Science.gov

Sample records for air molecules ionized

  1. Electron-impact ionization of air molecules and its application to the abatement of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Wallman, P.H.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1995-05-21

    In this paper the authors present data on the non-thermal plasma processing of two representative VOCs: carbon tetrachloride and methanol. The investigation used a compact electron beam reactor, and two types of discharge reactors: a pulsed corona and a dielectric-barrier discharge. To the knowledge of the authors, this is the first comparison of the energy efficiency of electron beam, pulsed corona and dielectric-barrier discharge processing of these VOCs under identical gas conditions. For most electrical discharge reactors the analysis suggests that the attainable electron mean energy is rather limited and cannot be significantly enhanced by changing the electrode configuration or voltage waveform. The experimental data confirms that there is no significant difference in the performance of the pulsed corona and dielectric-barrier discharge reactors. The authors observe that electron beam processing is remarkably more energy efficiency than electrical discharge processing in decomposing either of these VOC molecules. During electron beam processing, the specific energy consumption is consistent with the energy required for the ionization of the background air molecules. For carbon tetrachloride, the dominant decomposition pathway is dissociative electron attachment. For methanol, the dominant decomposition pathway is dissociative charge exchange.

  2. Tunneling ionization of vibrationally excited nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Kornev, Aleksei S.; Zon, Boris A.

    2015-09-01

    Ionization of molecular nitrogen plays an important role in the process of light-filament formation in air. In the present paper we theoretically investigated tunneling ionization of the valence 3 σg and 1 πu shells in a N2 molecule using a strong near-infrared laser field. This research is based on our previously proposed theory of anti-Stokes-enhanced tunneling ionization with quantum accounting for the vibrationally excited states of the molecules [A. S. Kornev and B. A. Zon, Phys. Rev. A 86, 043401 (2012), 10.1103/PhysRevA.86.043401]. We demonstrated that if the N2 molecule is ionized from the ground vibrational state, then the contribution of the 1 πu orbital is 0.5%. In contrast, for vibrationally excited states with a certain angle between the light polarization vector and the molecule axis, both shells can compete and even reverse their contributions due to the anti-Stokes mechanism. The structure constants of molecular orbitals are extracted from numerical solutions to the Hartree-Fock equations. This approach correctly takes into account the exchange interaction. Quantum consideration of vibrational motion results in the occurrence of the critical vibrational state, the tunneling ionization from which has the maximum rate. The numbers of the critical vibrational states are different for different valence shells. In addition, quantum description of vibrations changes the rate of ionization from the ground vibrational state by 20%-40% in comparison with the quasiclassical results.

  3. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  4. Zero-Net-Charge Air Ionizer

    NASA Technical Reports Server (NTRS)

    Woods, W. R., Jr.

    1985-01-01

    Instrument monitors air supplied by air ionizer and regulates ionizer to ensure net charge neutral. High-impedance electrometer and nulling control amplifier regulate output of air ionizer. Primarily intended to furnish ionized air having no net charge, instrument adaptable to generating air with positive or negative net charge is so desired. Useful where integrated circuit chips are manufactured, inspected, tested or assembled.

  5. Ionization of glycerin molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2015-07-01

    The methods and results of studying the yield of positive ions produced due to direct and dissociative electron impact ionization of the glycerin molecule are described. The experiment is carried out using two independent setups, namely, a setup with a monopole mass spectrometer employing the method of crossing electron and molecular beams and a setup with a hypocycloidal electron spectrometer with the gas-filled cell. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at various temperatures. The energy dependences of the effective cross sections of the glycerin molecular ions produced by a monoenergetic electron beam are obtained and analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of the glycerin molecule fragment ions formation is investigated in the temperature range of 300-340 K.

  6. Dissociative Ionization of Aromatic and Heterocyclic Molecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    2003-01-01

    Space radiation poses a major health hazard to humans in space flight. The high-energy charged particles in space radiation ranging from protons to high atomic number, high-energy (HZE) particles, and the secondary species they produce, attack DNA, cells, and tissues. Of the potential hazards, long-term health effects such as carcinogenesis are likely linked to the DNA lesions caused by secondary electrons in the 1 - 30 eV range. Dissociative ionization (DI) is one of the electron collision processes that can damage the DNA, either directly by causing a DNA lesion, or indirectly by producing radicals and cations that attack the DNA. To understand this process, we have developed a theoretical model for DI. Our model makes use of the fact that electron motion is much faster than nuclear motion and assumes DI proceeds through a two-step process. The first step is electron-impact ionization resulting in a particular state of the molecular ion in the geometry of the neutral molecule. In the second step the ion undergoes unimolecular dissociation. Thus the DI cross section sigma(sup DI)(sub a) for channel a is given by sigma(sup DI)(sub a) = sigma(sup I)(sub a) P(sub D) with sigma(sup I)(sub a) the ionization cross section of channel a and P(sub D) the dissociation probability. This model has been applied to study the DI of H2O, NH3, and CH4, with results in good agreement with experiment. The ionization cross section sigma(sup I)(sub a) was calculated using the improved binary encounter-dipole model and the unimolecular dissociation probability P(sub D) obtained by following the minimum energy path determined by the gradients and Hessians of the electronic energy with respect to the nuclear coordinates of the ion. This model is used to study the DI from the low-lying channels of benzene and pyridine to understand the different product formation in aromatic and heterocyclic molecules. DI study of the DNA base thymine is underway. Solvent effects will also be discussed.

  7. Ionization and dissociation dynamics of molecules in strong laser fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei

    The fast advancement of ultrashort-pulsed high-intensity laser technology allows for generating an electric field equivalent to the Coulomb field inside an atom or a molecule (e.g., EC=5.14x109 V/cm at the 1s orbit radius a0=0.0529 nm of the hydrogen atom, which corresponds to an intensity of 3.54x1016 W/cm2). Atoms and molecules exposed in such a field will easily be ionized, as the external field is strong enough to remove the electrons from the core. This is usually referred to "strong field". Strong fields provide a new tool for studying the interaction of atoms and molecules with light in the nonlinear nonperturbative regime. During the past three decades, significant progress has been made in the strong field science. Today, most phenomena involving atoms in strong fields have been relatively well understood by the single-active-electron (SAE) approximation. However, the interpretation of these responses in molecules has encountered great difficulties. Not like atoms that only undergo excitation and ionization, various dissociation channels accompanying excitation and ionization can occur in molecules during the laser pulse interaction, which imparts further complexity to the study of molecules in strong fields. Previous studies have shown that molecules can behave significantly different from rare gas atoms in phenomena as simple as single and double ionization. Molecular dissociation following ionization also presents challenges in strong fields compared to what we have learned in the weak-field regime. This dissertation focuses on experimental studies on ionization and dissociation of some commonly-seen small molecules in strong laser fields. Previous work of molecules in strong fields will be briefly reviewed, particularly on some open questions about multiple dissociation channels, nonsequential double ionization, enhanced ionization and molecular alignment. The identification of various molecular dissociation channels by recent experimental technical

  8. Isotope Effect in Tunneling Ionization of Neutral Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Wang, X.; Xu, H.; Atia-Tul-Noor, A.; Hu, B. T.; Kielpinski, D.; Sang, R. T.; Litvinyuk, I. V.

    2016-08-01

    It has been recently predicted theoretically that due to nuclear motion light and heavy hydrogen molecules exposed to strong electric field should exhibit substantially different tunneling ionization rates [O. I. Tolstikhin, H. J. Worner, and T. Morishita, Phys. Rev. A 87, 041401(R) (2013)]. We studied that isotope effect experimentally by measuring relative ionization yields for each species in a mixed H2/D2 gas jet interacting with intense femtosecond laser pulses. In a reaction microscope apparatus, we detected ionic fragments from all contributing channels (single ionization, dissociation, and sequential double ionization) and determined the ratio of total single ionization yields for H2 and D2 . The measured ratio agrees quantitatively with the prediction of the generalized weak-field asymptotic theory in an apparent failure of the frozen-nuclei approximation.

  9. Coherent Dynamics Following Strong Field Ionization of Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Jackson, James; Levine, Benjamin; Dantus, Marcos

    2015-03-01

    Molecules, as opposed to atoms, present confounding possibilities of nuclear and electronic motion upon strong field ionization. The dynamics and fragmentation patterns in response to the laser field are structure sensitive; therefore, a molecule cannot simply be treated as a ``bag of atoms'' during field induced ionization. We consider here to what extent molecules retain their molecular identity and properties under strong laser fields. Using time-of-flight mass spectrometry in conjunction with pump-probe techniques we study the dynamical behavior of these molecules, monitoring ion yield modulation caused by intramolecular motions post ionization. The delay scans show that among positional isomers the variations in relative energies, amounting to only a few hundred meVs, influence the dynamical behavior of the molecules despite their having experienced such high fields (V/Å). Ab initio calculations were performed to predict dynamics along with single and multiphoton resonances in the neutral and ionic states. We propose that single electron ionization occurs within an optical cycle with the electron carrying away essentially all of the energy, leaving behind little internal energy in the cation. Evidence for this observation comes from coherent vibrational motion governed by the potential energy surface of the ground state of the cation. Subsequent fragmentation of the cation takes place as a result of further photon absorption modulated by one- and two-photon resonances, which provide sufficient energy to overcome the dissociation energy.

  10. On the SIMS Ionization Probability of Organic Molecules

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas J.; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α+) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10-5. Our lab has developed a method for the direct determination of α+ in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10-3, with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event.

  11. (e,2e) ionization studies of diatomic & triatomic molecules

    NASA Astrophysics Data System (ADS)

    Nixon, Kate; Murray, Andrew; Kaiser, Christian; Al-Hagan, Ola; Colgan, James; Madison, Don

    2009-10-01

    (e,2e) studies yield the most detailed experimental data on electron impact ionization of atomic & molecular targets for comparison to quantum collision theories. Coincidence techniques are here used to measure the probability of ionization as a function of the incident electron scattering angle and angle of the electron ejected from the target. In Manchester we study this process at low energies, where the ionization probability is greatest & the interaction most complex. We recently considered ionization of simple molecules (eg H2 & H2O) from a coplanar geometry to the perpendicular plane[1-4], and have discovered the interaction is far more complex than for ionization of atoms [5]. We here present comparisons between theory & experiment, and discuss new methods we intend to implement to study ionization from laser-aligned atoms & molecules. References. [1] J Colgan et al Phys Rev Lett 101 233201 (2008) [2] O Al-Hagan et al Nature Physics 5 59 (2009) [3] J Colgan et al Phys Rev A 79 052704 (2009) [4] C Kaiser et al J Phys B 40 2563 (2007) [5] A J Murray et al J Phys B 36 4875 (2003) & references therein

  12. On the SIMS Ionization Probability of Organic Molecules.

    PubMed

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-03-06

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α(+)) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10(-5). Our lab has developed a method for the direct determination of α(+) in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C24H12), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C60 cluster projectiles is of the order of 10(-3), with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract .

  13. Laser-induced air ionization microscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, N.; Yang, J.; Zhu, X.

    2006-06-01

    A nonlinear scanning imaging method is introduced that uses the highly localized air ionization initiated by photoelectrons from the sample surface under irradiation of femtosecond laser pulses as the microprobe. This type of microscopy with realizable subdiffraction spatial resolution has the unique advantages of being highly sensitive to both elemental and topographical properties of the samples of interest. Microscopic images of a femtosecond laser ablated micropattern, the cross section and the side view profile of an optical fiber, and a fresh mulberry leaf are obtained with this imaging technique, which demonstrate this technique's broad applicability in microscopic studies of different materials.

  14. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  15. Multielectron effects in strong field ionization of molecules

    NASA Astrophysics Data System (ADS)

    Jaron-Becker, Agnieszka; Xia, Yuqing

    2014-05-01

    Multielectron effects are studied for strong field ionization of di- and polyatomic molecules at their equilibrium geometries, using time dependent density functional theory. Strong field ionization of molecules have been previously often analyzed using ``single active electron'' (SAE) approximation based theories such as for example Intense Field Many Body S-matrix Theory and typically the contributions from inner valence orbitals and multielectron effects were concluded to be of less importance. For several di- and polyatomic molecules we show that ionization rate from inner valence orbitals can increase dramatically due to a novel resonant coupling which influences the molecular dynamics. We discuss the dependence of the results on the orientation of the molecules and laser parameters. Moreover we show how such a mechanism can lead to localization of electron depending on the symmetry of the orbitals involved. Finally, we propose how the novel mechanism can be observed experimentally and show how the multi-electron effects can help explain several experimental results which have shown disagreement with SAE approximation based theories. Supported by NSF (Grants No. PHY-1068706 and PHY-1125844).

  16. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  17. Frustrated double ionization in two-electron triatomic molecules

    NASA Astrophysics Data System (ADS)

    Chen, A.; Price, H.; Staudte, A.; Emmanouilidou, A.

    2016-10-01

    Using a semiclassical model, we investigate frustrated double ionization (FDI) in D3+ , a two-electron triatomic molecule, when driven by an intense, linearly polarized, near-infrared (800 nm) laser field. We compute the kinetic energy release of the nuclei and find a good agreement between experiment and our model. We explore the two pathways of FDI and show that, with increasing field strength, over-the-barrier ionization overtakes tunnel ionization as the underlying mechanism of FDI. Moreover, we compute the angular distribution of the ion fragments for FDI and identify a feature that can potentially be observed experimentally and is a signature of only one of the two pathways of FDI.

  18. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  19. Ejection-ionization of molecules from free standing graphene

    NASA Astrophysics Data System (ADS)

    Verkhoturov, Stanislav V.; Czerwinski, Bartlomiej; Verkhoturov, Dmitriy S.; Geng, Sheng; Delcorte, Arnaud; Schweikert, Emile A.

    2017-02-01

    We present the first data on emission of -C60 stimulated by single impacts of 50 keV C60+2 on the self-assembled molecular layer of C60 deposited on free standing 2 layer graphene. The yield, Y, of -C60 emitted in the transmission direction is 1.7%. To characterize the ejection and ionization of molecules, we have measured the emission of -C60 from the surface of bulk C60 (Y = 3.7%) and from a single layer of C60 deposited on bulk pyrolytic graphite (Y = 3.3%). To gain insight into the mechanism(s) of ejection, molecular dynamic simulations were performed. The scenario of the energy deposition and ejection of molecules is different for the case of graphene due to the confined volume of projectile-analyte interaction. In the case of 50 keV C60+2 impacts on graphene plus C60, the C atoms of the projectile collide with those of the target. The knocked-on atoms take on a part of the kinetic energy of the projectile atoms. Another part of the kinetic energy is deposited into the rim around the impact site. The ejection of molecules from the rim is a result of collective movement of the molecules and graphene membrane, where the membrane movement provides the impulse for ejection. The efficient emission of the intact molecular ions implies an effective ionization probability of intact C60. The proposed mechanism of ionization involves the tunneling of electrons from the vibrationally exited area around the hole to the ejecta.

  20. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  1. Photo Double Ionization of Fixed in Space Deuterium Molecules

    NASA Astrophysics Data System (ADS)

    Weber, Thorsten; Dörner, Reinhard; Czasch, Achim; Jagutzki, Ottmar; Böcking, Horst Schmidt; Müller, Alkis; Mergel, Volker; Prior, Mike; Osipov, Timur; Daveau, Sebastian; Rotenberg, Eli; Meigs, George; Cocke, Lew; Landers, Allen; Kheifets, Anatoli; Feagin, Jim; Muino, Ricardo Diez

    2006-11-01

    In the following we present the kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo double ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis in the coplanar geometry. This effect is reproduced by a model in which a pair of photo ionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis. The results in a non-coplanar geometry reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

  2. A Sturmian approach for ionization processes of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo

    2016-09-01

    The Sturmian approach, using Generalized Sturmian Functions (GSF), is a spectral method that has been applied successfully both for structure calculations and for the study of several ionization processes with atomic targets. GSF are two-body functions that solve a Sturm-Liouville problem. They can be used as a basis set to deal with two- or three-body bound or scattering problems. By construction, the whole GSF set can be chosen to possess asymptotic conditions appropriate for the physical problem under consideration: bound-type behavior with a specific asymptotic charge are chosen for bound states, while - for example - outgoing behavior with a given adequate energy are taken for solving scattering processes. This important intrinsic property makes GSF basis sets - and thus the whole approach - computationally efficient. In the case of ionization, a specific feature of our methodology is that the scattering amplitude and the corresponding cross section are extracted directly from the asymptotic part of the scattering function without requiring the evaluation of a matrix element. Compared to the case of many-electron atoms several extra challenges occur for molecules: the scattering problem is generally multicenter and highly non-central, and the molecular orientation must also be taken into account. These features make the computational task much more cumbersome and expensive than for atomic targets. The Sturmian approach with GSF has been recently extended and implemented to study single ionization of small polyatomic molecules by photon and electron impact. Results for a variety of single and double ionization processes will be presented. This work has been done in collaboration with G. Gasaneo, D.M. Mitnik, J.M. Randazzo, F.D. Colavecchia, M.J. Ambrosio, J.A. Del Punta and C.M. Granados-Castro. We would like to acknowledge the CNRS funding (PICS project N. 06304).

  3. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  4. Revisiting molecular ionization: Does a molecule like to share?

    NASA Astrophysics Data System (ADS)

    Madsen, C. B.; Esry, B. D.

    2012-06-01

    The ever-increasing detail obtained in strong-field experiments calls for a deeper understanding of the laser-molecule interaction. For instance, recent measurements reported in PRL 107, 143004 (2011) reveal a limitation in understanding strong-field ionization dynamics in terms of the strong-field approximation. We have addressed the question of how the electron and the nuclei share the energy when H2^+ breaks up in the presence of an intense IR field via the process: H2^++nφ->p+p+e^-. Solving the time-dependent Schr"odinger equation and calculating the ionization probability resolved as a function of the asymptotic electron energy and the nuclear kinetic energy release (KER) allow us to give an answer. The energy sharing is non-trivial and plays an important role in the prediction of, for instance, the KER. We also address the limitations of current understanding of molecular ionization by comparing to models like the strong-field approximation and the Floquet picture. Such benchmarking may be facilitated by XUV+IR pump-probe schemes and carrier-envelope-phase control that allow for time-resolved and spatial probing of the dynamics.

  5. Single ionization of water molecules in collisions with bare ions

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Mandal, C. R.; Purkait, M.

    2016-04-01

    We present the double differential cross sections (DDCSs) for the direct ionization of water molecules by impact of fully stripped helium, carbon and oxygen atoms, respectively. In the present formalism, we have represented the wavefunction in the entrance channel as the product of a plane wave for the projectile and an accurate one-center-molecular wavefunction of the water molecule by Moccia (1964 J. Chem. Phys. 40 2186). In the exit channel, we have expressed the total wavefunction as the product of pair-wise Coulomb wavefunctions among the ejected electron, projectile ion and the residual target ion, respectively. The contributions of DDCSs for five different molecular orbitals of water to the spectrum of angular distributions have been analyzed for several electron emission energies. The present results for DDCSs are compared with existing experimental and theoretical findings. We find an overall good agreement between our calculated results and the experimental findings for electron emission cross sections. In addition, DDCS results for ionization from different orbitals at a few electron emission energies are given in tabular form.

  6. Electron ionization and ion-molecule reactions of triethylborane

    NASA Astrophysics Data System (ADS)

    Jiao, Charles; Adams, Steven

    2015-09-01

    Triethylborane (TEB) is used as a radical initiator in many chemical reactions and as an excellent ignition source for jet engines and rocket engines. In this paper we will report our recent study on the ion chemistries of TEB relevant to the charged particle processes in plasmas involving TEB. The total cross section of electron ionization of TEB is found to have a maximum of 2.2×10-15 cm2 at 75 +10 eV electron energy. Product ions from the ionization include C2H2-5+, BCH4+, BC2, 4,6+, BC3H4, 6+, BC4H8, 10+ and BC6H15+, among which BC6H15+, BC4H10+ and BC2H6+ are the most abundant ions. These ions react with TEB via various mechanisms including charge-transfer, alkyde-transfer and association reaction. The common and major product ions from the ion-molecule reactions are BC4H10+ and BC2H6+, formed by simple ethide-transfer and ethide-transfer followed by dissociation (loss of C2H4) , respectively.

  7. Interatomic relaxation effects in double core ionization of chain molecules

    NASA Astrophysics Data System (ADS)

    Kryzhevoi, Nikolai V.; Tashiro, Motomichi; Ehara, Masahiro; Cederbaum, Lorenz S.

    2012-10-01

    Core vacancies created on opposite sides of a molecule operate against each other in polarizing the environment between them. Consequently, the relaxation energy associated with the simultaneous creation of these two core holes turns out to be smaller than the sum of the relaxation energies associated with each individual single core vacancy created independently. The corresponding residual, termed interatomic relaxation energy, is sensitive to the environment. In the present paper we explore how the interatomic relaxation energy depends on the length and type of carbon chains bridging two core ionized nitrile groups (-C≡N). We have uncovered several trends and discuss them with the help of simple electrostatic and quantum mechanical models. Namely, the absolute value of the interatomic relaxation energy depends strongly on the orbital hybridization in carbons being noticeably larger in conjugated chains (sp and sp2 hybridizations) possessing highly mobile electrons in delocalized π-type orbitals than in saturated chains (sp3 hybridization) where only σ bonds are available. The interatomic relaxation energy decreases monotonically with increasing chain length. The corresponding descent is determined by the energetics of the molecular bridge, in particular, by the HOMO-LUMO gap. The smallest HOMO-LUMO gap is found in molecules with the sp2-hybridized backbone. Here, the interatomic relaxation energy decreases slowest with the chain length.

  8. Positron Impact Ionization in Noble Gas Atoms and Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Marler, J. P.

    2005-05-01

    Results are presented for absolute positronium formation and direct ionization by positron impact on Ne, Ar, Kr, Xe, N2, CO and O2 at energies from threshold up to 90 eV. The experiments use a high-resolution, trap-based positron beam and exploit the properties of positron orbits in a magnetic field [1]. Results for the noble gases are compared with theoretical predictions and with measurements obtained using a significantly different method [2]. Results for diatomic molecules are compared to other available measurements and theoretical calculations where available. There is generally good agreement between the experimental measurements, providing an important benchmark for theoretical calculations. Intriguing features in Ar and O2 will be discussed. [1] J.P. Sullivan, S.J. Gilbert, J.P. Marler, R.G. Greaves, S.J. Buckman and C.M. Surko., Phys. Rev. A. 66, 042708 (2002) [2] J.P. Marler, J.P. Sullivan and C.M. Surko, Phys. Rev. A (2005), in press.

  9. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  10. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  11. Second-order Born approximation for the ionization of molecules by electron and positron impact

    SciTech Connect

    Dal Cappello, C.; Rezkallah, Z.; Houamer, S.; Charpentier, I.; Hervieux, P. A.; Ruiz-Lopez, M. F.; Dey, R.; Roy, A. C.

    2011-09-15

    Second-order Born approximation is applied to study the ionization of molecules. The initial and final states are described by single-center wave functions. For the initial state a Gaussian wave function is used while for the ejected electron it is a distorted wave. Results of the present model are compared with recent (e,2e) experiments on the water molecule. Preliminary results are also presented for the ionization of the thymine molecule by electrons and positrons.

  12. Application of the partial-Fourier-transform approach for tunnel ionization of molecules

    NASA Astrophysics Data System (ADS)

    Liu, Mingming; Liu, Yunquan

    2016-04-01

    Combining the partial-Fourier-transform approach with Wenzel-Kramers-Brillouin approximation, we theoretically study the strong-field tunneling ionization of diatomic and polyatomic molecules. First we obtain the analytical expression of momentum distribution at the tunnel exit of diatomic molecules, and then we calculate the alignment-dependent ionization rate at different laser intensities and internuclear distances. We show that the internuclear distance has a significant effect on the alignment dependence of the ionization rate. Using this approach, we can also separate the contributions of each atomic center and show the interference effect between them. Finally, we extend this method to a polyatomic molecule, benzene, as an example.

  13. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  14. Multiphoton ionization and third-harmonic generation in atoms and molecules

    SciTech Connect

    Miller, J.C.; Compton, R.N.

    1982-01-01

    We will discuss recent experiments on multiphoton ionization and third-harmonic generation in rare gases and small molecules using focused laser power densities of 10/sup 9/ to 10/sup 11/ W/cm/sup 2/. Also, some elementary experiments using vacuum ultraviolet light generated by frequency tripling in xenon and krypton will be described. These experiments include absorption and ionization studies using vacuum ultraviolet radiation as well as two-photon ionization using one vacuum ultraviolet photon and one laser photon.

  15. Microwave diagnostics of laser-induced avalanche ionization in air

    SciTech Connect

    Zhang Zhili; Shneider, Mikhail N.; Miles, Richard B.

    2006-10-01

    This work presents a simplified model of microwave scattering during the avalanche ionization stage of laser breakdown and corresponding experimental results of microwave scattering from laser breakdown in room air. The model assumes and measurements confirm that the breakdown regime can be viewed as a point dipole scatterer of the microwave radiation and thus directly related to the time evolving number of electrons. The delay between the laser pulse and the rise of the microwave scattering signal is a direct measure of the avalanche ionization process.

  16. Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2015-09-01

    Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.

  17. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-09-15

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB {alpha}) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB {alpha} do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  18. Double ionization of HeH+ molecules in intense laser fields.

    PubMed

    Liao, Qing; Lu, Peixiang; Zhang, Qingbin; Yang, Zhenyu; Wang, Xinbing

    2008-10-13

    We present quantum mechanical calculations of double ionization of HeH(+) molecules by intense laser pulses at various intensities. The resulting two-electron momentum distributions exhibit a clear asymmetry, which depends on the laser intensity. The asymmetric charge configuration of HeH(+) is responsible for the asymmetric two-electron momentum distributions. An approach to control the dynamics of double ionization of heteronuclear molecules is proposed.

  19. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions.

    PubMed

    Maclot, S; Delaunay, R; Piekarski, D G; Domaracka, A; Huber, B A; Adoui, L; Martín, F; Alcamí, M; Avaldi, L; Bolognesi, P; Díaz-Tendero, S; Rousseau, P

    2016-08-12

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

  20. Ionization Study of Isomeric Molecules in Strong-field Laser Pulses

    NASA Astrophysics Data System (ADS)

    Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; Trallero-Herrero, Carlos A.

    2017-02-01

    Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C2H2Cl2) and 2-butene (C4H8). We are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. We report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity.

  1. Ionization Properties of Molecules Commonly Used for Plasma Processing of Semi-Conductors

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    2000-01-01

    Two types of processes are involved in plasma processing of semi-conductors. They are: plasma etching or cleaning and plasma deposition of the semi-conducting materials. For plasma etching of semi-conductors mostly halogen containing gases are used as additives to gases such as O2 and N2. For plasma deposition gases such as C2H2, SiH4, Si2H6 have been tested in the past. For an optimal performance of a reactor it is important to model the plasma. In this modeling effort electron impact excitation and ionization cross sections play a central role. For ionization balance calculations values of ionization cross sections are needed. Ion molecule reactions determine the ultimate composition of the plasma. Recently it has been discovered that the by products of many of these plasmas are per fluro hydrocarbons (PFCs) which are highly infrared absorbing species and have long life times in the atmosphere. They cause global warming. A lot of research is being pursued at the present time to find alternative molecules which do not produce global warming gases as the and product of the plasma processing reactor. There is also interest in the ionization and dissociative ionization properties of these molecules from the point view of the plasma abatement of the pollutant gases at the exhaust of the semi-conductor processing reactors. At the conference ionization and dissociative ionization properties of some of these molecules will be presented.

  2. Corona discharge ionization of paracetamol molecule: Peak assignment

    NASA Astrophysics Data System (ADS)

    Bahrami, H.; Farrokhpour, H.

    2015-01-01

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  3. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  4. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  5. Theoretical Calculation for the Ionization of Molecules by Short Strong Laser Pulses

    SciTech Connect

    Nagy, L.; Borbely, S.

    2011-10-03

    We have developed several calculation methods for the ionization of atoms and molecules by strong and ultrashort laser pulses, based on the numerical solution of the time dependent Schroedinger equation (TDSE) in the momentum space. We have performed calculations within the strong field approximation (Volkov) and using iterative and direct methods for solving the TDSE. The investigated molecules are H{sub 2}{sup +} and H{sub 2}O. In case of the ionization of diatomic molecules the interference effects in the ejected electron spectra due to the coherent addition of the waves associated to the electrons ejected from the vicinity of different nuclei were also analysed.

  6. Ionization of oriented carbonyl sulfide molecules by intense circularly polarized laser pulses

    SciTech Connect

    Dimitrovski, Darko; Abu-samha, Mahmoud; Madsen, Lars Bojer; Filsinger, Frank; Meijer, Gerard; Kuepper, Jochen; Holmegaard, Lotte; Kalhoej, Line; Nielsen, Jens H.; Stapelfeldt, Henrik

    2011-02-15

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl sulfide molecules by circularly polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation. The focus of the present article is to understand the strong-field ionization of one-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons. In the following article [Phys. Rev. A 83, 023406 (2011)] the focus is to understand strong-field ionization from three-dimensionally-oriented asymmetric top molecules, in particular the suppression of electron emission in nodal planes of molecular orbitals.

  7. Photon Energy Deposition in Strong-Field Single Ionization of Multielectron Molecules.

    PubMed

    Zhang, Wenbin; Li, Zhichao; Lu, Peifen; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Lin, Kang; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2016-09-02

    Molecules exposed to strong laser fields may coherently absorb multiple photons and deposit the energy into electrons and nuclei, triggering the succeeding dynamics as the primary stage of the light-molecule interaction. We experimentally explore the electron-nuclear sharing of the absorbed photon energy in above-threshold multiphoton single ionization of multielectron molecules. Using CO as a prototype, vibrational and orbital resolved electron-nuclear sharing of the photon energy is observed. Different from the simplest one- or two-electron systems, the participation of the multiple orbitals and the coupling of various electronic states in the strong-field ionization and dissociation processes alter the photon energy deposition dynamics of the multielectron molecule. The population of numerous vibrational states of the molecular cation as the energy reservoir in the ionization process plays an important role in photon energy sharing between the emitted electron and the nuclear fragments.

  8. Subcycle Dynamics in the Laser Ionization of Molecules

    SciTech Connect

    Xie, X.H.; Wickenhauser, M.; Boutu, W.; Merdji, H.; Salieres, P.; Scrinzi, A.; /Vienna, Tech. U.

    2007-10-23

    The time and momentum distributions of electron emission from a molecule during a single laser cycle are calculated by solving a two-dimensional time-dependent Schr{umlt o}dinger equation. The momentum distributions strongly depend on the orbital symmetry and orientation of the molecular axis. Field-induced internal dynamics of the molecule can shift electron emission and recollision times through a large part of the laser cycle, which leads to corresponding variations of high-harmonic emission times and to the appearance of even harmonics.

  9. Determination of structure parameters in strong-field tunneling ionization theory of molecules

    SciTech Connect

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.; Jiang, T. F.

    2010-03-15

    In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. With the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.

  10. Electron-nuclear correlation in above-threshold double ionization of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Zhang, Wenbin; Gong, Xiaochun; Song, Qiying; Lin, Kang; Ji, Qinying; Ma, Junyang; He, Feng; Zeng, Heping; Wu, Jian

    2017-03-01

    We report on the experimental observation of photon energy sharing among two electrons and two ions ejected from a doubly ionized molecule exposed to an intense ultraviolet femtosecond laser pulse. Although two electrons are successively released one after the other, bridged by the nuclear motion via their interactions, photon energy sharing among four particles is observed as multiple energy conservation lines in their joint energy spectrum. For sequential double ionization of H2, the electron-nuclear joint energy spectrum allows us to identify three pathways towards the charge-resonance enhanced ionization of the stretching H2+ in strong laser fields. By counting the photon number absorbed by the molecule, we trace the accessibility, enhancement, and suppression of various pathways. The correlated electron-nuclear motion provides profound insights of the complicated strong-field dynamics of molecules.

  11. Frustrated double and single ionization in a two-electron triatomic molecule H+ 3

    NASA Astrophysics Data System (ADS)

    Chen, A.; Lazarou, C.; Price, H.; Emmanouilidou, A.

    2016-12-01

    Using a semi-classical model, we study the formation of highly excited neutral fragments during the fragmentation of {{{H}}}3+, a two-electron triatomic molecule, driven by an intense near-IR laser field. To do so, we first formulate a microcanonical distribution for arbitrary one-electron triatomic molecules. We then study frustrated double and single ionization in strongly driven {{{H}}}3+ and compute the kinetic energy release of the nuclei for these two processes. Moreover, we investigate the dependence of frustrated ionization on the strength of the laser field as well as on the geometry of the initial molecular state.

  12. Auger spectrum of a water molecule after single and double core ionization

    NASA Astrophysics Data System (ADS)

    Inhester, Ludger; Burmeister, Carl F.; Groenhof, Gerrit; Grubmueller, Helmut

    2012-06-01

    The high intensity of Free Electron Lasers (FEL) opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules radiation damage induced by absorption of intense x-ray radiation is not yet fully understood. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From MD trajectories photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schr"odinger equations. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were accumulated according to the obtained time-dependent populations. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint on the electron emission spectra. In addition, the lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  13. Accuracy of Theoretical Calculations for Electron-Impact Ionization of atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Madison, Don

    2015-09-01

    In the last two decades, there have been several close-coupling approaches developed which can accurately calculate the triply differential cross sections for electron impact ionization of effective one and two electron atoms. The agreement between experiment and theory is not particularly good for more complicated atoms and molecules. Very recently, a B-spline R-matrix with pseudostates (BSRPS) approach was used to investigate low energy electron impact ionization of neon and very good agreement with experiment was found. The perturbative 3-body distorted wave (3DW) approach which includes the exact final state electron-electron interaction (post collision interaction - PCI) gave comparably good agreement with experiment. For ionization of molecules, there have been numerous studies of high-energy electron impact. These studies are called EMS (Electron Momentum Spectroscopy) and they were very valuable in determining the accuracy of molecular wavefunctions since the measured cross sections were proportional to the momentum space molecular wavefunction. More recently, lower energy collisions have started to be measured and these cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. So far, the only close coupling calculation reported for ionization of molecules is the time-dependent close-coupling calculation (TDCC) which has been developed for ionization of H2 and it yields relative good agreement with experiment. Again the molecular 3-body distorted wave (M3DW) gave equally good agreement with experiment. For polyatomic molecules, the only theory available is the M3DW. In this talk, I will show the current status of agreement between experiment and theory for low and intermediate energy single ionization of atoms and molecules. Work supported by the NSF and XSEDE.

  14. Technical note: Air compared to nitrogen as nebulizing and drying gases for electrospray ionization mass spectrometry.

    PubMed

    Mielczarek, P; Silberring, J; Smoluch, M

    2016-01-01

    In the present study we tested the application of compressed air instead of pure nitrogen as the nebulizing and drying gas, and its influence on the quality of electrospray ionization (ESI) mass spectra. The intensities of the signals corresponding to protonated molecules were significantly (twice) higher when air was used. Inspection of signal-to-noise (S/N) ratios revealed that, in both cases, sensitivity was comparable. A higher ion abundance after the application of compressed air was followed by a higher background. Another potential risk of using air in the ESI source is the possibility for sample oxidation due to the presence of oxygen. To test this, we selected five easily oxidizing compounds to verify their susceptibility to oxidation. In particular, the presence of methionine was of interest. For all the compounds studied, no oxidation was observed. Amodiaquine oxidizes spontaneously in water solutions and its oxidized form can be detected a few hours after preparation. Direct comparison of the spectra where nitrogen was used with the corresponding spectra obtained when air was applied did not show significant differences. The only distinction was slightly different patterns of adducts when air was used. The difference concerns acetonitrile, which forms higher signals when air is the nebulizing gas. It is also important that the replacement of nitrogen with air does not affect quantitative data. The prepared calibration curves also visualize an intensity twice as high (independent of concentration within tested range) of the signal where air was applied. We have used our system continuously for three months with air as the nebulizing and drying gas and have not noticed any unexpected signal deterioration caused by additional source contamination from the air. Moreover, compressed air is much cheaper and easily available using oil-free compressors or pumps.

  15. Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering

    DOE PAGES

    Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...

    2016-06-08

    The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.

  16. Photoelectron kinetic and angular distributions for the ionization of aligned molecules using a HHG source

    NASA Astrophysics Data System (ADS)

    Rouzée, Arnaud; Kelkensberg, Freek; Kiu Siu, Wing; Gademann, Georg; Lucchese, Robert R.; Vrakking, Marc J. J.

    2012-04-01

    We present an experimental and theoretical investigation of the angular distributions of electrons ejected in aligned molecules by extreme ultra-violet ionization using a high harmonic generation (HHG) source. Impulsive alignment in O2, N2 and CO molecules was achieved using a near-IR laser pulse and the photoelectron angular distribution after ionization by a fs harmonic comb composed of harmonic H11 to H29 (17.5-46 eV) was recorded at the maximum of both alignment and anti-alignment. The experiment reveals signatures that are specific for the electronic orbitals that are ionized as well as the onset of the influence of the molecular structure and is well reproduced by theoretical calculations based on the multichannel Schwinger configuration interaction method.

  17. Two-effective-center approximation for proton-impact single ionization of hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Ghanbari-Adivi, Ebrahim

    2015-10-01

    Some closed-form expressions are derived for the partial direct and indirect transition amplitudes for proton-impact single ionization of the hydrogen molecules using a first-order two-effective center continuum-wave approximation. The method satisfies the correct boundary conditions in the entrance channel. The basic assumption in this model is that when the active electron is ionized from one of the atomic centers in the molecule, the other scattering center is completely screened by the passive electron. Consequently, the transition amplitude can be expressed as a superposition of the partial ionization amplitudes from two independent scattering centers located at a constant distance from each other. The superposition of the partial amplitudes leads to different interference patterns for various orientations of the molecular target. The calculated cross sections are compared with the experiments and also with other theories. The comparison shows that the present results are reliable.

