®. A droplet is represented as a solid obstruction placed on the GDL-channel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean air velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC air flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean air velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number.

  15. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  16. Journal of Air Transportation, Volume 11, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); EspiritoSanto, Jr. Respicio (Editor)

    2006-01-01

    The following topics were covered: How Do Airlines Perceive That Strategic Alliances Affect Their Individual Branding?; Airline Choice for Domestic Flights in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model; Consequences of Feeder Delays for the Success of A380 Operations; Inside the Mechanics of Network Development: How Competition and Strategy Reorganize European Air Traffic; The Opportunities and Threats of Turning Airports into Hubs; Another Approach to Enhance Airline Safety: Using System Safety Tools; A Simulation Based Approach for Contingency Planning for Aircraft Turnaround Activities in Airline Hubs; and The Council on Aviation Accreditation: Part One- Historical Foundation.

  17. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  18. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  19. Variability of local PM10 mass concentrations in connection with blocking air circulation

    NASA Astrophysics Data System (ADS)

    Ştefan, Sabina; Roman, Iuliana

    2015-06-01

    The aim of this paper is to analyze the temporal variability of Particulate Matter mass concentrations in connection with air circulation, for eight rural sites situated in the Central and Eastern parts of Europe. The stations from Poland, Hungary and Romania are rural stations without sources of pollutants. The analysis covers four winters, between December 2004 and February 2008. The pollution episodes were selected to explain air circulation influence. The results show that the causes of pollution were local, due to high mean sea level pressure and the blocking, as air circulation on large scale, was dominant in the cases of enhanced pollution in the selected area.

  20. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  1. The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles

    PubMed Central

    Guimerà, R.; Mossa, S.; Turtschi, A.; Amaral, L. A. N.

    2005-01-01

    We analyze the global structure of the worldwide air transportation network, a critical infrastructure with an enormous impact on local, national, and international economies. We find that the worldwide air transportation network is a scale-free small-world network. In contrast to the prediction of scale-free network models, however, we find that the most connected cities are not necessarily the most central, resulting in anomalous values of the centrality. We demonstrate that these anomalies arise because of the multicommunity structure of the network. We identify the communities in the air transportation network and show that the community structure cannot be explained solely based on geographical constraints and that geopolitical considerations have to be taken into account. We identify each city's global role based on its pattern of intercommunity and intracommunity connections, which enables us to obtain scale-specific representations of the network. PMID:15911778

  2. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    NASA Astrophysics Data System (ADS)

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-11-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis.

  3. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    PubMed Central

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  4. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an animal... of transportation, is being kept as a pet in a family household in the United States....

  5. 14 CFR 234.13 - Reports by air carriers on incidents involving animals during air transport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Consumer Protection Division a report on any incidents involving the loss, injury, or death of an animal... of transportation, is being kept as a pet in a family household in the United States....

  6. Fundamental mass transfer model for indoor air emissions from surface coatings

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1994-01-01

    The paper discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architectural coatings. As a first step, a simple model based on Fick's Law of Diffusion has been developed. In the model, the mass transfer rate is assumed to be controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining in the source at any point in time. Both static and dynamic chamber tests were conducted to obtain model validation data. Further validation experiments were conducted in a test house. Results of these tests are presented.

  7. The Bunny: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Fulton, David; Gallagher, Patrick; Grannan, William; Martin, Jennifer; Mastej, Nicole; Wujek, Brett

    1993-01-01

    The Bunny is a single-engine, 100 passenger commercial transport designed to serve the high density short-to-medium range markets in AEROWORLD. The aircraft's design range is 10,000 feet at a cruise velocity of 30 ft/s. The aircraft features a low wing which incorporates polyhedral for roll control. Yaw and pitch control are accomplished by a rudder and elevator, respectively. Propulsion is provided by a nose-mounted Astro 15 electric motor powered by thirteen 1.2 V, 1000 mah batteries with a Zinger 12-6 propeller. The aircraft is structurally designed with a safety factor of 1.5 and is constructed primarily of balsa, bass, and birch wood. Passenger seating is arranged on two levels, with three-abreast on the lower level and two-abreast on the upper level. The factors which had the most significant influence on the final design were the direct operating cost and the take-off distance. The primary strength of The Bunny is its ability to compete economically with the HB-40. At full capacity and mid-range fuel costs, the cost per seat per thousand feet (CPSK) of this aircraft is 25% less than the HB-40. Another principal strength is its ability to operate in all airports in AEROWORLD. Also, The Bunny's two-piece removable wing is an advantage from a transportability standpoint.

  8. Driving Parameters for Distributed and Centralized Air Transportation Architectures

    NASA Technical Reports Server (NTRS)

    Feron, Eric

    2001-01-01

    This report considers the problem of intersecting aircraft flows under decentralized conflict avoidance rules. Using an Eulerian standpoint (aircraft flow through a fixed control volume), new air traffic control models and scenarios are defined that enable the study of long-term airspace stability problems. Considering a class of two intersecting aircraft flows, it is shown that airspace stability, defined both in terms of safety and performance, is preserved under decentralized conflict resolution algorithms. Performance bounds are derived for the aircraft flow problem under different maneuver models. Besides analytical approaches, numerical examples are presented to test the theoretical results, as well as to generate some insight about the structure of the traffic flow after resolution. Considering more than two intersecting aircraft flows, simulations indicate that flow stability may not be guaranteed under simple conflict avoidance rules. Finally, a comparison is made with centralized strategies to conflict resolution.