  18. Ionization Study of Isomeric Molecules in Strong-field Laser Pulses

    PubMed Central

    Zigo, Stefan; Le, Anh-Thu; Timilsina, Pratap; Trallero-Herrero, Carlos A.

    2017-01-01

    Through the use of the technique of time-of-flight mass spectroscopy, we obtain strong-field ionization yields for randomly oriented 1,2-dichloroethylene (1,2-DCE) (C2H2Cl2) and 2-butene (C4H8). We are interested in studying the effect of conformal structure in strong-field ionization and, in particular, the role of molecular polarity. That is, we can perform strong-field ionization studies in polar vs non-polar molecules that have the same chemical composition. We report our findings through the ionization yields and the ratio (trans/cis) of each stereoisomer pair as a function of intensity. PMID:28186110

  19. The role of molecular electron distribution in strong-field ionization and dissociation of heteronuclear molecules

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2016-11-01

    A comparison study of double-ionization induced dissociation in strong laser fields between a homonuclear diatomic molecule, O2, and a heteronuclear diatomic molecule, NO, shows that two electrons can easily be removed from one O atom of O2 to form a O2++O, however, two electrons can hardly be removed from the O atom of NO to form a N+O2+. Instead, for NO, two electrons are preferentially removed from the N atom to form a N2++O, even though the N atom requires higher ionization energy than the O atom. This indicates that atomic ionization energy does not play a significant role here. Our further study on the formation dynamics of the N2++O channel shows that the initial electron distribution of the NO molecule plays an important role in influencing the strong-field ionization and dissociation of NO and this effect seems to commonly exist in heteronuclear molecules when interacting with strong laser fields.

  20. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    PubMed

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules.

  1. Ultrafast ionization and fragmentation dynamics of molecules at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil

    2016-05-01

    X-ray free-electron lasers (XFEL) open a new era in science and technology, offering many unique opportunities that have not been conceivable with conventional light sources. Because of their very high x-ray photon fluence within very short pulse duration, materials interacting with XFEL undergo significant radiation damage -- they possibly become highly ionized and then explode. To comprehend underlying physics, it is crucial to understand detailed ionization and fragmentation dynamics of atoms and molecules during intense XFEL pulses. We have developed the XMOLECULE toolkit to describe molecular x-ray-induced processes and to simulate radiation damage dynamics of molecules. In this talk, I will present a theoretical framework of XFEL-matter interaction, namely x-ray multiphoton absorption. Then I will discuss recent results of ultrafast x-ray-induced explosion of methyl iodide (CH3 I) molecules. Charge state distribution and kinetic energy releases of fragments are calculated to probe ionization and fragmentation dynamics, and compared with recent experimental results. It will be demonstrated that ionization of heavy-atom-containing molecules at high x-ray intensity is much enhanced in comparison with the isolated atomic case, due to ultrafast charge rearrangement during x-ray multiphoton absorption.

  2. Kinetic analysis of competition between aerosol particle removal and generation by ionization air purifiers.

    PubMed

    Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A

    2007-04-01

    Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.

  3. Multiphoton and tunneling ionization probability of atoms and molecules in an intense laser field

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Liu, Lu; Zhou, Xiao-Xin

    2014-02-01

    We theoretically studied ionization of atoms exposed to an intense laser field by using three different methods, i.e., the numerical solution of the single-active-electron approximation based time-dependent Schrödinger equation (SAE-TDSE), the Perelomov-Popov-Terent'ev (PPT) model, and the Ammosov-Delone-Krainov (ADK) model. The ionization of several linear molecules in a strong laser field is also investigated with the molecular ADK (MO-ADK) and the molecular PPT (MO-PPT) model. We show that the ionization probability from the PPT and the MO-PPT model agrees well with the corresponding SAE-TDSE result in both the multiphoton and tunneling ionization regimes. By considering the volume effect of the laser field, the ionization signal obtained from the PPT and the MO-PPT model fits well the experimental data in the whole range of the multiphoton and tunneling ionization regimes. However, both the ADK and MO-ADK models seriously underestimate the ionization probabilities (or signals) in the multiphoton regime.

  4. Static field ionization rates for multi-electron atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Pramod Majety, Vinay; Scrinzi, Armin

    2015-12-01

    We present an application of the hybrid anti-symmetrized coupled channels approach to compute static field ionization rates for multi-electron atoms (He, Ne, Ar) and small molecules (H2, N2, CO). While inert gas atoms behave as effective single electron systems, molecules exhibit multi-electron effects in the form of core polarization. It is shown that at moderate field strengths, these effects can be modeled to about 10% accuracy using a few (5-6) channel ansatz. In the case of the CO molecule, description of core polarization is essential for the correct prediction of the maximum ionization direction and our converged results are in good agreement with the experimental measurements.

  5. Interference effects in double ionization of spatially aligned hydrogen molecules by fast highly charged ions

    SciTech Connect

    Landers, A.L.; Alnaser, A.S.; Tanis, J.A.; Wells, E.; Osipov, T.; Carnes, K.D.; Ben-Itzhak, I.; Cocke, C.L.; McGuire, J.H.

    2004-10-01

    Cross sections differential in target orientation angle were measured for 19 MeV F{sup 8+}+D{sub 2} collisions. Multihit position-sensitive detectors were used to isolate the double-ionization channel and determine a posteriori the full momentum vectors of both ejected D{sup +} fragments. A strong dependence of the double ionization cross section on the angle between the incident ion direction and the target molecular axis is observed with a {approx_equal}3.5:1 enhancement for molecules aligned perpendicular to the projectile axis. This clear asymmetry is attributed to interference effects, analogous to Young's two-slit experiment, arising from coherent contributions to the ionization from both atomic centers. The data are compared to a simple scattering model based on two center interference.

  6. Influence of permanent dipole and dynamic core-electron polarization on tunneling ionization of polar molecules

    NASA Astrophysics Data System (ADS)

    Hoang, Van-Hung; Zhao, Song-Feng; Le, Van-Hoang; Le, Anh-Thu

    2017-02-01

    We present a detailed theoretical investigation on strong-field ionization of polar (CO and NO) as well as nonpolar molecules (N2, O2, and CO2). Our results indicate that accounting for the Stark correction in the molecular tunneling ionization theory leads to overall fairly good agreements with numerical solutions of the time-dependent Schrödinger equation. Furthermore, we show that the effect of dynamic core-electron polarization, in general, has a weak influence on the angle-dependent ionization probability. However, in the case of CO we confirm the recent finding by B. Zhang, J. Yuan, and Z. Zhao [Phys. Rev. Lett. 111, 163001 (2013), 10.1103/PhysRevLett.111.163001] that accounting for dynamic core-polarization is crucial to achieving an overall good agreement with experiments.

  7. Core Ionization Initiates Subfemtosecond Charge Migration in the Valence Shell of Molecules

    NASA Astrophysics Data System (ADS)

    Kuleff, Alexander I.; Kryzhevoi, Nikolai V.; Pernpointner, Markus; Cederbaum, Lorenz S.

    2016-08-01

    After the ionization of a valence electron, the created hole can migrate ultrafast from one end of the molecule to another. Because of the advent of attosecond pulse techniques, the measuring and understanding of charge migration has become a central topic in attosecond science. Here, we pose the hitherto unconsidered question whether ionizing a core electron will also lead to charge migration. It is found that the created hole in the core stays put, but in response to this hole interesting electron dynamics takes place which can lead to intense charge migration in the valence shell. This migration is typically faster than that after the ionization of a valence electron and transpires on a shorter time scale than the natural decay of the core hole by the Auger process, making the subject very challenging to attosecond science.

  8. Positron-impact ionization, positronium formation, and electronic excitation cross sections for diatomic molecules

    SciTech Connect

    Marler, J. P.; Surko, C. M.

    2005-12-15

    Absolute measurements are presented for the positron-impact cross sections for positronium formation, direct ionization, and total ionization of the diatomic molecules N{sub 2}, CO, and O{sub 2}, in the range of energies from threshold to 90 eV. Cross sections for the electronic excitation of the a {sup 1}{pi} and a{sup '} {sup 1}{sigma} state in N{sub 2} and the A {sup 1}{pi} state in CO near threshold are also presented. The experiment uses a cold, trap-based positron beam and the technique of studying positron scattering in a strong magnetic field. In O{sub 2}, a feature previously seen in the total ionization cross section is observed in both the positronium formation and total ionization cross sections. The possible origin of this feature and its relationship to positron-induced dissociation is discussed. In N{sub 2}, the near-threshold electronic excitation cross section is larger than that for positronium formation. This likely explains the relatively high efficiency of this molecule when used for buffer-gas positron trapping.

  9. Electronic spectroscopy of large van der waals molecules by resonant two-photon ionization

    NASA Astrophysics Data System (ADS)

    Leutwyler, Samuel; Even, Uzi; Jortner, Joshua

    1982-03-01

    Tunable laser two-photon ionization of large van der Waals molecules, combined with time-of-flight mass spectroscopy. was applied to the identification of the electronic origin and of some low vibrational excitations of the S 0 — S 1 electronic transition of fluorene·Ar 1, fluorene·Ar 2 and fluorene·Kr 1 produced in supersonic expansions.

  10. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  11. Monte Carlo wave packet approach to dissociative multiple ionization in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Leth, Henriette Astrup; Madsen, Lars Bojer; Mølmer, Klaus

    2010-05-01

    A detailed description of the Monte Carlo wave packet technique applied to dissociative multiple ionization of diatomic molecules in short intense laser pulses is presented. The Monte Carlo wave packet technique relies on the Born-Oppenheimer separation of electronic and nuclear dynamics and provides a consistent theoretical framework for treating simultaneously both ionization and dissociation. By simulating the detection of continuum electrons and collapsing the system onto either the neutral, singly ionized or doubly ionized states in every time step the nuclear dynamics can be solved separately for each molecular charge state. Our model circumvents the solution of a multiparticle Schrödinger equation and makes it possible to extract the kinetic energy release spectrum via the Coulomb explosion channel as well as the physical origin of the different structures in the spectrum. The computational effort is restricted and the model is applicable to any molecular system where electronic Born-Oppenheimer curves, dipole moment functions, and ionization rates as a function of nuclear coordinates can be determined.

  12. Properties of Hollow Molecules Probed by Single-Photon Double Ionization

    SciTech Connect

    Lablanquie, P.; Penent, F.; Palaudoux, J.; Selles, P.; Carniato, S.; Andric, L.; Bucar, K.; Zitnik, M.; Huttula, M.; Eland, J. H. D.; Shigemasa, E.; Soejima, K.; Hikosaka, Y.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-02-11

    The formation of hollow molecules (with a completely empty K shell in one constituent atom) through single-photon core double ionization has been demonstrated using a sensitive magnetic bottle experimental technique combined with synchrotron radiation. Detailed properties are presented such as the spectroscopy, formation, and decay dynamics of the N{sub 2}{sup 2+} K{sup -2} main and satellite states and the strong chemical shifts of double K holes on an oxygen atom in CO, CO{sub 2}, and O{sub 2} molecules.

  13. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    DOE PAGES

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; ...

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metalmore » oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.« less

  14. Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry

    SciTech Connect

    Yagnik, Gargey B.; Hansen, Rebecca L.; Korte, Andrew R.; Reichert, Malinda D.; Vela, Javier; Lee, Young Jin

    2016-08-30

    Nanoparticles (NPs) have been suggested as efficient matrixes for small molecule profiling and imaging by laser-desorption ionization mass spectrometry (LDI-MS), but so far there has been no systematic study comparing different NPs in the analysis of various classes of small molecules. Here, we present a large scale screening of 13 NPs for the analysis of two dozen small metabolite molecules. Many NPs showed much higher LDI efficiency than organic matrixes in positive mode and some NPs showed comparable efficiencies for selected analytes in negative mode. Our results suggest that a thermally driven desorption process is a key factor for metal oxide NPs, but chemical interactions are also very important, especially for other NPs. Furthermore, the screening results provide a useful guideline for the selection of NPs in the LDI-MS analysis of small molecules.

  15. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions.

    PubMed

    Luo, Zhigang; He, Jiuming; Chen, Yi; He, Jingjing; Gong, Tao; Tang, Fei; Wang, Xiaohao; Zhang, Ruiping; Huang, Lan; Zhang, Lianfeng; Lv, Haining; Ma, Shuanggang; Fu, Zhaodi; Chen, Xiaoguang; Yu, Shishan; Abliz, Zeper

    2013-03-05

    Whole-body molecular imaging is able to directly map spatial distribution of molecules and monitor its biotransformation in intact biological tissue sections. Imaging mass spectrometry (IMS), a label-free molecular imaging method, can be used to image multiple molecules in a single measurement with high specificity. Herein, a novel easy-to-implement, whole-body IMS method was developed with air flow-assisted ionization in a desorption electrospray ionization mode. The developed IMS method can effectively image molecules in a large whole-body section in open air without sample pretreatment, such as chemical labeling, section division, or matrix deposition. Moreover, the signal levels were improved, and the spatial assignment errors were eliminated; thus, high-quality whole-body images were obtained. With this novel IMS method, in situ mapping analysis of molecules was performed in adult rat sections with picomolar sensitivity under ambient conditions, and the dynamic information of molecule distribution and its biotransformation was provided to uncover molecular events at the whole-animal level. A global view of the differential distribution of an anticancer agent and its metabolites was simultaneously acquired in whole-body rat and model mouse bearing neuroglioma along the administration time. The obtained drug distribution provided rich information for identifying the targeted organs and predicting possible tumor spectrum, pharmacological activity, and potential toxicity of drug candidates.

  16. Thermochemical properties of the ammonia-water ionized dimer probed by ion-molecule reactions.

    PubMed

    Abdel Azeim, Safwat; van der Rest, Guillaume

    2005-03-24

    The thermochemical properties of some small clusters such as the (H2O)2*+ dimer have already been investigated by both experimental and theoretical methods. The recent method to selectively prepare the ammonia-water ionized dimer [NH3, H2O]*+ (and not its proton transfer isomer [NH4+, OH*]) allowed us to study its chemical reactivity. This study focuses on the charge and proton transfer pathways: Ion-molecule reactions in the cell of an FT-ICR mass spectrometer were carried out with a range of organic compounds. Examination of the reactivity of the [NH3, H2O]*+ ionized dimer versus ionization energy and proton affinity of the neutral reagents shows a threshold in the reactivity in both instances. This leads to a bracketing of thermochemical properties related to the dimer. From these experiments and in agreement with ab initio calculations, the adiabatic recombination energy of the [NH3, H2O]*+ dimer was evaluated at -9.38 +/- 0.04 eV. The proton affinity bracketing required the reevaluation of two reference gas-phase basicity values. The results, in good agreement with the calculation, lead to an evaluation of the proton affinity of the [NH2*, H2O] dimer at 204.4 +/- 0.9 kcal mol(-1). These two experimental values are respectively related to the ionization energy of NH3*+ and to the proton affinity of NH2* by the difference in single water molecule solvation energies of ionized ammonia, of neutral ammonia, and of the NH2* radical.

  17. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH(2+) by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH(2+) reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  18. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  19. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule

    PubMed Central

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-01-01

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules. PMID:28218294

  20. [The combined action of octafluoropropane and bipolar ionized air].

    PubMed

    Anisimov, B V; Mukhamedieva, L N; Ivanova, S M; Markin, A A; Mikos, K N; Naĭdina, V P

    2006-01-01

    An experiment with Wistar male rats was to look into the action of octafluoropropane (OFP, of 50 microg/m(3)) combined with bipolar ionized air (BIA) at a concentration of light air ions of 60,000 para-air in cm(3). The chamber experiment was 43 days long. Intoxication by OFP reduced body mass, as well as the erythrocyte count and hemoglobin level in peripheral blood. As for BIA, it appeared to bring these indices back to their normal values. Erythrocyte metabolism underwent phase-by-phase shifts; but breathing BIA mitigated these shifts markedly. As regards to erythrocyte metabolism in intoxicated animals, BIA had a compensatory effect Changes in the biochemical profile of blood plasma make us think, that BIA counteracts the OFP damaging action on the myocardium and, at the same time, aggravates impairment of metabolism in the liver and, probably, kidney. Variations in the spectrum and total content of higher fatty acids in the lung in the experiment were more pronounced in the event of exposure to OFP+BIA than to OFP alone. Also, the combined exposure increased the level of laurinic acid. Histological investigations of the liver, spleen, myocardium, trachea and the lung attested to the dystrophic damage of the liver, spleen plethora and reticular hyperplasia, and slight cloudy swelling of the myocardium attributed to OFP. After 14 days since the end of the experiment, histological changes were much less dramatic; in 39 days after the experiment all the changes were gone with the exception of weak emphysematosis. BIA had no effect on animals in the absence of OFP; neither was there any significant difference between control (intact) animals and those who breathed BIA in laboratory. To conclude, 50 microg/m(3) of OFP which falls far short of the existing maximum permissible levels, a strong toxic action on animals. Aside from mitigation of the OFP toxic action on erythrocytes and myocardium, BIA, when breathed with a long time, aggravated the metabolic disorders in

  1. Nonadiabatic molecular alignment of linear molecules probed by strong-field ionization yields of photoelectrons

    NASA Astrophysics Data System (ADS)

    Kaya, G.; Kaya, N.; Strohaber, J.; Hart, N. A.; Kolomenskii, A. A.; Schuessler, H. A.

    2016-12-01

    The dynamics of rotational wave packets of laser-aligned linear molecules were studied with femtosecond laser-driven strong-field ionization (SFI). The dynamics were observed as a function of the delay between a femtosecond probe pulse and a linearly polarized aligning pump pulse. The induced nonadiabatic molecular alignment was directly monitored by the total SFI yield. The measured revival signatures were compared to the calculated degree of molecular alignment taking into account the effects of electronic structure and symmetry of the molecules. By fitting the calculated alignment parameter to the measured experimental data, we also determined the molecular rotational constants of N2, CO, O2, and C2H2 gas molecules.

  2. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  3. Hand and shoe monitor using air ionization probes

    SciTech Connect

    Fergus, R.W.

    1981-02-24

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  4. Weak-field versus Born-Oppenheimer asymptotics in the theory of tunneling ionization of molecules

    NASA Astrophysics Data System (ADS)

    Tolstikhin, Oleg I.; Morishita, Toru

    2017-03-01

    The weak-field asymptotic theory (WFAT) and the Born-Oppenheimer approximation (BOA) provide two general approaches to the theory of tunneling ionization of molecules enabling one to treat the internuclear motion quantum mechanically on an equal footing with the electronic motion. The approaches are based on the asymptotic expansions in field strength and electron-to-nuclear mass ratio, respectively. The problem is that they yield quite different formulas for the ionization rate, which causes an ambiguity for applications in strong-field physics. A recent experimental observation of the isotope effect in tunneling ionization of hydrogen molecules [X. Wang et al., Phys. Rev. Lett. 117, 083003 (2016)], 10.1103/PhysRevLett.117.083003 motivates us to address this theoretical ambiguity. The WFAT and BOA have different but overlapping regions of applicability in the field strength—nuclear mass plane. We link the approaches analytically, in particular showing that the rate formulas in fact coincide in the overlap region where they both apply, and compare their predictions quantitatively.

  5. LC-MS with electron ionization of cold molecules in supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Granot, Ori; Amirav, Aviv

    2005-06-01

    A new approach is described for the combination of electron ionization and LC-MS based on sample ionization as vibrationally cold molecules in a supersonic molecular beam (Cold EI). Cold EI of sample compounds in liquid solutions (methanol, acetonitrile, water, etc.) is achieved through spray formation, followed by soft thermal vaporization of the sample particles prior to their supersonic expansion and direct electron ionization of the sample compounds while they are contained in a supersonic molecular beam (SMB). Cold EI mass spectra were demonstrated to combine an enhanced molecular ion and improved mass spectral information (in comparison with standard EI), plus all the library searchable fragments. Cold EI enables the ionization of a broad range of compounds, including the full range of non-polar samples. Four orders of magnitude linear dynamic range is demonstrated and a detection limit of 2 pg was achieved for a 774 amu compound in single ion monitoring mode at m/z = 774. The method and apparatus are under continuous development and we feel that it can excel particularly in the analysis of unknown samples, while enabling fast LC-MS analysis through automated mass spectral deconvolution of coeluting LC peaks. In addition, the same MS system can also serve as an advanced GC-MS with supersonic molecular beams.

  6. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules Using VUV Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N2 and O2 are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  7. Mass-analyzed threshold ionization (MATI) spectroscopy of atoms and molecules using VUV synchrotron radiation.

    PubMed

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R; Ahmed, Musahid

    2009-12-31

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N(2), O(2), N(2)O, H(2)O, C(2)H(2), and C(6)H(6). MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational state resolved MATI spectra of N(2) and O(2) are reported, and spectral characteristics are discussed in comparison with previously reported threshold photoelectron spectroscopic studies. Although MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser-based sources, this work demonstrates that MATI spectroscopy performed with widely tunable vacuum ultraviolet (VUV) radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  8. Mass-Analyzed Threshold Ionization (MATI) Spectroscopy of Atoms and Molecules using VUV Synchrotron Radiation

    SciTech Connect

    Kostko, Oleg; Kim, Sang Kyu; Leone, Stephen R.; Ahmed, Musahid

    2009-01-28

    Mass-analyzed threshold ionization (MATI) spectroscopy using synchrotron radiation (Advanced Light Source, Lawrence Berkeley National Laboratory) has been performed for Ar, N2, O2, N2O, H2O, C2H2, and C6H6. MATI allows for a better determination of ionization energies compared to those derived from photoionization efficiency curves traditionally used in synchrotron photoionization mass spectrometry. The separation of the long-lived Rydberg state from the directly-formed prompt ion, essential for a meaningful MATI spectrum, has been accomplished by employing an arrangement of ion optics coupled to unique electric-field pulsing schemes. For Ar, a number of resolved bands below the ionization energy are observed, and these are ascribed to high-n,l Rydberg states prepared in the MATI scheme. The first vibrational stateresolved MATI spectra of N2 and O2 are reported and spectral characteristics are discussed in comparison with previously-reported threshold photoelectron spectroscopic studies. While MATI performed with synchrotron radiation is intrinsically less sensitive compared to laser based sources, this work demonstrates that MATI spectroscopy performed with widely tunable VUV radiation is a complementary technique for studying the ionization spectroscopy of polyatomic molecules.

  9. Alignment- and orientation-dependent strong-field ionization of molecules: Field-induced orbital distortion effects

    NASA Astrophysics Data System (ADS)

    Spiewanowski, Maciej Dominik; Madsen, Lars Bojer

    2015-05-01

    Strong-field ionization (SFI) is a starting point for many strong-field phenomena, e.g., high-order harmonic generation, as well as a source of fundamental information about the ionized target. Therefore, investigation of SFI of atoms and molecules has been the aim for research since the first strong laser pulses became available. We present a recently developed method, adiabatic strong-field approximation, to study ionization yields as a function of alignment angle for CO2, CO, and OCS molecules. We show that orbital distortion plays an important role in explaining the position and relative strength of maxima in the yields for both polar and nonpolar molecules, even for targets with low polarizabilities at low laser intensities. In particular, we report that for ionization of CO2 the maximum in ionization yield shifts towards the experimentally-measured maximum with respect to the strong-field approximation. For ionization of the CO molecule, not only does the theory predict the preferred direction of ionization correctly, but also the ratio between yields for the two molecular orientations where the electric field points either towards the C or towards the O end. Finally, we find that ionization of OCS is more probable for the laser pointing from the O end towards the S end. Work supported by the Natural Sciences and Engineering Research Council of Canada, the ERC-StG (Project No. 277767-TDMET), and the VKR center of excellence, QUS- COPE.

  10. Ionization and fragmentation of complex molecules studied with a density functional theory based approach

    NASA Astrophysics Data System (ADS)

    Kirchner, Tom

    2013-05-01

    Ion-impact induced ionization and fragmentation of complex molecules have important applications in many branches of science. If the molecule is H2O an obvious topic to address is the radiobiological relevance of these processes, e.g. in the context of hadron therapy, to name just one example. From a more fundamental physics viewpoint ion-molecule collision systems constitute interesting many-body systems, whose analysis poses challenges to both experimentalists and theorists. This talk will describe a theoretical approach to ion-molecule collisions, which is based on density functional theory to describe the nonperturbative electron dynamics. The basis generator method applied in the past successfully to ion-atom collisions is adapted to deal with the multi-center problem one faces when one considers molecular targets. Cross sections for single- and multiple-electron processes (capture and transfer to the continuum) are obtained directly from solving time-dependent Kohn-Sham-type orbital equations and using a Slater determinant based analysis. Fragmentation yields are predicted on the basis of a semi-phenomenological model which uses the calculated cross sections as input. Results will be presented for various ions impacting on water molecules in the energy range of 10-5000 keV/amu and compared with experimental data and previous theoretical calculations where available. First applications of the model to collisions involving CH4 molecules will also be discussed. This work has been supported by SHARCNET and NSERC Canada.

  11. Exploration of strong-field double ionization of CS2 molecule in bichromatic counterrotating circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Ben, Shuai; Zuo, Wanlong; Song, Kaili; Xu, Tongtong; Guo, Jing; Xu, Haifeng; Yan, Bing; Liu, Xue-Shen

    2016-12-01

    By using classical ensemble method, we investigate the double ionization of CS2 molecule in linearly, the bichromatic counterrotating circularly polarized laser fields and the combination of bichromatic counterrotating circularly polarized laser fields and static field, respectively. The numerical results show that the ionization probability in the bichromatic counterrotating circularly polarized laser fields is about 2 order magnitude higher than that in linearly polarized laser field. When a static field is added, the ionization probability is the largest. Besides, the "knee" structure occurs at about 0.05 PW/cm2 in linearly polarized laser field; whereas "knee" structure is disappeared in the bichromatic counterrotating circularly polarized laser fields and combined laser field. The corresponding momentum distribution of CS2 molecule presents a "finger-like" structure at about 0.05 PW/cm2 in linearly polarized field. By analysing the energy distributions of double-ionized electrons versus time and corresponding trajectories, we find that, for linearly polarized case non-sequential double ionization (NSDI) is predominant at about 0.05 PW/cm2, for bichromatic counterrotating circularly polarized laser fields, one electron ionizes after another which indicate sequential ionization process (SDI). When the static field is added, the two electrons undergoes a long pre-ionization process first and then ionizes one after another, and the pre-ionization process lasts longer than other two cases.

  12. Fully differential study on dissociative ionization dynamics of deuteron molecules in strong elliptical laser fields

    NASA Astrophysics Data System (ADS)

    Shao, Yun; He, Peilun; Liu, Ming-Ming; Sun, Xufei; Li, Min; Deng, Yongkai; Wu, Chengyin; He, Feng; Gong, Qihuang; Liu, Yunquan

    2017-03-01

    Deuteron momentum distributions from the dissociative ionization of D2 in intense elliptically polarized laser fields have been explored in a joint experimental and numerical study. The asymmetrical charge localization in the dissociative D2 + offers a large torque, and thus an elliptically polarized laser field efficiently rotates the molecular ion during its dissociation, resulting in the emission of deuterons finally deviating from the bond direction at the instant of tunneling ionization of D2. The rotating torque of the molecular ions increases with the field ellipticity, leading to an ellipticity-dependent tilt angle for the deuteron momentum distribution. Due to the notable rotation of D2 + during its dissociation, the photoelectron angular distributions in the laboratory frame and the molecular frame are distinct, which illustrates that the axial recoil approximation is broken for discussing the photoelectron angular distributions of molecules in elliptically polarized laser fields.

  13. Ionization of 2,5-dimethylfuran by electron impact and resulting ion-parent molecule reactions

    SciTech Connect

    Jiao, C. Q.; Adams, S. F.; Garscadden, A.

    2009-07-01

    2,5-dimethylfuran (C{sub 6}H{sub 8}O) is an important fuel additive and a possible renewable liquid fuel for the future. This paper presents a recent Fourier transfer mass spectrometry study on the formation of ions from C{sub 6}H{sub 8}O by electron impact ionization and by ion-molecule reactions. Cross sections of the partial electron impact ionization have been measured and the pathways of major fragmentation channels of the parent ion have been examined. The kinetics of the reactions of C{sub 6}H{sub 8}O with selected product ions from electron impact and Ar{sup +} have been studied.

  14. Single ionization and capture cross sections from biological molecules by bare projectile impact*

    NASA Astrophysics Data System (ADS)

    Quinto, Michele A.; Monti, Juan M.; Montenegro, Pablo D.; Fojón, Omar A.; Champion, Christophe; Rivarola, Roberto D.

    2017-02-01

    We report calculations on single differential and total cross sections for single ionization and single electron capture from biological targets, namely, vapor water and DNA nucleobasese molecules, by bare projectile impact: H+, He2+, and C6+. They are performed within the Continuum Distorted Wave - Eikonal Initial State approximation and compared to several existing experimental data. This study is oriented to the obtention of a reliable set of theoretical data to be used as input in a Monte Carlo code destined to micro- and nano- dosimetry.

  15. Electron Dynamics upon Ionization of Polyatomic Molecules: Coupling to Quantum Nuclear Motion and Decoherence

    NASA Astrophysics Data System (ADS)

    Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.; Malhado, João Pedro

    2017-02-01

    Knowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process. Here, we simulate the dynamics upon ionization of the polyatomic molecules paraxylene and modified bismethylene-adamantane, with a quantum mechanical treatment of both electron and nuclear dynamics using the direct dynamics variational multiconfigurational Gaussian method. Our simulations give new important physical insights about the expected decoherence process. We have shown that the decoherence of electron dynamics happens on the time scale of a few femtoseconds, with the interplay of different mechanisms: the dephasing is responsible for the fast decoherence while the nuclear overlap decay may actually help maintain it and is responsible for small revivals.

  16. Dissociation and multiple ionization energies for five polycyclic aromatic hydrocarbon molecules

    NASA Astrophysics Data System (ADS)

    Holm, A. I. S.; Johansson, H. A. B.; Cederquist, H.; Zettergren, H.

    2011-01-01

    We have performed density functional theory calculations for a range of neutral, singly, and multiply charged polycyclic aromatic hydrocarbons (PAHs), and their fragmentation products for H-, H^+-, C_2H_2-, and C_2H_2^+-emissions. The adiabatic and vertical ionization energies follow linear dependencies as functions of charge state for all five intact PAHs (naphthalene, biphenylene, anthracene, pyrene, and coronene). First estimates of the total ionization and fragmentation cross sections in ion-PAH collisions display markedly different size dependencies for pericondensed and catacondensed PAH species, reflecting differences in their first ionization energies. The dissociation energies show that the PAH^{q+}-molecules are thermodynamically stable for q ⩽ 2 (naphthalene, biphenylene, and anthracene), q ⩽ 3 (pyrene), and q ⩽ 4 (coronene). PAHs in charge states above these limits may also survive experimental time scales due to the presence of reaction barriers as deduced from explorations of the potential energy surface regions for H^+-emissions from all five PAHs and for C_2H_2+-emission from naphthalene - the smallest PAH.

  17. Laser desorption ionization of small molecules assisted by tungsten oxide and rhenium oxide particles.

    PubMed

    Bernier, Matthew C; Wysocki, Vicki H; Dagan, Shai

    2015-07-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are attractive options due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3 , in microparticle (μP) powder forms, can efficiently facilitate ionization of various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/µL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under laser desorption ionization. Qualitatively, the WO3 μP showed improved detection of apigenin, sodiated glucose, and precharged analyte choline, while the ReO3 μP allowed better detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/µL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than α-cyano-4-hydroxycinnaminic acid. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to those used with α-cyano-4-hydroxycinnaminic acid.

  18. The electron-ion dynamics in ionization of lithium carbide molecule under femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqin; Wang, Feng; Hong, Xuhai; Su, Wenyong; Gou, Bingcong; Chen, Huimin

    2016-08-01

    The electron-ion dynamics of the linear lithium carbide molecule under femtosecond laser pulses have been investigated in the framework of Ehrenfest molecular dynamics, in which valence electrons are treated quantum mechanically by time-dependent density functional theory (TDDFT) and ions are described classically. The on- and off-resonant multiphoton ionization processes have been induced by regulating laser frequency and laser intensity. The laser pulse with on-resonant frequency induces pronounced enhancement in electron ionization, bond length vibration, and energy absorption. Moreover, the coulomb explosion is preferred to occur in the on-resonant case, which is in qualitative agreement with previous theoretical investigations. The subtle relations between escaped electron number and absorbed photon number are well discussed with the increasing of laser intensity. Finally, the effect of self-interaction error is analyzed by comparing escaped electron number calculated with LDA and LDA-ADSIC. And the revTPSS-meta-GGA, a currently more accurate nonempirical exchange-correlation energy functional from a point of static density functional theory, is introduced to display its capability for the description of ionization process within nonlinear and the nonperturbative regime of isolated systems.

  19. Phloroglucinol Protects Small Intestines of Mice from Ionizing Radiation by Regulating Apoptosis-Related Molecules

    PubMed Central

    Ha, Danbee; Bing, So Jin; Cho, Jinhee; Ahn, Ginnae; Kim, Dae Seung; Al-Amin, Mohammad; Park, Suk Jae

    2013-01-01

    Phloroglucinol (PG) is a phenolic compound isolated from Ecklonia cava, a brown algae abundant on Jeju island, Korea. Previous reports have suggested that PG exerts antioxidative and cytoprotective effects against oxidative stress. In this study, we confirmed that PG protected against small intestinal damage caused by ionizing radiation, and we investigated its protective mechanism in detail. Regeneration of intestinal crypts in the PG-treated irradiated group was significantly promoted compared with that in irradiated controls. The expression level of proapoptotic molecules such as p53, Bax, and Bak in the small intestine was downregulated and that of antiapoptotic molecules such as Bcl-2 and Bcl-XS/L was augmented in the PG-treated group. On histological observation of the small intestine, PG inhibited the immunoreactivity of p53, Bax, and Bak and increased that of Bcl-2 and Bcl-XS/L. These results demonstrate the protective mechanisms of PG in mice against intestinal damage from ionizing radiation, providing the benefit of raising the apoptosis threshold of jejunal crypt cells. PMID:23117934

  20. Ion/molecule reaction and ion evaporation in atmospheric pressure spray ionization

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Atsumu; Takada, Yasuaki; Kambara, Hideki; Umemura, Yuta; Ohta, Hitoshi; Ito, Haruhiko; Kuchitsu, Kozo

    1992-12-01

    The positive ions produced in atmospheric pressure spray ionization of ammonia, alanine and sucrose in aqueous solution were detected with a double-focusing mass spectrometer. The relative intensities of the quasi-molecular ions of ammonia, NH+4 (H2O)n (n = 0-3), were found to be proportional to the concentration of the ammonia solution and to increase with increasing distance d between the nozzle tip and the sample aperture of the mass spectrometer; this observation shows that the ammonia molecule is produced by the spray and is protonated at atmospheric pressure by a proton transfer reaction with the hydronium ion and its hydrated clusters. The observed dependences of the relative intensities of the protonated alanine molecules from alanine solution and the cationized sucrose molecules from sucrose solution on d show that some part of these quasi-molecular ions are also produced by the ion/molecule reaction in the gas phase. However, their dependences on the concentration, which are steeper than that in the ammonia case, indicate that a significant proportion of these ions are produced by ion evaporation from a droplet or liquid.

  1. Above-threshold ionization and laser-induced electron diffraction in diatomic molecules

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Ciappina, Marcelo F.; Wolter, Benjamin; Biegert, Jens; Lewenstein, Maciej

    2016-10-01

    Strong-field photoemission and electron recollision provide a viable route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal resolution. However, since an ab initio treatment of even the simplest diatomic systems is beyond today's capabilities, approximate qualitative descriptions are warranted. In this paper, we develop such a theoretical approach to model the photoelectrons resulting from intense laser-molecule interaction. We present a general theory for symmetric diatomic molecules in the single active electron approximation that, amongst other capabilities, allows adjusting both the internuclear separation and molecular potential in a direct and simple way. More importantly, we derive an analytic approximate solution of the time-dependent Schrödinger equation (TDSE), based on a generalized strong-field approximation (SFA) version. Using that approach, we obtain expressions for electron emitted transition amplitudes from two different molecular centers, and accelerated then in the strong laser field. In addition, our approach directly underpins different underlying physical processes that correspond to (i) direct tunneling ionization; (ii) electron rescattering on the center of origin; and, finally, (iii) electron rescattering on a different center. One innovative aspect of our theory is the fact that the dipole matrix elements are free from nonphysical gauge and coordinate system-dependent terms: this is achieved by adapting the coordinate system, in which SFA is performed, to the center from which the corresponding part of the time-dependent wave function originates. Our analytic results agree very well with the numerical solution of the full three-dimensional TDSE for the H2 + molecule. Moreover, the theoretical model was applied to describe laser-induced electron diffraction measurements of O2 + molecules, obtained at ICFO, and reproduces the main features of the experiment very well. Our approach can be extended in

  2. Electron-Impact Excitation and Ionization in Air

    DTIC Science & Technology

    2009-09-01

    also exist in other disciplines dealing with plasma, including astrophysics , fusion science, plasma processing in microelectronics, etc. While the...cross sections, and ionization fractions for astrophysically abundant elements. I. Carbon and nitrogen,” The Astrophysical Journal Supplement Series Vol

  3. Resonancelike enhancement in high-order above-threshold ionization of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okunishi, M.; Hao, X.; Ito, Y.; Chen, J.; Yang, Y.; Lucchese, R. R.; Zhang, M.; Yan, B.; Li, W. D.; Ding, D.; Ueda, K.