  9. The RTL-46: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Dunbar, Christian; Prette, John; Andersen, Gerald; Sprunck, Martin; Vogel, Christine; Rivera, Francisco

    1993-01-01

    The RTL-46 provides an aircraft which utilizes advanced technology within the fictional Aeroworld market to better service the air travel customers and airlines of Aeroworld. The RTL-46 is designed to serve the portion of the travel market which flies less than 10,000 feet per flight. The design cruise velocity for the aircraft is 35 ft/sec, which rapidly expedites travel through Aeroworld. The major focus of the endeavor was to design an aircraft which would serve the Aeroworld market better than the existing aircraft, the HB-40. This could have been done through targeting another portion of the Aeroworld market or through serving the current HB-40 market more effectively. Due to the fact that approximately 70 percent of the potential Aeroworld passengers desired flights of 10,000 ft or less, this range became the target market for the RTL-46.

  10. The role of technology as air transportation faces the fuel situation

    NASA Technical Reports Server (NTRS)

    Driver, C.

    1980-01-01

    Perspectives on the air transportation fuel stituation are discussed including intercity air traffic, airline fuel consumption, fuel price effects on ticket price, and projected traffic and fuel useage between now and the year 2000. Actions taken by the airlines to reduce consumption are reviewed, as well as efforts currently underway to improve fuel consumption. Longer range technology payoffs resulting from NASA research programs are reviewed and results from studies on the use of alternate fuels are discussed.

  11. The impact of changing technology on the demand for air transportation

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.; Taneja, N. K.

    1978-01-01

    Demand models for air transportation that are sensitive to the impact of changing technology were developed. The models are responsive to potential changes in technology, and to changing economic, social, and political factors as well. In addition to anticipating the wide differences in the factors influencing the demand for long haul and short haul air travel, the models were designed to clearly distinguish among the unique features of these markets.

  12. Upscaling transport with mass transfer models: Mean behavior and propagation of uncertainty

    NASA Astrophysics Data System (ADS)

    Fernã Ndez-Garcia, D.; Llerar-Meza, G.; Gómez-HernáNdez, J. Jaime

    2009-10-01

    The choice of an adequate large-scale conceptual transport model constitutes a major challenge associated with the upscaling of solute transport. Among the different alternatives to the classical advection-dispersion model, the (multirate) mass transfer model has been proposed as a valuable and convenient alternative to model the large-scale behavior of solute transport. This paper evaluates the use of mass transfer models as a constitutive equation for upscaling solute transport. To achieve this, we compare Monte Carlo simulations of solute transport at two different support scales. Transport simulations performed at the smallest scale represent a set of reference transport solutions described at a high resolution, which are contrasted against transport simulations obtained using an upscaled model (low resolution). Several formulations of the multirate mass transfer model, which differ in the type of memory function (single rate, double rate, and truncated power law), are used as a constitutive transport equation. The large-scale scenario represents a simplified model obtained by partially homogenizing the reference solution. Results show that the double-rate and the truncated power law mass transfer models are capable of properly describing the ensemble average behavior of the main features associated with the integrated breakthrough curves. However, the uncertainty associated with the upscaled mass transfer models was substantially smaller than that attributed to the reference solution. Importantly, the cumulative distribution function of concentrations associated with the upscaled model follows a distribution similar to the reference solution but with smaller statistical dispersion. The reason is that while appropriate memory functions can be used to preserve the residence time distribution of mass particles during upscaling, the lack of memory in space prevents the model from reproducing mass fluxes in all directions. Specifically, the reproduction of mass

  13. Journal of Air Transportation, Volume 9, No. 2. Volume 9, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Gudmundsson, Sveinn Vidar (Editor); Scarpellini, Nanette (Editor)

    2004-01-01

    The following articles from the "Journal of Air Transportation" were processed: Future Requirements and Concepts for Cabins of Blended Wing Body Configurations:A Scenario Approach; Future Scenarios for the European Airline Industry: A Marketing-Based Perspective; An Application of the Methodology for Assessment of the Sustainability of the Air Transport System; Modeling the Effect of Enlarged Seating Room on Passenger Preferences of Domestic Airlines in Taiwan; Developing a Fleet Standardization Index for Airline Pricing; and Future Airport Capacity Utilization in Germany: Peaked Congestion and/or Idle Capacity).

  14. Adjoint transport calculations for sensitivity analysis of the Hiroshima air-over-ground environment

    SciTech Connect

    Broadhead, B.L.; Cacuci, D.G.; Pace, J.V. III

    1984-01-01

    A major effort within the US Dose Reassessment Program is aimed at recalculating the transport of initial nuclear radiation in an air-over-ground environment. This paper is the first report of results from adjoint calculations in the Hiroshima air-over-ground environment. The calculations use a Hiroshima/Nagasaki multi-element ground, ENDF/B-V nuclear data, one-dimensional ANISN flux weighting for neutron and gamma cross sections, a source obtained by two-dimensional hydrodynamic and three-dimensional transport calculations, and best-estimate atmospheric conditions from Japanese sources. 7 references, 2 figures.

  15. Chemical and Trajectory Analysis of an Air Mass Plume from Asia

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Marrero, J. E.; Blake, D. R.