    2016-04-01

    We investigate the resonance-like enhancement (RLE) in high-order above-threshold ionization (ATI) spectra of the polyatomic molecules C2H4 and C2H6 . In the spectrum-intensity maps, strong and weak RLE areas emerge alternatively for both C2H4 and C2H6 but in different sequences. Theoretical calculations using the strong-field approximation reproduce the experimental observation and analysis shows that the different characteristics of the two molecules can be attributed to interference effects of molecular orbitals with different symmetries. For C2H4 , the RLE structures are attributed to C-C centers of the highest occupied molecular orbital (HOMO) orbital. For C2H6 , in contrast, the C-C centers of the HOMO and HOMO-1 orbitals do not contribute to the RLE due to destructive interference but the hydrogen centers of the bonding HOMO-1 orbital give rise to the multiple RLE regions. In addition, clear experimental evidence of the existence of two types of the RLE and their dependence on the parity of ground state is shown. Our result, which strongly supports the channel-closing mechanism of the RLE, for the first time reveals the important role of low-lying orbitals and the differing roles of different atomic centers in the high-order ATI spectrum of molecules.

  4. Cobalt coated substrate for matrix-free analysis of small molecules by laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yalcin, Talat; Li, Liang

    2009-12-01

    Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.

  5. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  6. Laser Desorption Ionization of small molecules assisted by Tungsten oxide and Rhenium oxide particles

    PubMed Central

    Bernier, Matthew; Wysocki, Vicki; Dagan, Shai

    2015-01-01

    Inorganic metal oxides have shown potential as matrices for assisting in laser desorption ionization (LDI) with advantages over the aromatic acids typically used. Rhenium and tungsten oxides are an attractive option due to their high work functions and relative chemical inertness. In this work, it is shown that ReO3 and WO3, in microparticle (μP) powder forms, can efficiently ionize various types of small molecules and provide minimized background contamination at analyte concentrations below 1 ng/μL. This study shows that untreated inorganic WO3 and ReO3 particles are valid matrix options for detection of protonatable, radical, and precharged species under LDI. Qualitatively, the WO3 μP showed an improved detection of apigenin, sodiated glucose, and the precharged analyte choline, while the ReO3 μP allowed detection of protonated cocaine, quinuclidine, ametryn, and radical ions of polyaromatic hydrocarbons at detection levels as low as 50 pg/μL. For thermometer ion survival yield experiments, it was also shown that the ReO3 powder was significantly softer than CCA. Furthermore, it provided higher intensities of cocaine and polyaromatic hydrocarbons, at laser flux values equal to that used with CCA. PMID:26349643

  7. Three-body neutral dissociations of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kitajima, Masashi; Kouchi, Noriyuki

    2012-11-01

    The cross sections for emission of two fluorescence photons from a pair of excited fragments in photoexcitation of H2O have been measured as a function of the incident photon energy using the photon-photon coincidence technique. The cross section increased in the range 30-45 eV, i.e. in the vicinity of the double ionization potential of H2O. The increase of the cross section was attributed to three-body neutral dissociations of a water molecule via multiply excited states: H2O** → H(2p) + OH** → H(2p) + H(2p) + O(3P). Some multiply excited states of H2O were also found in the cross section curve around 65 eV.

  8. Accurate Structure Parameters for Tunneling Ionization Rates of Gas-Phase Linear Molecules

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Li, Jian-Ke; Wang, Guo-Li; Li, Peng-Cheng; Zhou, Xiao-Xin

    2017-03-01

    In the molecular Ammosov–Delone–Krainov (MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402], the ionization rate depends on the structure parameters of the molecular orbital from which the electron is removed. We determine systematically and tabulate accurate structure parameters of the highest occupied molecular orbital (HOMO) for 123 gas-phase linear molecules by solving time-independent Schrödinger equation with B-spline functions and molecular potentials which are constructed numerically using the modified Leeuwen–Baerends (LBα) model. Supported by National Natural Science Foundation of China under Grant Nos. 11664035, 11674268, 11465016, 11364038, 11364039, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001 and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  9. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  10. Relation between molecule ionization energy, film thickness and morphology of two indandione derivatives thin films

    NASA Astrophysics Data System (ADS)

    Grzibovskis, Raitis; Vembris, Aivars; Pudzs, Kaspars

    2016-08-01

    Nowadays most organic devices consist of thin (below 100 nm) layers. Information about the morphology and energy levels of thin films at such thickness is essential for the high efficiency devices. In this work we have investigated thin films of 2-(4-[N,N-dimethylamino]-benzylidene)-indene-1,3-dione (DMABI) and 2-(4-(bis(2-(trityloxy)ethyl)amino)benzylidene)-2H-indene-1,3-dione (DMABI-6Ph). DMABI-6Ph is the same DMABI molecule with attached bulky groups which assist formation of amorphous films from solutions. Polycrystalline structure was obtained for the DMABI thin films prepared by thermal evaporation in vacuum and amorphous structure for the DMABI-6Ph films prepared by spin-coating method. Images taken by SEM showed separate crystals or islands at the thickness of the samples below 100 nm. The ionization energy of the studied compounds was determined using photoemission yield spectroscopy. A vacuum level shift of 0.40 eV was observed when ITO electrode was covered with the thin film of the organic compound. Despite of the same active part of the investigated molecules the ITO/DMABI interface is blocking electrons while ITO/DMABI-6Ph interface is blocking holes.

  11. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  12. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    DOE PAGES

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; ...

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  13. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    SciTech Connect

    Hansen, Jonas L.; Holmegaard, Lotte; Kalhoej, Line; Kragh, Sofie Louise; Stapelfeldt, Henrik; Filsinger, Frank; Meijer, Gerard; Kuepper, Jochen; Dimitrovski, Darko; Abu-samha, Mahmoud; Martiny, Christian Per Juul; Madsen, Lars Bojer

    2011-02-15

    We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C{sub 7}H{sub 5}N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D-oriented asymmetric top molecules, in particular the suppression of electron emission in nodal planes of molecular orbitals. In the preceding article [Dimitrovski et al., Phys. Rev. A 83, 023405 (2011)] the focus is to understand the strong-field ionization of one-dimensionally-oriented polar molecules, in particular asymmetries in the emission direction of the photoelectrons.

  14. Theoretical and experimental quantification of doubly and singly differential cross sections for electron-induced ionization of isolated tetrahydrofuran molecules

    SciTech Connect

    Champion, Christophe; Quinto, Michele A.; Bug, Marion U.; Baek, Woon Y.; Weck, Philippe F.

    2014-07-29

    Electron-induced ionization of the commonly used surrogate of the DNA sugar-phosphate backbone, namely, the tetrahydrofuran molecule, is here theoretically described within the 1st Born approximation by means of quantum-mechanical approach. Comparisons between theory and recent experiments are reported in terms of doubly and singly differential cross sections.

  15. Universal imaging: Dissociative ionization of polyatomic molecules, chemical dynamics beamline 9.0.2

    SciTech Connect

    Ahmed, M.; Chen, D.; Suits, A.G.

    1997-04-01

    A third endstation was recently added to the Chemical Dynamics beamline, designed to exploit the high flux broadband undulator light for a range of studies of reactive scattering, photochemistry and photoionization processes using time-of-flight mass spectroscopy coupled with position-sensitive detection. Two molecular beam sources are fixed at right angles, with the undulator light, or laser beams, intersecting the molecular beams at 45{degrees}. To date, beamline experiments have included a study of dissociative photoionization of a variety of molecules including N{sub 2}O and SF{sub 6}. In this mode, a single molecular beam source is used, with the tunable undulator light inducing, in SF{sub 6} for example, the process SF{sub 6} {r_arrow} SF{sub 6}{sup +} + e{sup {minus}} {r_arrow} SF{sub 5}{sup +} + F + e{sup {minus}}. The SF{sub 5}{sup +} ions are accelerated up the flight tube, mass selected and detected as a function of position on a phosphor screen viewed by a CCD camera. The position directly reveals the recoil speed (or translational energy release) and angular distribution for the dissociative ionization process. Furthermore, this measurement is obtained for all recoil speeds and angles simultaneously. Such detailed angular information has not previously been obtained for dissociative ionization processes; typically ion time-of-flight profiles are deconvoluted to yield rough insight into the angular distributions. The recorded image is actually a 2-dimensional projection of the nascent 3-dimensional velocity distribution, but established tomographic techniques enable the authors to reconstruct the 3-D distribution.

  16. PTRAC File Utilization for Calculation of Free-Air Ionization Chamber Correction Factors by MCNPX

    NASA Astrophysics Data System (ADS)

    Šolc, Jaroslav; Sochor, Vladimír

    2014-06-01

    A free-air ionization chamber is used as a standard of photon air-kerma. Several correction factors are applied to the air-kerma value. Correction factors for electron loss (kloss) and for additional ionization current caused by photon scatter (ksc), photon fluorescence (kfl), photon transmission through diaphragm edge (kdtr), and photon scatter from the surface of the diaphragm aperture (kdsc) were determined by the MCNPX code utilizing information stored in Particle Track (PTRAC) output files. Individual steps of the procedure are described and the calculated values of the correction factors are presented. The values are in agreement with the correction factors published in a literature for similar free-air chambers.

  17. Effect of ionization on microbial air pollution in the dental clinic.

    PubMed

    Gabbay, J; Bergerson, O; Levi, N; Brenner, S; Eli, I

    1990-06-01

    The use of spray-producing instruments in the dental clinic continuously creates a potentially harmful contamination of the room environment. In the present study a 13.5-kV corona discharge ionizing generator was used in order to investigate the effect of ions on the microbial air pollution of the dental clinic. Samples of microbial air population were collected in 9-cm-diameter plates containing either Bacto-Brain Heart Infusion Agar or Bacto-Mitis Salivarius Agar and exposed to different time periods in various locations of an active dental clinic. Microbial air levels in the dental clinic were significantly reduced with the generator (by 40-50%). The data suggest that the ionizing generator can be used to reduce the microbial air pollution within the dental clinic, thus reducing the environmental hazard of infections to the staff.

  18. Electron impact total ionization cross sections for simple bio-molecules (H2CO, HCOOH and CH3COOH) using ICSP-ic method

    NASA Astrophysics Data System (ADS)

    Bhutadia, Harshad; Vinodkumar, Minaxi; Antony, Bobby

    2012-11-01

    In the present work we compute total ionization cross sections for simple bio-molecules viz. formaldehyde, formic acid and acetic acid on electron impact. The total ionization cross sections are extracted from total inelastic cross section using Improved Complex Scattering Potential-ionization contribution method.

  19. Assessment of two-temperature kinetic model for ionizing air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1987-01-01

    A two-temperature chemical-kinetic model for air is assessed by comparing theoretical results with existing experimental data obtained in shock-tubes, ballistic ranges, and flight experiments. In the model, named the TTv model, one temperature (T) is assumed to characterize the heavy-particle translational and molecular rotational energies, and another temperature (Tv) to characterize the molecular vibrational, electron translational, and electronic excitation energies. The theoretical results for nonequilibrium air flow in shock tubes are obtained using the computer code STRAP (Shock-Tube Radiation Program), and for flow along the stagnation streamline in the shock layer over spherical bodies using the newly developed code STRAP (Stagnation-Point Radiation Program). Substantial agreement is shown between the theoretical and experimental results for relaxation times and radiative heat fluxes. At very high temperatures the spectral calculations need further improvement. The present agreement provides strong evidence that the two-temperature model characterizes principal features of nonequilibrium air flow. New theoretical results using the model are presented for the radiative heat fluxes at the stagnation point of a 6-m-radius sphere, representing an aeroassisted orbital transfer vehicle, over a range of free-stream conditions. Assumptions, approximations, and limitations of the model are discussed.

  20. Triple Differential Cross Sections for single ionization of the Ethane molecule

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don

    2015-09-01

    We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  1. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms.

    PubMed

    Dunham, Sage J B; Comi, Troy J; Ko, Kyungwon; Li, Bin; Baig, Nameera F; Morales-Soto, Nydia; Shrout, Joshua D; Bohn, Paul W; Sweedler, Jonathan V

    2016-06-04

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques-polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization-are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems.

  2. Detection of Ionizing Radiation using Solar Blind Air Fluorescence

    DTIC Science & Technology

    2013-06-01

    14 16 Figure 1.2: Geant4 simulation of the solar blind photon flux from 1010 decays of Am241 viewed by a 40 cm diameter detector at a distance of 10 m...discharges and other sources, sufficiently low that it will not interfere with the operation of a solar blind radiological detector ? UNCLASSIFIED iii DSTO...Figures 1.2 through 1.4 show simulated solar blind photon air fluorescence emission from common radiological sources (Am240,Cs137 and Sr90). In each

  3. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission

    PubMed Central

    Escombe, A. Roderick; Moore, David A. J; Gilman, Robert H; Navincopa, Marcos; Ticona, Eduardo; Mitchell, Bailey; Noakes, Catherine; Martínez, Carlos; Sheen, Patricia; Ramirez, Rocio; Quino, Willi; Gonzalez, Armando; Friedland, Jon S; Evans, Carlton A

    2009-01-01

    Background Institutional tuberculosis (TB) transmission is an important public health problem highlighted by the HIV/AIDS pandemic and the emergence of multidrug- and extensively drug-resistant TB. Effective TB infection control measures are urgently needed. We evaluated the efficacy of upper-room ultraviolet (UV) lights and negative air ionization for preventing airborne TB transmission using a guinea pig air-sampling model to measure the TB infectiousness of ward air. Methods and Findings For 535 consecutive days, exhaust air from an HIV-TB ward in Lima, Perú, was passed through three guinea pig air-sampling enclosures each housing approximately 150 guinea pigs, using a 2-d cycle. On UV-off days, ward air passed in parallel through a control animal enclosure and a similar enclosure containing negative ionizers. On UV-on days, UV lights and mixing fans were turned on in the ward, and a third animal enclosure alone received ward air. TB infection in guinea pigs was defined by monthly tuberculin skin tests. All guinea pigs underwent autopsy to test for TB disease, defined by characteristic autopsy changes or by the culture of Mycobacterium tuberculosis from organs. 35% (106/304) of guinea pigs in the control group developed TB infection, and this was reduced to 14% (43/303) by ionizers, and to 9.5% (29/307) by UV lights (both p < 0.0001 compared with the control group). TB disease was confirmed in 8.6% (26/304) of control group animals, and this was reduced to 4.3% (13/303) by ionizers, and to 3.6% (11/307) by UV lights (both p < 0.03 compared with the control group). Time-to-event analysis demonstrated that TB infection was prevented by ionizers (log-rank 27; p < 0.0001) and by UV lights (log-rank 46; p < 0.0001). Time-to-event analysis also demonstrated that TB disease was prevented by ionizers (log-rank 3.7; p = 0.055) and by UV lights (log-rank 5.4; p = 0.02). An alternative analysis using an airborne infection model demonstrated that ionizers prevented 60% of

  4. Probing Orbital Symmetry of Molecules Via Alignment-Dependent Ionization Probability and High-Order Harmonic Generation by Intense Lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Zhou, Xiao-Xin; Lin, C. D.

    It is shown that measurement of alignment-dependent ionization probability and high-order harmonic generation (HHG) of molecules in an intense laser field can be used to probe the orbital symmetry of molecules. In this review, recent progress of molecular tunneling ionization (MO-ADK) model of Tong et al. [Phys. Rev. A 66, 033402 (2002)] is first reviewed. In particular, an efficient method to obtain wavefunctions of linear molecules in the asymptotic region was developed by solving the time-independent Schrödinger equation with B-spline functions, and molecular potential energy surfaces were constructed based on the density functional theory. The accurate wavefunctions are used to extract improved structure parameters in the MO-ADK model. The loss of accuracy of the MO-ADK model in the low intensity multiphoton ionization regime is also addressed by comparing with the molecular Perelomov-Popov-Terent'ev (MO-PPT) model, the single-active-electron time-dependent Schrödinger equation (SAE-TDSE) method, and the experimental data. Finally, how the orbital symmetry affects the HHG of molecules within the strong-field approximation (SFA) was reviewed.

  5. Suppression of strong field ionization in diatomic molecules with triplet ground states

    NASA Astrophysics Data System (ADS)

    Dewitt, M. J.; Wells, E.; Jones, R. R.

    2001-05-01

    The ionization rates of S_2, SO, and F2 when subjected to 800 nm, 100 fs laser pulses are measured as a function of laser pulse intensity and compared to those of Xe and Ar. Contrary to recent theoretical predictions, the ionization behavior of F2 is observed to be nearly identical to that of both N2 and Ar, and therefore behaves as would be predicted by a structureless, atom-like ionization model. The ionization rates of triplet S2 and SO are shown to be suppressed, much like triplet O_2, relative to expectations based solely on their ionization potentials. Measurements made with 1360 nm, 80 fs laser pulses show that the ionization suppression of S2 and SO persists at longer wavelengths.

  6. Effect of ionizing radiation on moist air systems

    SciTech Connect

    Reed, D.T.; Van Konynenburg, R.A.

    1987-12-31

    The radiation chemistry of nitrogen/oxygen/water systems is reviewed. General radiolytic effects in dry nitrogen/oxygen systems are relatively well characterized. Irradiation results in the formation of steady state concentrations of ozone, nitrous oxide and nitrogen dioxide. In closed systems, the concentration observed depends on the total dose, temperature and initial gas composition. Only three studies have been published that focus on the radiation chemistry of nitrogen/oxygen/water homogeneous gas systems. Mixed phase work that is relevant to the gaseous system is also summarized. The presence of water vapor results in the formation of nitric acid and significantly changes the chemistry observed in dry air systems. Mechanistic evidence from the studies reviewed are summarized and discussed in relation to characterizing the gas phase during the containment period of a repository in tuff.

  7. Measurement of nonlinear refractive index and ionization rates in air using a wavefront sensor.

    PubMed

    Schwarz, Jens; Rambo, Patrick; Kimmel, Mark; Atherton, Briggs

    2012-04-09

    A wavefront sensor has been used to measure the Kerr nonlinear focal shift of a high intensity ultrashort pulse beam in a focusing beam geometry while accounting for the effects of plasma-defocusing. It is shown that plasma-defocusing plays a major role in the nonlinear focusing dynamics and that measurements of Kerr nonlinearity and ionization are coupled. Furthermore, this coupled effect leads to a novel way that measures the laser ionization rates in air under atmospheric conditions as well as Kerr nonlinearity. The measured nonlinear index n₂ compares well with values found in the literature and the measured ionization rates could be successfully benchmarked to the model developed by Perelomov, Popov, and Terentev (PPT model) [Sov. Phys. JETP 50, 1393 (1966)].

  8. Ionizing air affects influenza virus infectivity and prevents airborne-transmission

    PubMed Central

    Hagbom, Marie; Nordgren, Johan; Nybom, Rolf; Hedlund, Kjell-Olof; Wigzell, Hans; Svensson, Lennart

    2015-01-01

    By the use of a modified ionizer device we describe effective prevention of airborne transmitted influenza A (strain Panama 99) virus infection between animals and inactivation of virus (>97%). Active ionizer prevented 100% (4/4) of guinea pigs from infection. Moreover, the device effectively captured airborne transmitted calicivirus, rotavirus and influenza virus, with recovery rates up to 21% after 40 min in a 19 m3 room. The ionizer generates negative ions, rendering airborne particles/aerosol droplets negatively charged and electrostatically attracts them to a positively charged collector plate. Trapped viruses are then identified by reverse transcription quantitative real-time PCR. The device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses. PMID:26101102

  9. Design, simulation, and fabrication of a MEMS-based air amplifier for electrospray ionization

    NASA Astrophysics Data System (ADS)

    Jurčíček, Petr; Zou, Helin; Gao, Shuai

    2013-04-01

    Recent developments in electrospray ionization mass spectrometry (ESI-MS) show that air amplifiers can be utilized to significantly enhance droplet desolvation and to focus gas-phase ions when provided between an electrospray (ES) source and the mass spectrometer (MS). However, these devices are bulky and expensive, which may be a factor prohibiting their broader utilization. We have developed a simple but effective method based on Bernoulli's principle, the Coanda effect and MEMS processing to focus electrosprayed droplets and liberated gas-phase ions. We demonstrate a computer simulation and fabrication process for a micromachined air amplifier. The simulation results are used to optimize the geometry and to meet performance requirements. The optimized results then provide a design guideline for the device's fabrication. The air amplifier is formed from two bonded polydimethylsiloxane (PDMS) casts. Each PDMS cast is fabricated through a molding process using a micromachined two-layer SU-8 mold. Experimental results show a 30-fold improvement in the ES current for certain operation conditions while the air amplifier is incorporated in the nano-electrospray ionization (nano-ESI) process. Compared with traditional air amplifiers, the micro-electro-mechanical systems (MEMS) based air amplifier provides good performance while keeping the fabrication process simple and cost effective.

  10. Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms

    PubMed Central

    Dunham, Sage J. B.; Comi, Troy J.; Ko, Kyungwon; Li, Bin; Baig, Nameera F.; Morales-Soto, Nydia; Shrout, Joshua D.; Bohn, Paul W.; Sweedler, Jonathan V.

    2016-01-01

    Mass spectrometry imaging (MSI) has become an important analytical tool for many sectors of science and medicine. As the application of MSI expands into new areas of inquiry, existing methodologies must be adapted and improved to meet emerging challenges. Particularly salient is the need for small molecule imaging methods that are compatible with complex multicomponent systems, a challenge that is amplified by the effects of analyte migration and matrix interference. With a focus on microbial biofilms from the opportunistic pathogen Pseudomonas aeruginosa, the relative advantages of two established microprobe-based MSI techniques—polyatomic secondary ion mass spectrometry (SIMS) and laser desorption/ionization—are compared, with emphasis on exploring the effect of surface metallization on small molecule imaging. A combination of qualitative image comparison and multivariate statistical analysis demonstrates that sputtering microbial biofilms with a 2.5 nm layer of gold selectively enhances C60-SIMS ionization for several molecular classes including rhamnolipids and 2-alkyl-quinolones. Metallization also leads to the reduction of in-source fragmentation and subsequent ionization of media-specific background polymers, which improves spectral purity and image quality. These findings show that the influence of metallization upon ionization is strongly dependent on both the surface architecture and the analyte class, and further demonstrate that metal-assisted C60-SIMS is a viable method for small molecule imaging of intact molecular ions in complex biological systems. PMID:26945568

  11. Non-sequential double ionization spectroscopy of argon and spectrally resolved transient alignment of gaseous iodine molecules

    NASA Astrophysics Data System (ADS)

    Peterson, Emily R.

    This pair of experiments investigates strong-field behavior of an atom and of a molecule, observing these phenomena through collection of detailed spectral information under the necessary parameters. We first investigate the double-ionization of an argon atom; inelastic collisions between the ion and the laser-driven electron may provide an explanation of the unexpectedly high probabilities of multiple ionization under certain pulse intensities. The second experiment uses the polarization-dependence of molecular absorption spectra to monitor field-induced orientational anisotropy in a dense iodine gas sample. We record the times of flight of ions and electrons produced by a tightly focused short laser pulse in an intensity regime where non-sequential processes dominate double ionization. When a double ion is recorded under these conditions, it is statistically likely to be non-sequential and one of few ionization events during that laser shot. We collect a spectrum for the resulting electrons, recording only those electrons that are simultaneous with detection of a double ion. This spectrum reflects an enhancement in the fraction of electrons produced by non-sequential double ionization events. This enriched spectrum is compared to the single-ionization ATI spectrum, and the difference attributed to double ionization. These electron spectra show an increase in angular spread of electrons as well as the theorized increase in longitudinal energy associated with rescattering, and include some electrons which are best explained by extensions to the rescattering model. Similarly, we approach transient alignment of molecules with the belief that spectral information is important to our understanding of the system as a whole. It has been demonstrated that molecules exposed to a linearly polarized non-resonant laser pulse receive an angular impulse, kicking them into alignment. The rotational wavepacket created is coherent, resulting in periodic recurrences of this

  12. Free-air ionization chamber, FAC-IR-300, designed for medium energy X-ray dosimetry

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2017-01-01

    The primary standard for X-ray photons is based on parallel-plate free-air ionization chamber (FAC). Therefore, the Atomic Energy Organization of Iran (AEOI) is tried to design and build the free-air ionization chamber, FAC-IR-300, for low and medium energy X-ray dosimetry. The main aim of the present work is to investigate specification of the FAC-IR-300 ionization chamber and design it. FAC-IR-300 dosimeter is composed of two parallel plates, a high voltage (HV) plate and a collector plate, along with a guard electrode that surrounds the collector plate. The guard plate and the collector were separated by an air gap. For obtaining uniformity in the electric field distribution, a group of guard strips was used around the ionization chamber. These characterizations involve determining the exact dimensions of the ionization chamber by using Monte Carlo simulation and introducing correction factors.

  13. Electrophysical and optophysical properties of air ionized by a short pulse of fast electrons

    NASA Astrophysics Data System (ADS)

    Vagin, Iu. P.; Stal', N. L.; Khokhlov, V. D.; Chernoiarskii, A. A.

    A method for solving the nonstationary kinetic equation of electron deceleration is developed which is based on the multigroup approximation. The electron distribution function in air ionized by nonstationary sources of primary electrons is determined, and the avalanche formation of secondary electrons is considered. Theoretical and experimental results are presented on the time dependence of the air luminescence intensity in two spectral intervals, one including the 391.4 nm N2(+) band and the other including the 337.1 nm N2 band, for different values of gas pressure under the effect of a short beam of electrons with energies of 100 keV.

  14. The influence of negative ionization of the air on motor activity in Syrian hamsters ( Masocricetus auratus Waterhouse) in light conditions

    NASA Astrophysics Data System (ADS)

    Lenkiewicz, Zofia; Dabrowska, Barbara; Schiffer, Zofia

    1989-12-01

    The motor activity of Syrian hamsters ( Mesocricetus auratus Waterhouse) under the influence of negative ionization of the atmosphere applied for 10, 20 or 30 min per day was investigated. An ionizer with output of 14000 light negative ions per 1 cm3 of air was used. Studies carried out in the light phase of a 12∶12 h light/dark regime revealed a relation between the reaction of the animal and the time of day at which ionization was applied. Ionization for 20 or 30 min in the light phase decreased motor activity, while 10 min of ionization increased it compared to control animals. Ionization in the dark phase gave a more distinct rise in activity than that applied in the light phase for all three durations of ionization.

  15. Recoil frame photoemission in multiphoton ionization of small polyatomic molecules: photodynamics of NO2 probed by 400 nm fs pulses

    NASA Astrophysics Data System (ADS)

    Marggi Poullain, S.; Elkharrat, C.; Li, W. B.; Veyrinas, K.; Houver, J. C.; Cornaggia, C.; Rescigno, T. N.; Lucchese, R. R.; Dowek, D.

    2014-06-01

    We report a general method for the complete analysis of the recoil frame photoelectron angular distribution (RFPAD) in n-photon dissociative ionization of small polyatomic molecules, resulting from (n - 1) bound-to-bound transitions plus one-photon ionization of a neutral excited state of the target. This method relies on the decomposition of the RFPAD in terms of the R_K^{} ( {\\chi ,\\theta _e } ) recoil frame azimuthal harmonics (RFAHs) which are the components of its Fourier expansion in ϕe, where χ and θe are the polar angles referring to the polarization axis P and the photoelectron momentum k relative to the ion fragment recoil direction, respectively, and ϕe is the azimuth of k relative to P. The RFAH expansion method is illustrated by a detailed experimental and theoretical study of one-colour multiphoton dissociative and non-dissociative ionization of the NO2 molecule of C2v symmetry induced by 400 nm fs laser pulses, which involve electronic and nuclear dynamics within the pulse duration of the order of 70 fs. The reaction mechanism proposed to account for five-photon dissociative ionization of NO2 involves the role of [R*(6a1)-1] Rydberg states populated by three-photon absorption, subsequently ionized by a fourth photon into the NO2+ (X1Σg+, v1,v2,v3) manifold involving autoionization of [R*(4b2)-1] Rydberg states, and linear versus bent geometry selective dissociation of NO2+ (X1Σg+, v1,v2,v3) by a fifth photon. The reported calculations provide a coherent picture of the experimental findings although all features are not yet well reproduced.

  16. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    SciTech Connect

    Cha, Sangwon

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  17. The importance of Rydberg orbitals in dissociative ionization of small hydrocarbon molecules in intense few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Wells, E.; Voznyuk, A.; Mahowald, J. B.; Schmitz, D. G.; Burwitz, T. G.; Jochim, B.; Zohrabi, M.; Betsch, K. J.; Severt, T.; Berry, B.; Kling, N. G.; Ablikim, U.; Carnes, K. D.; Ben-Itzhak, I.; Siemering, R.; Kling, M. F.; de Vivie-Riedle, R.

    2015-05-01

    Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which have relatively well separated electronic states. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C2D2, C2D4, and C2D6 reveals that the photofragment angular distributions can only be understood when ionization from Rydberg orbitals is considered. These commonly neglected Rydberg orbitals are readily populated for some orientations of the molecule relative to the laser polarization, leading to dissociation patterns and an intensity dependence consistent with significant Rydberg orbital influence. Our results suggest that Rydberg states should be routinely considered when studying polyatomic molecules in intense laser fields. Funding provided by National Science Foundation grant 1404185, the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, and the DFG.

  18. Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers.

    PubMed

    Britigan, Nicole; Alshawa, Ahmad; Nizkorodov, Sergey A

    2006-05-01

    Indoor air purifiers are advertised as safe household products for health-conscious individuals, especially for those suffering from allergies and asthma. However, certain air purifiers produce ozone (O3) during operation, either intentionally or as a byproduct of air ionization. This is a serious concern, because O3 is a criteria air pollutant regulated by health-related federal and state standards. Several types of air purifiers were tested for their ability to produce ozone in various indoor environments at 40-50% relative humidity, including office rooms, bathrooms, bedrooms, and cars. O3 levels generated by personal wearable air purifiers were also tested. In many cases, O3 concentrations were well in excess of public and/or industrial safety levels established by U.S. Environmental Protection Agency, California Air Resources Board, and Occupational Safety and Health Administration. Simple kinetic equations were obtained that can predict the steady-state level of O3 in a room from the O3 emission rate of the air purifier and the first-order decay rate of O3 in the room. The additivity of O3 levels generated by independent O3 generators was experimentally demonstrated.

  19. Strong-field ionization of homonuclear diatomic molecules by a bicircular laser field: Rotational and reflection symmetries

    NASA Astrophysics Data System (ADS)

    Busuladžić, M.; Gazibegović-Busuladžić, A.; Milošević, D. B.

    2017-03-01

    We investigate above-threshold ionization (ATI) of homonuclear diatomic molecules by the so-called bicircular field using the improved molecular strong-field approximation. Bicircular field is a two-color laser field having coplanar circularly polarized counter-rotating components of frequencies r ω and s ω , with r and s integers. Our analysis includes the high-energy part of the corresponding spectra, i.e., high-order ATI (HATI). The obtained molecular (H)ATI spectra are more complicated than the corresponding atomic spectra. We have identified four symmetries which are satisfied in (H)ATI of homonuclear diatomic molecules. Two of these symmetries are general rotational symmetries valid both for direct and rescattered HATI electrons. The remaining two symmetries are reflection symmetries valid only for the direct ATI electrons. Analytical proof of these symmetries is also given. These symmetries are illustrated using numerical examples of HATI spectra of the N2 molecule for various molecular orientations.

  20. Impact of electron ionization on the generation of high-order harmonics from molecules

    SciTech Connect

    Brener, S.; Moiseyev, N.; Ivanov, M. V.

    2003-08-01

    When the laser frequency is tuned to be equal to the molecular electronic excitation, high-order harmonics are generated due to the electronic dipole transitions between the corresponding two potential-energy surfaces (PES). A natural, often taken, choice is the PES of the field-free molecular system. In this special choice the ionization phenomenon is not considered. Only the effect of the dissociation is considered. The method we developed enables one to remain within the framework of the 2-PES approximation and yet to include also the ionization effect in the calculations of molecular high-order harmonic generation spectra. In this approach the coupling between the electronic and nuclear motions is taken into consideration by using coupled complex adiabatic PES. As an illustrative numerical example, we calculated the high harmonic generation (HHG) spectra of H{sub 2}{sup +} in a 730-nm laser with the intensity of 8.77x10{sup 13} W/cm{sup 2}. The inclusion of the ionization in our approach not only enables the electrons to tunnel through the effective static potential barrier, but also apply an asymmetric force which accelerates the electron before ionization takes place. Therefore, indirectly the inclusion of the ionization by the laser field may lead eventually to an enhanced HHG spectra in comparison with the calculated one when the ''natural'' choice of the field-free 2PES is taken.

  1. Low-voltage ionization of air with carbon-based materials

    NASA Astrophysics Data System (ADS)

    Peterson, M. S.; Zhang, W.; Fisher, T. S.; Garimella, S. V.

    2005-11-01

    Polycrystalline diamond and carbon nanotubes (CNTs) exhibit excellent vacuum field emission properties, characterized by low turn-on voltage and high current density. Their atmospheric field emission and ionization capabilities are reported in this paper. Highly graphitic polycrystalline diamond (HGPD) film was grown in a plasma-enhanced chemical vapour deposition process, and its ability to ionize atmospheric air was characterized and compared against CNTs. The HGPD sample was activated by applying a moderate voltage bias (340 V) for an extended period across a 10 µm electrode gap. After activation, a turn-on voltage of 20 V and a sustainable current of 10 µA were observed with the same gap. Results also indicate that field emission helps to create a moderate ionization effect without catastrophic air breakdown. A hydrogen plasma treatment is shown to restore emission current back to or even exceeding the original level, which suggests an important role of surface termination in the electron emission process. CNTs were grown and tested but did not perform as well under similar conditions.

  2. Negative air ionization improves memory and attention in learning-disabled and mentally retarded children.

    PubMed

    Morton, L L; Kershner, J R

    1984-06-01

    The effect of increased concentrations of ambient negative air ions on incidental visual memory for words and purposive auditory memory for dichotic digits was investigated in 20 normal grade 4 children, 8 learning-disabled children, and 8 mildly mentally retarded children. Half in each group were assigned randomly to an unmodified air-placebo condition under double-blind testing procedures. All of the children breathing negatively ionized air were superior in incidental memory. In dichotic listening, the negative ions produced a counter-priming effect in the two learning-impaired groups, offsetting the difficulties that they showed under placebo in switching attention selectively from one ear to the other. The action of negative ions on the neurotransmitter, serotonin, may be the mechanism by which negative ions produce such behavioral effects. In view of the important environmental and remedial implications of these novel findings, interpretations should be made cautiously pending larger-scale replications.

  3. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  4. A guideline for the identification of environmentally relevant, ionizable organic molecule species.

    PubMed

    Schaffer, Mario; Licha, Tobias

    2014-05-01

    An increasing number of organic compounds detected today in the aquatic environment are ionizable and, therefore, partially or permanently charged (ionic) under the pH conditions encountered in these systems. For evaluating their environmental behavior, which strongly depends on the charge state, the identification of functional groups together with their correct assignment of the respective acidic or basic dissociation constants (pKa) is essential. Despite the growing concern and increasing awareness for ionizable compounds, contradicting and/or confusing information regarding their acid/base properties can be regularly found in the literature, especially when complex structures are encountered. Therefore, we provide a simplified, general, and comprehensive guideline for the identification of ionizable functional groups in organic compounds combined with the correct assignment of their respective pKa values. Beside the explicit definition of basic terms, several tables with more than 30 of the most frequently encountered ionizable compound classes, including their typical pKa value ranges are the centerpiece of the proposed procedure. The straight forward application of the guideline is successfully shown for several environmentally relevant compounds as example.

  5. Investigation of Ionization and Dissociation Processes Produced by Electron Impact on Molecules.

    NASA Astrophysics Data System (ADS)

    Ma, Ce.

    1990-01-01

    Absolute electron impact partial ionization cross sections for Ar and CF_4 were measured by use of a newly built pulsed electron beam time-of-flight apparatus for incident electron energies from thresholds to 500 eV. The apparatus employed consisted of a low energy electron gun, 40 mm diameter ion extraction gold screens, time-of-flight drift tubes, micro-channel plate detectors and fast time to digital electronics. A pulsed electron beam was obtained by pulsing the control grid of the electron gun. Both beam - beam experiments and beam - constant gas target pressure experiments were carried out to determine the absolute partial ionization cross sections for Ar ^{+}, Ar^{2+ }, Ar^{3+} from an argon gas target, and for CF_sp {3}{+}, CF_sp {2}{+}, CF_sp {3}{2+}, CF^ {+}, CF_sp{2} {2+}, F^{+}, C^{+} from a CF _4 gas target. By charge weighted summing of the partial ionization cross sections, the total ionization cross sections of Ar and CF_4 were obtained. The total neutral dissociation cross section for CF_4 was inferred from the total ionization cross section and the total dissociation cross section. Also, a new method for determining absolute total electron scattering cross sections with corrections for forward scattering was developed. The electron beam current was measured as function of gas target pressure and the scattering path length. The total electron scattering cross section obtained from the new model is as much as 6% larger than the cross section derived from the traditional Beer's law for Ar at an incident electron energy of 300 eV. This method is capable of yielding reliable total cross section up to 10 keV. Finally, a study of the secondary electron emission as a function of ejection angle and ejection energy for CO, the doubly differential cross section (DDCS), is presented.

  6. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    SciTech Connect

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Stråhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH{sub 4} molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH{sub x}(HR), x = 1-3, and H{sub 2}(HR) were also observed. The production of HR fragments is attributed to dissociation of CH{sub 4}{sup +} and CH{sub 4}{sup 2+} ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  7. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  8. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Kivimäki, A.; Sankari, A.; Kettunen, J. A.; Strâhlman, C.; Álvarez Ruiz, J.; Richter, R.

    2015-09-01

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CHx(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4+ and CH42+ ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  9. Field ionization of high-Rydberg fragments produced after inner-shell photoexcitation and photoionization of the methane molecule.

    PubMed

    Kivimäki, A; Sankari, A; Kettunen, J A; Stråhlman, C; Álvarez Ruiz, J; Richter, R

    2015-09-21

    We have studied the production of neutral high-Rydberg (HR) fragments from the CH4 molecule at the C 1s → 3p excitation and at the C 1s ionization threshold. Neutral fragments in HR states were ionized using a pulsed electric field and the resulting ions were mass-analyzed using an ion time-of-flight spectrometer. The atomic fragments C(HR) and H(HR) dominated the spectra, but molecular fragments CH(x)(HR), x = 1-3, and H2(HR) were also observed. The production of HR fragments is attributed to dissociation of CH4(+) and CH4(2+) ions in HR states. Just above the C 1s ionization threshold, such molecular ionic states are created when the C 1s photoelectron is recaptured after single or double Auger decay. Similar HR states may be reached directly following resonant Auger decay at the C 1s → 3p resonance. The energies and geometries of the parent and fragment ions have been calculated in order to gain insight into relevant dissociation pathways.

  10. Identification of a Previously Unobserved Dissociative Ionization Pathway in Time-Resolved Photospectroscopy of the Deuterium Molecule

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Laurent, Guillaume; Ben-Itzhak, Itzik; Cocke, C. Lewis

    2015-03-01

    A femtosecond vacuum ultraviolet (VUV) pulse with high spectral resolution (<200 meV ) is selected from the laser-driven high order harmonics. This ultrafast VUV pulse is synchronized with an infrared (IR) laser pulse to study dissociative ionization in deuterium molecules. At a VUV photon energy of 16.95 eV, a previously unobserved bond-breaking pathway is found in which the dissociation direction does not follow the IR polarization. We interpret it as corresponding to molecules predissociating into two separated atoms, one of which is photoionized by the following IR pulse. A time resolved study allows us to determine the lifetime of the intermediate predissociation process to be about 1 ps. Additionally, the dissociative ionization pathways show high sensitivity to the VUV photon energy. As the VUV photon energy is blueshifted to 17.45 eV, the more familiar bond-softening channel is opened to compete with the newly discovered pathway. The interpretation of different pathways is supported by the energy sharing between the electron and nuclei.

  11. Molecular Dynamics Simulations of Motion of Paramagnetic Oxygen Molecules in Air by Magnetic Force

    NASA Astrophysics Data System (ADS)

    Takezawa, Nobuhisa; Fukushima, Kimichika

    2000-03-01

    Oxygen molecules with integer spin in air move upward to higher magnetic fields along magnetic field gradient. This motion is disturbed by the collisions between oxygen molecules and other diamagnetic molecules. To magnetically separate oxygen molecules in air, it is necessary to suppress the collisions with diamagnetic molecules and enhance the transport by magnetic force. In our study, molecular dynamics calculations were carried out to investigate temperature and pressure dependence of the ratio of oxygen molecules to air transported along magnetic field gradient. At temperature T=300K, pressure P=0.1MPa and magnetic field H=20T, the ratio of oxygen molecules to air transported along magnetic field gradient increased from 20% without magnetic fields to about 22% in magnetic fields; at T=200K and P=0.1MPa, to 25%; at T=300K and P=0.005MPa, to 24%. This indicates that the transport of oxygen molecules in air by magnetic force was promoted at lower temperature and pressure.

  12. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  13. Attosecond control of dissociative ionization of O{sub 2} molecules

    SciTech Connect

    Siu, W.; Kelkensberg, F.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Dowek, D.; Lucchini, M.; Calegari, F.; De Giovannini, U.; Rubio, A.; Lucchese, R. R.; Kono, H.; Lepine, F.

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  14. Multiple ionization and fragmentation of isolated pyrene and coronene molecules in collision with ions

    SciTech Connect

    Lawicki, A.; Rousseau, P.; Capron, M.; Maisonny, R.; Maclot, S.; Adoui, L.; Huber, B. A.; Holm, A. I. S.; Seitz, F.; Johansson, H. A. B.; Rosen, S.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.; Manil, B.

    2011-02-15

    The interaction of multiply charged ions (He{sup 2+}, O{sup 3+}, and Xe{sup 20+}) with gas-phase pericondensed polycyclic aromatic hydrocarbon (PAH) molecules of coronene (C{sub 24}H{sub 12}) and pyrene (C{sub 16}H{sub 10}) is studied for low-velocity collisions (v{<=}0.6 a.u.). The mass spectrometric analysis shows that singly and up to quadruply charged intact molecules are important reaction products. The relative experimental yields are compared with the results of a simple classical over-the-barrier model. For higher molecular charge states, the experimental yields decrease much more strongly than the model predictions due to the instabilities of the multiply charged PAH molecules. Even-odd oscillations with the number of carbon atoms, n, in the intensity distributions of the C{sub n}H{sub x}{sup +} fragments indicate a linear chain structure of the fragments similar to those observed for ion-C{sub 60} collisions. The latter oscillations are known to be due to dissociation energy differences between even- and odd-n C{sub n}-chain molecules. For PAH molecules, the average numbers of H atoms attached to the C{sub n}H{sub x} chains are larger for even-n reflecting acetylenic bond systems.

  15. Influence of air exposure and storage condition on serum ionized magnesium level.

    PubMed

    Baek, E J; Park, I K

    2005-01-01

    The aim of this study was to evaluate whether reporting serum level of ionized magnesium (iMg) is appropriate when affected by various conditions such as exposure to air and delayed measurement. Serum levels of pH, iMg and normalized magnesium (nMg, normalized or adjusted concentration of iMg to pH 7.40) from 28 inpatients were measured at intervals of 3 min after exposing the samples to air at room temperature. Serum from 30 inpatients was stored in closed tubes at 4 degrees C and -20 degrees C and iMg and nMg levels were measured after 2 days. It was found that serum iMg and nMg concentrations exposed to air were decreased by 0.0023 mmol/l and 0.0001 mmol/l per minute, respectively. nMg did not display any significant changes compared with iMg at 0 min, whereas iMg showed significant changes, which exceeded between-day precision. For the stored serum, only iMg of serum at -20 degrees C showed no statistically significant changes (p = 0.169). It is concluded that to report the result as iMg, the sample should be kept anaerobically, and if exposed to air, the result should be reported as nMg. For storage, iMg of serum kept anaerobically at -20 degrees C is reliable.

  16. Selective photo-dissociative ionization of methane molecule with TDDFT study

    NASA Astrophysics Data System (ADS)

    Irani, E.; Anvari, A.; Sadighi-Bonabi, R.

    2017-01-01

    Three dimensional calculation of control dynamics for finding the optimized laser filed is formulated using an iterative method and time-dependent density functional approach. An appropriate laser pulse is designed to control the desired products in the dissociation of methane molecule. The tailored laser pulse profile, eigenstate distributions and evolution of the efficient occupation numbers are predicted and exact energy levels of this five-atomic molecule is obtained. Dissociation rates of up to 78%, 80%, 90%, and 82% for CH2+, CH+, C+ and C++ are achieved. Based on the present approach one can reduce the controlling costs.

  17. Formation and Fragmentation of Protonated Molecules after Ionization of Amino Acid and Lactic Acid Clusters by Collision with Ions in the Gas Phase.

    PubMed

    Poully, Jean-Christophe; Vizcaino, Violaine; Schwob, Lucas; Delaunay, Rudy; Kocisek, Jaroslav; Eden, Samuel; Chesnel, Jean-Yves; Méry, Alain; Rangama, Jimmy; Adoui, Lamri; Huber, Bernd

    2015-08-03

    Collisions between O(3+) ions and neutral clusters of amino acids (alanine, valine and glycine) as well as lactic acid are performed in the gas phase, in order to investigate the effect of ionizing radiation on these biologically relevant molecular systems. All monomers and dimers are found to be predominantly protonated, and ab initio quantum-chemical calculations on model systems indicate that for amino acids, this is due to proton transfer within the clusters after ionization. For lactic acid, which has a lower proton affinity than amino acids, a significant non-negligible amount of the radical cation monomer is observed. New fragment-ion channels observed from clusters, as opposed to isolated molecules, are assigned to the statistical dissociation of protonated molecules formed upon ionization of the clusters. These new dissociation channels exhibit strong delayed fragmentation on the microsecond time scale, especially after multiple ionization.

  18. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Buchbinder, Avram M; Weitz, Eric; Geiger, Franz M

    2007-12-20

    We have used chemical ionization mass spectrometry (CIMS) to study the adsorption and photochemistry of several oxygenated organic species adsorbed to Degussa P25 TiO2, an inexpensive catalyst that can be used to mineralize volatile organic compounds. The molecules examined in this work include the common indoor air pollutant acetone and several of its homologs and possible oxidation and condensation products that may be formed during the adsorption and/or photocatalytic degradation of acetone on titanium dioxide catalysts. We report nonreactive uptake coefficients for acetone, formic acid, acetic acid, mesityl oxide, and diacetone alcohol, and results from photochemical studies that quantify, on a per-molecule basis, the room-temperature photocatalytic conversion of the species under investigation to CO2 and related oxidation products. The data presented here imply that catalytic surfaces that enhance formate and acetate production from acetone precursors will facilitate the photocatalytic remediation of acetone in indoor environments, even at room temperature.

  19. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  20. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  1. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  2. Screening of the Binding of Small Molecules to Proteins by Desorption Electrospray Ionization Mass Spectrometry Combined with Protein Microarray

    NASA Astrophysics Data System (ADS)

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins.

  3. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    SciTech Connect

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A.

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  4. A device for precision neutralization of electric charge of small drops using ionized air

    NASA Astrophysics Data System (ADS)

    Fan, Sewan; Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Rogers, Howard; Loomba, Dinesh

    2003-10-01

    For use in our Millikan type liquid drop searches for fractional charge elementary particles we have developed a simple ionized air device for neutralizing a narrow stream of small drops. The neutralizer has been used for drops ranging in diameter from 10 to 25 μm. The width of the produced charge distribution is given by the Boltzmann equilibrium charge distribution and the mean of the distribution is set by a bias voltage. Using the bias voltage, the mean can be set with a precision of better than e, the electron charge. The use of the neutralizer is illustrated in an application to mineral oil drops produced with charges of the order of 1000e. We also show the interesting case of silicone oil drops that are produced in our drop generator with a charge distribution narrower than the Boltzmann equilibrium charge distribution, the charge distribution being broadened by the neutralizer.

  5. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules: A Benchmark of GW Methods

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Knight, Joseph; Wang, Xiaopeng; Gallandi, Lukas; Dolgounitcheva, Olga; Ren, Xinguo; Ortiz, Vincent; Rinke, Patrick; Korzdorfer, Thomas

    The performance of different GW methods is assessed for a set of 24 organic acceptors. Errors are evaluated with respect to coupled cluster singles, doubles, perturbative triples [CCSD(T)] reference data for the vertical ionization potentials (IPs) and electron affinities (EAs), extrapolated to the complete basis set limit. Additional comparisons are made to experimental data, where available. We consider fully self-consistent GW (scGW), partial self-consistency in the Green's function (scGW0) , non-self-consistent G0W0 based on several mean-field starting points, and a ``beyond GW'' second order screened exchange (SOSEX) correction to G0W0. The best performers overall are G0W0 + SOSEX and G0W0 based on an IP-tuned long range corrected hybrid functional with the former being more accurate for EAs and the latter for IPs. Both provide a balanced treatment of localized vs. delocalized states and valence spectra in good agreement with photoemission spectroscopy (PES) experiments.

  6. Experimental and Theoretical Fully differential cross sections for electron impact ionization of furfuryl molecules

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Jones, Darryl; Nixon, Kate; Ning, Chuangang; Brunger, Michael; Murray, Andrew; Madison, Don

    2015-09-01

    Experimental and theoretical Fully Differential Cross Sections (FDCS) are presented for 250 eV electron impact ionization of the highest and next highest occupied molecular orbitals (HOMO and NHOMO). Theoretical results are compared with experiment for in plane scattering with projectile scattering angles of 5°, 10°, and 15°. Different theoretical models are examined - the molecular 3 body distorted wave (M3DW), and the distorted wave Born approximation (DWBA), with the effects of the post collision interaction (PCI) treated either exactly or with the Ward-Macek approximations. These approximations show good agreement with experimental data for binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  7. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-05

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring.

  8. Developments and Applications of Electrophoresis and Small Molecule Laser Desorption Ionization Mass Spectrometry

    SciTech Connect

    Zhang, Hui

    2007-01-01

    Ultra-sensitive native fluorescence detection of proteins with miniaturized one- and two-dimensional polyacrylamide gel electrophoresis was achieved with laser side-entry excitation, which provides both high excitation power and low background level. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE was as low as 15 fg, which corresponds to 40 thousand molecules only. The average detection limit of six standard native proteins was 5 pg per band and the dynamic range spanned more than 3 orders of magnitude. Approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in two-dimensional separation. Estrogen-DNA adducts as 4-OHE1(E2)-1-N3Ade and 4-OHEI(E2)-2-NacCys were hypothesized as early risk assessment of prostate and breast cancers. Capillary electrophoresis, luminescence/absorption spectroscopy and LC-MS were used to characterize and detect these adducts. Monoclonal antibodies against each individual adduct were developed and used to enrich such compounds from urine samples of prostate and breast cancer patients as well as healthy people. Adduct 4-OHE1-1-N3Ade was detected at much higher level in urine from subjects with prostate cancer patients compared to healthy males. The same adduct and 4-OHEI-2-NacCys were also detected at a much higher level in urine from a woman with breast carcinoma than samples from healthy controls. These two DNA adducts may serve as novel biomarkers for early diagnostic of cancers. The adsorption properties of R-phycoerythrin (RPE), on the fused-silica surface were studied using capillary electrophoresis (CE) and single molecule spectroscopy. The band shapes and migration times were measured in CE. Adsorption and desorption events were recorded at the single-molecule level by imaging of the evanescent-field layer using total internal reflection. The adsorbed RPE molecules on the fused-silica prism surface were

  9. Calculations for ion-impact induced ionization and fragmentation of water molecules

    NASA Astrophysics Data System (ADS)

    Kirchner, Tom; Murakami, Mitsuko; Horbatsch, Marko; Jürgen Lüdde, Hans

    2012-10-01

    Charge-state correlated cross sections for single- and multiple-electron removal processes in proton-water-molecule collisions are calculated by using the non-perturbative basis generator method adapted for ion-molecule collisions [1,2]. A fragmentation model is then applied to calculate the yields of H2O^+, OH^+, H^+, and O^+ ions emerging after H2O^q+ formation [3]. A detailed comparison is made with experimental data from three groups covering the energy range from 20--5000 keV. It is found that multiple electron processes with q<=3 play an important role at the lower end of this range and are calculated accurately within an independent particle model. We are currently completing the analogous analysis for He^+-H2O collisions for which the presence of the projectile electron poses some additional challenges. [4pt] [1] H.J. L"udde et al, Phys. Rev. A 80, 060702(R) (2009)[0pt] [2] M. Murakami et al, Phys. Rev. A 85, 052704 (2012)[0pt] [3] M. Murakami et al, Phys. Rev. A 85, 052713 (2012)

  10. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses.

    PubMed

    Motomura, Koji; Kukk, Edwin; Fukuzawa, Hironobu; Wada, Shin-ichi; Nagaya, Kiyonobu; Ohmura, Satoshi; Mondal, Subhendu; Tachibana, Tetsuya; Ito, Yuta; Koga, Ryosuke; Sakai, Tsukasa; Matsunami, Kenji; Rudenko, Artem; Nicolas, Christophe; Liu, Xiao-Jing; Miron, Catalin; Zhang, Yizhu; Jiang, Yuhai; Chen, Jianhui; Anand, Mailam; Kim, Dong Eon; Tono, Kensuke; Yabashi, Makina; Yao, Makoto; Ueda, Kiyoshi

    2015-08-06

    In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.

  11. X-ray multiphoton ionization dynamics of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Inhester, Ludger; Hanasaki, Kota; Hao, Yajiang; Son, Sang-Kil; Santra, Robin

    2016-08-01

    We present a theoretical investigation of x-ray multiphoton ionization dynamics of polyatomic molecules, based on the rate equation model and molecular electronic structure calculations. An efficient numerical procedure is developed to calculate photoionization cross sections, Auger rates, and fluorescence rates for all possible electronic multiple-hole configurations of molecules. We investigate the charge-state distribution of a water molecule after interaction with an intense x-ray pulse and discuss its dependence on the fluence and the pulse duration of the x-ray beam. Our results demonstrate that a water molecule exposed to an intense x-ray pulse is more ionized than what would be expected within the independent-atom picture.

  12. Interference and non-Franck-Condon effects in ionization of H2 molecules by photon impact

    NASA Astrophysics Data System (ADS)

    Fojón, O. A.; Fernández, J.; Palacios, A.; Martín, F.

    2011-04-01

    We analyze theoretically interference effects in the spectra of electrons emitted in the H2 photoionization by high energy linearly polarized photons. Molecular bound and continuum states are accurately described by means of B-spline basis allowing the inclusion of the nuclear degrees of freedom. One interesting feature is observed: the usual Franck-Condon behavior is not followed when the H2 internuclear axis is parallel to the polarization direction. Moreover, this is related to the fact that for this molecular orientation and under certain conditions, the electron cannot be emitted in the direction of the radiation field. On the contrary, for H2 molecules perpendicular to the polarization direction, the angular distribution of electrons is analogous to the one observed in the two slits Young's experiment.

  13. Comparison of negative-ion proton-transfer with iodide ion chemical ionization mass spectrometry for quantification of isocyanic acid in ambient air

    NASA Astrophysics Data System (ADS)

    Woodward-Massey, Robert; Taha, Youssef M.; Moussa, Samar G.; Osthoff, Hans D.

    2014-12-01

    Isocyanic acid (HNCO) is a trace gas pollutant of potential importance to human health whose measurement has recently become possible through the development of negative-ion proton-transfer chemical ionization mass spectrometry (NI-PT-CIMS) with acetate reagent ion. In this manuscript, an alternative ionization and detection scheme, in which HNCO is quantified by iodide CIMS (iCIMS) as a cluster ion at m/z 170, is described. The sensitivity was inversely proportional to water vapor concentration but could be made independent of humidity changes in the sampled air by humidifying the ion-molecule reaction (IMR) region of the CIMS. The performance of the two ionization schemes was compared and contrasted using ambient air measurements of HNCO mixing ratios in Calgary, AB, Canada, by NI-PT-CIMS with acetate reagent ion from Dec 16 to 20, 2013, and by the same CIMS operated in iCIMS mode from Feb 3 to 7, 2014. The iCIMS exhibited a greater signal-to-noise ratio than the NI-PT-CIMS, not because of its sensitivity, which was lower (˜0.083 normalized counts per second (NCPS) per parts-per-trillion by volume (pptv) compared to ˜9.7 NCPS pptv-1), but because of a much lower and more stable background (3 ± 4 compared to a range of ˜2 × 103 to ˜6 × 103 NCPS). For the Feb 2014 data set, the HNCO mixing ratios in Calgary air ranged from <12 to 94 pptv (median 34 pptv), were marginally higher at night than during day, and correlated with nitrogen oxide (NOx = NO + NO2) mixing ratios and submicron particle volume. The ratios of HNCO to NOx observed are within the range of emission ratios reported for gasoline-powered motor vehicles.

  14. Strong-field approximation for above-threshold ionization of polyatomic molecules. II. The role of electron rescattering off the molecular centers

    NASA Astrophysics Data System (ADS)

    Hasović, E.; Milošević, D. B.

    2014-05-01

    We consider high-order above-threshold ionization of polyatomic molecules by a strong laser field. An improved molecular strong-field approximation which takes into account the electron rescattering off the molecular centers is developed. The presented theory is applied to calculate the photoelectron energy and angular distributions for the ozone molecule. The obtained spectra exhibit pronounced minima, and this is explained as a three-point destructive interference of the rescattered electron wave packets.

  15. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.

    2003-01-01

    A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.

  16. Correction factors for the INER-improved free-air ionization chambers calculated with the Monte Carlo method.

    PubMed

    Lin, Uei-Tyng; Chu, Chien-Hau

    2006-05-01

    Monte Carlo method was used to simulate the correction factors for electron loss and scattered photons for two improved cylindrical free-air ionization chambers (FACs) constructed at the Institute of Nuclear Energy Research (INER, Taiwan). The method is based on weighting correction factors for mono-energetic photons with X-ray spectra. The newly obtained correction factors for the medium-energy free-air chamber were compared with the current values, which were based on a least-squares fit to experimental data published in the NBS Handbook 64 [Wyckoff, H.O., Attix, F.H., 1969. Design of free-air ionization chambers. National Bureau Standards Handbook, No. 64. US Government Printing Office, Washington, DC, pp. 1-16; Chen, W.L., Su, S.H., Su, L.L., Hwang, W.S., 1999. Improved free-air ionization chamber for the measurement of X-rays. Metrologia 36, 19-24]. The comparison results showed the agreement between the Monte Carlo method and experimental data is within 0.22%. In addition, mono-energetic correction factors for the low-energy free-air chamber were calculated. Average correction factors were then derived for measured and theoretical X-ray spectra at 30-50 kVp. Although the measured and calculated spectra differ slightly, the resulting differences in the derived correction factors are less than 0.02%.

  17. Effect of a commercial air ionizer on dust mites Dermatophagoides pteronyssinus and Dermatophagoides farinae (Acari: Pyroglyphidae) in the laboratory

    PubMed Central

    Abidin, Suhaili Zainal; Ming, Ho Tze

    2012-01-01

    Objective To investigate the short and long term efficacy of a commercial air ionizer in killing Dermatophagoides pteronyssinus (D. pteronyssinus) and Dermatophagoides farinae (D. farinae) mites. Methods The effect of a commercial ionizer on D. pteronyssinus and D. farinae was evaluated in the laboratory, using a specially designed test. Mortality was assessed after 6, 16 and 24 hours for direct exposure and after 24, 36, 48, 60 and 72 hours for exposure in simulated mattress. New batches of mites were used for each exposure time. Results LT50 for direct exposure of ionizer was 10 hours for D. pteronyssinus and 18 hours for D. farinae. The LT50 for exposure in simulated mattress was 132 hours or 5.5 days for D. pteronyssinus and 72 hours or 3 days for D. farinae. LT95 for direct exposure of ionizer was 36 hours for D. pteronyssinus and D. farinae. Meanwhile, the LT95 for exposure in simulated mattress was 956 hours or 39.8 days for D. pteronyssinus and 403 hours or 16.8 days for D. farinae. Conclusions This study demonstrates the increasing mite mortalities with increasing exposure time of a commercial ionizer and suggests that negative ions produced by an ionizer kill dust mites and can be used to reduce natural mite populations on exposed surfaces such as floors, clothes, curtains, etc. However, there is reduced efficacy on mites inside stuffed materials as in mattresses and furniture. PMID:23569888

  18. Molecular-orbital decomposition of the ionization continuum for a diatomic molecule by angle- and energy-resolved photoelectron spectroscopy. I. Formalism

    NASA Astrophysics Data System (ADS)

    Park, Hongkun; Zare, Richard N.

    1996-03-01

    A theoretical formalism is developed for the quantum-state-specific photoelectron angular distributions (PADs) from the direct photoionization of a diatomic molecule in which both the ionizing state and the state of the ion follow Hund's case (b) coupling. The formalism is based on the molecular-orbital decomposition of the ionization continuum and therefore fully incorporates the molecular nature of the photoelectron-ion scattering within the independent electron approximation. The resulting expression for the quantum-state-specific PADs is dependent on two distinct types of dynamical quantities, one that pertains only to the ionization continuum and the other that depends both on the ionizing state and the ionization continuum. Specifically, the electronic dipole-moment matrix element rlλ exp(iηlλ) for the ejection of a photoelectron with orbital angular momentum quantum number l making a projection λ on the internuclear axis is expressed as ΣαλŪlαλλ exp (iπτ¯αλλ) Mαλλ, where Ūλ is the electronic transformation matrix, τ¯αλλ is the scattering phase shift associated with the αλth continuum molecular orbital, and Mαλλ is the real electronic dipole-moment matrix element that connects the ionizing orbital to the αλth continuum molecular orbital. Because Ūλ and τ¯αλλ depend only on the dynamics in the ionization continuum, this formalism allows maximal exploitation of the commonality between photoionization processes from different ionizing states. It also makes possible the direct experimental investigation of scattering matrices for the photoelectron-ion scattering and thus the dynamics in the ionization continuum by studying the quantum-state-specific PADs, as illustrated in the companion article on the photoionization of NO.

  19. Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation

    SciTech Connect

    Zeitlin, Benjamin D.; Spalding, Aaron C.; Campos, Marcia S.; Ashimori, Naoki; Dong Zhihong; Wang Shaomeng; Lawrence, Theodore S.; Noer, Jacques E.

    2010-11-01

    Purpose: To investigate the effect of a metronomic (low-dose, high-frequency) small-molecule inhibitor of Bcl-2 (TW-37) in combination with radiotherapy on microvascular endothelial cells in vitro and in tumor angiogenesis in vivo. Methods and Materials: Primary human dermal microvascular endothelial cells were exposed to ionizing radiation and/or TW-37 and colony formation, as well as capillary sprouting in three-dimensional collagen matrices, was evaluated. Xenografts vascularized with human blood vessels were engineered by cotransplantation of human squamous cell carcinoma cells (OSCC3) and human dermal microvascular endothelial cells seeded in highly porous biodegradable scaffolds into the subcutaneous space of immunodeficient mice. Mice were treated with metronomic TW-37 and/or radiation, and tumor growth was evaluated. Results: Low-dose TW-37 sensitized primary endothelial cells to radiation-induced inhibition of colony formation. Low-dose TW-37 or radiation partially inhibited endothelial cell sprout formation, and in combination, these therapies abrogated new sprouting. Combination of metronomic TW-37 and low-dose radiation inhibited tumor growth and resulted in significant increase in time to failure compared with controls, whereas single agents did not. Notably, histopathologic analysis revealed that tumors treated with TW-37 (with or without radiation) are more differentiated and showed more cohesive invasive fronts, which is consistent with less aggressive phenotype. Conclusions: These results demonstrate that metronomic TW-37 potentiates the antitumor effects of radiotherapy and suggest that patients with head and neck cancer might benefit from the combination of small molecule inhibitor of Bcl-2 and radiation therapy.

  20. N1s and O1s double ionization of the NO and N{sub 2}O molecules

    SciTech Connect

    Hedin, L.; Zhaunerchyk, V.; Karlsson, L.; Pernestål, K.; Feifel, R.; Tashiro, M.; Ehara, M.; Linusson, P.; Eland, J. H. D.; Ueda, K.

    2014-01-28

    Single-site N1s and O1s double core ionisation of the NO and N{sub 2}O molecules has been studied using a magnetic bottle many-electron coincidence time-of-flight spectrometer at photon energies of 1100 eV and 1300 eV. The double core hole energies obtained for NO are 904.8 eV (N1s{sup −2}) and 1179.4 eV (O1s{sup −2}). The corresponding energies obtained for N{sub 2}O are 896.9 eV (terminal N1s{sup −2}), 906.5 eV (central N1s{sup −2}), and 1174.1 eV (O1s{sup −2}). The ratio between the double and single ionisation energies are in all cases close or equal to 2.20. Large chemical shifts are observed in some cases which suggest that reorganisation of the electrons upon the double ionization is significant. Δ-self-consistent field and complete active space self-consistent field (CASSCF) calculations were performed for both molecules and they are in good agreement with these results. Auger spectra of N{sub 2}O, associated with the decay of the terminal and central N1s{sup −2} as well as with the O1s{sup −2} dicationic states, were extracted showing the two electrons emitted as a result of filling the double core holes. The spectra, which are interpreted using CASSCF and complete active space configuration interaction calculations, show atomic-like character. The cross section ratio between double and single core hole creation was estimated as 1.6 × 10{sup −3} for nitrogen at 1100 eV and as 1.3 × 10{sup −3} for oxygen at 1300 eV.

  1. Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers.

    PubMed

    Yang, Shengfu; Brereton, Scott M; Wheeler, Martyn D; Ellis, Andrew M

    2005-12-21

    Electron impact (70 eV) mass spectra of a series of C1-C6 alcohols encased in large superfluid liquid helium nanodroplets (approximately 60,000 helium atoms) have been recorded. The presence of helium alters the fragmentation patterns when compared with the gas phase, with some ion product channels being more strongly affected than others, most notably cleavage of the C(alpha)-H bond in the parent ion to form the corresponding oxonium ion. Parent ion intensities are also enhanced by the helium, but only for the two cyclic alcohols studied, cyclopentanol and cyclohexanol, is this effect large enough to transform the parent ion from a minor product (in the gas phase) into the most abundant ion in the helium droplet experiments. To demonstrate that these findings are not unique to alcohols, we have also investigated several ethers. The results obtained for both alcohols and ethers are difficult to explain solely by rapid cooling of the excited parent ions by the surrounding superfluid helium, although this undoubtedly takes place. A second factor also seems to be involved, a cage effect which favors hydrogen atom loss over other fragmentation channels. The set of molecules explored in this work suggest that electron impact ionization of doped helium nanodroplets does not provide a sufficiently large softening effect to be useful in analytical mass spectrometry.

  2. Screening of the binding of small molecules to proteins by desorption electrospray ionization mass spectrometry combined with protein microarray.

    PubMed

    Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin

    2015-11-01

    The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.

  3. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    SciTech Connect

    Derbenev, I. N.; Filippov, A. V.

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  4. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    SciTech Connect

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  5. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R2 > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis.

  6. Carbon Dots and 9AA as a Binary Matrix for the Detection of Small Molecules by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Chen, Yongli; Gao, Dan; Bai, Hangrui; Liu, Hongxia; Lin, Shuo; Jiang, Yuyang

    2016-07-01

    Application of matrix-assisted laser-desorption/ionization mass spectrometry (MALDI MS) to analyze small molecules have some limitations, due to the inhomogeneous analyte/matrix co-crystallization and interference of matrix-related peaks in low m/z region. In this work, carbon dots (CDs) were for the first time applied as a binary matrix with 9-Aminoacridine (9AA) in MALDI MS for small molecules analysis. By 9AA/CDs assisted desorption/ionization (D/I) process, a wide range of small molecules, including nucleosides, amino acids, oligosaccharides, peptides, and anticancer drugs with a higher sensitivity were demonstrated in the positive ion mode. A detection limit down to 5 fmol was achieved for cytidine. 9AA/CDs matrix also exhibited excellent reproducibility compared with 9AA matrix. Moreover, by exploring the ionization mechanism of the matrix, the influence factors might be attributed to the four parts: (1) the strong UV absorption of 9AA/CDs due to their π-conjugated network; (2) the carboxyl groups modified on the CDs surface act as protonation sites for proton transfer in positive ion mode; (3) the thin layer crystal of 9AA/CDs could reach a high surface temperature more easily and lower transfer energy for LDI MS; (4) CDs could serve as a matrix additive to suppress 9AA ionization. Furthermore, this matrix was allowed for the analysis of glucose as well as nucleosides in human urine, and the level of cytidine was quantified with a linear range of 0.05-5 mM (R(2) > 0.99). Therefore, the 9AA/CDs matrix was proven to be an effective MALDI matrix for the analysis of small molecules with improved sensitivity and reproducibility. This work provides an alternative solution for small molecules detection that can be further used in complex samples analysis. Graphical Abstract ᅟ.

  7. Monte Carlo Simulation in the Optimization of a Free-Air Ionization Chamber for Dosimetric Control in Medical Digital Radiography

    SciTech Connect

    Leyva, A.; Pinera, I.; Abreu, Y.; Cruz, C. M.; Montano, L. M.

    2008-08-11

    During the earliest tests of a free-air ionization chamber a poor response to the X-rays emitted by several sources was observed. Then, the Monte Carlo simulation of X-rays transport in matter was employed in order to evaluate chamber behavior as X-rays detector. The photons energy deposition dependence with depth and its integral value in all active volume were calculated. The obtained results reveal that the designed device geometry is feasible to be optimized.

  8. [Microorganisms distribution in the aerosol of a manned sealed cabin and the effect of artificial air ionization on this process].

    PubMed

    Zaloguev, S N; Anisimov, B V; Viktorov, A N; Gorshkov, V P

    1981-01-01

    In a manned enclosure the distribution of bacterial aerosol with respect to the size of particles is bimodal. Artificial bipolar ionization of the air may decrease the content of relatively large particles of bacterial aerosol, leaving particles with 2.0-0.6/micrometer in diameter in predominance. These properties of the bacterial aerosol structure may be of importance in the prophylaxis of aerogenic infections of cosmonauts.

  9. Angle-Dependent Ionization of Small Molecules by Time-Dependent Configuration Interaction and an Absorbing Potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2015-06-04

    The angle-dependence of strong field ionization of O2, N2, CO2, and CH2O has been studied theoretically using a time-dependent configuration interaction approach with a complex absorbing potential (TDCIS-CAP). Calculation of the ionization yields as a function of the direction of polarization of the laser pulse produces three-dimensional surfaces of the angle-dependent ionization probability. These three-dimensional shapes and their variation with laser intensity can be interpreted in terms of ionization from the highest occupied molecular orbital (HOMO) and lower lying orbitals, and the Dyson orbitals for the ground and excited states of the cations.

  10. Partial-ionization cross sections of a CO{sub 2} molecule due to impact of 10-26-keV electrons

    SciTech Connect

    Bhatt, Pragya; Singh, Raj; Yadav, Namita; Shanker, R.

    2010-10-15

    Experimental data on total- and partial-ionization cross sections of ionic fragments of CO{sub 2} molecule produced by impact of 10-26-keV electrons are obtained on a crossed-beam apparatus in our laboratory. An ejected electron-produced ion-coincidence technique is employed together with a time-of-flight mass spectrometer for analysis of the ions. The six ionic fragments, CO{sub 2}{sup +}, CO{sup +}, CO{sub 2}{sup 2+}, O{sup +}, C{sup +}, and C{sup 2+}, resulting from dissociative ionization of the CO{sub 2} molecule are observed and identified; their relative ionization cross sections and branching ratios are determined as a function of impact energy. The binary-encounter Bethe model is found to overestimate the experimental data for total-ionization cross sections of the observed ions. No other experimental or theoretical data exist in the investigated energy range to make a direct comparison with the present results.

  11. Multidimensional high harmonic spectroscopy of polyatomic molecules: detecting sub-cycle laser-driven hole dynamics upon ionization in strong mid-IR laser fields.

    PubMed

    Bruner, Barry D; Mašín, Zdeněk; Negro, Matteo; Morales, Felipe; Brambila, Danilo; Devetta, Michele; Faccialà, Davide; Harvey, Alex G; Ivanov, Misha; Mairesse, Yann; Patchkovskii, Serguei; Serbinenko, Valeria; Soifer, Hadas; Stagira, Salvatore; Vozzi, Caterina; Dudovich, Nirit; Smirnova, Olga

    2016-12-16

    High harmonic generation (HHG) spectroscopy has opened up a new frontier in ultrafast science, where electronic dynamics can be measured on an attosecond time scale. The strong laser field that triggers the high harmonic response also opens multiple quantum pathways for multielectron dynamics in molecules, resulting in a complex process of multielectron rearrangement during ionization. Using combined experimental and theoretical approaches, we show how multi-dimensional HHG spectroscopy can be used to detect and follow electronic dynamics of core rearrangement on sub-laser cycle time scales. We detect the signatures of laser-driven hole dynamics upon ionization and reconstruct the relative phases and amplitudes for relevant ionization channels in a CO2 molecule on a sub-cycle time scale. Reconstruction of channel-resolved complex ionization amplitudes on attosecond time scales has been a long-standing goal of high harmonic spectroscopy. Our study brings us one step closer to fulfilling this initial promise and developing robust schemes for sub-femtosecond imaging of multielectron rearrangement in complex molecular systems.

  12. Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources

    SciTech Connect

    Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel; Perez-Calatayud, Jose; Simancas, Fernando; Lallena, Antonio M.; Gazdic-Santic, Maja

    2013-12-15

    Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and

  13. Molecular threading: mechanical extraction, stretching and placement of DNA molecules from a liquid-air interface.

    PubMed

    Payne, Andrew C; Andregg, Michael; Kemmish, Kent; Hamalainen, Mark; Bowell, Charlotte; Bleloch, Andrew; Klejwa, Nathan; Lehrach, Wolfgang; Schatz, Ken; Stark, Heather; Marblestone, Adam; Church, George; Own, Christopher S; Andregg, William

    2013-01-01

    We present "molecular threading", a surface independent tip-based method for stretching and depositing single and double-stranded DNA molecules. DNA is stretched into air at a liquid-air interface, and can be subsequently deposited onto a dry substrate isolated from solution. The design of an apparatus used for molecular threading is presented, and fluorescence and electron microscopies are used to characterize the angular distribution, straightness, and reproducibility of stretched DNA deposited in arrays onto elastomeric surfaces and thin membranes. Molecular threading demonstrates high straightness and uniformity over length scales from nanometers to micrometers, and represents an alternative to existing DNA deposition and linearization methods. These results point towards scalable and high-throughput precision manipulation of single-molecule polymers.

  14. Precursor ionization ahead of laser-supported detonation wave in air and argon

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Komurasaki, Kimiya; Koizumi, Hiroyuki; Arakawa, Yoshihiro

    2012-10-01

    Laser-produced plasma in a gaseous form is considered, which has attracted great interest for use in many devices. After breakdown one of possible mechanisms of occurrence of this process is noted as laser-supported detonation wave. This wave consisting of the shock wave and the beam absorbing plasma travels at several kilometers per second along the laser beam channel in the direction opposite to the beam incidence. A Nd: Glass laser and a TEA CO2 laser were utilized. According to shadowgraph and spectroscopic studies, the wave has a velocity of 1-10 km/s, an electron temperature of 2-5 eV and an electron density of 10^24 m-3 after breakdown. For simplicity, the discussion is restricted to one-dimensional flows that considers the radiation from plasma and the collisional ionization by laser irradiation. Assuming that UV photons radiating from laser plasma induce photoionization ahead of ionization front, this ionization frequency fp at the distance lp (mean free path of photon) from the wave front corresponds to 10^10 s-1. This is higher than the collisional ionization frequency (10^5-6 s-1). Analytical velocities (fplp) describing the avalanche ionization in the pre-ionization layer agree with the experimentally observed velocities. These results does not depend on background gas and laser-wavelength.