    2014-12-01

    Tracking the source of pollution events is important in understanding the transport of pollution plumes and impact on areas far from the source. Previous studies have shown that the rising contribution of Asian air pollution to the US has increased the number of days that pollution events exceed National Ambient Air Quality Standards (NAAQS). Whole air samples collected over the Edwards Air Force Base during a June 2014 NASA Student Airborne Research Program (SARP) flight exhibited enhancements in the concentrations of several compounds between 23-32 thousand feet. Chemical tracer analysis of these high altitude samples reveal that the air does not correspond to California emitted air. Chemical signatures in the plume, including high levels of OCS, chloroform, and methyl chloride, and low levels of methyl bromide, indicate that the plume was most heavily influence by coal combustion with contributions from biomass burning events from Asia. Low concentrations of ethene at the high altitude despite enhanced concentrations of ethane and ethyne suggest that this plume was aged. Further analysis of the plume using meteorological wind trajectories reveal that the plume had originated in China approximately 4-5 days prior. This is faster than results from previous studies that had found a Spring transport time of approximately 6 days.

  16. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    The UNO Aviation Institute Monograph Series began in 1994 as a key component of the education outreach and information transfer missions of the Aviation Institute and the NASA Nebraska Space Grant & EPSCoR Programs. The series is an outlet for aviation materials to be indexed and disseminated through an efficient medium. Publications are welcome in all aspects of aviation. Publication formats may include, but are not limited to, conference proceedings, bibliographies, research reports, manuals, technical reports, and other documents that should be archived and indexed for future reference by the aviation and world wide communities. The Conference proceedings of the 2003 Air Transport Research Society (ATRS) world conference, volume 5 is presented. The topics include: 1) The Temporal Configuration of Airline Networks in Europe; 2) Determination and Applications of Environmental Costs at Different Sized Airports-Aircraft Noise and Engine Emissions; 3) Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector; 4) An Assessment of the Sustainability of Air Transport System: Quantification of Indicators; 5) Regulation, Competition and Network Evolution in Aviation; 6) Regulation in the Air: Price and Frequency Cap; 7) Industry Consolidation and Future Airline Network Structures in Europe; 8) Application of Core Theory to the U.S. Airline Industry; 9) Air Freight Transshipment Route Choice Analysis; 10) A Fuzzy Approach of the Competition on Air Transport Market; and 11) Developing Passenger Demand Models for International Aviation from/to Egypt: A Case Study of Cairo Airport and Egyptair.

  17. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  18. A boundary element-Random walk model of mass transport in groundwater

    USGS Publications Warehouse

    Kemblowski, M.

    1986-01-01

    A boundary element solution to the convective mass transport in groundwater is presented. This solution produces a continuous velocity field and reduces the amount of data preparation time and bookkeeping. By combining this solution and the random walk procedure, a convective-dispersive mass transport model is obtained. This model may be easily used to simulate groundwater contamination problems. The accuracy of the boundary element model has been verified by reproducing the analytical solution to a two-dimensional convective mass transport problem. The method was also used to simulate a convective-dispersive problem. ?? 1986.

  19. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  20. Air transportation - Energy cost-effective or not

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1974-01-01

    Current technology aircraft have energy intensities comparable to ground transport modes. Operational changes can further improve their relative energy performance. Wide-body aircraft have already significantly improved fleet energy intensity and will continue to do so as they become more predominant. This is reflected in the 1972 fleet-wide energy intensity data which show both the domestic and international carriers at the lowest jet aircraft intensity levels ever attained. Technological improvements decreased the energy requirements of wide-body aircraft while also significantly reducing aircraft noise and pollution emission levels. Load factor is the most significant parameter affecting existing aircraft energy intensity and therefore should be raised. Fuel scarcity is now forcing such a change.

  1. The F-92 RELIANT: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The design proposal of a semester long design project by group 'F' for AE 441 is addressed. In formulating this design, the driving philosophy was not just to fulfill the mission requirements (discussed in chapter two), but to do so in a creative manner - this explains the unconventional aircraft design, named the F-92 RELIANT. Although unconventional, and perhaps more expensive to produce, the design has distinct advantages which could only be attained through such a creative design. Major components of the F-92 Reliant include: (1) unobstructed cargo bay, 1024 cu. in. capability; (2) loading ramp; (3) dual wing configuration; and (4) polyhedral wing configuration. These design components either originated or evolved to create an aircraft that would most effectively meet the goals of cargo transportation in AeroWorld at minimum cost.

  2. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  3. Electronic transport properties of pentacene single crystals upon exposure to air

    SciTech Connect

    Jurchescu, Oana D.; Baas, Jacob; Palstra, Thomas T.M.

    2005-08-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases the hole conduction, as in dark four O{sub 2} molecules introduce one charge carrier. This effect is enhanced by the presence of visible light. Contrarily, water, present in ambient air, is incorporated in the crystal lattice and forms trapping sites for injected charges.

  4. Electronic transport properties of pentacene single crystals upon exposure to air

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana D.; Baas, Jacob; Palstra, Thomas T. M.

    2005-08-01

    We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases the hole conduction, as in dark four O2 molecules introduce one charge carrier. This effect is enhanced by the presence of visible light. Contrarily, water, present in ambient air, is incorporated in the crystal lattice and forms trapping sites for injected charges.