  15. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts

    DOE PAGES

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; ...

    2016-04-06

    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion–molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion–molecule reaction time, which is strongly influenced by mixing and ion losses in the ion–molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidatesmore » the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.« less

  16. Dihydrobenzoic acid modified nanoparticle as a MALDI-TOF MS matrix for soft ionization and structure determination of small molecules with diverse structures.

    PubMed

    Tseng, Mei-Chun; Obena, Rofeamor; Lu, Ying-Wei; Lin, Po-Chiao; Lin, Ping-Yu; Yen, Yung-Sheng; Lin, Jiann-Tsuen; Huang, Li-De; Lu, Kuang-Lieh; Lai, Long-Li; Lin, Chun-Cheng; Chen, Yu-Ju

    2010-11-01

    Efficient structural characterization is important for quality control when developing novel materials. In this study, we demonstrated the soft ionization capability of the hybrid of immobilized silica and 2,5-dihydrobenzoic acid (DHB) on iron oxide magnetic nanoparticles in MALDI-TOF MS with a clean background. The ratio between SiO(2) and DHB was examined and was found to affect the surface immobilization of DHB on the nanoparticle, critically controlling the ionization efficiency and interference background. Compared with commercial DHB, the functionalized nanoparticle-assisted MALDI-TOF MS provided superior soft ionization with production of strong molecular ions within 5 ppm mass accuracy on a variety of new types of synthetic materials used for solar cells, light emitting devices, dendrimers, and glycolipids, including analytes with either thermally labile structures or poor protonation tendencies. In addition, the enhancements of the molecular ion signal also provided high-quality product-ion spectra allowing structural characterization and unambiguous small molecule identification. Using this technique, the structural differences among the isomers were distinguished through their characteristic fragment ions and comprehensive fragmentation patterns. With the advantages of long-term stability and simple sample preparation by deposition on a regular sample plate, the use of DHB-functionalized nanoparticles combined with high-resolution MALDI-TOF MS provides a generic platform for rapid and unambiguous structure determination of small molecules.

  17. Colloidal Graphite-Assisted Laser Desorption/Ionization MS and MSn of Small Molecules. 2. Direct Profiling and MS Imaging of Small Metabolites from Fruits

    SciTech Connect

    Hui Zhang; Sangwon Cha; Edward S. Yeung

    2007-09-01

    Due to a high background in the low-mass region, conventional MALDI is not as useful for detecting small molecules (molecular masses <500 Da) as it is for large ones. Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its advantages over conventional MALDI in the detection of small molecules such as organic acids, flavonoids, and oligosaccharides. GALDI provides good sensitivity for such small molecules. The detection limit of fatty acids and flavonoids in the negative-ion mode are in the low-femtomole range. Molecules were detected directly and identified by comparing the MS and MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical utility of GALDI since many types of small molecules are present in them. Distribution of these small molecules in the fruit was investigated by using IMS and IMS/MS.

  18. Low energy ionizing collisions between N2 and CO beam molecules and CO, N2, NO, CH4, and CO2 target molecules

    NASA Technical Reports Server (NTRS)

    Utterback, N. G.; Van Zyl, B.

    1978-01-01

    Absolute total negative charge production cross sections for N2 + CO, CO + N2, CO + CO, N2 + NO, N2 + CH4, and N2 + CO2 collisions are reported, and a simple model of collisions is discussed. The cross sections were measured to within about 1 eV of their thresholds. Specific reaction channels were investigated by referring to mass spectrometric identification of the product ions scattered in the forward direction, and these product ion identifications were used to explain characteristic structures in the total charge production cross sections in the near-threshold regions. The extent of the importance of dissociative ionization and 'simple' ionization in the studied collisions at low energy is considered, and charge transfer cross sections for (CO)+ + CO, CO(+) + CH4, and N2(+) + CH4 are presented.

  19. Gold nanoparticles loaded on zeolite as inorganic matrix for laser desorption/ionization mass spectrometry of small molecules

    NASA Astrophysics Data System (ADS)

    Yang, Mengrui; Fujino, Tatsuya

    2014-01-01

    Gold nanoparticles (AuNPs) were loaded on zeolite to produce an inorganic matrix for the laser desorption/ionization mass spectrometry of low molecular weight compounds. Owing to the strong acidity of zeolite, amino acids were detected as H+- or Na+-adducted species regardless of their isoelectric points. AuNPs on zeolite could also be used as an efficient Au+ supplier. By utilizing Au+ generated by photoexcitation, the ionization of the amino acids mixture, urea, and acetylsalicylic acid by Au+ adduction was demonstrated.

  20. Ionizer assisted air filtration for collection of submicron and ultrafine particles-evaluation of long-term performance and influencing factors.

    PubMed

    Shi, Bingbing; Ekberg, Lars

    2015-06-02

    Previous research has demonstrated that unipolar ionization can enhance the filter performance to collect airborne particles, aeroallergens, and airborne microorganisms, without affecting the filter pressure drop. However, there is a lack of research on the long-term system performance as well as the influence of environmental and operational parameters. In this paper, both field and laboratory tests were carried out to evaluate the long-term particle collection efficiency of a synthetic filter of class M6 with and without ionization. The effect of air velocity, temperature, relative humidity, and particle concentration were further investigated in laboratory tests. Results showed that ionization enhanced the filtration efficiency by 40%-units during most of the operation time. When the ionization system was managed by periodically switching the ionizer polarity, the filtration efficiency against PM0.3-0.5 was maintained above 50% during half a year. Furthermore, the pressure drop of the ionizer-assisted M6 filter was 25-30% lower than that of a filter of class F7. The evaluation of various influencing factors demonstrated that (1) air moisture reduced the increase of filtration efficiency; (2) higher upstream particle concentration and air velocity decreased the filtration efficiency; and (3) the air temperature had very limited effect on the filtration efficiency.

  1. Determination of volatile organic compounds in ambient air with gas chromatograph-flame ionization and ion trap detection

    SciTech Connect

    Liu, S.; Carley, R.J.; Kang, J.; Chen, J.; Stuart, J.D.

    1994-12-31

    Two new techniques are utilized to integrate the following three equipments: an Entech 2000 automated air concentrator, a Hewlett Packard gas chromatograph (GC) with flame ionization detector (FID) and an ion trap mass spectrometer detector (ITD). This combined analytical system is used to determine low ppb level volatile organic compounds (VOC) in ambient air. The first technique is to configure the inlet system of the GC, so that the pressure regulated flow control system of the GC injection port is used to control the flow of both the desorb gas of the automated air concentrator and the carrier gas of the GC column. The injection port still can be used to inject gas and liquid samples directly. The second technique is to split the effluent of GC column at a 1:1 ratio to the ITD and the FID. In this way, both FID and ITD data can be obtained for each analysis. For ambient air non-methane hydrocarbons monitoring, the FID detector is widely used. Oxygen containing and halogenated organic compounds cannot be differentiated by FID detector and would be quantified as coeluting hydrocarbons. However, volatile organic compounds other than target hydrocarbons can be identified by ITD. This analytical system is very valuable research tool for non-methane hydrocarbons and urban air toxic monitoring. The performances of this developed system have been presented.

  2. The effect of negative air ionization on the growth of four generations of laboratory rats

    NASA Astrophysics Data System (ADS)

    Hinsull, S. M.; Bellamy, D.; Head, E. L.

    1984-06-01

    Initial work indicated an inhibition of pre-weaning growth in the first generation of rats born and raised at high negative ion levels. This effect, however, was not carried through to the successive generations. Negative ionization had little apparent effect on post-weaning growth throughout the four generations studied.

  3. Ambient air analyses using nonspecific flame ionization and electron capture detection compared to specific detection by mass spectroscopy

    SciTech Connect

    Pleil, J.D.; Oliver, K.D.; McClenny, W.A.

    1988-08-01

    Ambient air samples from various studies were analyzed for a specific set of trace-level volatile organic compounds by using a gas chromatograph (GC) equipped with a flame ionization detector (FID) in parallel with an electron capture detector (ECD). The samples were then reanalyzed on a second GC system equipped with a mass selective detector (MSD). GC-FID/ECD data were compared to the nominally correct GC-MSD data to determine the accuracy of the nonspecific detectors, which often do not differentiate the targeted compound from interfering compounds. Qualitative accuracy (capability for correctly identifying compounds on the basis of retention time only) and quantitative accuracy (capability for correctly measuring the concentration of an identified compound on the basis of peak area) were evaluated. Data are presented on a per-compound basis to provide the combined typical results from air samples collected in three geographic regions: Kanawha Valley, WV; Los Angeles, CA, area; and Houston, TX.

  4. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH(+), MOH(+), and MO(2)H(+), respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH(+) sharply decreased, that of MOH(+) increased once and then decreased, and that of MO(2)H(+) sharply increased until reaching a plateau. The signal intensity of MO(2)H(+) at the plateau was 40 times higher than that of MH(+) and 100 times higher than that of MOH(+) in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO(2)H(+) signal in the concentration range up to 60 μg/m(3), which is high enough for hygiene management. In the low concentration range lower than 3 μg/m(3), which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m(3) vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  5. In-Line Ozonation for Sensitive Air-Monitoring of a Mustard-Gas Simulant by Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko

    2015-09-01

    A highly sensitive method for real-time air-monitoring of mustard gas (bis(2-chloroethyl) sulfide, HD), which is a lethal blister agent, is proposed. Humidified air containing a HD simulant, 2-chloroethyl ethyl sulfide (2CEES), was mixed with ozone and then analyzed by using an atmospheric pressure chemical ionization ion trap tandem mass spectrometer. Mass-spectral ion peaks attributable to protonated molecules of intact, monooxygenated, and dioxygenated 2CEES (MH+, MOH+, and MO2H+, respectively) were observed. As ozone concentration was increased from zero to 30 ppm, the signal intensity of MH+ sharply decreased, that of MOH+ increased once and then decreased, and that of MO2H+ sharply increased until reaching a plateau. The signal intensity of MO2H+ at the plateau was 40 times higher than that of MH+ and 100 times higher than that of MOH+ in the case without in-line ozonation. Twenty-ppm ozone gas was adequate to give a linear calibration curve for 2CEES obtained by detecting the MO2H+ signal in the concentration range up to 60 μg/m3, which is high enough for hygiene management. In the low concentration range lower than 3 μg/m3, which is equal to the short-term exposure limit for HD, calibration plots unexpectedly fell off the linear calibration curve, but 0.6-μg/m3 vapor was actually detected with the signal-to-noise ratio of nine. Ozone was generated from instrumentation air by using a simple and inexpensive home-made generator. 2CEES was ozonated in 1-m extended sampling tube in only 1 s.

  6. Measurement of laser activated electron tunneling from semiconductor zinc oxide to adsorbed organic molecules by a matrix assisted laser desorption ionization mass spectrometer.

    PubMed

    Zhong, Hongying; Fu, Jieying; Wang, Xiaoli; Zheng, Shi

    2012-06-04

    Measurement of light induced heterogeneous electron transfer is important for understanding of fundamental processes involved in chemistry, physics and biology, which is still challenging by current techniques. Laser activated electron tunneling (LAET) from semiconductor metal oxides was observed and characterized by a MALDI (matrix assisted laser desorption ionization) mass spectrometer in this work. Nanoparticles of ZnO were placed on a MALDI sample plate. Free fatty acids and derivatives were used as models of organic compounds and directly deposited on the surface of ZnO nanoparticles. Irradiation of UV laser (λ=355 nm) with energy more than the band gap of ZnO produces ions that can be detected in negative mode. When TiO(2) nanoparticles with similar band gap but much lower electron mobility were used, these ions were not observed unless the voltage on the sample plate was increased. The experimental results indicate that laser induced electron tunneling is dependent on the electron mobility and the strength of the electric field. Capture of low energy electrons by charge-deficient atoms of adsorbed organic molecules causes unpaired electron-directed cleavages of chemical bonds in a nonergodic pathway. In positive detection mode, electron tunneling cannot be observed due to the reverse moving direction of electrons. It should be able to expect that laser desorption ionization mass spectrometry is a new technique capable of probing the dynamics of electron tunneling. LAET offers advantages as a new ionization dissociation method for mass spectrometry.

  7. Population inversion in fluorescing fragments of super-excited molecules inside an air filament

    NASA Astrophysics Data System (ADS)

    See-Leang, Chin; Huai-Liang, Xu

    2015-01-01

    An original idea is reviewed. When a molecule is pumped into a super-excited state, one of its decay channels is neutral dissociation. One or more of the neutral fragments will fluoresce. Hence, if a lower state of such fluorescing fragments was populated through other channels but with a lower probability, population inversion of the fluorescing fragments would be naturally realized. This idea seems to be validated, so far, by comparing published work on three hydrocarbon molecules, CH4, C2H2, C2H4, and water vapor, H2O. After super-excitation in a femtosecond laser filament in air mixed with these molecules, the fluorescence from the CH or OH fragments exhibits population inversion, i.e., amplified spontaneous emission was observed in the backscattering direction of the filament. Project supported by the Canada Research Chairs, the Natural Science and Engineering Research Council of Canada (NSERC), the FRQNT, the Canada Foundation for Innovation (CFI), the National Basic Research Program of China (Grant No. 2014CB921300), the National Natural Science Foundation of China (Grant No. 61235003), the Research Fund for the Doctoral Program of Higher Education of China, and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.

  8. Cluster Composition Distributions of Pure Ethanol: Influence of Water and Ion–Molecule Reactions Revealed by Liquid-Ionization Tandem Mass Spectrometry

    PubMed Central

    Tsuchiya, Masahiko; Fukaya, Haruhiko; Shida, Yasuo

    2013-01-01

    Studies of clusters in condensed phase at atmospheric pressure are very important for understanding the properties and structures of liquids. Liquid-ionization (LPI) mass spectrometry is useful to study hydrogen-bonded clusters at the liquid surface and in a gas phase. An improved ion source connected to a tandem mass spectrometer provides detailed information about clusters. Mass spectra of pure ethanol (99.5%) observed by the first mass analyzer (Q1) showed neat ethanol cluster ions (C2H5OH)mH+ with m up to 10 and hydrate ions (C2H5OH)m(H2O)nH+ with m larger than 7 and n=1, such as those with m-n=8-1 and 9-1. When the flow rate of ethanol (liquid) was increased, large ethanol cluster ions with m larger than 25 were observed by the second mass analyzer (Q3). It is interesting to note that neat ethanol cluster ions are more abundant than corresponding (with the same m) hydrate ions (n=1), and major hydrate ions contain only one molecule of water. Results indicate that ion–molecule reactions occur between Q1 and Q3, because such mass spectra have never been observed by Q1. Various results indicate that neat ethanol clusters exist at the liquid surface and are ionized to give cluster ions. PMID:24349916

  9. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Weitz, Eric; Geiger, Franz M

    2006-11-07

    Preventing a build-up of indoor pollutant concentrations has emerged as a major goal in environmental chemistry. Here, we have applied chemical ionization mass spectrometry to study the interaction of acetone, a common indoor air pollutant, with Degussa P25 TiO2, an inexpensive catalyst that is widely used for the degradation of volatile organic compounds into CO2 and water. To better understand the adsorption of acetone onto Degussa P25, the necessary first step for its degradation, the experiments were carried out at room temperature in the absence of UV light. This allowed for the deconvolution of the nonreactive and reactive thermal binding processes on Degussa P25 at acetone partial pressures (10(-7)-10(-4) Torr) commonly found in indoor environments. On average, 30% of the adsorbed acetone is bound irreversibly, resulting in a surface coverage of irreversibly bound acetone of approximately 1 x 10(12) molecules/cm2 at 3-4 x 10(-5) Torr. Equilibrium and dynamic experiments yield a sticking coefficient of approximately 1 x 10(-4) that is independent of the acetone partial pressures examined here. Equilibrium binding constants and free energies of adsorption are reported.

  10. Potential Energy Curves and Collisions Integrals of Air Components. 2; Interactions Involving Ionized Atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.

  11. Non-proximate detection of small and large molecules by desorption electrospray ionization and desorption atmospheric pressure chemical ionization mass spectrometry: instrumentation and applications in forensics, chemistry, and biology.

    PubMed

    Cotte-Rodríguez, Ismael; Mulligan, Christopher C; Cooks, R Graham

    2007-09-15

    Ambient surfaces are examined by mass spectrometry at distances of up to 3 m from the instrument without any prior sample preparation. Non-proximate versions of the desorption electrospray ionization (DESI) and desorption atmospheric pressure chemical ionization experiments are shown to allow rapid, sensitive, and selective detection of trace amounts of active ingredients in pharmaceutical drug formulations, illicit drugs (methamphetamine, cocaine, and diacetylmorphine), organic salts, peptides, chemical warfare agent simulants, and other small organic compounds. Utilizing an ion transport tube to transport analyte ions to the mass spectrometer, nonproximate DESI allows one to collect high-quality, largely interference-free spectra with signal-to-noise (S/N) ratios of more than 100. High selectivity is achieved by tandem mass spectrometry and by reactive DESI, a variant experiment in which reagents added into the solvent spray allow bond-forming reactions with the analyte. Ion/molecule reactions were found to selectively suppress the response of mixture components other than the analyte of interest in nonproximate-DESI. Flexible ion transport tubing is also investigated, allowing performance similar to stainless steel tubing in the transport of ions from the sample to the mass spectrometer. Transfer tube temperature effects are examined. A multiple sprayer DESI source capable of analyzing a larger sample area was evaluated to decrease the sampling time and increase sample throughput. Low nanogram detection limits were obtained for the compounds studied from a wide variety of surfaces, even those present in complex matrixes.

  12. Thermal ionization instability development in air plasma generated by repetitive ns dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhael; Marinov, Daniil; Starikovskaia, Svetlana; PU Team; LPP Team

    2013-09-01

    The aim of this paper is to study a transformation of a nanosecond discharge under conditions of high repetitive frequency in a barrier configuration of the electrodes. Nanosecond DBDs at atmospheric pressure are widely used for research in plasma medicine. At atmospheric pressure conditions the discharge develops as a set of microchannels bridging a gap between the electrodes covered with dielectric, the current in each microchannel is restricted by charging of a dielectric surface. With pressure decrease, a discharge becomes more uniform, still it is known that a slight change of a gas mixture composition, f.e. add of a fuel, may lead to significant problems with the uniformity. Estimations were made to analyze the possibility of discharge contruction due to thermal ionization instability development. We used the assumption that there is no convective cooling of the gas in the discharge cell. It was shown that NS discharge in DBD geometry is non-uniform. Initial electrical fields distribution and thermal ionization instability development form the non-uniform energy distribution in the discharge. This non-uniformity can play a key role in kinetic experiments in this type of the discharge.

  13. Influence of ambient humidity on the current delivered by air-vented ionization chambers revisited

    NASA Astrophysics Data System (ADS)

    Poirier, Aurélie; Douysset, Guilhem

    2006-10-01

    The influence of ambient humidity on the current delivered by a vented ionization chamber has been re-investigated. A Nucletron 077.091 well-type chamber together with a 192Ir HDR brachytherapy source was enclosed in a climatic test chamber and the current was recorded for various humidity values. Great care has been taken for the design of the experimental setup in order to obtain reliable measurements of currents and humidity values inside the chamber active volume. A ±0.35% linear variation of the measured currents has been observed over a common range of humidities. This result is larger than the expected variation. No formal explanation of such a discrepancy has been found yet, however the present results could lead to a set of recommendations.

  14. High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

    2005-04-01

    The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

  15. Single Molecule Lateral Mobility and Membrane Organization in DMPC/Cholesterol Mixtures at the Air-Water Interface

    NASA Astrophysics Data System (ADS)

    Shaikh, Saame; Stillwell, William; Naumann, Christoph

    2002-03-01

    To better understand the lipid heterogeneity of biological membranes, we have studied the lateral mobility and membrane organization of DMPC and cholesterol (Chol) mixtures at the air-water interface using single molecule fluorescence imaging and epifluorescence microscopy. The single molecule imaging technique was used to track the lateral diffusion of single molecules of TRITC-DPPE or cholesteryl Bodipy. In the absence of Chol, mean square displacement histograms obtained from single molecule tracking of TRITC-DPPE show unobstructed diffusion. Including Chol at low levels of Chol (<10 moldiffusion at intermediate levels ( 30 molof Chol (>40 molmacroscopic phase separations. Data obtained from tracking experiments of cholesteryl-Bodipy also show complementary changes in diffusion. Our results indicate that our techniques provide insight into the micro and macro organization of lipid domains at the air-water interface.

  16. Detection of Hydrazine in Air Using Electron Transfer Ionization Mass Spectrometry.

    DTIC Science & Technology

    1981-02-15

    is in tI qualitative agreement with American Petroleum Institute (API) 6 data. Unequivocal identification and monitoring of N2H4 fuels at the launch...N2H4 in air. At even lower concentrations, the delay time 61ndex of Mass Spectral Data, American Petroleum Institute , Research Project 44, NBS

  17. Determination of collisional quenching rate coefficients of metastable nitrogen molecules by air pollutants

    NASA Astrophysics Data System (ADS)

    Suzuki, Susumu; Itoh, Haruo

    2009-10-01

    It has already been investigated on the determination of the collisional quenching rate coefficients of the metastable nitrogen molecules N2(A^3σu^+ ) by some air pollutants [1] in our laboratory. In this report, we present the result on the collisional quenching rate coefficient of N2(A^3σu^+ ) by formaldehyde (CH2O) using a theoretical procedure that takes into account the reflection of metastables at the boundary. As far as we know, this report is the first result of the collisional quenching rate coefficients of N2(A^3σu^+ ) by CH2O. Formaldehyde is a colorless gas with the foul odor, and elements of the adhesive, paints, and preservative, etc. It is widely used for construction materials such as houses, because it is low cost. It is released from paint of construction materials in air, and, in that case, it is known as one of the causative agents of so-called ``Sick building syndrome'' to influence the human body harmfully even if it is a low concentration. The obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by CH2O is (4.7±0.4) x 10-12 cm^3/s. Because the collisional quenching rate coefficient by CH2O is large, it is understood that CH2O receives energy easily from N2(A^3σu^+ ). In addition, we reports on the obtained collisional quenching rate coefficient of N2(A^3σu^+ ) by some air pollutants. [1] S. Suzuki, T.Suzuki and H.Itoh: Proc. of XXVIII ICPIG (Prague, Czech Republic), (2007) 1P01-40.

  18. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  19. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  20. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  1. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    DOE PAGES

    Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; ...

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE)more » and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less

  2. Organic–inorganic binary mixture matrix for comprehensive laser-desorption ionization mass spectrometric analysis and imaging of medium-size molecules including phospholipids, glycerolipids, and oligosaccharides

    SciTech Connect

    Feenstra, Adam D.; O'Neill, Kelly C.; Yagnik, Gargey B.; Lee, Young Jin

    2016-10-13

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe3O4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionic phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.

  3. Fundamental studies of matrix-assisted laser desorption/ionization, using time-of-flight mass spectrometry to identify biological molecules

    SciTech Connect

    Eades, D.; Wruck, D.; Gregg, H.

    1996-11-11

    MALDI MS was developed as a way of getting molecular weight information on small quantities (picomole to femtomole levels) of high-mass, thermally labile macromolecules. While most other analytical MS ionization techniques cause fragmentation, decomposition, or multiple charging, MALDI efficiently places intact macromolecules into the gas phase with little fragmentation or rearrangement. This project had 3 objectives: establish the MALDI capability at LLNL, perform fundamental studies of analyte-matrix interactions, and apply the technique for biochemical research. A retired time-of-flight instrument was adapted for MALDI analyses, relevant parameters influencing the MALDI process were identified for further study (matrix molar absorptivity, sample crystal preparation), and collaborations were established with research groups in the Biology and Biotechnology Research Program at LLNL. In MALDI, the macromolecule of interest is mixed with a high-molar excess (1:100 to 1:10,000) of an organic matrix which readily absorbs energy at the wavelength corresponding to a UV laser. Upon laser irradiation, the matrix absorbs the majority of the energy, causing it to desorb from the surface and gently release the macromolecule into the gas phase with little or no fragmentation. Once in the gas phase, ion-molecule reactions between excited matrix and neutral macromolecules generated ionized analyte species which then can be focused into a MS for detection.

  4. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  5. Atmospheric Ionizing Radiation (AIR): Analysis, Results, and Lessons Learned From the June 1997 ER-2 Campaign

    NASA Technical Reports Server (NTRS)

    Wilson, J. W. (Editor); Jones, I. W. (Editor); Maiden, D. L. (Editor); Goldhagen, P. (Editor)

    2003-01-01

    The United States initiated a program to assess the technology required for an environmentally safe and operationally efficient High Speed Civil Transport (HSCT) for entrance on the world market after the turn of the century. Due to the changing regulations on radiation exposures and the growing concerns over uncertainty in our knowledge of atmospheric radiations, the NASA High Speed Research Project Office (HSRPO) commissioned a review of "Radiation Exposure and High-Altitude Flight" by the National Council on Radiation Protection and Measurements (NCRP). On the basis of the NCRP recommendations, the HSRPO funded a flight experiment to resolve the environmental uncertainty in the atmospheric ionizing radiation levels as a step in developing an approach to minimize the radiation impact on HSCT operations. To minimize costs in this project, an international investigator approach was taken to assure coverage with instrument sensitivity across the range of particle types and energies to allow unique characterization of the diverse radiation components. The present workshop is a result of the flight measurements made at the maximum intensity of the solar cycle modulated background radiation levels during the month of June 1997.

  6. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  7. Formation of ultracold {sup 7}Li{sup 85}Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    SciTech Connect

    Altaf, Adeel Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P.; Elliott, D. S.

    2015-03-21

    We report the formation of ultracold {sup 7}Li{sup 85}Rb molecules in the a{sup 3}Σ{sup +} electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ∼62 cm{sup −1} below the {sup 7}Li 2s {sup 2}S{sub 1/2} + {sup 85}Rb 5p {sup 2}P{sub 1/2} asymptote. In addition, we use REMPI spectroscopy to probe the a{sup 3}Σ{sup +} state and excited electronic 3{sup 3}Π and 4{sup 3}Σ{sup +} states and identify a{sup 3}Σ{sup +} (v″ = 7–13), 3{sup 3}Π (v{sub Π}′ = 0–10), and 4{sup 3}Σ{sup +} (v{sub Σ}′ = 0–5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  8. Inner-shell ionization of rotating linear molecules in the presence of spin-dependent interactions: Entanglement between a photoelectron and an auger electron

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Chandra, N.; Parida, S.

    2009-03-01

    This paper reports results of a theoretical study of angle- and spin-resolved photo-Auger electron coincident spectroscopy in the form of entanglement between these two particles emitted from a linear molecule. First, we develop an expression for a density matrix needed for studying spin-entanglement between a photoelectron and an Auger electron. In order to properly represent the molecular symmetries, nuclear rotation, and the spin-dependent interactions (SDIs), we have used symmetry adapted wavefunctions in Hund’s coupling scheme (a) for all the species participating in this two-step process. This expression shows that spin-entanglement in a photo-Auger electron pair in the presence of SDIs very strongly depends upon, among other things, polarization of the ionizing radia- tion, directions of motion and of spin polarization of two ejected electrons, and the dynamics of photoionization and of Auger decay. We have applied this expression, as an example, to a generic linear molecule in its J0, M0 = 0 state. This model calculation clearly brings out the salient features of the spin-entanglement of a photo-Auger electron pair in the presence of the SDIs.

  9. Long-lived Electronic Coherence of Rydberg States in the Strong-Field Ionization of a Polyatomic Molecule

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Levine, Benjamin; Lozovoy, Vadim; Dantus, Marcos

    2015-05-01

    Here, we report on quantum coherent control of a large (>20 atoms) polyatomic molecule. In particular, we explore the time resolved dynamics of dicyclopentadiene when excited by a pair of phase-locked intense 800nm femtosecond pulses by monitoring changes in ion yield of the parent and fragments. Long-lived oscillations are observed for ~ 500 fs in the parent ion yield indicating the presence of long lived-electronic states. We take advantage of the long-lived electronic coherence to control the yield of different fragment ions. The presence of Rydberg states is further supported by ab initio calculations at the EOM-CCSD/6-31 +G** level of theory which identified five low-lying electronic states of neutral DCPD in the regions between 6.4 and 7.0 eV in vertical excitation energy. States of both pure Rydberg and mixed π --> π */Rydberg character are observed in this low energy region and are known to originate from ethylene. The multiphoton excitation of two or more Rydberg states, separated by the photon energy is the key to the observed long-lived electronic coherence in DCPD with a quantum beat at the difference frequency. Rydberg states are expected to have very similar potential energy surfaces and the Rydberg electron is relatively uncoupled to the nuclear dynamics, therefore supporting long electronic coherence time.

  10. Small molecule GS-nitroxide ameliorates ionizing irradiation-induced delay in bone wound healing in a novel murine model.

    PubMed

    Gokhale, Abhay; Rwigema, Jean-Claude; Epperly, Michael W; Glowacki, Julie; Wang, Hong; Wipf, Peter; Goff, Julie P; Dixon, Tracy; Patrene, Ken; Greenberger, Joel S

    2010-01-01

    We studied radioprotection and mitigation by mitochondrial-targeted Tempol (GS-nitroxide, JP4-039), in a mouse injury/irradiation model of combined injury (fracture/irradiation). Right hind legs of control C57BL/6NHsd female mice, mice pretreated with MnSOD-PL, JP4-039, or with amifostine were irradiated with single and fractionated doses of 0 to 20 Gy. Twenty-four hours later, unicortical holes were drilled into the tibiae of both hind legs; at intervals, tibias were excised, radiographed, and processed for histology. Bone wounds irradiated to 20 or 30 Gy showed delayed healing at 21 to 28 days. Treatment with JP4-039 MnSOD-PL or amifostine, before or after single fraction 20 Gy or during fractionated irradiation followed by drilling accelerated wound healing at days 21 and 28. Orthotopic 3LL tumors were not protected by JP4-039 or amifostine. In nonirradiated mice, pretreatment with JP4-039 accelerated bone wound healing. This test system should be useful for the development of new small molecule radioprotectors.

  11. Small Molecule GS-Nitroxide Ameliorates Ionizing Irradiation-Induced Delay in Bone Wound Healing in a Novel Murine Model

    PubMed Central

    Gokhale, Abhay; Rwigema, Jean-Claude; Epperly, Michael; Glowacki, Julie; Wang, Hong; Wipf, Peter; Goff, Julie P.; Dixon, Tracy; Patrene, Ken; Greenberger, Joel S.

    2010-01-01

    We studied radioprotection and mitigation by mitochondrial-targeted Tempol (GS-nitroxide, JP4-039), in a mouse injury/irradiation model of combined injury (fracture/irradiation). Right hind legs of control C57BL/6NHsd female mice, mice pretreated with MnSOD-PL, JP4-039, or with amifostine were irradiated with single and fractionated doses of 0 to 20 Gy. Twenty-four hours later, unicortical holes were drilled into the tibiae of both hind legs; at intervals, tibias were excised, radiographed, and processed for histology. Bone wounds irradiated to 20 or 30 Gy showed delayed healing at 21 to 28 days. Treatment with JP4-039 MnSOD-PL or amifostine, before or after single fraction 20 Gy or during fractionated irradiation followed by drilling accelerated wound healing at days 21 and 28. Orthotopic 3LL tumors were not protected by JP4-039 or amifostine. In nonirradiated mice, pretreatment with JP4-039 accelerated bone wound healing. This test system should be useful for the development of new small molecule radioprotectors. PMID:20668303

  12. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Robichaud, Guillaume; Dixon, R. Brent; Potturi, Amarnatha S.; Cassidy, Dan; Edwards, Jack R.; Sohn, Alex; Dow, Thomas A.; Muddiman, David C.

    2010-01-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds). PMID:21499524

  13. Design, Modeling, Fabrication, and Evaluation of the Air Amplifier for Improved Detection of Biomolecules by Electrospray Ionization Mass Spectrometry.

    PubMed

    Robichaud, Guillaume; Dixon, R Brent; Potturi, Amarnatha S; Cassidy, Dan; Edwards, Jack R; Sohn, Alex; Dow, Thomas A; Muddiman, David C

    2011-03-01

    Through a multi-disciplinary approach, the air amplifier is being evolved as a highly engineered device to improve detection limits of biomolecules when using electrospray ionization. Several key aspects have driven the modifications to the device through experimentation and simulations. We have developed a computer simulation that accurately portrays actual conditions and the results from these simulations are corroborated by the experimental data. These computer simulations can be used to predict outcomes from future designs resulting in a design process that is efficient in terms of financial cost and time. We have fabricated a new device with annular gap control over a range of 50 to 70 μm using piezoelectric actuators. This has enabled us to obtain better aerodynamic performance when compared to the previous design (2× more vacuum) and also more reproducible results. This is allowing us to study a broader experimental space than the previous design which is critical in guiding future directions. This work also presents and explains the principles behind a fractional factorial design of experiments methodology for testing a large number of experimental parameters in an orderly and efficient manner to understand and optimize the critical parameters that lead to obtain improved detection limits while minimizing the number of experiments performed. Preliminary results showed that several folds of improvements could be obtained for certain condition of operations (up to 34 folds).

  14. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    SciTech Connect

    Tarasenko, V. F. Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  15. Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-01

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ˜500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF6 is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (˜30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ˜10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  16. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  17. NR2 and P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical Ionization Energies of Closed-Shell Molecules.

    PubMed

    Corzo, H H; Galano, Annia; Dolgounitcheva, O; Zakrzewski, V G; Ortiz, J V

    2015-08-20

    Two accurate and computationally efficient electron-propagator (EP) methods for calculating the valence, vertical ionization energies (VIEs) of closed-shell molecules have been identified through comparisons with related approximations. VIEs of a representative set of closed-shell molecules were calculated with EP methods using 10 basis sets. The most easily executed method, the diagonal, second-order (D2) EP approximation, produces results that steadily rise as basis sets are improved toward values based on extrapolated coupled-cluster singles and doubles plus perturbative triples calculations, but its mean errors remain unacceptably large. The outer valence Green function, partial third-order and renormalized partial third-order methods (P3+), which employ the diagonal self-energy approximation, produce markedly better results but have a greater tendency to overestimate VIEs with larger basis sets. The best combination of accuracy and efficiency with a diagonal self-energy matrix is the P3+ approximation, which exhibits the best trends with respect to basis-set saturation. Several renormalized methods with more flexible nondiagonal self-energies also have been examined: the two-particle, one-hole Tamm-Dancoff approximation (2ph-TDA), the third-order algebraic diagrammatic construction or ADC(3), the renormalized third-order (3+) method, and the nondiagonal second-order renormalized (NR2) approximation. Like D2, 2ph-TDA produces steady improvements with basis set augmentation, but its average errors are too large. Errors obtained with 3+ and ADC(3) are smaller on average than those of 2ph-TDA. These methods also have a greater tendency to overestimate VIEs with larger basis sets. The smallest average errors occur for the NR2 approximation; these errors decrease steadily with basis augmentations. As basis sets approach saturation, NR2 becomes the most accurate and efficient method with a nondiagonal self-energy.

  18. Dynamics of multiple ionization of atoms and molecules by electron, photon, and ion impact—investigated by the COLTRIMS imaging method

    NASA Astrophysics Data System (ADS)

    Schmidt-Böcking, H.; Schmidt, L.; Weber, Th.; Mergel, V.; Jagutzki, O.; Czasch, A.; Hagmann, S.; Doerner, R.; Demkov, Y.; Jahnke, T.; Prior, M.; Cocke, C. L.; Osipov, T.; Landers, A.

    2004-10-01

    Fully differential cross-sections in momentum space for multiple ionization processes of atoms and molecules have been investigated by a multi-coincidence imaging technique, called COLTRIMS (cold target recoil ion momentum spectroscopy) (J. Phys. B 30 (1997) 2917; Nucl. Instrum. Methods B 108 (1996) 425; In: Ullrich, J., Shevelko, V.P. (Eds.), Many Particle Quantum Dynamics in Atomic Fragmentation, Series Atomic, Optical, and Plasma Physics, Vol. 35. Springer, Berlin, 2003; Phys. Rep. 330 (2000) 95). This technique is as powerful as the bubble chamber system in high-energy physics. It has opened a new observation window into the hidden world of many-particle dynamics: correlated many-particle dynamics in Coulombic systems can now be experimentally approached with unprecedented completeness and precision. The principle of the method, namely measuring the momentum of the emitted charged particles from an atomic or molecular fragmentation process, is as simple as determining the trajectory of a thrown stone. From knowing the position from where the stone was slung and where it hits the target, as well as measuring its time-of-flight, the trajectory of the stone and thus its initial velocity vector can be determined precisely. Furthermore, in order to achieve good precision we have to know whether the person, who throws the stone, was at rest in the frame of observation or with which relative velocity this person was moving. Thus, to obtain optimal momentum resolution for the exploding fragments one has to bring the fragmenting object to a complete rest in the frame of measurement before the reaction occurs, i.e. if the object is a gas atom or molecule one has to cool it down to sub-milli Kelvin temperatures.

  19. Higher-Sensitivity Ionization Trace-Species Detector

    NASA Technical Reports Server (NTRS)

    Boumsellek, Said; Chutjian, Ara

    1995-01-01

    Electron source and electron optics of reversal electron-attachment detector modified to increase sensitivity. Original version described in "High-Sensitivity Ionization Trace-Species Detector" (NPO-17596). Used to detect molecules of particular chemical species of interest (e.g., narcotics, explosives, or organic wastes) present in air at low concentrations, and known to attach extremely low-energy electrons. Apparatus does this by ionizing molecules from sampled atmosphere, then detecting ions of species of interest. Detector features indirectly heated spherical cathode and redesigned electron optics, together, deliver more electrons at low kinetic energy to reversal plane, R. Greater electron current generates more ions for detection.

  20. Formic and Acetic Acid Observations over Colorado by Chemical Ionization Mass Spectrometry and Organic Acids' Role in Air Quality

    NASA Astrophysics Data System (ADS)

    Treadaway, V.; O'Sullivan, D. W.; Heikes, B.; Silwal, I.; McNeill, A.

    2015-12-01

    Formic acid (HFo) and acetic acid (HAc) have both natural and anthropogenic sources and a role in the atmospheric processing of carbon. These organic acids also have an increasing importance in setting the acidity of rain and snow as precipitation nitrate and sulfate concentrations have decreased. Primary emissions for both organic acids include biomass burning, agriculture, and motor vehicle emissions. Secondary production is also a substantial source for both acids especially from biogenic precursors, secondary organic aerosols (SOAs), and photochemical production from volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs). Chemical transport models underestimate organic acid concentrations and recent research has sought to develop additional production mechanisms. Here we report HFo and HAc measurements during two campaigns over Colorado using the peroxide chemical ionization mass spectrometer (PCIMS). Iodide clusters of both HFo and HAc were recorded at mass-to-charge ratios of 173 and 187, respectively. The PCIMS was flown aboard the NCAR Gulfstream-V platform during the Deep Convective Clouds and Chemistry Experiment (DC3) and aboard the NCAR C-130 during the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The DC3 observations were made in May and June 2012 extending from the surface to 13 km over the central and eastern United States. FRAPPE observations were made in July and August 2014 from the surface to 7 km over Colorado. DC3 measurements reported here are focused over the Colorado Front Range and complement the FRAPPE observations. DC3 HFo altitude profiles are characterized by a decrease up to 6 km followed by an increase either back to boundary layer mixing ratio values or higher (a "C" shape). Organic acid measurements from both campaigns are interpreted with an emphasis on emission sources (both natural and anthropogenic) over Colorado and in situ photochemical production especially ozone precursors.

  1. Molecular interactions of organic molecules at the air/water interface investigated by sum frequency generation vibrational spectroscopy.

    PubMed

    Wang, Wenting; Ye, Shuji

    2017-02-08

    The molecular structure and dynamics of organic molecules at the aqueous interface have attracted a number of investigations owing to their importance and specific nature. However, there are relatively few studies on the direct characterization of the molecular interactions at the air/water interface because they are extremely difficult to measure in experiments. In this study, we use dibutyl ester molecules (R1CO2R2O2CR1) as a model of organic molecules, and investigate their molecular structure and interactions using sum frequency generation vibrational spectroscopy. We demonstrate that the molecular interactions can be estimated by measuring the intensity ratio of the symmetric stretching (ν1) and Fermi resonant bands (2ν2) of methyl groups. Here, dibutyl ester molecules are widely used as plasticizers in polymers to improve the properties of the plastics and polymers. It is found that the orientation angles of the tailed methyl groups at the air/water interface decrease from 34° to 19° when the chain length of R2 increases from 0 to 8. The total intermolecular interactions of the dibutyl ester molecules decrease as the chain length of R2 increases because the van der Waals interactions between the hydrocarbon chains increase, while the hydrogen bond interactions between the carbonyl group and water molecules decrease. Our study demonstrates the stability of ester-based plasticizers in polymers can be well predicted from the intensity ratio of the ν1 and 2ν2 bands of methyl group. Such an intensity ratio can be thus used as an effective vibrational optical ruler for characterizing molecular interactions between plasticizers and polymers.

  2. Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    1998-11-01

    Guided Discharge Path by Weak Ionized Region between Two Plasmas Produced by YAG Laser in Atmospheric Air Gap with Non-Uniform DC Electric Field*, Daisuke Okano, Kyushu Tokai University, 9-1-1 Toroku, Kumamoto, Japan. -----We have studied on guiding discharge path by weak ionized region between plasmas produced by a visible laser, that is, a YAG laser with wavelength 532nm, in an atmospheric air gap with DC non-uniform electric field using a rod-to-plate electrode. We succeeded in capturing the framing images in the temporal evolution on guiding discharge along the YAG laser light path. From the results of experiments, the region between two plasmas produced by a YAG laser can guide a discharge path, and the region between two plasmas on the laser light path is considered as well as a weak ionized one [1] produced by an excimer laser. [1]J.Sasaki, S.Kubodera, R.Ozaki and T.Uchiyama, J. Appl. Phys., 60 (1986) 3845. *This work was supported by Grant-in-Aid for Scientific Research (C)-no.10650295 of The Ministry of education, Science Sports and Culture in japan.

  3. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  4. Submicrometer particle removal indoors by a novel electrostatic precipitator with high clean air delivery rate, low ozone emissions, and carbon fiber ionizer.

    PubMed

    Kim, H-J; Han, B; Kim, Y-J; Oda, T; Won, H

    2013-10-01

    A novel positive-polarity electrostatic precipitator (ESP) was developed using an ionization stage (0.4 × 0.4 × 0.14 m(3) ) with 16 carbon fiber ionizers in each channel and a collection stage (0.4 × 0.4 × 0.21 m(3) ) with parallel metallic plates. The single-pass collection efficiency and clean air delivery rate (CADR) were measured by standard tests using KCl particles in 0.25-0.35 μm. Performance was determined using the Deutsch equation and established diffusion and field charging theories and also compared with the commercialized HEPA filter-type air cleaner. Experimental results showed that the single-pass collection efficiency of the ESP ranged from 50 to 95% and decreased with the flow rate (10-20 m(3) /min), but increased with the voltage applied to the ionizers (6 to 8 kV) and collection plates (-5 to -7 kV). The ESP with 18 m(3) /min achieved a CADR of 12.1 m(3) /min with a voltage of 8 kV applied to the ionization stage and with a voltage of -6 kV applied to the collection stage. The concentration of ozone in the test chamber (30.4 m(3) ), a maximum value of 5.4 ppb over 12 h of continuous operation, was much lower than the current indoor regulation (50 ppb).

  5. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    NASA Astrophysics Data System (ADS)

    Groetz, J.-E.; Ounoughi, N.; Mavon, C.; Belafrites, A.; Fromm, M.

    2014-08-01

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  6. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  7. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  8. Photoinduced nucleation: a novel tool for detecting molecules in air at ultra-low concentrations

    DOEpatents

    Katz, Joseph L.; Lihavainen, Heikki; Rudek, Markus M.; Salter, Brian C.

    2002-01-01

    A method and apparatus for determining the presence of molecules in a gas at concentrations of less than about 100 ppb. Light having wavelengths in the range from about 200 nm to about 350 nm is used to illuminate a flowing sample of the gas causing the molecules if present to form clusters. A mixture of the illuminated gas and a vapor is cooled until the vapor is supersaturated so that there is a small rate of homogeneous nucleation. The supersaturated vapor condenses on the clusters thus causing the clusters to grow to a size sufficient to be counted by light scattering and then the clusters are counted.

  9. Hygroscopic Growth of Self-Assembled Layered Surfactant Molecules at the Interface between Air and Organic Salts

    SciTech Connect

    Shin, Yongsoon; Wang, Li Q.; Fryxell, Glen E.; Exarhos, Gregory J.; Lu, Yunfeng

    2003-12-15

    In this paper, we report a self-assembly of surfactant molecules at the interface of air/hygroscopic quaternary ammonium salts such as tetrabutylammonium acetate (TBAAc), tetrabutylammonium bromide (TBAB), and tetrabutylammonium nitrate (TBAN), where they show different hygroscopicity, TBAAc > TBAB TBAN. Homogeneously dissolved surfactants rearrange themselves when they contact air due to high moisture adsorption behavior of such organic salts. Highly ordered lamellar phases with different lattice spacings have been observed when surfactants with long alkyl chains were used. Alkylammonium halides form monolayers, while neutral alkylamines forms bilayers based upon basal spacings of their X-ray diffraction patterns. The change in basal spacings in lamellar patterns, the alkyl chain conformation of surfactants, and H-bonding property of neutral amine surfactants are discussed in detail.

  10. Green's function and Dyson orbital studies of the electronic structure of cage compounds and flexible molecules: A confrontation of many-body quantum mechanics with electron momentum, photo-electron and penning ionization electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Knippenberg, Stefan

    Electron Momentum Spectroscopy (EMS) has emerged in recent years as a powerful experimental technique for studying the valence electronic structure of molecules and solids. With such experiments, orbital Momentum Distributions (MDs) are reconstructed from an angular analysis of electron impact ionization energies in the limit of the binary encounter, the Born (sudden) and the plane wave impulse approximations. In this thesis, the possibilities and limitations of ubiquitous orbital depictions (Hartree-Fock, Kohn-Sham and Dyson orbitals) are emphasized through theoretical studies of EMS experiments on two extreme cases: rigid cage compounds and conformationally versatile molecules. These EMS studies employ benchmark Green's Function (GF) calculations of valence one-electron and shake-up ionization spectra, as well as spherically averaged MDs derived from the related Dyson orbitals. Shortcomings of empirical analyses of EMS experiments based on Kohn-Sham orbitals and the related eigen-energies are comparatively discussed. Our work demonstrates that, owing to recent advances in energy and momentum resolution, EMS is now at a stage to very finely image the influence of the molecular conformation on orbital topologies, or changes in the effective topology of orbitals at varying distances from the molecular center. GF and Dyson orbital calculations are advocated in particular in order to safely identify complications such as distorted wave effects, vibronic coupling, nuclear dynamics, or a breakdown of the standard orbital picture of ionization. As an example, ionization experiments at large enough electron binding energies seem to result into an ultrafast intramolecular Coulomb decay and fragmentation of norbornane. On the experimental side, our work also advocates accurate enough determination of the absolute temperature in ionization experiments of all kind.

  11. Hygroscopic Growth of Self-Assembled Layered Surfactant Molecules at the Interface between Air and Organic Salts

    SciTech Connect

    Shin, Yongsoon; Wang, Li Q.; Fryxell, Glen E.; Exarhos, Gregory J.

    2005-04-01

    We report here a self-assembly of surfactant molecules at the interface of air/hygroscopic quaternary ammonium salts, tetrabutylammonium acetate (TBAAc). Homogeneously dissolved surfactant molecules at 100 C self-assemble upon contacting air due to high moisture adsorption behavior of the organic salt when cooling down. Highly ordered lamellar phases with different lattice spacings have been observed when surfactants with various lengths of alkyl chains were used. CnTMAB/TBAAc systems showed all trans conformation of interior methylene carbons and interdigited bilayers with an average CH2 increment of 0.119nm, while CnNH2/TBAAc systems showed trans/gauche mixed conformations of interior methylene carbons and bilayers with an average CH2 increment of 0.247nm. CnNH2s in CnNH2/TBAAc formed bilayers through water-mediated intermolecular hydrogen bonds with a water layer thickness of 0.51-0.61nm. In CnTAB/TBAAc, as the head group of CnTAB is bigger, the interdigited bilayer thickness (d-spacing) is smaller because their bigger head groups accommodate enough space for alkyl tails to come in between them.

  12. MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Zhao, Yaju; Deng, Guoqing; Liu, Xiaohui; Sun, Liang; Li, Hui; Cheng, Quan; Xi, Kai; Xu, Danke

    2016-09-21

    This paper reports a facile synthesis of molybdenum disulfide nanosheets/silver nanoparticles (MoS2/Ag) hybrid and its use as an effective matrix in negative ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The nanohybrid exerts a strong synergistic effect, leading to high performance detection of small molecule analytes including amino acids, peptides, fatty acids and drugs. The enhancement of laser desorption/ionization (LDI) efficiency is largely attributed to the high surface roughness and large surface area for analyte adsorption, better dispersibility, increased thermal conductivity and enhanced UV energy absorption as compared to pure MoS2. Moreover, both Ag nanoparticles and the edge of the MoS2 layers function as deprotonation sites for proton capture, facilitating the charging process in negative ion mode and promoting formation of negative ions. As a result, the MoS2/Ag nanohybrid proves to be a highly attractive matrix in MALDI-TOF MS, with desired features such as high desorption/ionization efficiency, low fragmentation interference, high salt tolerance, and no sweet-spots for mass signal. These characteristic properties allowed for simultaneous analysis of eight different drugs and quantification of acetylsalicylic acid in the spiked human serum. This work demonstrates for the first time the fabrication and application of a novel MoS2/Ag hybrid, and provides a new platform for use in the rapid and high throughput analysis of small molecules by mass spectrometry.

  13. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-06

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs.

  14. Screening in humid air plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, Anatoly; Derbenev, Ivan; Dyatko, Nikolay; Kurkin, Sergey

    2016-09-01

    Low temperature air plasmas containing H2O molecules are of high importance for atmospheric phenomena, climate control, biomedical applications, surface processing, and purification of air and water. Humid air plasma created by an external ionization source is a good model of the troposphere where ions are produced by the galactic cosmic rays and decay products of air and soil radioactive elements such as Rn222. The present paper is devoted to study the ionic composition and the screening in an ionized humid air at atmospheric pressure and room temperature. The ionization rate is varied in the range of 101 -1018 cm-3s-1. The humid air with 0 - 1 . 5 % water admixture that corresponds to the relative humidity of 0 - 67 % at the air temperature equal to 20°C is considered. The ionic composition is determined on the analysis of more than a hundred processes. The system of 41 non-steady state particle number balance equations is solved using the 4th order Runge-Kutta method. The screening of dust particle charge in the ionized humid air are studied within the diffusion-drift approach. The screening constants are well approximated by the inverse Debye length and characteristic lengths of recombination and attachment processes. This work was supported by the Russian Science Foundation, Project No. 16-12-10424.

  15. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  16. Comparison of Experimental and Calculated Ion Mobilities of Small Molecules in Air

    PubMed Central

    2016-01-01

    Ion mobility spectrometry is a well-known technique for analyzing gases. Examples are military applications, but also safety related applications, for example, for protection of employees in industries working with hazardous gases. In the last 15 years, this technique has been further developed as a tool for structural analysis, for example, in pharmaceutical applications. In particular, the collision cross section, which is related to the mobility, is of interest here. With help of theoretic principles, it is possible to develop molecular models that can be verified by the comparison of their calculated cross sections with experimental data. In this paper, it is analyzed how well the ion trajectory method is suitable to reproduce the measured ion mobility of small organic molecules such as the water clusters forming the positively charged reactant ions, simple aromatic substances, and n-alkanes. PMID:27298751

  17. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    NASA Astrophysics Data System (ADS)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki; Suzuki, Isao H.; Kouchi, Noriyuki

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H2O have been measured as a function of incident photon energy. The multiply excited states of H2O have been observed even above the adiabatic double ionization potential.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: a Fourier transform infrared (FT-IR) spectroscopic study.

    PubMed

    Demir, Pinar; Akkas, Sara B; Severcan, Mete; Zorlu, Faruk; Severcan, Feride

    2015-01-01

    Humans can be exposed to ionizing radiation, due to various reasons, whose structural effects on biological membranes are not well defined. The current study aims to understand the ionizing radiation-induced structural and functional alterations in biomolecules of brain membranes using Fourier transform infrared (FT-IR) spectroscopy using rat animal models. For this purpose, 1000 cGy of ionizing radiation was specifically directed to the head of Sprague Dawley rats. The rats were decapitated after 24 h. The results revealed that the lipid-to-protein ratio decreased and that irradiation caused lipid peroxidation and increases in the amounts of olefinic =CH, carbonyl, and methylene groups of lipids. In addition, ionizing radiation induced a decrease in membrane fluidity, disordering of membrane lipids, strengthening of the hydrogen bonding of the phosphate groups of lipid head-groups, and weakening in the hydrogen bonding of the interfacial carbonyl groups of lipids. Radiation further caused significant decrements in the α-helix and turns, and significant increments in the β-sheet and random coil contents in the protein structure. Hierarchical cluster analyses, performed in the whole region (3030-1000 cm(-1)), lipid (3030-2800 cm(-1)), and protein (1700-1600 cm(-1)) regions separately, successfully differentiated the control and irradiated groups of rat brain membranes and showed that proteins in the membranes are affected more than lipids from the damages induced with ionizing radiation. As a result, the current study showed that FT-IR spectroscopy can be used successfully as a novel method to monitor radiation-induced alterations on biological membranes.

  20. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices.

    PubMed

    Kaiser, Ralf I; Maity, Surajit; Jones, Brant M

    2014-02-28

    Ice mixtures of methane and carbon monoxide were exposed to ionizing radiation in the form of energetic electrons at 5.5 K to investigate the formation of carbonyl bearing molecules in extraterrestrial ices. The radiation induced chemical processing of the mixed ices along with their isotopically labeled counterparts was probed online and in situ via infrared spectroscopy (solid state) aided with reflectron time-of-flight mass spectrometry (ReTOFMS) coupled to single photon photoionization (PI) at 10.49 eV (gas phase). Deconvolution of the carbonyl absorption feature centered at 1727 cm(-1) in the processed ices and subsequent kinetic fitting to the temporal growth of the newly formed species suggests the formation of acetaldehyde (CH3CHO) together with four key classes of carbonyl-bearing molecules: (i) alkyl aldehydes, (ii) alkyl ketones, (iii) α,β-unsaturated ketones/aldehydes and (iv) α,β,γ,δ-unsaturated ketones/α,β-dicarbonyl compounds in keto-enol form. The mechanistical studies indicate that acetaldehyde acts as the key building block of higher aldehydes (i) and ketones (ii) with unsaturated ketones/aldehydes (iii) and/or α,β-dicarbonyl compounds (iv) formed from the latter. Upon sublimation of the newly synthesized molecules, ReTOFMS together with isotopic shifts of the mass-to-charge ratios was exploited to identify eleven product classes containing molecules with up to six carbon atoms, which can be formally derived from C1-C5 hydrocarbons incorporating up to three carbon monoxide building blocks. The classes are (i) saturated aldehydes/ketones, (ii) unsaturated aldehydes/ketones, (iii) doubly unsaturated aldehydes/ketones, (iv) saturated dicarbonyls (aldehydes/ketones), (v) unsaturated dicarbonyls (aldehydes/ketones), (vi) saturated tricarbonyls (aldehydes/ketones), molecules containing (vii) one carbonyl - one alcohol (viii), two carbonyls - one alcohol, (ix) one carbonyl - two alcohol groups along with (x) alcohols and (xi) diols. Reaction

  1. Correction factors for the NMi free-air ionization chamber for medium-energy x-rays calculated with the Monte Carlo method.

    PubMed

    Grimbergen, T W; van Dijk, E; de Vries, W

    1998-11-01

    A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.

  2. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station.

    PubMed

    Bernier, Matthew C; Alberici, Rosana M; Keelor, Joel D; Dwivedi, Prabha; Zambrzycki, Stephen C; Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Symonds, Josh M; Orlando, Thomas M; Macatangay, Ariel; Fernández, Facundo M

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices. Graphical Abstract ᅟ.

  3. Microplasma Ionization of Volatile Organics for Improving Air/Water Monitoring Systems On-Board the International Space Station

    NASA Astrophysics Data System (ADS)

    Bernier, Matthew C.; Alberici, Rosana M.; Keelor, Joel D.; Dwivedi, Prabha; Zambrzycki, Stephen C.; Wallace, William T.; Gazda, Daniel B.; Limero, Thomas F.; Symonds, Josh M.; Orlando, Thomas M.; Macatangay, Ariel; Fernández, Facundo M.

    2016-07-01

    Low molecular weight polar organics are commonly observed in spacecraft environments. Increasing concentrations of one or more of these contaminants can negatively impact Environmental Control and Life Support (ECLS) systems and/or the health of crew members, posing potential risks to the success of manned space missions. Ambient plasma ionization mass spectrometry (MS) is finding effective use as part of the analytical methodologies being tested for next-generation space module environmental analysis. However, ambient ionization methods employing atmospheric plasmas typically require relatively high operation voltages and power, thus limiting their applicability in combination with fieldable mass spectrometers. In this work, we investigate the use of a low power microplasma device in the microhollow cathode discharge (MHCD) configuration for the analysis of polar organics encountered in space missions. A metal-insulator-metal (MIM) structure with molybdenum foil disc electrodes and a mica insulator was used to form a 300 μm diameter plasma discharge cavity. We demonstrate the application of these MIM microplasmas as part of a versatile miniature ion source for the analysis of typical volatile contaminants found in the International Space Station (ISS) environment, highlighting their advantages as low cost and simple analytical devices.

  4. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  5. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  6. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  7. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers.

    PubMed

    Bian, Juan; Olesik, Susan V

    2017-03-27

    Polyacrylonitrile/Nafion®/carbon nanotube (PAN/Nafion®/CNT) composite nanofibers were prepared using electrospinning. These electrospun nanofibers were studied as possible substrates for surface-assisted laser desorption/ionization (SALDI) and matrix-enhanced surface-assisted laser desorption/ionization time-of-flight mass spectrometry (ME-SALDI/TOF-MS) for the first time in this paper. Electrospinning provides this novel substrate with a uniform morphology and a narrow size distribution, where CNTs were evenly and firmly immobilized on polymeric nanofibers. The results show that PAN/Nafion®/CNT nanofibrous mats are good substrates for the analysis of both small drug molecules and high molecular weight polymers with high sensitivity. Markedly improved reproducibility was observed relative to MALDI. Due to the composite formation between the polymers and the CNTs, no contamination of the carbon nanotubes to the mass spectrometer was observed. Furthermore, electrospun nanofibers used as SALDI substrates greatly extended the duration of ion signals of target analytes compared to the MALDI matrix. The proposed SALDI approach was successfully used to quantify small drug molecules with no interference in the low mass range. The results show that verapamil could be detected with a surface concentration of 220 femtomoles, indicating the high detection sensitivity of this method. Analysis of peptides and proteins with the electrospun composite substrate using matrix assisted-SALDI was improved and a low limit of detection of approximately 6 femtomoles was obtained for IgG. Both SALDI and ME-SALDI analyses displayed high reproducibility with %RSD ≤ 9% for small drug molecules and %RSD ≤ 14% for synthetic polymers and proteins.

  8. Cyclodextrin-supported organic matrix for application of MALDI-MS for forensics. Soft-ionization to obtain protonated molecules of low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yonezawa, Tetsu; Asano, Takashi; Fujino, Tatsuya; Nishihara, Hiroshi

    2013-06-01

    A mass measurement technique for detecting low-molecular-weight drugs with a cyclodextrin-supported organic matrix was investigated. By using cyclodextrin-supported 2,4,6-trihydroxyacetophenone (THAP), the matrix-related peaks of drugs were suppressed. The peaks of protonated molecules of the sample and THAP were mainly observed, and small fragments were detected in a few cases. Despite the Na+ and K+ peaks were observed in the spectrum, Na+ or K+ adduct sample molecules were undetected, owing to the sugar units of cyclodextrin. The advantages of MALDI-MS with cyclodextrin-supported matrices as an analytical tool for forensic samples are discussed. The suppression of alkali adducted molecules and desorption process are also discussed.

  9. Resonance-enhanced two-photon ionization mass spectroscopy of ephedrine: Indication for a state-selective fragmentation in a flexible molecule

    NASA Astrophysics Data System (ADS)

    Karaminkov, R.; Chervenkov, S.; Härter, P.; Neusser, H. J.

    2007-07-01

    The vibronic structure of the S 1 ← S 0 spectrum of ephedrine was measured by resonance-enhanced two-photon ionization spectroscopy with mass resolution under cold molecular beam conditions. The spectra recorded at four different mass channels, m/ z = 165 (parent), 58, and the hitherto unknown 71, 85 fragment ions show dissimilar vibronic fine structure and the observed mass pattern strongly depends on the selected intermediate vibrational state. This points to an intermediate state-selected process resulting in a different fragmentation mass pattern. Ab initio calculations at the MP2/6-311++G ∗∗ level demonstrate that the AG (a) conformer is more stable by 238 cm -1 than the next stable GG (a) conformer.

  10. Soft-landing ion mobility of silver clusters for small-molecule matrix-assisted laser desorption ionization mass spectrometry and imaging of latent fingerprints.

    PubMed

    Walton, Barbara L; Verbeck, Guido F

    2014-08-19

    Matrix-assisted laser desorption ionization (MALDI) imaging is gaining popularity, but matrix effects such as mass spectral interference and damage to the sample limit its applications. Replacing traditional matrices with silver particles capable of equivalent or increased photon energy absorption from the incoming laser has proven to be beneficial for low mass analysis. Not only can silver clusters be advantageous for low mass compound detection, but they can be used for imaging as well. Conventional matrix application methods can obstruct samples, such as fingerprints, rendering them useless after mass analysis. The ability to image latent fingerprints without causing damage to the ridge pattern is important as it allows for further characterization of the print. The application of silver clusters by soft-landing ion mobility allows for enhanced MALDI and preservation of fingerprint integrity.

  11. "Magic" Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The "magic" that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  12. "Magic" Ionization Mass Spectrometry.

    PubMed

    Trimpin, Sarah

    2016-01-01

    The systematic study of the temperature and pressure dependence of matrix-assisted ionization (MAI) led us to the discovery of the seemingly impossible, initially explained by some reviewers as either sleight of hand or the misinterpretation by an overzealous young scientist of results reported many years before and having little utility. The “magic” that we were attempting to report was that with matrix assistance, molecules, at least as large as bovine serum albumin (66 kDa), are lifted into the gas phase as multiply charged ions simply by exposure of the matrix:analyte sample to the vacuum of a mass spectrometer. Applied heat, a laser, or voltages are not necessary to achieve charge states and ion abundances only previously observed with electrospray ionization (ESI). The fundamentals of how solid phase volatile or nonvolatile compounds are converted to gas-phase ions without added energy currently involves speculation providing a great opportunity to rethink mechanistic understanding of ionization processes used in mass spectrometry. Improved understanding of the mechanism(s) of these processes and their connection to ESI and matrix-assisted laser desorption/ionization may provide opportunities to further develop new ionization strategies for traditional and yet unforeseen applications of mass spectrometry. This Critical Insights article covers developments leading to the discovery of a seemingly magic ionization process that is simple to use, fast, sensitive, robust, and can be directly applied to surface characterization using portable or high performance mass spectrometers.

  13. First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: application to Penning-ionizing systems.

    PubMed

    Hapka, Michał; Chałasiński, Grzegorz; Kłos, Jacek; Zuchowski, Piotr S

    2013-07-07

    We present new interaction potential curves, calculated from first-principles, for the He((3)S, 1s(1)2s(1))···H2 and He((3)S)···Ar systems, relevant in recent Penning ionization experiments of Henson et al. [Science 338, 234 (2012)]. Two different approaches were applied: supermolecular using coupled cluster (CC) theory and perturbational within symmetry-adapted perturbation theory (SAPT). Both methods gave consistent results, and the potentials were used to study the elastic scattering and determine the positions of shape resonances for low kinetic energy (up to 1 meV). We found a good agreement with the experiment. In addition, we investigated two other dimers composed of metastable Ne ((3)P, 2p(5)3s(1)) and ground state He and Ar atoms. For the Ne((3)P)···He system, a good agreement between CC and SAPT approaches was obtained. The Ne((3)P)···Ar dimer was described only with SAPT, as CC gave divergent results. Ne* systems exhibit extremely small electronic orbital angular momentum anisotropy of the potentials. We attribute this effect to screening of an open 2p shell by a singly occupied 3s shell.

  14. Simultaneous derivatization and air-assisted liquid-liquid microextraction of some parabens in personal care products and their determination by GC with flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Khosrowshahi, Elnaz Marzi; Khorram, Parisa

    2013-11-01

    A simultaneous derivatization/air-assisted liquid-liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2-5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41-0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid-liquid microextraction technique. Furthermore, the sample preparation time is very short.

  15. A novel small-molecule compound of lithium iodine and 3-hydroxypropionitride as a solid-state electrolyte for lithium–air batteries

    DOE PAGES

    Liu, Fang -Chao; Shadike, Zulipiya; Wang, Xiao -Fang; ...

    2016-06-16

    A novel small-molecule compound of lithium iodine and 3-hydroxypropionitrile (HPN) has been successfully synthesized. Our combined experimental and theoretical studies indicated that LiIHPN is a Li-ion conductor, which is utterly different from the I–-anion conductor of LiI(HPN)2 reported previously. Solid-state lithium–air batteries based on LiIHPN as the electrolyte exhibit a reversible discharge capacity of more than 2100 mAh g–1 with a cyclic performance over 10 cycles. Lastly, our findings provide a new way to design solid-state electrolytes toward high-performance lithium–air batteries.

  16. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  17. Conformational sensitivity of conjugated poly(ethylene oxide)-poly(amidoamine) molecules to cations adducted upon electrospray ionization - a mass spectrometry, ion mobility and molecular modeling study.

    PubMed

    Tintaru, Aura; Chendo, Christophe; Wang, Qi; Viel, Stéphane; Quéléver, Gilles; Peng, Ling; Posocco, Paola; Pricl, Sabrina; Charles, Laurence

    2014-01-15

    Tandem mass spectrometry and ion mobility spectrometry experiments were performed on multiply charged molecules formed upon conjugation of a poly(amidoamine) (PAMAM) dendrimer with a poly(ethylene oxide) (PEO) linear polymer to evidence any conformational modification as a function of their charge state (2+ to 4+) and of the adducted cation (H(+)vs Li(+)). Experimental findings were rationalized by molecular dynamics simulations. The G0 PAMAM head-group could accommodate up to three protons, with protonated terminal amine group enclosed in a pseudo 18-crown-6 ring formed by the PEO segment. This particular conformation enabled a hydrogen bond network which allowed long-range proton transfer to occur during collisionally activated dissociation. In contrast, lithium adduction was found to mainly occur onto oxygen atoms of the polyether, each Li(+) cation being coordinated by a 12-crown-4 pseudo structure. As a result, for the studied polymeric segment (Mn=1500gmol(-1)), PEO-PAMAM hybrid molecules exhibited a more expanded shape when adducted to lithium as compared to proton.

  18. Automated coupling of capillary-HPLC to matrix-assisted laser desorption/ionization mass spectrometry for the analysis of small molecules utilizing a reactive matrix.

    PubMed

    Brombacher, Stephan; Owen, Stacey J; Volmer, Dietrich A

    2003-07-01

    This study describes the application of a novel, reactive matrix for the mass spectral analysis of steroids by capillary-high performance liquid chromatography (capillary-HPLC) coupled to matrix-assisted laser desorption/ionization (MALDI). The mass spectral analysis of steroids was accomplished after fully automated peak deposition of chromatographic peaks onto MALDI targets. The seven corticosteroids used as test compounds were: triamcinolone, prednisone, cortisone, fludrocortisone, dexamethasone, deoxycorticosterone, and budesonide. They were separated using a PepMap C(18) (3 microm particle size, 100 A pore width) column at five different concentration levels of 25, 15, 7.5, 2.5 and 1 ng/microL, and the peaks were detected at a wavelength of 237 nm. The column effluent was mixed with 2,4-dinitrophenylhydrazine (DNPH) directly following the UV detector. The chromatographic peaks were then deposited onto the MALDI target with a robotic micro-fraction collector triggered by the UV detector signals. A special hydrophobic surface coating allowed the deposition of up to 4 microL (up to 90 % of the chromatographic peak volume) onto one sample spot. The compounds were then identified by MALDI mass spectrometry. Depending on the nature of the analyte, radical cations ([M](+.)) and sodium adduct ions ([M+Na](+)) of the steroids as well as protonated steroid-dinitrophenylhydrazone derivatives ([M(D)+H](+)) were detected in positive ion mode. The detection limits were between 0.5 and 15 ng injected with capillary-HPLC-MALDI-TOF-MS and between 0.3 and 3 ng on target with MALDI-TOF when deposited manually.

  19. Tris(3-hydroxypropyl)phosphine (THPP): A mild, air-stable reagent for the rapid, reductive cleavage of small-molecule disulfides.

    PubMed

    McNulty, James; Krishnamoorthy, Venkatesan; Amoroso, Dino; Moser, Michael

    2015-10-01

    Tris(3-hydroxypropyl)phosphine (THPP) is demonstrated to be a versatile, water-soluble and air-stable reducing agent, allowing for the rapid, irreversible reductive cleavage of disulfide bonds in both aqueous and buffered aqueous-organic media. The reagent shows exceptional stability at biological pH under which condition it permits the rapid reduction of a wide range of differentially functionalized small-molecule disulfides.

  20. The Zebrafish- Danio rerio – Is a Useful Model for Measuring the Effects of Small-molecule Mitigators of Late Effects of Ionizing Irradiation

    PubMed Central

    EPPERLY, MICHAEL W.; BAHARY, NATHAN; QUADER, MUBINA; DEWALD, VALERIE; GREENBERGER, JOEL S.

    2013-01-01

    Background/Aim Use of zebrafish models may decrease the cost of screening new irradiation protectors and mitigators. Materials and Methods Zebrafish (Danio rerio) models were tested for screening water-soluble radiation protectors and mitigators. Irradiation of embryos and monitoring survival, and measuring fibrosis of the caudal musculature of adults allowed for testing of acute and late effects, respectively. Results Incubation of zebrafish embryos either before or after irradiation in ethyl pyruvate (1 mM) increased survival. Irradiation of adults to 15 to 75 Gy, delivered in single-fraction at 13 Gy/min, showed dose-dependent fibrosis at 30 days, quantitated as physiological decrease in swimming tail movement, and histopathological detection of collagen deposition in the dorsal musculature. Continuous administration of small-molecule radioprotector drugs in the water after irradiation reduced both acute and chronic injuries. Conclusion The zebrafish is cost-effective for screening new radiation countermeasures. PMID:23160669

  1. Sample metallization for performance improvement in desorption/ionization of kilodalton molecules: quantitative evaluation, imaging secondary ion MS, and laser ablation.

    PubMed

    Delcorte, A; Bour, J; Aubriet, F; Muller, J-F; Bertrand, P

    2003-12-15

    The metallization procedure, proposed recently for signal improvement in organic secondary ion mass spectrometry (SIMS) (Delcorte, A.; Médard, N.; Bertrand, P. Anal.Chem. 2002, 74, 4955)., has been thoroughly tested for a set of kilodalton molecules bearing various functional groups: Irganox 1010, polystyrene, polyalanine, and copper phthalocyanine. In addition to gold, we evaluate the effect of silver evaporation as a sample treatment prior to static SIMS analysis. Ion yields, damage cross sections, and emission efficiencies are compared for Ag- and Au-metallized molecular films, pristine coatings on silicon, and submonolayers of the same molecules adsorbed on silver and gold. The results are sample-dependent but as an example, the yield enhancement calculated for metallized Irganox films with respect to untreated coatings is larger than 2 orders of magnitude for the quasimolecular ion and a factor of 1-10 for characteristic fragments. Insights into the emission processes of quasimolecular ions from metallized surfaces are deduced from kinetic energy distribution measurements. The advantage of the method for imaging SIMS applications is illustrated by the study of a nonuniform coating of polystyrene oligomers on a 100-microm polypropylene film. The evaporated metal eliminates sample charging and allows us to obtain enhanced quality images of characteristic fragment ions as well as reasonably contrasted chemical mappings for cationized PS oligomers and large PP chain segments. Finally, we report on the benefit of using metal evaporation as a sample preparation procedure for laser ablation mass spectrometry. Our results show that the fingerprint spectra of Au-covered polystyrene, polypropylene, and Irganox films can be readily obtained under 337-nm irradiation, a wavelength for which the absorption of polyolefins is low. This is probably because the gold clusters embedded in the sample surface absorb and transfer the photon energy to the surrounding organic medium.

  2. Ionizing radiation and life.

    PubMed

    Dartnell, Lewis R

    2011-01-01

    Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.

  3. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  4. Electronic Excitation in Air and Carbon Dioxide Gas

    DTIC Science & Technology

    2009-09-01

    processes in nonequilibrium low-temperature plasma of chemical compositions (air and carbon dioxide mixtures) frequently occurring in different aerospace...presents the problem of data processing automation. This problem is considered on the example of prediction of oscillator strengths of atomic species...elementary processes including into RC models .................................... 8 3.1 Ionization at collision of atoms and molecules with electrons

  5. INDUSTRIAL EFFLUENT TREATMENT USING IONIZING RADIATION COMBINED TO TITANIUM DIOXIDE

    SciTech Connect

    Duarte, C.L.; Oikawa, H.; Mori, M.N.; Sampa, M.H.O.

    2004-10-04

    The Advanced Oxidation Process (AOP) with OH radicals are the most efficient to mineralize organic compounds, and there are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet radiation and ionizing radiation. The irradiation of aqueous solutions with high-energy electrons results in the excitation and ionizing of the molecules and rapid (10{sup -14} - 10{sup -9} s) formation of reactive intermediates. These reactive species will react with organic compounds present in industrial effluent inducing their decomposition. Titanium dioxide (TiO{sub 2}) catalyzed photoreaction is used to remove a wide range of pollutants in air and water media, combined to UV/VIS light, FeO{sub 2}, and H{sub 2}O{sub 2}, but as far as known there is no report on the combination with ionizing radiation. In some recent studies, the removal of organic pollutants in industrial effluent, such as Benzene, Toluene, and Xylene from petroleum production using ionizing radiation was investigated. It has been ob served that none of the methods can be used individually in wastewater treatment applications with good economics and high degree of energy efficiency. In the present work, the efficiency of ionizing radiation in presence of TiO{sub 2} to treat industrial effluent was evaluated. The main aim to combine these technologies is to improve the efficiency for very hard effluents and to reduce the processing cost for future implementation to large-scale design.

  6. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  7. Initial results of positron ionization mass spectrometry

    NASA Technical Reports Server (NTRS)

    Donohue, D. L.; Hulett, L. D., Jr.; Mcluckey, S. A.; Glish, G. L.; Eckenrode, B. A.