  5. An investigation of short haul air transportation in the southeastern United States

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Yuan, H. S.

    1977-01-01

    The specific objectives of this stage of the study are numerous. First, an attempt is made to characterize the travel patterns in the study region, both in terms of origin destination patterns, and connecting and through trip patterns. Second, the structure of the air service in the region is characterized in an attempt to develop an understanding of the evolution of the short haul air transportation network. Finally, a look is taken at the socioeconomic environment of Atlanta and the region in order to seek an explanation for the historic evolution of short haul air travel activities and the rather high growth rates experienced in recent years.

  6. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations. PMID:9749937

  7. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Zhu, T.; Zhang, Q. H.; Li, C. C.; Shu, H. L.; Ying, Y.; Dai, Z. P.; Liu, X. Y.; Liang, A. M.; Shen, H. X.

    2011-12-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000-2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Nine CTs were characterized, with distinct local meteorology and air mass origins. CT 1 (high to the west with a strong pressure gradient) was characterized by a northwestern origin, with the smallest local and southeasterly air mass sources, and CT 6 (high to the northwest) had air mass sources mostly from the north and east. In contrast, CTs 5, 8, and 9 (unique, high to the east, and low to the northwest, respectively) were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, O3, AOD, and low visibility) was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1 σ) in Beijing for CTs 1 and 6 during 2000-2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, poor visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005-2009 were 90.3 ± 76.3 μg m-3, 111.7 ± 89.6 μg m-3, 173.4 ± 105.8 μg m-3, 158.4 ± 90.0 μg m-3, and 151.2 ± 93.1 μg m-3, respectively. Analysis of the relationship between circulation pattern and air quality during the emission control period

  8. Assessment of ambient ozone air quality and evidence of transport effects in eastern Kern County, California

    SciTech Connect

    Beutelman, H.P.; Hallman, P.K.; Franz, J.A.

    1998-12-31

    Edwards AFB is located in the Mojave desert of southern California. The bulk of the base is located in the eastern part of Kern County, and is classified as serious non-attainment for ozone. However, geographically the eastern part of Kern County is separated form the western part of the county by some of the tallest mountains in the continental US. It has long been suspected, but not well quantified, that the air quality in eastern Kern County is impacted by transport of ozone from the San Joaquin area (as well as possible transport from the Los Angeles Basin area). Because of the significance of the ozone non-attainment designation with regards to the Department of Defense Base Realignment and Closure process, improved assessment of ambient ozone air quality and possible routes of transport in eastern Kern County was required. This was accomplished by; installing and operating an ambient air quality monitoring station at Edwards AFB; and comparing at least one year of data (ozone, NO{sub x} and meteorological) from the Edwards AFB station with similar data from the California Air Resources Board operated stations in the upwind locations (along possible transport routes) of Edison (western Kern County), Mojave (eastern Kern County) and Lancaster (northern Los Angeles County). Empirical analysis of this and other data indicate that; (1) compared to western Kern County, eastern Kern County is in a significantly different and isolated air basin; (2) the peak ambient ozone levels in eastern Kern County are substantially lower than in western Kern County; (3) peak ambient ozone levels in eastern Kern County occur late afternoon/early evening and are indicative of transport of ozone and (4) direct transport of ozone from the San Joaquin and/or South Coast area does occur (given proper conditions). This paper will address the elements of this study and its conclusions.

  9. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

    NASA Astrophysics Data System (ADS)

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-04-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.

  10. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

    PubMed Central

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-01-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description—Darcy's law—fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media. PMID:25901931

  11. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media.

    PubMed

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-01-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media. PMID:25901931

  12. The Gold Rush: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Clarke, Amanda; Degiorgio, Chris; Galka, Edmund; Stumm, Albert; Valenta, Lisa; Winter, Tom

    1993-01-01

    The remotely piloted vehicle (RPV) GoldRush was designed to complete the mission of transporting passengers in AeroWorld at a lower cost per seat per thousand feet (CPSPK) than the competition, the HB-40. There were two major factors which were constant considerations in the design process. The cost of manufacturing was the most important. In light of this, the designs were kept as simple as possible while considering trade-offs in performance. For example, the wing was not tapered so that several ribs could be cut at one time. Also of major importance was the takeoff distance. In order to serve all the cities in AeroWorld it was necessary to maintain a takeoff distance requirement of 24 feet. The takeoff distance proved to be the number one force in driving the design process. The Astro 25 engine and 13 inch propellor, a large wing area, and the high lift Wortmann airfoil were all chosen in order to satisfy this objective.

  13. Inert gas purgebox for Fourier transform ion cyclotron resonance mass spectrometry of air-sensitive solids

    NASA Astrophysics Data System (ADS)

    May, Michael A.; Marshall, Alan G.

    1994-03-01

    A sealed rigid ``purgebox'' makes it possible to load air- and/or moisture-sensitive solids into the solids probe inlet of a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer. A pelletized sample is transferred (in a sealed canister) from a commercial drybox to a Lucite(R) purgebox. After the box is purged with inert gas, an attached glove manipulator is used to transfer the sample from the canister to the solids probe of the mass spectrometer. Once sealed inside the inlet, the sample is pre-evacuated and then passed into the high vacuum region of the instrument at ˜10-7 Torr. The purgebox is transparent, portable, and readily assembled/disassembled. Laser desorption FT/ICR mass spectra of the air- and moisture-sensitive solids, NbCl5. NbCl2(C5H5)2, and Zr(CH3)2(C5H5)2 are obtained without significant oxidation. The residual water vapor concentration inside the purgebox was measured as 100±20 ppm after a 90-min purge with dry nitrogen gas. High-resolution laser desorption/ionization mass spectrometry of air-sensitive solids becomes feasible with the present purgebox interface. With minor modification of the purgebox geometry, the present method could be adapted to any mass spectrometer equipped with a solid sample inlet.