    1990-01-01

    The use of monoenergetic positrons for the ionization of organic molecules in the gas phase is described. The ionic products are analyzed with a time-of-flight mass spectrometer and detected to produce a mass spectrum. The ionization mechanisms which can be studied in this way include positron impact at energies above the ionization limit of the target molecules, positronium formation in the Ore gap energy range, and positron attachment at energies less than 1eV. The technique of positron ionization mass spectrometry (PIMS) may have analytical utility in that chemical selectivity is observed for one or more of these processes.

  8. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  9. Ionization and Corona Discharges from Stressed Rocks

    NASA Astrophysics Data System (ADS)

    Winnick, M. J.; Kulahci, I.; Cyr, G.; Tregloan-Reed, J.; Freund, F. T.

    2008-12-01

    Pre-earthquake signals have long been observed and documented, though they have not been adequately explained scientifically. These signals include air ionization, occasional flashes of light from the ground, radio frequency emissions, and effects on the ionosphere that occur hours or even days before large earthquakes. The theory that rocks function as p-type semiconductors when deviatoric stresses are applied offers a mechanism for this group of earthquake precursors. When an igneous or high-grade metamorphic rock is subjected to deviatoric stresses, peroxy bonds that exist in the rock's minerals as point defects dissociate, releasing positive hole charge carriers. The positive holes travel by phonon-assisted electron hopping from the stressed into and through the unstressed rock volume and build up a positive surface charge. At sufficiently large electric fields, especially along edges and sharp points of the rock, air molecules become field-ionized, loosing an electron to the rock surface and turning into airborne positive ions. This in turn can lead to corona discharges, which manifest themselves by flashes of light and radio frequency emissions. We applied concentrated stresses to one end of a block of gabbro, 30 x 15 x 10 cm3, inside a shielded Faraday cage and observed positive ion currents through an air gap about 25 cm from the place where the stresses were applied, punctuated by short bursts, accompanied by flashes of light and radio frequency emissions characteristic of a corona discharge. These observations may serve to explain a range of pre-earthquake signals, in particular changes in air conductivity, luminous phenomena, radio frequency noise, and ionospheric perturbations.

  10. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  11. Efficient Ionization Investigation for Flow Control and Energy Extraction

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.

    2009-01-01

    Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.

  12. A novel small-molecule compound of lithium iodine and 3-hydroxypropionitride as a solid-state electrolyte for lithium–air batteries

    SciTech Connect

    Liu, Fang -Chao; Shadike, Zulipiya; Wang, Xiao -Fang; Shi, Si -Qi; Zhou, Yong -Ning; Chen, Guo -Ying; Yang, Xiao -Qing; Weng, Lin -Hong; Zhao, Jing -Tai; Fu, Zheng -Wen

    2016-06-16

    A novel small-molecule compound of lithium iodine and 3-hydroxypropionitrile (HPN) has been successfully synthesized. Our combined experimental and theoretical studies indicated that LiIHPN is a Li-ion conductor, which is utterly different from the I–-anion conductor of LiI(HPN)2 reported previously. Solid-state lithium–air batteries based on LiIHPN as the electrolyte exhibit a reversible discharge capacity of more than 2100 mAh g–1 with a cyclic performance over 10 cycles. Lastly, our findings provide a new way to design solid-state electrolytes toward high-performance lithium–air batteries.

  13. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented.

  14. Prospects for the use of security air flow to prevent ion-molecule reactions in the ionization and drift zone in classical IMS

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Makarova, N. V.; Poturuy, A. A.; Beliakov, V. V.

    2016-10-01

    The effective transfer of sample problem is relevant in modern analytical equipment. The paper considered a problem in detection trace concentrations of explosives by Ion Mobility Spectrometry (IMS). The investigation deals with sample adsorption on the walls of transport tubes, the ion drift chamber and the chamber of the ion source in ion mobility spectrometer. The sample losses on inlet channel surface and diffusion through penetrable gas channels are comparable with the quantity of sample itself at the sensitivity level of 10-14 g / cm3. The trinitrotoluene (TNT) sorption in different channel materials depending on their sorption properties is analyzed. A new approach preventing sorption of the substance on the chamber walls by security airflow is presented. The study includes gas flow simulation and experiments of protective gas flow setup.

  15. Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms.

    PubMed

    Maehata, Itsumi; Hayashi, Hiroaki; Kimoto, Natsumi; Takegami, Kazuki; Okino, Hiroki; Kanazawa, Yuki; Tominaga, Masahide

    2016-07-01

    We propose a new practical method for the construction of an accurate secondary X-ray field using medical diagnostic X-ray equipment. For accurate measurement of the air kerma of an X-ray field, it is important to reduce and evaluate the contamination rate of scattered X-rays. To determine the rate quantitatively, we performed the following studies. First, we developed a shield box in which an ionization chamber could be set at an inner of the box to prevent detection of the X-rays scattered from the air. In addition, we made collimator plates which were placed near the X-ray source for estimation of the contamination rate by scattered X-rays from the movable diaphragm which is a component of the X-ray equipment. Then, we measured the exposure dose while changing the collimator plates, which had diameters of 25-90 mm(ϕ). The ideal value of the exposure dose was derived mathematically by extrapolation to 0 mm(ϕ). Tube voltages ranged from 40 to 130 kV. Under these irradiation conditions, we analyzed the contamination rate by the scattered X-rays. We found that the contamination rates were less than 1.7 and 2.3 %, caused by air and the movable diaphragm, respectively. The extrapolated value of the exposure dose has been determined to have an uncertainty of 0.7 %. The ionization chamber used in this study was calibrated with an accuracy of 5 %. Using this kind of ionization chamber, we can construct a secondary X-ray field with an uncertainty of 5 %.

  16. Ambient aerodynamic ionization source for remote analyte sampling and mass spectrometric analysis.

    PubMed

    Dixon, R Brent; Sampson, Jason S; Hawkridge, Adam M; Muddiman, David C

    2008-07-01

    The use of aerodynamic devices in ambient ionization source development has become increasingly prevalent in the field of mass spectrometry. In this study, an air ejector has been constructed from inexpensive, commercially available components to incorporate an electrospray ionization emitter within the exhaust jet of the device. This novel aerodynamic device, herein termed remote analyte sampling, transport, and ionization relay (RASTIR) was used to remotely sample neutral species in the ambient and entrain them into an electrospray plume where they were subsequently ionized and detected using a linear ion trap Fourier transform mass spectrometer. Two sets of experiments were performed in the ambient environment to demonstrate the device's utility. The first involved the remote (approximately 1 ft) vacuum collection of pure sample particulates (i.e., dry powder) from a glass slide, entrainment and ionization at the ESI emitter, and mass spectrometric detection. The second experiment involved the capture (vacuum collection) of matrix-assisted laser desorbed proteins followed by entrainment in the ESI emitter plume, multiple charging, and mass spectrometric detection. This approach is in principle a RASTIR-assisted matrix-assisted laser desorption electrospray ionization source (Sampson, J. S.; Hawkridge, A. M.; Muddiman, D. C. J. Am. Soc. Mass Spectrom. 2006, 17, 1712-1716; Rapid Commun. Mass Spectrom. 2007, 21, 1150-1154.). A detailed description of the device construction, operational parameters, and preliminary small molecule and protein data are presented.

  17. Comparison of sodium naphthenate and air-ionization corona discharge as surface treatments for the ethylene-tetrafluoroethylene polymer (ETFE) to improve adhesion between ETFE and acrylonitrile-butadiene-styrene polymer (ABS) in the presence of a cyanoacrylate adhesive (CAA)

    NASA Astrophysics Data System (ADS)

    Lucía Johanning-Solís, Ana; Stradi-Granados, Benito A.

    2014-09-01

    This study compares two ethylene-tetrafluoroethylene (ETFE) surface activation treatments, namely chemical attack with a solution of sodium naphthenate and plasma erosion via air-ionization corona discharge in order to improve the adhesive properties of the ETFE. An experimental design was prepared for both treatments in order to assess the effect of the treatment characteristics on the tensile load needed to break the bond between the ETFE and the acrylonitrile-butadiene-styrene polymer (ABS) formed with a cyanoacrylate adhesive (CAA) applied between them. The reason for the selection of this problem is that both polymers are frequently used in the biomedical industry for their properties, and they need to be joined firmly in biomedical devices, and the cyanoacrylate adhesive is the adhesive traditionally used for fluoropolymers, in this case the ETFE, and the same CAA has also shown good adhesion with ABS. However, the strength of the bond for the triplet ETFE-CAA-ABS has not been reported and the improvement of the strength of the bond with surface treatments is not found in scholarly journals for modern medical devices such as stents and snares. Both treatments were compared based on the aforementioned design of experiments. The case where ETFE receives no surface treatment serves as the reference. The results indicated that the three factors evaluated (initial drying of the material, temperature of the chemical bath, and immersion time), and their interactions have no significant effect over the tensile load at failure (tensile strength) of the adhesive bond being evaluated. For the air-ionization corona discharge treatment, two factors were evaluated: discharge exposition time and air pressure. The results obtained from this experimental design indicate that there is no significant difference between the levels of the factors evaluated. These results were unexpected as the ranges used were representative of the maximum ranges permissible in manufacturing

  18. Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser - A new avenue for air diagnostics

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Krauss, Roland H.; Grinstead, Jay H.

    1991-01-01

    Laser-induced N2 ionization is accomplished using a commercially available Nd:YAG laser, and confirmed by means of ion-collection and spectral measurements. Neutral N2 is excited by six photons of the third harmonic frequency, or 355 nm, and is transformed to an ionized state. The radiation at 355 nm is separated from the fundamental and frequency-doubled Nd:YAG radiation to guarantee monochromatic incident radiation. Intense lines near 391.4 nm are found in the initial laser polarization and for a 90-degree rotation of polarization. The radiation at 391.4 nm is associated with an incoherent laser-induced flourescence process related to an ionized-state transition, and increases quadratically with laser power. A 45-mJ laser pulse focused to a diameter of 17 microns can produce an ion concentration of 3.25 x 10 to the 13th ions/cu cm. The large ion concentration and robust fluorescence signal make this technique an efficient method for time-of-flight velocimetry and in-flight testing.

  19. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  20. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  1. Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air-water interface.

    PubMed

    Baba, Teruhiko; Takai, Katsuki; Takagi, Toshiyuki; Kanamori, Toshiyuki

    2013-01-01

    A series of oleic acid (OA) analogs containing terminal perfluoroalkyl groups (CF3, C2F5, n-C3F7, n-C4F9 or n-C8F17) was synthesized to clarify how the fluorinated chain length affects the stability and molecular packing of liquid-expanded OA monolayers at the air-water interface. Although the substitution of terminal CF3 group for CH3 in OA had no effect on monolayer stability, further fluorination led to a gradual increase in monolayer stability at 25 °C. Surface pressure-area isotherm revealed that partially fluorinated OA analogs form more expanded monolayers than OA at low surface pressures, and that the monolayer behavior of OA analogs with the even-carbon numbered fluorinated chain is almost the same as that of OA upon monolayer compression, whereas the behavior of OA analogs with the odd-carbon numbered fluorinated chain significantly differs from that of OA. These results indicate: (i) the terminal short part (at least C2 residue) in OA predominantly determines the liquid-expanded monolayer stability; (ii) the molecular packing state of OA may be perturbed by the substitution of a short odd-carbon numbered fluorinated chain; (iii) hence, OA analogs with even-carbon numbered chain are considered to be preferable as hydrophobic building blocks for the synthesis of fluorinated phospholipids.

  2. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes.

    PubMed

    Takenobu, Taishi; Takano, Takumi; Shiraishi, Masashi; Murakami, Yousuke; Ata, Masafumi; Kataura, Hiromichi; Achiba, Yohji; Iwasa, Yoshihiro

    2003-10-01

    Single-walled carbon nanotubes (SWNTs) have strong potential for molecular electronics, owing to their unique structural and electronic properties. However, various outstanding issues still need to be resolved before SWNT-based devices can be made. In particular, large-scale, air-stable and controlled doping is highly desirable. Here we present a method for integrating organic molecules into SWNTs that promises to push the performance limit of these materials for molecular electronics. Reaction of SWNTs with molecules having large electron affinity and small ionization energy achieved p- and n-type doping, respectively. Optical characterization revealed that charge transfer between SWNTs and molecules starts at certain critical energies. X-ray diffraction experiments revealed that molecules are predominantly encapsulated inside SWNTs, resulting in an improved stability in air. The simplicity of the synthetic process offers a viable route for the large-scale production of SWNTs with controlled doping states.

  3. Method and apparatus to monitor a beam of ionizing radiation

    DOEpatents

    Blackburn, Brandon W.; Chichester, David L.; Watson, Scott M.; Johnson, James T.; Kinlaw, Mathew T.

    2015-06-02

    Methods and apparatus to capture images of fluorescence generated by ionizing radiation and determine a position of a beam of ionizing radiation generating the fluorescence from the captured images. In one embodiment, the fluorescence is the result of ionization and recombination of nitrogen in air.

  4. INSTRUMENTS AND METHODS OF INVESTIGATION: Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    NASA Astrophysics Data System (ADS)

    Blashenkov, Nikolai M.; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied.

  5. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  6. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    PubMed Central

    2016-01-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  7. High-efficiency electron ionizer for a mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Darrach, Murray R. (Inventor); Orient, Otto J. (Inventor)

    2001-01-01

    The present invention provides an improved electron ionizer for use in a quadrupole mass spectrometer. The improved electron ionizer includes a repeller plate that ejects sample atoms or molecules, an ionizer chamber, a cathode that emits an electron beam into the ionizer chamber, an exit opening for excess electrons to escape, at least one shim plate to collimate said electron beam, extraction apertures, and a plurality of lens elements for focusing the extracted ions onto entrance apertures.

  8. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ.

  9. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  10. Picosecond laser filamentation in air

    DTIC Science & Technology

    2016-09-02

    oxygenmolecules only, as the ionization potential of oxygen is lower than that of nitrogen . Collisional ionization is included for both neutral species. To that...pulses. EN2 and EO2 are the ionization potentials of the neutral nitrogen and oxygenmolecules, respectively. The compound collision cross-section is...systematically underestimate plasma generation, as we neglect bothmulti-photon ionization of nitrogen molecules and avalanche ionization of both oxygen and

  11. Theoretical and observational determinations of the ionization coefficient of meteors

    NASA Astrophysics Data System (ADS)

    Jones, William

    1997-07-01

    We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary meteors is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the meteoric ion to a molecule of the air. It is now possible for the meteoric atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in meteor trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio meteors at lower velocities (v<~35

  12. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  13. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  14. Quantitative comparison of a flared and a standard heated metal capillary inlet with a voltage-assisted air amplifier on an electrospray ionization linear ion trap mass spectrometer.

    PubMed

    Dixon, R Brent; Muddiman, David C

    2007-01-01

    The performance characteristics (i.e., ion abundance and electrospray ion current) of a flared and blunt-ended heated metal capillary were evaluated with a voltage-assisted air amplifier on a linear ion trap mass spectrometer (LTQ-MS). The results demonstrated that a standard capillary afforded higher ion abundance than a flared capillary, thus further work is necessary to investigate conditions for which significant benefits with the flared capillary will be observed. The compatibility of a voltage-assisted air amplifier is explored for both types of capillaries and in all cases resulted in improved ion abundance and spray current.

  15. Multiphoton ionization of Uracil

    NASA Astrophysics Data System (ADS)

    Prieto, Eladio; Martinez, Denhi; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2016-05-01

    Multiphoton ionization and dissociation of Uracil using a Reflectron time of flight spectrometer was performed along with radiation from the second harmonic of a Nd:YAG laser. Uracil is one of the four nitrogen bases that belong to RNA. The last years special interest has been concentrated on the study of the effects under UV radiation in nucleic acids1 and also in the role that this molecule could have played in the origin and development of life on our planet.2 The MPI mass spectra show that the presence and intensity of the resulting ions strongly depend on the density power. The identification of the ions in the mass spectra is presented. The results are compared with those obtained in other laboratories under different experimental conditions and some of them show partial agreement.3 The present work was supported by CONACYT-Mexico Grant 165410 and DGAPA UNAM Grant IN101215 and IN102613.

  16. An atmospheric pressure chemical ionization study of the positive and negative ion chemistry of the hydrofluorocarbons 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a) and of perfluoro-n-hexane (FC-72) in air plasma at atmospheric pressure.

    PubMed

    Marotta, Ester; Paradisi, Cristina; Scorrano, Gianfranco

    2004-07-01

    A report is given on the ionization/dissociation behavior of the title compounds within air plasmas produced by electrical corona discharges at atmospheric pressure: both positive and negative ions were investigated at different temperatures using atmospheric pressure chemical ionization mass spectrometry (APCI-MS). CHF(2)CH(3) (HFC-152a) undergoes efficient ionic oxidation to C(2)H(5)O(+), in which the oxygen comes from water present in the plasma. In contrast, CF(3)CH(2)F (HFC-134a) does not produce any characteristic positive ion under APCI conditions, its presence within the plasma being revealed only as a neutral ligand in ion-molecule complexes with ions of the background (H(3)O(+) and NO(+)). Analogously, the perfluorocarbon FC-72 (n-C(6)F(14)) does not produce significant positive ions at 30 degrees C: at high temperature, however, it undergoes dissociative ionization to form many product ions including C(3)F(6)(+), C(2)F(4)(+), C(n)F(2n+1)(+) and a few families of oxygen containing cations (C(n)F(2n+1)OH(2)(+), C(n)F(2n)OH(+), C(n)F(2n-1)O(+), C(n)F(2n-1)O(2)H(2)(+), C(n)F(2n-2)O(2)H(+)) which are suggested to derive from C(n)F(2n+1)(+) in a cascade of steps initiated by condensation with water followed by steps of HF elimination and H(2)O addition. Negative ions formed from the fluoroethanes CHF(2)CH(3) and CF(3)CH(2)F (M) include complexes with ions of the background, O(2)(-)(M), O(3)(-)(M) and some higher complexes involving also water, and complexes of the fluoride ion, F(-)(H(2)O), F(-)(M) and higher complexes with both M and H(2)O also together. The interesting product O(2)(-)(HF) is also formed from 1,1-difluoroethane. In contrast to the HFCs, perfluoro-n-hexane gives stable molecular anions, M(-), which at low source temperature or in humidified air are also detected as hydrates, M(-)(H(2)O). In addition, in humidified air F(-)(H(2)O)(n) complexes are also formed. The reactions leading to all major positive and negative product ions are discussed

  17. [Development of a chemical ionization time-of-flight mass spectrometer for continuous measurements of atmospheric hydroxyl radical].

    PubMed

    Dou, Jian; Hua, Lei; Hou, Ke-Yong; Jiang, Lei; Xie, Yuan-Yuan; Zhao, Wu-Duo; Chen, Ping; Wang, Wei-Guo; Di, Tian; Li, Hai-Yang

    2014-05-01

    A home-made chemical ionization time-of-flight mass spectrometer (TOFMS) has been developed for continuous measurements of atmospheric hydroxyl radical. Based on the atmospheric pressure chemical ionization technique, an ionization source with orthogonal dual tube structure was adopted in the instrument, which minimized the interference between the reagent gas ionization and the titration reaction. A 63Ni radioactive source was fixed inside one of the orthogonal tubes to generate reactant ion of NO(-)(3) from HNO3 vapor. Hydroxyl radical was first titrated by excess SO2 to form equivalent concentrations of H2SO4 in the other orthogonal tube, and then reacted with NO(-)(3) ions in the chemical ionization chamber, leading to HSO(-)(4) formation. The concentration of atmospheric hydroxyl radical can be directly calculated by measuring the intensities of the HSOj product ions and the NO(-)(3) reactant ions. The analytical capability of the instrument was demonstrated by measuring hydroxyl radical in laboratory air, and the concentration of the hydroxyl radical in the investigated air was calculated to be 1.6 x 106 molecules*cm ', based on 5 seconds integration. The results have shown that the instrument is competent for in situ continuous measurements of atmospheric trace radical.

  18. Laser-induced ionization of Na vapor

    SciTech Connect

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na/sub 2//sup +/ ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na/sub 2/ molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na/sub 2/ D/sup 1/PI..mu.. Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na/sub 2//sup +/ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na/sub 2//sup +/ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na/sub 2/ molecules.

  19. Laser-induced ionization of Na vapor

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. Robert; Judge, D. L.; Roussel, F.; Carré, B.; Breger, P.; Spiess, G.

    1982-09-01

    The production of Na2+ ions by off-resonant laser excitation in the 5800-6200Å region mainly results from two-photon absorption by the Na2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na2 D1Πu Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na2+ ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al. we estimate that the cross section for producing Na2+ through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na2 molecules.

  20. Fundamentals of ambient metastable-induced chemical ionization mass spectrometry and atmospheric pressure ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.

    Molecular ionization is owed much of its development from the early implementation of electron ionization (EI). Although dramatically increasing the library of compounds discovered, an inherent problem with EI was the low abundance of molecular ions detected due to high fragmentation leading to the difficult task of the correct chemical identification after mass spectrometry (MS). These problems stimulated the research into new ionization methods which sought to "soften" the ionization process. In the late 1980s the advancements of ionization techniques was thought to have reached its pinnacle with both electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). Both ionization techniques allowed for "soft" ionization of large molecular weight and/or labile compounds for intact characterization by MS. Albeit pervasive, neither ESI nor MALDI can be viewed as "magic bullet" ionization techniques. Both techniques require sample preparation which often included native sample destruction, and operation of these techniques took place in sealed enclosures and often, reduced pressure conditions. New open-air ionization techniques termed "ambient MS" enable direct analysis of samples of various physical states, sizes and shapes. One particular technique named Direct Analysis In Real Time (DART) has been steadily growing as one of the ambient tools of choice to ionize small molecular weight (< 1000 Da) molecules with a wide range of polarities. Although there is a large list of reported applications using DART as an ionization source, there have not been many studies investigating the fundamental properties of DART desorption and ionization mechanisms. The work presented in this thesis is aimed to provide in depth findings on the physicochemical phenomena during open-air DART desorption and ionization MS and current application developments. A review of recent ambient plasma-based desorption/ionization techniques for analytical MS is presented in

  1. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens.

    PubMed

    Swanson, Kenneth D; Spencer, Sandra E; Glish, Gary L

    2016-11-28

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H](+). These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures. Graphical Abstract ᅟ.

  2. Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens

    NASA Astrophysics Data System (ADS)

    Swanson, Kenneth D.; Spencer, Sandra E.; Glish, Gary L.

    2016-11-01

    Extractive electrospray ionization is an ambient ionization technique that allows real-time sampling of liquid samples, including organic aerosols. Similar to electrospray ionization, the composition of the electrospray solvent used in extractive electrospray ionization can easily be altered to form metal cationized molecules during ionization simply by adding a metal salt to the electrospray solvent. An increase in sensitivity is observed for some molecules that are lithium, sodium, or silver cationized compared with the protonated molecule formed in extractive electrospray ionization with an acid additive. Tandem mass spectrometry of metal cationized molecules can also significantly improve the ability to identify a compound. Tandem mass spectrometry of lithium and silver cationized molecules can result in an increase in the number and uniqueness of dissociation pathways relative to [M + H]+. These results highlight the potential for extractive electrospray ionization with metal cationization in analyzing complex aerosol mixtures.

  3. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated.

  4. Effect of ionization on the behavior of n-eicosanephosphonic acid monolayers at the air/water interface. Experimental determinations and molecular dynamics simulations.

    PubMed

    Schulz, Erica P; Piñeiro, Ángel; Miñones, José; Miñones Trillo, José; Frechero, Marisa A; Pieroni, Olga; Schulz, Pablo C

    2015-03-03

    Monolayers of n-eicosanephosphonic acid, EPA, were studied using a Langmuir balance and a Brewster angle microscope at different subphase pH values to change the charge of the polar headgroups (Zav) from 0 to -2. Molecular dynamics simulations (MDS) results for |Zav| = 0, 1, and 2 were compared with the experimental ones. EPA monolayers behave as mixtures of mutually miscible species (C20H41-PO3H2, C20H41-PO3H(-), and C20H41-PO3(2-), depending on the subphase pH). The order and compactness of the monolayers decrease when increasing |Zav|, while go from strongly interconnected by phosphonic-phosphonic hydrogen bonds (|Zav| = 0-0.03) through an equilibrium between the total cohesive energy and the electrostatic repulsion between the charged polar groups (0.03 < |Zav| < 1.6) to an entirely ionic monolayer (|Zav| ≈ 2). MDS reveal for |Zav| = 0 that the chains form spiralled nearly rounded structures induced by the hydrogen-bonded network. When |Zav| ≈ 1 fingering domains were identified. When Z ≈ 2, the headgroups are more disordered and distanced, not only in the xy plane but also in the z direction, forming a rough layer and responding to compression with a large plateau in the isotherm. The monolayers collapse behavior is consistent with the structures and domains founds in the different ionization states and their consequent in-plane rigidity: there is a transition from a solid-like response at low pH subphases to a fluid-like response at high pH subphases. The film area in the close-packed state increases relatively slow when the polar headgroups are able to form hydrogen bonds but increases to near twice that this value when |Zav| ≈ 2. Other nanoscopic properties of monolayers were also determined by MDS. The computational results confirm the experimental findings and offer a nanoscopic perspective on the structure and interactions in the phosphonate monolayers.

  5. Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Laskin, Julia; Heath, Brandi S.; Roach, Patrick J.; Cazares, Lisa H.; Semmes, O. John

    2012-01-03

    We present the first results showing the ambient imaging of biological samples in their native environment using nanospray desorption ionization (nanoDESI) mass spectrometry. NanoDESI is an ambient pressure ionization technique that enables precise control of ionization of molecules from substrates. We demonstrate highly sensitive and robust analysis of tissue samples with high spatial resolution (<12 {mu}m) without sample preparation, which will be essential for applications in clinical diagnostics, drug discovery, molecular biology, and biochemistry.

  6. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  7. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  8. Low-density-solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography with flame ionization detection for the determination of synthetic phenolic antioxidants in milk samples.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza

    2016-03-01

    A simple and rapid sample pretreatment technique termed low-density-solvent-based air-assisted liquid-liquid microextraction has been developed for the extraction and preconcentration of three synthetic phenolic antioxidants including butylated hydroxyanisole, butylated hydroxytoluene, and tert-butyl hydroquinone from milk samples prior to their analysis by gas chromatography with flame ionization detection. In this method, initially trichloroacetic acid as a proteins precipitation agent is added to the sample, and then it is sonicated and centrifuged. The obtained aqueous phase is removed and the analytes extracted by the proposed method using a low-density organic solvent. Some important parameters such as type and volume of extraction solvent, ionic strength, pH, and centrifugation rate and time were studied. Under the optimum conditions, enrichment factors were obtained in the range of 501-614. LODs and quantification were between 0.76-1.16 and 2.66-3.96 ng mL(-1) , respectively. This method is rapid and requires less than 15 min for sample preparation.

  9. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  10. The galactic cosmic ray ionization rate.

    PubMed

    Dalgarno, A

    2006-08-15

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H(3)(+) in diffuse clouds and the recognition that dissociative recombination of H(3)(+) is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium.

  11. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    SciTech Connect

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-08-15

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors.

  12. Sub-cycle dynamics of multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Telnov, Dmitry A.; Nasiri Avanaki, K.; Chu, Shih-I.

    2014-05-01

    Sub-cycle oscillatory structures are revealed in calculated time-dependent multiphoton ionization rates. Both atomic and molecular targets manifest multiple ionization bursts per one optical cycle of the laser field. Using the accurate and efficient time-dependent generalized pseudospectral method to solve the time-dependent Schrödinger equation, we have performed calculations on H, He+, H2+,and HHe2+, for the laser fields with several intensities and wavelengths in the near-infrared range (750 nm to 1064 nm). The sub-cycle structures appear a universal feature of multiphoton ionization and become well pronounced for sufficiently strong laser fields depending on the target atom or molecule. Analysis of the electron density distributions on the sub-femtosecond time scale shows several time moments per optical cycle (not necessarily corresponding to the peak values of the laser field) when significant portions of the electron density move away from the nucleus giving rise to the bursts in the ionization rate. The nature of the phenomenon can be related to ionization through different pathways, including direct ionization as well as population of the excited states by the laser field with subsequent ionization at later times. This work is partially supported by DOE.

  13. Matrix assisted ionization in vacuum, a sensitive and widely applicable ionization method for mass spectrometry.

    PubMed

    Trimpin, Sarah; Inutan, Ellen D

    2013-05-01

    An astonishingly simple new method to produce gas-phase ions of small molecules as well as proteins from the solid state under cold vacuum conditions is described. This matrix assisted ionization vacuum (MAIV) mass spectrometry (MS) method produces multiply charged ions similar to those that typify electrospray ionization (ESI) and uses sample preparation methods that are nearly identical to matrix-assisted laser desorption/ionization (MALDI). Unlike these established methods, MAIV does not require a laser or voltage for ionization, and unlike the recently introduced matrix assisted ionization inlet method, does not require added heat. MAIV-MS requires only introduction of a crystalline mixture of the analyte incorporated with a suitable small molecule matrix compound such as 3-nitrobenzonitrile directly to the vacuum of the mass spectrometer. Vacuum intermediate pressure MALDI sources and modified ESI sources successfully produce ions for analysis by MS with this method. As in ESI-MS, ion formation is continuous and, without a laser, little chemical background is observed. MAIV, operating from a surface offers the possibility of significantly improved sensitivity relative to atmospheric pressure ionization because ions are produced in the vacuum region of the mass spectrometer eliminating losses associated with ion transfer from atmospheric pressure to vacuum. Mechanistic aspects and potential applications for this new ionization method are discussed.

  14. Nanosecond Pulse Discharges and Fast Ionization Wave Discharges: Fundamental Kinetic Processes and Applications

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor

    2011-10-01

    Over the last two decades, nanosecond pulse discharges and Fast Ionization Wave (FIW) discharges have been studied extensively, both theoretically and experimentally. Current interest in characterization of these discharges is driven mainly by their potential for applications such as plasma chemical fuel reforming, plasma-assisted combustion, high-speed flow control, pumping of electric discharge excited lasers, and generation of high-energy electrons. A unique capability of FIW discharges to generate significant ionization and high concentrations of excited species at high pressures and over large distances, before ionization instabilities have time to develop, is very attractive for these applications. Recent advances in laser optical diagnostics offer an opportunity of making non-intrusive, spatially and time-resolved measurements of electron density and electric field distributions in high-speed ionization wave discharges, on nanosecond time scale. Insight into FIW formation and propagation dynamics also requires development of predictive kinetic models, and their experimental validation. Although numerical kinetic models may incorporate detailed kinetics of charged and neutral species in the propagating ionization wave front (including non-local electron kinetics), analytic models are also attractive due to their capability of elucidating fundamental trends of discharge development. The talk gives an overview of recent progress in experimental characterization and kinetic modeling of nanosecond pulse and fast ionization wave discharges in nitrogen and air over a wide range of pulse repetition rates, 0.1-40 kHz. FIW discharge plasmas sustained at high pulse repetition rates are diffuse and volume filling, with most of the power coupled to the plasma behind the wave, at E/N = 200-300 Td and energy loading of 1-2 meV/molecule/pulse. The results demonstrate significant potential of large volume, diffuse, high pulse repetition rate FIW discharges for novel plasma

  15. Molecule nanoweaver

    DOEpatents

    Gerald, II; Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  16. Resonance-enhanced multiphoton ionization and VUV-single photon ionization as soft and selective laser ionization methods for on-line time-of-flight mass spectrometry: investigation of the pyrolysis of typical organic contaminants in the steel recycling process.

    PubMed

    Cao, L; Mühlberger, F; Adam, T; Streibel, T; Wang, H Z; Kettrup, A; Zimmermann, R

    2003-11-01

    A newly conceived compact and mobile time-of flight mass spectrometer (TOFMS) for real-time monitoring of highly complex gas mixtures is presented. The device utilizes two selective and sensitive soft ionization techniques, viz., resonance-enhanced multiphoton ionization (REMPI) and single-photon ionization (SPI) in a (quasi)-simultaneous mode. Both methods allow a fragmentationless ionization. The REMPI method selectively addresses aromatic species, while with SPI applying vacuum ultaviolet light (118 nm) in principle all compounds with an ionization potential below 10.5 eV are accessible. This provides comprehensive information of the chemical composition of complex matrixes. The combustion and pyrolysis behavior of five organic materials typically used in steel processing in China was studied. The trace amounts of organic compounds in the gas phase during combustion and pyrolysis were monitored selectively and sensitively by real-time SPI/REMPI-TOFMS. The measurements were carried out at several constant temperatures in the range from 300 to 1190 degrees C in both synthetic air and nitrogen. Timely resolved mass spectra reveal the formation and subsequent growth of aromatic molecules. At lower temperatures, highly alkylated PAHs predominate, while at temperatures above 800 degrees C, the more stable benzene and PAHs without side chains prevail. Potential hyphenation of SPI/REMPI-TOFMS to methods of thermal analysis is discussed.

  17. Desorption/ionization on silicon nanowires.

    PubMed

    Go, E P; Apon, J V; Luo, G; Saghatelian, A; Daniels, R H; Sahi, V; Dubrow, R; Cravatt, B F; Vertes, A; Siuzdak, G

    2005-03-15

    Dense arrays of single-crystal silicon nanowires (SiNWs) have been used as a platform for laser desorption/ionization mass spectrometry of small molecules, peptides, protein digests, and endogenous and xenobiotic metabolites in biofluids. Sensitivity down to the attomole level has been achieved on the nanowire surfaces by optimizing laser energy, surface chemistry, nanowire diameter, length, and growth orientation. An interesting feature of the nanowire surface is that it requires lower laser energy as compared to porous silicon and MALDI to desorb/ionize small molecules, therefore reducing background ion interference. Taking advantage of their high surface area and fluid wicking capabilities, SiNWs were used to perform chromatographic separation followed by mass analysis of the separated molecules providing a unique platform that can integrate separation and mass spectrometric detection on a single surface.

  18. Dynamical core polarization in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Zhao, Zengxiu; Zhang, Bin; Yuan, Jianmin

    2014-05-01

    Core polarization plays an important role in both ionization and high harmonic generation processes of molecules driven by strong laser fields. With our recently developed three-dimensional time-dependent Hartree-Fock method, we investigate the orientation-dependent ionization of CO molecules. It is found that the full ionization results are in good agreement with the recent experiment. The comparisons between the full method and the single-active-orbital method show that although the core electrons are generally more tightly bound and contribute little to the total ionization yields, their dynamics cannot be ignored, which effectively modifies the behavior of electrons in the HOMO. By incorporating it into the SAO method, we identify that the dynamic core polarization plays an important role in the tunneling ionization of CO molecules, which is helpful for the future development of the tunneling ionization theory beyond the single active electron approximation. In order to further verify the role of core polarization, exact calculations are performed for the ionization of two-electron model systems by strong laser fields. The limitations of HF and the SAE are quantified and the tunneling ionization rate is shown improved with the core-polarization induced correction.

  19. Mass analyzed threshold ionization (MATI) with VUV radiation

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Kim, Sang Kyu; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2009-05-01

    Mass analyzed threshold ionization is a combination of threshold ionization spectroscopy with mass spectrometry. Similar to zero electron kinetic energy (ZEKE), MATI spectroscopy takes advantage of the field ionization of long lived high Rydberg states to obtain an ionization threshold and perform spectroscopy on the resulting cation. MATI at the synchrotron utilizing tunable VUV light opens up a novel way to perform spectroscopy on ions and improve the resolution in ionization energy determination in comparison with conventional photoionization efficiency curve measurements. This method is implemented at the Advanced Light Source and vibrationally-resolved MATI spectra for simple di- and polyatomic molecules (O2, N2, H2O, N2O, C2H2, and C6H6) are measured. This preliminary work allows us to test the applicability of MATI at a synchrotron and prepare for investigation of more complex systems such as mixtures of molecules, isomers and clusters.

  20. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  1. Comparison of air-agitated liquid-liquid microextraction technique and conventional dispersive liquid-liquid micro-extraction for determination of triazole pesticides in aqueous samples by gas chromatography with flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Mogaddam, Mohammad Reza Afshar; Aghdam, Abdollah Abdollahi

    2013-07-26

    Two micro-extraction methods, air-agitated liquid-liquid microextraction (AALLME) and dispersive liquid-liquid microextraction (DLLME), have been compared with each other by applying them for the analysis of five triazole pesticides (penconazole, hexaconazole, diniconazole, tebuconazole and triticonazole) in aqueous samples by gas chromatography with flame ionization detection (GC-FID). In the AALLME method, which excludes any disperser solvent, much less volume of organic solvent is used. In order to form fine and dispersed organic droplets in the aqueous phase, the mixture of aqueous sample solution and extraction solvent is repeatedly aspirated and dispensed with a syringe. In the DLLME method, an appropriate mixture of extraction solvent and disperser solvent is rapidly injected by a syringe into the aqueous sample. Effect of the pertinent experimental factors on DLLME (i.e. identity and volume of the extraction and disperser solvents and ionic strength) and on AALLME (identity and volume of the extraction solvent, number of agitations, and ionic strength) were investigated. Under optimal conditions, limits of detection for the five target pesticides obtained by AALLME-GC-FID and DLLME-GC-FID ranged from 0.20 to 1.1ngmL(-1) and 1.9 to 5.9ngmL(-1), respectively. The relative standard deviations (RSDs, n=5) were in the range of 1-4% and 3-5% with the enrichment factors of 449-504 and 79-143 for AALLME-GC-FID and DLLME-GC-FID, respectively. Both of the compared methods are simple, fast, efficient, inexpensive and can be applied to the analysis of the five pesticides in different aqueous samples in which penconazole and hexaconazole were found. For spiked samples, the recoveries were in the ranges of 92-105%, and 92-104% for AALLME and DLLME, respectively.