  14. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis.

    PubMed

    Giannopoulos, G; Larcher, M; Casadei, F; Solomos, G

    2010-01-15

    Terrorist attacks in New York have shocked the world community showing clearly the vulnerability of air transport in such events. However, the terrorist attacks in Madrid and London showed that land mass transport infrastructure is equally vulnerable in case of similar attacks. The fact that there has not been substantial investment in the domain of risk analysis and evaluation of the possible effects due to such events in land mass transportation infrastructure leaves large room for new developments that could eventually fill this gap. In the present work using the finite element code EUROPLEXUS there has been a large effort to perform a complete study of the land mass infrastructure in case of explosion events. This study includes a train station, a metro station and a metro carriage providing thus valuable simulation data for a variety of different situations. For the analysis of these structures it has been necessary to apply a laser scanning method for the acquisition of geometrical data, to improve the simulation capabilities of EUROPLEXUS by adding failure capabilities for specific finite elements, to implement new material models (e.g. glass), and to add new modules that achieve data post-processing for the calculation of fatal and non-fatal injuries risk. The aforementioned improvements are explained in the present work with emphasis in the newly developed risk analysis features of EUROPLEXUS. PMID:19773121

  15. Variations of the glacio-marine air mass front in West Greenland through water vapor isotopes

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Lauder, A. M.; Posmentier, E. S.; Feng, X.

    2012-12-01

    While the isotopic distribution of precipitation has been widely used for research in hydrology, paleoclimatology, and ecology for decades, intensive isotopic studies of atmospheric water vapor has only recently been made possible by spectral-based technology. New instrumentation based on this technology opens up many opportunities to investigate short-term atmospheric dynamics involving the water cycle and moisture transport. We deployed a Los Gatos Water Vapor Isotope Analyzer (WVIA) at Kangerlussuaq, Greenland from July 21 to August 15, and measured the water vapor concentration and its isotopic ratios continuously at 10s intervals. A Danish Meteorological Institute site is located about 1 km from the site of the deployment, and meteorological data is collected at 30 min intervals. During the observation period, the vapor concentration of the ambient air ranges from 5608.4 to 11189.4 ppm; dD and d18O range from -254.5 to -177.7 ‰ and -34.2 to -23.2 ‰, respectively. The vapor content (dew point) and the isotopic ratios are both strongly controlled by the wind direction. The easterly winds are associated with dry, isotopically depleted air masses formed over the glacier, while westerly winds are associated with moist and isotopically enriched air masses from the marine/fjord surface. This region typically experiences katabatic winds off of the ice sheet to the east. However, during some afternoons, the wind shifts 180 degrees, blowing off the fjord to the west. This wind switch marks the onset of a sea breeze, and significant isotopic enrichment results. Enrichment in deuterium is up to 60 ‰ with a mean of 15‰, and oxygen-18 is enriched by 3‰ on average and up to 8 ‰. Other afternoons have no change in wind, and only small changes in humidity and vapor isotopic ratios. The humidity and isotopic variations suggest the local atmosphere circulation is dominated by relatively high-pressure systems above the cold glaciers and cool sea surface, and diurnal

  16. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    PubMed

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  17. Measurements of air pollution emission factors for marine transportation

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Balzani Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Pintér Csordás, A.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2012-12-01

    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The intercept of the regression line, 0.5 × 1016 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  18. Air transport of the patient requiring intra-aortic balloon pumping.

    PubMed

    Mertlich, G; Quaal, S J

    1989-09-01

    Air transport of the IABC patient requires a high level of skill and competence. The nurse caring for the IABP patient must be experienced in balloon pumping in a variety of settings (catheterization laboratory, operating room) and during unstable hemodynamic conditions, such as occur with arrhythmias, pacemakers, severe cardiogenic shock, and cardiac arrest. The nurse must be trained in all aspects of console operation and troubleshooting. Evanston Hospital, Evanston, Illinois, examined its experiences in ground transportation of 50 IABP patients over a 5-year period. The hospital has put forth several important principles that we have incorporated into our recommendations for air transport of the IABC patient: 1. Transport personnel should be completely familiar with the function of the IABP console; capable of handling bleeding at the balloon site, should it occur; capable of delivering intravenous medications, CPR, and ACLS; and proficient in operation of the ventilator, hemodynamic monitoring, and aerohemodynamics. 2. All patients must be stabilized before transfer. Appropriate management of hemodynamic instability and/or respiratory distress should be undertaken prior to beginning transport. 3. Medical personnel delivering care must transfer patients into and out of transport vehicles with minimal interruption of IABP. 4. Health-care professionals present during transport should be thoroughly familiar with the patient's medical status and anticipated complications. This article was not intended to teach basic principles of intra-aortic balloon pumping; rather its purpose was to discuss those characteristics of balloon pumping that are unique to flight transport and how they impact on balloon pumping. Console operation should follow manufacturer's recommendations. Table 3 summarizes features of the Aries, Datascope, Kontron, and Mansfield transport balloon pumps. Manufacturers and aircraft suppliers should be consulted for specific balloon-pump operating

  19. Journal of Air Transportation World Wide, Volume 5, No. 1. Volume 5

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor)

    2000-01-01

    The Journal's mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  20. Study of the extensive air shower mass sensitive parameters in prototype of ALBORZ array

    NASA Astrophysics Data System (ADS)

    Rastegarzadeh, G.; Nemati, M.

    2015-03-01

    In this work we have used muon production depth distribution as well as the lateral distribution of the secondary particles of Extensive Air Showers (EAS) as two main parameters to infer the mass composition of primary cosmic rays. In order to achieve a realistic estimate of the mass composition, a sample of showers initiated by proton and iron particles as primaries have been simulated by CORSIKA code with zenith angle between 0° and 18° and discrete energies in a range between 1014 and 1016 eV for ALBORZ (1200 m a.s.l, Tehran, Iran) and KASKADE (110 m a.s.l, Karlsruhe, Germany) observation levels. Moreover lateral density distribution functions of energy for charged particles of air showers have been proposed for both proton and Iron primaries. We have indicated that among these two EAS parameters, lateral distribution of secondary particles provides better mass discrimination.

  1. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  2. Measurements of the transport efficiency of the fragment mass analyzer

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  3. Design analysis of an aluminum-air battery for vehicle operations. Transportation systems research

    SciTech Connect

    Behrin, E.; Wood, R.L.; Salisbury, J.D.; Whisler, D.J.; Hudson, C.L.

    1983-03-18

    The objective of the study reported was to perform a detailed configuration analysis of an aluminum-air battery, evaluate various automobile propulsion systems utilizing the Al-air battery, and estimate the performance and cost of vehicles incorporating these propulsion systems. A preliminary engineering design is performed. A physical model and a cell-performance model of a conceptual mass-produced Al-air battery were constructed and work together to characterize the battery system. The physical battery model is based on a specific battery design concept and defines the mass and volume of a complete Al-air battery system. The cell-performance model simulates the electrical and electrochemical characteristics of the battery. The physical model and two versions of the cell-performance model - near-term and optimistic - were used in a vehicle-conversion analysis to evaluate three automotive propulsion systems - Al-air battery only, Al-air battery/secondary battery, and Al-air battery/flywheel. (LEW)

  4. Pan American Airways/Naval Air Transport Service/destroyer base site at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site at the east side showing walkway and building foundation. View facing west-northwest. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  5. Three pairs of bollards of Pan American Airways/Naval Air Transport ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three pairs of bollards of Pan American Airways/Naval Air Transport Service/destroyer base site. (The third pair is visible beyond the trees). View facing south-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  6. Investigation of air transportation technology at Princeton University, 1990-1991

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    The Air Transportation Technology Program at Princeton University is a program that emphasizes graduate and undergraduate student research. The program proceeded along six avenues during the past year: microburst hazards to aircraft, intelligent failure tolerant control, computer-aided heuristics for piloted flight, stochastic robustness of flight control systems, neural networks for flight control, and computer-aided control system design.

  7. Air and Water Transportation Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on air and water transportation occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include civil aviation workers, air…

  8. Investigation of air transportation technology at Massachusetts Institute of Technology, 1980

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1981-01-01

    Several technological aspects governing air transportation at major airports were investigated. Three major areas were emphasized: (1) development of automated decision making for dynamic scheduling of runway operations at a major airport; (2) flight evaluation of the performance of low cost Loran C receivers; and (3) design of microcomputer based electronic flight displays for general aviation aircraft.

  9. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    SciTech Connect

    Aksenov, A.F.; Burnazyan, A.I.

    1985-03-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  10. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    NASA Technical Reports Server (NTRS)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  11. Impact of Clean Air Act Regulations on Nitrogen Fate and Transport in Neuse River Basin

    EPA Science Inventory

    This study investigated impacts of Clean Air Act Amendment (CAAA) NOx emissions regulations on the fate and transport of nitrogen for two watersheds in the Neuse River Basin, North Carolina, USA from 1990 to 2020. The Soil and Water Assessment Tool (SWAT) and the Community Multi-...

  12. Predicting the impacts of new technology aircraft on international air transportation demand

    NASA Technical Reports Server (NTRS)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  13. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...The Federal Aviation Administration (FAA) seeks comments on a proposed transition of the U.S. National Airspace System (NAS) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air Transportation System (NextGen). The FAA plans to transition from defining airways, routes and procedures using VHF Omni-directional Range (VOR) and other legacy......

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3

    NASA Technical Reports Server (NTRS)

    Sitchin, A.

    1972-01-01

    Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.

  16. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones

    SciTech Connect

    Danielsen, E.F. )

    1993-05-20

    The author describes evidence from three different cloud types observed in the Australian monsoon, continental-maritime convective, maritime convective, and tropical cyclones, which contribute to transport of tropospheric air masses into the lower stratosphere. Measurements were made from ER-2 aircraft flying out of Darwin, Australia, equipped to measure an array of different parameters, including water vapor, temperatures, pressures, radon, etc. Maritime environmental conditions do not produce as much bouyancy for ascending air masses near Darwin, as do continental-maritime conditions when intense solar heating over the arid continental center of Australia heat and drys air masses which flow over the moist surface marine layers and have bouyancy to allow deep penetration into the lower stratosphere. For the tropical cyclones, their large scale, slower ascending air seems to mix into the stratosphere by gravity wave generation, which produces turbulence enough to drive air mass mixing across the inversions which cap these features.

  17. Mass transport in salt repositories: Steady-state transport through interbeds

    SciTech Connect

    Hwang, Y.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H. . Dept. of Nuclear Engineering)

    1989-03-01

    Salt has long been a candidate for geologic disposal of nuclear waste. Because salt is extremely soluble in water, the existence of rock salt in the ground atest to the long-term stability of the salt. Both bedded salt and salt domes have been considered for nuclear waste disposal in the United States and Europe. While the salt is known to be quite pure in salt domes, bedded salt is interlaced with beds of sediments. Traditionally rock salt has not been considered water-conducting, but sediments layers would be classical porous media, capable of conducting water. Therefore there is interest in determining whether interbeds in bedded salt constitute pathway for radionuclide migration. In this report we consider steady-state migration of radionuclides from a single waste cylinder into a single interbed. Two approaches are used. In 1982 Neretnieks proposed an approach for calculating the steady-state transport of oxidants to a copper container. We have adapted that approach for calculating steady-state radionuclide migration away from the waste package, as a first approximation. We have also analyzed the problem of time-dependent radionuclide diffusion from a container through a backfill layer into a fracture, and we used the steady-state solution from that problem for comparison. Section 2 gives a brief summary of the geology of interbeds in bedded salt. Section 3 presents the mass transfer resistances approach of Neretnieks, summarizing the formulation and giving numerical illustrations of the steady-state two-dimensional diffusion analysis. Section 4 gives a brief statement of the steady-state result from a related analysis. Conclusions are stated in Section 5. 13 refs., 5 figs., 2 tabs.

  18. Detecting air traffic controller interventions in recorded air transportation system data

    NASA Astrophysics Data System (ADS)

    Kwon, Yul

    In this study, I propose a systematic method of detecting aircraft deviation due to air traffic controller (ATC) intervention. The aircraft deviations associated with ATC interventions are detected using a heuristic algorithm developed from analyzing the actual positions of an aircraft to its filed flight plan when the aircraft trajectories were identified as having an encounter in a loss-of-separation incident. An actual (closed-loop) flight trajectory of the Cleveland Air Route Traffic Control Center (ZOB ARTCC) was collected from the FlightAware database. This was compared with the corresponding planned (open-loop) trajectory dataset generated by the Microsoft(c) Flight Simulator X (FSX). I implemented a conflict-detection algorithm in Matlab to identify open-loop flight trajectories that encounters in loss-of-separation. I analyzed the differences between the closed-loop and open-loop flight trajectories of aircrafts that were identified to have encounters in loss of separation. The analysis identified operationally significant deviations in the closed-loop trajectory data with respect to the horizontal paths of the aircrafts. I then developed and validated a heuristic algorithm, the ATC intervention detection algorithm, based on the findings from the analysis. When used with a test dataset to validate the algorithm, it achieved an 85.7% detection rate in detecting horizontal deviations made by the ATC in resolving identified conflicts, and a false-alarm rate of 68%. In addition to the ATC intervention detection algorithm, I present in this paper an analysis of deviated flight trajectories in an effort to display how the presented methodology can be utilized to provide insight into air traffic controller resolution strategies.

  19. Transportation Secure Data Center: Real-World Data for Environmental and Air Quality Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Emissions and air pollution modeling, Vehicle energy and power analysis, Climate change impact studies, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  20. Structural design of a double-layered porous hydrogel for effective mass transport

    PubMed Central

    Kim, Hyejeong; Kim, Hyeon Jeong; Huh, Hyung Kyu; Hwang, Hyung Ju; Lee, Sang Joon

    2015-01-01

    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport. PMID:25825619

  1. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign.

    PubMed

    Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B

    2015-02-15

    High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean Sea (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. Sea surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic air masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. PMID:25460953

  2. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  3. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  4. Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-09-01

    We report on one year of high-precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late-summer to 44 mBq m-3 in late winter and early spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  5. Characterising terrestrial influences on Antarctic air masses using radon-222 measurements at King George Island

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Hong, S.-B.; Williams, A. G.; Crawford, J.; Griffiths, A. D.; Park, S.-J.

    2014-05-01

    We report on one year of high precision direct hourly radon observations at King Sejong Station (King George Island) beginning in February 2013. Findings are compared with historic and ongoing radon measurements from other Antarctic sites. Monthly median concentrations reduced from 72 mBq m-3 in late summer to 44 mBq m-3 in late-winter and early-spring. Monthly 10th percentiles, ranging from 29 to 49 mBq m-3, were typical of oceanic baseline values. Diurnal cycles were rarely evident and local influences were minor, consistent with regional radon flux estimates one tenth of the global average for ice-free land. The predominant fetch region for terrestrially influenced air masses was South America (47-53° S), with minor influences also attributed to aged Australian air masses and local sources. Plume dilution factors of 2.8-4.0 were estimated for the most terrestrially influenced (South American) air masses, and a seasonal cycle in terrestrial influence on tropospheric air descending at the pole was identified and characterised.

  6. Dynamics of heat and mass transport in a quantum insulator

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub

    2015-04-01

    The real-time evolution of two pieces of quantum insulators, initially at different temperatures, is studied when they are glued together. Specifically, each subsystem is taken as a Bose-Hubbard model in a Mott insulator state. The process of temperature equilibration via heat transfer is simulated in real time using the minimally entangled typical thermal states algorithm. The analytic theory based on quasiparticle transport is also given.

  7. DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS

    EPA Science Inventory

    Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

  8. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  9. Mass spectrometer. [On Space Transportation System 2 Flight

    NASA Technical Reports Server (NTRS)

    Miller, E. R.; Carignan, G. R.

    1983-01-01

    The quadrupole Mass Spectrometer of the Induced Environment Contamination Monitor (IECM) operates in the range from 2 to 150 amu. It is pointed out that the Mass Spectrometer on STS-2 performed very well. It was found that the column density of H2O effluent from the Shuttle reached a maximum of 1 x 10 to the 13th per sq cm at 7 hr, 30 min and decreased by a factor of 7.5 during the subsequent 40 hrs. The count rate response of H2O could be correlated with mission-related events, taking into account the dumping of supply water, the operation of the Flash Evaporator System, and the firing of a primary reaction control system engine.

  10. Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Green, Steve; Ballin, Mark

    2002-01-01

    This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.

  11. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  12. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  13. Laboratory testing during critical care transport: point-of-care testing in air ambulances.

    PubMed

    Di Serio, Francesca; Petronelli, Maria Antonia; Sammartino, Eugenio

    2010-07-01

    Air and ground transport are used for prehospital transport of patients in acute life-threatening situations, and increasingly, critically ill patients undergo interhospital transportation. Results from clinical studies suggest that critical tests performed during the transport of critically ill patients presents a potential opportunity to improve patient care. Our project was to identify, according to the recommendations published at this time, a model of point-of-care testing (POCT) (arterial blood gases analysis and glucose, sodium, potassium, ionized calcium, hematocrit/hemoglobin measurements) in air ambulances. In order to identify the key internal and external factors that are important to achieving our objective, an analysis of the Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) was incorporated into our planning model prior to starting the project. To allow the entire POCT process (pre-, intra-, and post-analytic steps) to be under the control of the reference laboratory, an experimental model of information technology was applied. Real-time results during transport of critically ill patients must be considered to be an integral part of the patient care process and excellent channels of communication are needed between the intensive care units, emergency medical services and laboratories. With technological and computer advances, POCT during critical care transport will certainly increase in the future: this will be a challenge from a laboratory and clinical context. PMID:20406127

  14. [New possibilities in emergency medical transportation and emergency services of Polish Medical Air Rescue].

    PubMed

    Gałazkowski, Robert

    2010-01-01

    In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come. PMID:21413425

  15. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  16. Modeling of diagenesis in relation to coupled mass and heat transport

    SciTech Connect

    Ondrak, R.

    1996-12-31

    Pore fluid flow is an important factor influencing the diagenetic evolution of rocks, as has been shown by various diagenetic studies, especially in connection with fluid inclusion measurements. A 3D- computer model is presented, which allows to simulate coupled mass and heat transport in porous rocks. The model is used to study the interaction of heat and mass transport with respect to the temporal and spatial evolution of sandstones. Mineral dissolution or precipitation change the mineralogical composition of rocks, and modify the physical properties at the same time. Altering the permeability of the rock affects the fluid flow system in the rock which determines the mass transport of the entire system. In addition to mass transport, fluid flow transports thermal energy, which may modify the temperature evolution of the rock. The model will be used to examine the effect of convective heat and mass transport on temperature and diagenetic evolution of clastic rocks. Although the model cannot claim to simulate nature, it can be used to study the effect of different mechanisms, and their interaction within the coupled system. For practical applications, the model may be used to determine possible flow rates, which are necessary to explain the observed diagenetic and thermal history of sandstones.

  17. Spatial correlations, additivity, and fluctuations in conserved-mass transport processes

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Chatterjee, Sayani; Pradhan, Punyabrata

    2016-06-01

    We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.

  18. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean

    USGS Publications Warehouse

    Garrison, Virginia H.; Majewski, Michael S.; Foreman, William T.; Genualdi, Susan A.; Mohammed, Azad; Massey Simonich, Stacy L.

    2014-01-01

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9–126 ng/m3 (mean = 25 ± 34) at source and 0.05–0.71 ng/m3 (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1–3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  19. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    PubMed

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses. PMID:24055669

  20. On the optimum fields and bounds for heat and mass transport in two turbulent flows

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay

    2011-12-01

    The optimum theory of turbulence is one of the few tools for obtaining analytical results for transport of heat, mass or momentum by turbulent flows. This is achieved by asymptotic theory which is valid for large values of the characteristic numbers of the investigated fluid system. For small and intermediate values of the Reynolds, Rayleigh or Taylor numbers we have to solve numerically the Euler-Lagrange equations of the corresponding variational problems. Below we discuss numerical results from the application of the Howard-Busse method of the optimum theory of turbulence to two problems: convective heat transport in non-rotating and rotating fluid layer and mass transport in pipe flow. We obtain profiles of the optimum fields and discuss the evolution of the thickness of the boundary layers as well as present our first results about the lower bound on the mass transport in a pipe flow.