  2. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  3. Analytical instruments, ionization sources, and ionization methods

    DOEpatents

    Atkinson, David A.; Mottishaw, Paul

    2006-04-11

    Methods and apparatus for simultaneous vaporization and ionization of a sample in a spectrometer prior to introducing the sample into the drift tube of the analyzer are disclosed. The apparatus includes a vaporization/ionization source having an electrically conductive conduit configured to receive sample particulate which is conveyed to a discharge end of the conduit. Positioned proximate to the discharge end of the conduit is an electrically conductive reference device. The conduit and the reference device act as electrodes and have an electrical potential maintained between them sufficient to cause a corona effect, which will cause at least partial simultaneous ionization and vaporization of the sample particulate. The electrical potential can be maintained to establish a continuous corona, or can be held slightly below the breakdown potential such that arrival of particulate at the point of proximity of the electrodes disrupts the potential, causing arcing and the corona effect. The electrical potential can also be varied to cause periodic arcing between the electrodes such that particulate passing through the arc is simultaneously vaporized and ionized. The invention further includes a spectrometer containing the source. The invention is particularly useful for ion mobility spectrometers and atmospheric pressure ionization mass spectrometers.

  4. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  5. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  6. Dissociative Ionization of Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.

  7. Electron-excited molecule interactions

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  8. Resources of the ionized atmosphere as an aerosol source

    NASA Astrophysics Data System (ADS)

    Smirnov, V. V.; Savchenko, A. V.

    2006-12-01

    The potential resources on the ion-stimulated syntheses effects of aerosol particles of lower troposphere in test sites in the arctic, mountain, arid and forest areas as the function of irradiation time and gas-precursor concentration were experimentally and theoretically evaluated. The dust-free outdoor air was irradiated with an ionization current of 10 - 6 A by α-rays from isotope 239Pu. The total output of radiolytic aerosols (RA) with a diameter of 3-1000 nm was found to be 0.05-0.1 molecules per 1 eV of absorbed radiation, while the physical upper limit is 0.25-0.4 molecules/eV. In an interval of exposition time from 6 to 800 s (adsorbed energy is 3 · 10 12-10 14 eV/cm 3) the RA mass concentration at different sites was increased from 1-10 to 50-500 μg/m 3. According to the liquid chromatography data the major RA material is the H 2O/HNO 3 solution with acid concentration ˜ 25%. The used physical model presents new aerosols as a product from small and intermediate ion association through formation of neutral clusters and describes adequately some of the peculiarities in field experiment data. Introducing SO 2, NH 3, and also hydrochloric, nitric and sulphuric acid vapours with concentration 0.1-1 mg/m 3 in the irradiated air stimulated an increase of mass aerosol concentration by a factor of 8-30. The mean size also decreased by a factor of 3-5. These facts allowed us to expect that the chemical composition of radiolytic aerosols generated in outdoor air would noticeably differ after addition of the gas-precursors.

  9. Surface-induced anisotropic orientations of interfacial ethanol molecules at air/sapphire (1-102) and ethanol/sapphire (1-102) interfaces

    SciTech Connect

    Sung, J.; Waychunas, G. A.; Shen, Y. R.

    2011-06-01

    Sum frequency vibrational spectroscopy was used to study the interfacial arrangement of ethanol molecules at the vapor/α-Al{sub 2}O{sub 3} (1{bar 1}02 ) and α-Al{sub 2}O{sub 3} (1{bar 1}02 )/ethanol liquid interfaces. The spectra in the C-H range show that ethanol molecules adsorbed from vapor onto α-Al{sub 2}O{sub 3} (1{bar 1}02 ) surface have a welldefined anisotropic arrangement following the structure of the α-Al{sub 2}O{sub 3} (1{bar 1}02 ) surface. The arrangement can be explained by the formation of two specific hydrogen bonds between the adsorbed ethanol molecule and hydroxyls on the sapphire surface. At the α-Al{sub 2}O{sub 3} (1{bar 1}02 )/ethanol liquid interface, the first ethanol monolayer assumes a similar anisotropic arrangement as in the case of an ethanol monolayer on the dry sapphire surface. The second monolayer has a rather broad orientation distribution that is azimuthally nearly isotropic, but with molecules flipped 180 degrees with respect to those in the first monolayer.

  10. The role of ionizing radiation in primordial organic synthesis.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.; Sweeney, M.

    1971-01-01

    Attempt to reveal how ionizing radiation may have been effective in producing the molecules necessary for life. In examining the sequence of events leading to the appearance of the first organisms the problem is considered in two parts: the formation of the small molecules such as amino acids, purines, pyrimidines, and carbohydrates; and the condensation of these molecules to give rise to polypeptides and polynucleotides. It is concluded that in the accumulation of organic compounds on the early earth ionizing radiation was not only a substantial part of the available energy, but was also an effective form of energy.

  11. Rotational And Rovibrational Energy Transfer In Electron Collisions With Molecules

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Air flows around a hypervelocity reentry vehicle undergo dissociation, rovibrational excitation and ionization. More specifically the air, initially 80% N2 and 20% O2, in the shock layer consists of species such as N, O, N2, O2, NO, N+, O+, N+, O+, NO+ and 2 free electrons. It was pointed out in multi temperature models'' that the temperature of the rotational energy modes and the gas-kinetic translational temperature are quickly equilibrated by a few collisions and rise rapidly to high temperatures as 50000K before falling off to equilibrium value of 10000K. Contrary, the electronic and vibrational temperatures state energy distributions remain low (less than 15000K) because of the slow equilibration. Electron vibrational energy transfer is thought to play a crucial role in such a ionizing flow regime since chemical reaction rates and dissociation depend strongly on the vibrational temperatures. Modeling of these flowfields in principle require the rovibrational excitation and de-excitation cross section data for average electron energies from threshold up to several eV (leV=11605.4 K). In this lecture we focus on theoretical description of rotational effects i.e. energy transfer of electrons to molecules such that the molecular rotational (vojo goes to voj) or vibrational and rotational (v(sub 0)j(sub 0) goes to vj) states are changed. Excitation and de-excitation of electronic states was discussed in a previous talk at this conference.

  12. Satellite lines at the ionization threshold in charge transfer systems

    NASA Astrophysics Data System (ADS)

    Wardermann, W.; von Niessen, W.

    1992-01-01

    This article deals with the possibility of low-energy ionizations of reduced intensity for larger organic molecules. Possible mechanisms which may lead to this phenomenon are outlined and the necessary structural features are discussed. The lowest ionization energies of some organic unsaturated nitro and nitroso compounds are calculated by the ADC(3) ab initio many-body Green's function method. The π-electron system consists either of fused five- and six-membered rings or of two fused five-membered rings with a variable number of heteroatoms. Some of the molecules contain exocylic double bonds and some are substituted with the donor groups -NH 2, -OH and -NHOH. The strongest many-body effects are found for the nitroso compounds, where in one case the spectral line at the ionization threshold has lost more than 40% of its intensity to satellites. We study the many-body effects at or close to the ionization threshold for these compounds. A particular mechanism which involves the screening of localized valence holes by charge transfer excitations appears to be capable of influencing the profile and intensities of the ionization spectrum already at the ionization threshold. The effect leads to strongly reduced relative intensities of the bands and may cause the appearance of satellite bands nearly at the ionization threshold. The spectral changes in the outermost valence region are discussed by using a simple model calculation in terms of ground-state electronic properties of the molecules.

  13. Non-dissociative and dissociative ionization of a CO+ beam in intense ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gaire, B.; Ablikim, U.; Zohrabi, M.; Roland, S.; Carnes, K. D.; Ben-Itzhak, I.

    2011-05-01

    We have investigated the ionization of CO+ beams in intense ultrashort laser pulses. With the recent upgrades to our coincidence three-dimensional momentum imaging method we are able to measure both non-dissociative and dissociative ionization of the molecular-ion beam targets. Using CO+ as an example, we have found that non-dissociative ionization (leading to the metastable dication CO2+) involves a direct transition, i.e. the molecule is ionized with little or no internuclear distance stretch. Dissociative ionization (C+ + O+) occurs both directly and indirectly, stretching first and then ionizing. Our results show that the yield of dissociative ionization is higher than that of non-dissociative ionization and can be manipulated with the laser pulse duration by suppressing the indirect ionization path using ultrashort pulses (<=10 fs). Supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  14. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  15. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments Database

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  16. Interstellar Molecules

    ERIC Educational Resources Information Center

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  17. Modeling Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The molecule modeling method known as Multibody Order (N) Dynamics, or MBO(N)D, was developed by Moldyn, Inc. at Goddard Space Flight Center through funding provided by the SBIR program. The software can model the dynamics of molecules through technology which stimulates low-frequency molecular motions and properties, such as movements among a molecule's constituent parts. With MBO(N)D, a molecule is substructured into a set of interconnected rigid and flexible bodies. These bodies replace the computation burden of mapping individual atoms. Moldyn's technology cuts computation time while increasing accuracy. The MBO(N)D technology is available as Insight II 97.0 from Molecular Simulations, Inc. Currently the technology is used to account for forces on spacecraft parts and to perform molecular analyses for pharmaceutical purposes. It permits the solution of molecular dynamics problems on a moderate workstation, as opposed to on a supercomputer.

  18. Mobius Molecules

    ERIC Educational Resources Information Center

    Eckert, J. M.

    1973-01-01

    Discusses formation of chemical molecules via Mobius strip intermediates, and concludes that many special physics-chemical properties of the fully closed circular form (1) of polyoma DNA are explainable by this topological feature. (CC)

  19. Enumerating molecules.

    SciTech Connect

    Visco, Donald Patrick, Jr.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  20. Conceptual basis of resonance ionization spectroscopy

    SciTech Connect

    Payne, M.G.

    1984-04-01

    Resonance Ionization Spectroscopy (RIS) can b defined as a state-selective detection process in which tunable lasers are used to promote transitions from the selected state of the atoms or molecules in question to higher states, one of which will be ionized by the absorption of another photon. At least one resonance step is used in the stepwise ionization process, and it has been shown that the ionization probability of the spectroscopically selected species can nearly always be made close to unity. Since measurements of the number of photoelectrons or ions can be made very precisely and even one electron (or under vacuum conditions, one ion) can be detected, the technique can be used to make quantitative measurements of very small populations of the state-selected species. Counting of individual atoms has special meaning for detection of rare events. The ability to make saturated RIS measurements opens up a wide variety of applications to both basic and applied research. We view RIS as a specific type of multi-photon ionization in which the goal is to make quantitative measurements of quantum-selected populations in atomic or molecular systems. 16 references.

  1. Ionizing Radiation and Its Risks

    PubMed Central

    Goldman, Marvin

    1982-01-01

    Penetrating ionizing radiation fairly uniformly puts all exposed molecules and cells at approximately equal risk for deleterious consequences. Thus, the original deposition of radiation energy (that is, the dose) is unaltered by metabolic characteristics of cells and tissue, unlike the situation for chemical agents. Intensely ionizing radiations, such as neutrons and alpha particles, are up to ten times more damaging than sparsely ionizing sources such as x-rays or gamma rays for equivalent doses. Furthermore, repair in cells and tissues can ameliorate the consequences of radiation doses delivered at lower rates by up to a factor of ten compared with comparable doses acutely delivered, especially for somatic (carcinogenic) and genetic effects from x- and gamma-irradiation exposure. Studies on irradiated laboratory animals or on people following occupational, medical or accidental exposures point to an average lifetime fatal cancer risk of about 1 × 10-4 per rem of dose (100 per 106 person-rem). Leukemia and lung, breast and thyroid cancer seem more likely than other types of cancer to be produced by radiation. Radiation exposures from natural sources (cosmic rays and terrestrial radioactivity) of about 0.1 rem per year yield a lifetime cancer risk about 0.1 percent of the normally occurring 20 percent risk of cancer death. An increase of about 1 percent per rem in fatal cancer risk, or 200 rem to double the “background” risk rate, is compared with an estimate of about 100 rem to double the genetic risk. Newer data suggest that the risks for low-level radiation are lower than risks estimated from data from high exposures and that the present 5 rem per year limit for workers is adequate. PMID:6761969

  2. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  3. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  4. Activity-based concept for transport and partitioning of ionizing organics.

    PubMed

    Trapp, Stefan; Franco, Antonio; Mackay, Don

    2010-08-15

    Ionizing chemicals, including pesticides, pharmaceuticals, and personal care products, are care products, are widely used chemicals of commerce and have been detected in the environment in large numbers. These "ionics" are subject to a variety of processes, such as dissociation, ion trap, and electrical interactions with organic matter and biota. Conventional chemodynamic concepts and models designed to treat neutral compounds do not necessarily address these processes. A new system of equations, based on activity and analogous to the fugacity approach, is suggested to describe the fate of organic ionics. The total concentration of all molecule species in a bulk compartment is determined from the product of activity 'a' and a bulk activity capacity 'B'. The concentration ratio between compartments in equilibrium depends on the activity ratio and the capacity ratio. Changes in partitioning due to pH, ionic strength, and the ion trap effect are quantified. The calculation is illustrated for two pharmaceuticals, namely the monovalent acid ibuprofen and the monovalent base trimethoprim, in a multimedia lake system. Trimethoprim is neutral at high pH but ionized at low pH, while ibuprofen exhibits the opposite. The concentration ratios of air and biota to water are shown to depend on pH. The activity approach may be used to describe transport and partitioning of multivalent ionizable organic compounds and to build multimedia fate models.

  5. Soft x-ray ionization induced fragmentation of glycine

    NASA Astrophysics Data System (ADS)

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-01

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH_2^+ fragment.

  6. Soft x-ray ionization induced fragmentation of glycine.

    PubMed

    Itälä, E; Kooser, K; Rachlew, E; Huels, M A; Kukk, E

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C-Cα bond and the presence of the CNH(2)(+) fragment.

  7. Soft x-ray ionization induced fragmentation of glycine

    SciTech Connect

    Itälä, E.; Kooser, K.; Rachlew, E.; Huels, M. A.; Kukk, E.

    2014-06-21

    X-ray absorption commonly involves dissociative core ionization producing not only momentum correlated charged fragments but also low- and high-energy electrons capable of inducing damage in living tissue. This gives a natural motivation for studying the core ionization induced fragmentation processes in biologically important molecules such as amino acids. Here the fragmentation of amino acid glycine following carbon 1s core ionization has been studied. Using photoelectron-photoion-photoion coincidence technique, a detailed analysis on fragmentation of the sample molecule into pairs of momentum correlated cations has been carried out. The main characteristics of core ionization induced fragmentation of glycine were found to be the rupture of the C–C{sub α} bond and the presence of the CNH{sub 2}{sup +} fragment.

  8. Electron ionization of acetylene.

    PubMed

    King, Simon J; Price, Stephen D

    2007-11-07

    Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.

  9. Multifunctional Carbon Fiber Ionization Mass Spectrometry.

    PubMed

    Wu, Meng-Xi; Wang, Hao-Yang; Zhang, Jun-Ting; Guo, Yin-Long

    2016-10-04

    A carbon fiber ionization (CFI) technique was developed for the mass spectrometric analysis of various organic compounds with different polarities. The design of the CFI technique was based on the good compatibility and dispersion of samples and solutions in different solvents on carbon fiber. As a fast, convenient, and versatile ionization method, CFI-MS is especially efficient for analyzing many low/nonpolar organic compounds, such as polycyclic aromatic hydrocarbons, long-chain aliphatic aldehydes, sensitive steroids, terpenoids, and organometallic compounds. Some of these compounds may not be well-analyzed by electrospray ionization or electron ionization mass spectrometry. On the basis of our experimental results, the major ion formation mechanism of CFI-MS was suggested to involve desorption in a steam-distillation-like process, and then, ionization occurred mainly via corona discharge under high voltage. CFI-MS could not only work alone but also be coupled with separation techniques. It works well when coupled with supercritical fluid chromatography (SFC) as well as in the analysis of exhaled human air. The high flexibility and versatility of CFI-MS has extended its applications in many areas, such as fast chemical screening, clinical testing, and forensic analysis.

  10. Atmospheric Pressure Ionization Using a High Voltage Target Compared to Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Lubin, Arnaud; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip

    2017-02-01

    A new atmospheric pressure ionization (API) source, viz. UniSpray, was evaluated for mass spectrometry (MS) analysis of pharmaceutical compounds by head-to-head comparison with electrospray ionization (ESI) on the same high-resolution MS system. The atmospheric pressure ionization source is composed of a grounded nebulizer spraying onto a high voltage, cylindrical stainless steel target. Molecules are ionized in a similar fashion to electrospray ionization, predominantly producing protonated or deprotonated species. Adduct formation (e.g., proton and sodium adducts) and in-source fragmentation is shown to be almost identical between the two sources. The performance of the new API source was compared with electrospray by infusion of a mix of 22 pharmaceutical compounds with a wide variety of functional groups and physico-chemical properties (molecular weight, logP, and pKa) in more than 100 different conditions (mobile phase strength, solvents, pH, and flow rate). The new API source shows an intensity gain of a factor 2.2 compared with ESI considering all conditions on all compounds tested. Finally, some hypotheses on the ionization mechanism, similarities, and differences with ESI, are discussed.

  11. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization.

    PubMed

    Trimpin, Sarah; Wang, Beixi; Inutan, Ellen D; Li, Jing; Lietz, Christopher B; Harron, Andrew; Pagnotti, Vincent S; Sardelis, Diana; McEwen, Charles N

    2012-10-01

    Mechanistic arguments relative to matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) address observations that predominately singly charged ions are detected. However, recently a matrix assisted laser ablation method, laserspray ionization (LSI), was introduced that can use the same sample preparation and laser as MALDI, but produce highly charged ions from proteins. In MALDI, ions are generated from neutral molecules by the photon energy provided to a matrix, while in LSI ions are produced inside a heated inlet tube linking atmospheric pressure and the first vacuum region of the mass spectrometer. Some LSI matrices also produce highly charged ions with MALDI ion sources operated at intermediate pressure or high vacuum. The operational similarity of LSI to MALDI, and the large difference in charge states observed by these methods, provides information of fundamental importance to proposed ionization mechanisms for LSI and MALDI. Here, we present data suggesting that the prompt and delayed ionization reported for vacuum MALDI are both fast processes relative to producing highly charged ions by LSI. The energy supplied to produce these charged clusters/droplets as well as their size and time available for desolvation are determining factors in the charge states of the ions observed. Further, charged droplets/clusters may be a common link for ionization of nonvolatile compounds by a variety of MS ionization methods, including MALDI and LSI.

  12. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  13. Field-dressed orbitals in strong-field molecular ionization

    NASA Astrophysics Data System (ADS)

    Siemering, Robert; Njoya, Oumarou; Weinacht, Thomas; de Vivie-Riedle, Regina

    2015-10-01

    We demonstrate the importance of considering the shape of field-dressed molecular orbitals in interpreting angle-dependent measures of strong-field ionization from excited states. Our calculations of angle-dependent ionization for three homologous polyatomic molecules with very similar valence orbitals show that one has to take into account the shape of the field-dressed orbitals rather than the field-free orbitals in order to rationalize the experimental measurements.

  14. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    PubMed Central

    Greenberger, Joel; Kagan, Valerian; Bayir, Hulya; Wipf, Peter; Epperly, Michael

    2015-01-01

    Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response. PMID:26785339

  15. Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real samples.

    PubMed

    Chen, Suming; Zheng, Huzhi; Wang, Jianing; Hou, Jian; He, Qing; Liu, Huihui; Xiong, Caiqiao; Kong, Xianglei; Nie, Zongxiu

    2013-07-16

    Carbon nanodots were applied for the first time as a new matrix for the analysis of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in both positive- and negative-ion modes. A wide range of small molecules including amino acids, peptides, fatty acids, as well as β-agonists and neutral oligosaccharides were analyzed by MALDI MS with carbon nanodots as the matrix, and the lowest 0.2 fmol limits-of-detection were obtained for octadecanoic acid. Clear sodium and potassium adducts and deprotonated signals were produced in positive- and negative-ion modes. Furthermore, the glucose and uric acid in real samples were quantitatively determined by the internal standard method with the linear range of 0.5-9 mM and 0.1-1.8 mM (R(2) > 0.999), respectively. This work gives new insight into the application of carbon nanodots and provides a general approach for rapid analysis of low-molecular-weight compounds.

  16. Ionizing radiation and orthopaedic prostheses

    NASA Astrophysics Data System (ADS)

    Rimnac, Clare M.; Kurtz, Steven M.

    2005-07-01

    Ultra high molecular weight polyethylene (UHMWPE) materials have been used successfully as one half of the bearing couple (against metallic alloys or ceramics) in total hip and total knee joint replacements for four decades. This review describes the impact of ionizing radiation (used for sterilization and for microstructural modification via crosslinking) on the performance of UHMWPE total joint replacement components. Gamma radiation sterilization in air leads to oxidative degradation of UHMWPE joint components that occurs during shelf-aging and also during in vivo use. Efforts to mitigate oxidative degradation of UHMWPE joint components include gamma radiation sterilization in inert barrier-packaging and processing treatments to reduce free radicals. Ionizing radiation (both gamma and electron-beam) has recently been used to form highly crosslinked UHMWPEs that have better adhesive and abrasive wear resistance than non-crosslinked UHMWPE, thereby potentially improving the long-term performance of total joint replacements. Along with increased wear resistance, however, there are deleterious changes to ductility and fracture resistance of UHMWPE, and an increased risk of fracture of these components remains a clinical concern.

  17. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory.

    PubMed

    Usta, Hakan; Risko, Chad; Wang, Zhiming; Huang, Hui; Deliomeroglu, Murat K; Zhukhovitskiy, Aleksandr; Facchetti, Antonio; Marks, Tobin J

    2009-04-22

    of thiophene-based molecule 12 and copolymers P13 and P14 which exhibit electron and hole mobilities of 1 x 10(-3)-2 x 10(-4) and I(on)/I(off) ratios of approximately 10(4), representing the first examples of molecular and polymeric ambipolar semiconductors to function in air. Analysis of the operational air-stabilities of a series of thin films having different crystallinities, orientations, and morphologies suggests that operational air-stability for thermodynamically predicted (i.e., no kinetic barrier contribution) air-stable semiconductors is principally governed by LUMO energetics with minimal contribution from thin-film microstructure. The onset LUMO energy for carrier electron stabilization is estimated as -4.0 to -4.1 eV, indicating an overpotential of 0.9-1.0 eV. Density functional theory calculations provide detailed insight into molecule/polymer physicochemical and charge transport characteristics.

  18. Signatures of bound-state-assisted nonsequential double ionization

    SciTech Connect

    Sukiasyan, Suren; McDonald, Chris; Van Vlack, Cole; Destefani, Carlos; Fennel, Thomas; Brabec, Thomas; Ivanov, Misha

    2009-07-15

    The time-dependent multiconfiguration Hartree method is optimized for intense laser dynamics and applied to nonsequential double ionization in a two-electron diatomic model molecule with two dimensions per electron. The efficiency of our method brings these calculations from the realm of large scale computation facilities to single processor machines. The resulting two-electron spectrum exhibits pronounced signatures from which the ionic bound states involved in nonsequential double ionization are retrieved with the help of a semiclassical model. A mechanism for the ionization dynamics is suggested.

  19. Laser plasma formation assisted by ultraviolet pre-ionization

    SciTech Connect

    Yalin, Azer P. Dumitrache, Ciprian; Wilvert, Nick; Joshi, Sachin; Shneider, Mikhail N.

    2014-10-15

    We present experimental and modeling studies of air pre-ionization using ultraviolet (UV) laser pulses and its effect on laser breakdown of an overlapped near-infrared (NIR) pulse. Experimental studies are conducted with a 266 nm beam (fourth harmonic of Nd:YAG) for UV pre-ionization and an overlapped 1064 nm NIR beam (fundamental of Nd:YAG), both having pulse duration of ∼10 ns. Results show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.

  20. Interactions between Rydberg atoms and ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Jayaseelan, Maitreyi; Haruza, Marek; Bigelow, Nicholas P.

    2015-05-01

    We investigate dipolar interactions arising in a hybrid system containing both ultracold polar molecules and atomic Rydberg states. Ultracold NaCs molecules are produced by photoassociation from laser cooled mixtures of sodium and cesium atoms and detected through resonant multi-photon ionization (REMPI). Rydberg atoms with large dipole moments are excited in the atomic cloud using a multi-photon process and detected via field-ionization. We look for evidence of the interactions in the observed spectra.

  1. Analytical model for calibrating laser intensity in strong-field-ionization experiments

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Le, Anh-Thu; Jin, Cheng; Wang, Xu; Lin, C. D.

    2016-02-01

    The interaction of an intense laser pulse with atoms and molecules depends extremely nonlinearly on the laser intensity. Yet experimentally there still exists no simple reliable methods for determining the peak laser intensity within the focused volume. Here we present a simple method, based on an improved Perelomov-Popov-Terent'ev model, that would allow the calibration of laser intensities from the measured ionization signals of atoms or molecules. The model is first examined by comparing ionization probabilities (or signals) of atoms and several simple diatomic molecules with those from solving the time-dependent Schrödinger equation. We then show the possibility of using this method to calibrate laser intensities for atoms, diatomic molecules as well as large polyatomic molecules, for laser intensities from the multiphoton ionization to tunneling ionization regimes.

  2. Atmospheric Ionization Measurements

    NASA Astrophysics Data System (ADS)

    Slack, Thomas; Mayes, Riley

    2015-04-01

    The measurement of atmospheric ionization is a largely unexplored science that potentially holds the key to better understanding many different geophysical phenomena through this new and valuable source of data. Through the LaACES program, which is funded by NASA through the Louisiana Space Consortium, students at Loyola University New Orleans have pursued the goal of measuring high altitude ionization for nearly three years, and were the first to successfully collect ionization data at altitudes over 30,000 feet using a scientific weather balloon flown from the NASA Columbia Scientific Ballooning Facility in Palestine, TX. In order to measure atmospheric ionization, the science team uses a lightweight and highly customized sensor known as a Gerdien condenser. Among other branches of science the data is already being used for, such as the study of aerosol pollution levels in the atmosphere, the data may also be useful in meteorology and seismology. Ionization data might provide another variable with which to predict weather or seismic activity more accurately and further in advance. Thomas Slack and Riley Mayes have served as project managers for the experiment, and have extensive knowledge of the experiment from the ground up. LaSPACE Louisiana Space Consortium.

  3. Nucleation in an Ultra Low Ionization Environment

    NASA Astrophysics Data System (ADS)

    Pedersen, J. O.; Enghoff, M. B.; Paling, S.; Svensmark, H.

    2010-12-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the production of cloud condensation nuclei the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapor, ozone, and SO2. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulfuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing radiation we then gauge the relative importance of ion

  4. Effect of the degree of dissociation of molecules in a monolayer at an air/water interface on the force between the monolayer and a like-charged particle in the subphase.

    PubMed

    McNamee, Cathy E; Kappl, Michael; Butt, Hans-Juergen; Nguyen, Hang; Sato, Shinichiro; Graf, Karlheinz; Healy, Thomas W

    2012-11-26

    We used the monolayer particle interaction apparatus to measure the force between a monolayer of stearic acid or octadecanol at the air/water interface and a colloidal silica sphere. The silica sphere approached the monolayer from the aqueous subphase. The aim was to analyze how the magnitude of the charge of a deformable interface affects the interaction between that interface and a like-charged hard particle. The charge density of the stearic acid monolayer was controlled by adjusting the pH (5.8-9) and the surface pressure. The octadecanol monolayer acted as a reference; the alcohol headgroup did not dissociate between pH 5.8-9.0. Stable monolayers of dissociated stearic acid molecules were formed at the air/water interface by dissolving stearic acid into the subphase to give a saturated concentration at each pH value studied. The approach force curve showed that the electrostatic repulsion increased with an increasing degree of dissociation and therefore the charge of the monolayer. The strength of the repulsion corresponded to that measured between two like-charged hard surfaces, but the apparent range of the repulsion was larger for a deformable interface. Retracting force curves displayed a significant adhesion, whose magnitude and range depended on the surface pressure and subphase pH.

  5. Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Xu, Ning; Huang, Wen-Yi; Han, Huan-Mei; Xiao, Shou-Jun

    2009-03-01

    An improved DIOS (desorption ionization on porous silicon) method for laser desorption/ionization mass spectrometry (LDI MS) by electroless plating of silver nanoparticles (AgNPs) on porous silicon (PSi) was developed. By addition of 4-aminothiophenol (4-ATP) into the AgNO3 plating solution, the plating speed can be slowed down and simultaneously 4-ATP self-assembled monolayers (SAMs) on AgNPs (4-ATP/AgNPs) were formed. Both AgNPs and 4-ATP/AgNPs coated PSi substrates present much higher stability, sensitivity and reproducibility for LDI MS than the un-treated porous silicon ones. Their shelf life in air was tested for several weeks to a month and their mass spectra still displayed the same high quality and sensitivity as the freshly prepared ones. And more 4-ATP SAMs partly play a role of matrix to increase the ionization efficiency. A small organic molecule of tetrapyridinporphyrin (TPyP), oligomers of polyethylene glycol (PEG 400 and 2300), and a peptide of oxytocin were used as examples to demonstrate the feasibility of the silver-plated PSi as a matrix-free-like method for LDI MS. This approach can obtain limits of detection to femtomoles for TPyP, subpicomoles for oxytocin, and picomoles for PEG 400 and 2300, comparable to the traditional matrix method and much better than the DIOS method. It simplifies the sample preparation as a matrix-free-like method without addition of matrix molecules and homogenizes the sample spread over the spot for better and more even mass signals.

  6. Guided ionization waves: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Ostrikov, K.

    2014-07-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves-streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures-sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures-plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path-the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology.

  7. Ambient ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lebedev, A. T.

    2015-07-01

    Ambient ionization mass spectrometry emerged as a new scientific discipline only about ten years ago. A considerable body of information has been reported since that time. Keeping the sensitivity, performance and informativity of classical mass spectrometry methods, the new approach made it possible to eliminate laborious sample preparation procedures and triggered the development of miniaturized instruments to work directly in the field. The review concerns the theoretical foundations and design of ambient ionization methods. Their advantages and drawbacks, as well as prospects for application in chemistry, biology, medicine, environmetal analysis, etc., are discussed. The bibliography includes 194 references.

  8. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-02-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn + ( n = 1000-10,000) to form a mixed cluster. The `tailored beam' has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl- , allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. H-D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1-8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield.

  9. Dynamic Reactive Ionization with Cluster Secondary Ion Mass Spectrometry

    PubMed Central

    Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    Gas cluster ion beams (GCIB) have been tuned to enhance secondary ion yields by doping small gas molecules such as CH4, CO2, and O2 into an Ar cluster projectile, Arn+ (n = 1000–10,000) to form a mixed cluster. The ‘tailored beam’ has the potential to expand the application of secondary ion mass spectrometry for two- and three-dimensional molecular specific imaging. Here, we examine the possibility of further enhancing the ionization by doping HCl into the Ar cluster. Water deposited on the target surface facilitates the dissociation of HCl. This concerted effect, occurring only at the impact site of the cluster, arises since the HCl is chemically induced to ionize to H+ and Cl−, allowing improved protonation of neutral molecular species. This hypothesis is confirmed by depth profiling through a trehalose thin film exposed to D2O vapor, resulting in ~20-fold increase in protonated molecules. The results show that it is possible to dynamically maintain optimum ionization conditions during depth profiling by proper adjustment of the water vapor pressure. Protonation and H–D exchange in the trehalose molecule M was monitored upon deposition of D2O on the target surface, leading to the observation of [Mn* + H]+ or [Mn* + D]+ ions, where n = 1–8 hydrogen atoms in the trehalose molecule M have been replaced by deuterium. In general, we discuss the role of surface chemistry and dynamic reactive ionization of organic molecules in increasing the secondary ion yield. PMID:26463238

  10. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  11. Studies of atmospheric molecules by multiphoton spectroscopy

    SciTech Connect

    Johnson, P.M.

    1991-10-01

    Carbon dioxide presents a great challenge to spectroscopy because of its propensity toward dissociation in all of its excited states. Multiphoton ionization spectroscopy is usually not applicable to the study of dissociating molecules because the dissociation competes effectively with ionization, resulting in no signal. We reasoned, however, that with high enough laser fluence, ionization could compete with dissociation in the longer lived states, exposing them for study from the continuous spectral background resulting from rapidly dissociating states. We describe the various spectroscopic and photophysical effects found through the multiphoton ionization and multiphoton photoelectron spectra. A recently developed variant of threshold ionization spectroscopy, usually called ZEKE, has shown a great deal of usefulness in providing the same information as traditional photoelectron spectroscopy but with higher resolution and much better signal-to-noise when using standard laboratory lasers. Threshold ionization techniques locate the states of an ion by scanning a light source across the ionization continuum of a neutral and somehow detecting when electrons are produced with no kinetic energy. We chose to develop our capabilities in threshold ionization spectroscopy using aromatic molecules because of their importance and because their electronic structure allows a pump-probe type of excitation scheme which avoids the use of vacuum ultraviolet laser beams. Among aromatics, the azines are noted for their small S{sub 1}-T{sub 1} energy gap which give them unique and interesting photophysical properties. We have continued our work on the multiphoton spectrum of metastable nitrogen produced by an electric discharge in supersonic beam. We have been able to assign more of the lines and simulated their rotational structure but many peaks remain unassigned.

  12. Alkali ionization detector

    DOEpatents

    Hrizo, John; Bauerle, James E.; Witkowski, Robert E.

    1982-01-01

    A calibration filament containing a sodium-bearing compound is included in combination with the sensing filament and ion collector plate of a sodium ionization detector to permit periodic generation of sodium atoms for the in-situ calibration of the detector.

  13. Ionizing radiation from tobacco

    SciTech Connect

    Westin, J.B.

    1987-04-24

    Accidents at nuclear power facilities seem inevitably to bring in their wake a great deal of concern on the part of both the lay and medical communities. Relatively little attention, however, is given to what may be the largest single worldwide source of effectively carcinogenic ionizing radiation: tobacco. The risk of cancer deaths from the Chernobyl disaster are tobacco smoke is discussed.

  14. Microchip sonic spray ionization.

    PubMed

    Pól, Jaroslav; Kauppila, Tiina J; Haapala, Markus; Saarela, Ville; Franssila, Sami; Ketola, Raimo A; Kotiaho, Tapio; Kostiainen, Risto

    2007-05-01

    The first microchip version of sonic spray ionization (SSI) as an atmospheric pressure ionization source for mass spectrometry (MS) is presented. The microchip used for SSI has recently been developed in our laboratory, and it has been used before as an atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) source. Now the ionization is achieved simply by applying high (sonic) speed nebulizer gas, without heat, corona discharge, or high voltage. The microchip SSI was applied to the analysis of tetra-N-butylammonium, verapamil, testosterone, angiotensin I, and ibuprofen. The limits of detection were in the range of 15 nM to 4 microM. The technique was found to be highly dependent on the position of the chip toward the mass spectrometer inlet, and on the gas and the sample solution flow rates. The microchip SSI provided dynamic linearity following a pattern similar to that used with electrospray, good quantitative repeatability (RSD=16%), and long-term signal stability.

  15. Effects of higher-order Kerr nonlinearity and plasma diffraction on multiple filamentation of ultrashort laser pulses in air

    SciTech Connect

    Huang, T. W.; Zhou, C. T.; Zhang, H.; He, X. T.

    2013-07-15

    The effect of higher-order Kerr nonlinearity on channel formation by, and filamentation of, ultrashort laser pulses propagating in air is considered. Filament patterns originating from multiphoton ionization of the air molecules with and without the higher-order Kerr and molecular-rotation effects are investigated. It is found that diverging multiple filaments are formed if only the plasma-induced defocusing effect is included. In the presence of the higher-order Kerr effects, the light channel can exist for a long distance. The effect of noise on the filament patterns is also discussed.

  16. Communication: Electron ionization of DNA bases

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Krishnakumar, E.

    2016-04-01

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  17. Tunnel ionization, population trapping, filamentation and applications

    NASA Astrophysics Data System (ADS)

    Leang Chin, See; Xu, Huailiang

    2016-11-01

    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  18. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  19. Reactions associated with ionization in water: a direct ab initio dynamics study of ionization in (H2O)17

    SciTech Connect

    Furuhama, Ayako; Dupuis, Michel; Hirao, Kimihiko

    2006-05-07

    A quasi-classical ab initio dynamics calculation of the (H2O)17 cluster, which is the first water cluster that includes a four-fold coordinated water molecule, has been carried out to obtain a detailed picture of the elementary processes and energy redistribution induced by ionization in a model of aqueous water. Well within 100 fs after ionization, a proton is seen to have transferred from the “ionized molecule” to a neighboring molecule, forming a hydronium ion and a hydroxyl radical. Two neighboring water molecules to the ionized water molecule play an important role in the reaction, in what we term a “reactive trimer”. The reaction time is gated by the encounter of the “ionized” water molecule with these two neighboring molecules and this occurs at ~ 35 fs after ionization. We find that the distance of approach between the “ionized” molecule and the neighboring molecule reflects best the time characteristics of the transfer of a proton, and thus of the formation of a hydronium ion and an OH radical. These findings are consistent with those for smaller cyclic clusters, albeit the dynamics of the transferring proton is much damped in our simulation compared to the small cyclic cluster cases. We use a partitioning scheme for the kinetic energy of the << OLE Object: Microsoft Equation 3.0 >> system that distinguishes the “reactive trimer” and the surrounding medium. The analysis of the simulation indicates that the kinetic energy of the surrounding medium increases markedly right after the event of ionization. The increase in kinetic energy is consistent with a reorganization of the surrounding medium, in this case an orientation relaxation, from a configuration as a hydrogen bond donor to the “ionized” tetra-coordinated water molecule, into a configuration where the surrounding water molecule have turned their dipoles for a more favorable interaction with the “ionized” water cation. Battelle operates the Pacific Northwest National

  20. A Three Dimensional Beam Profile Monitor Based on Residual Gas Ionization

    SciTech Connect

    Lewis, T.A.; Shapira, D.

    1998-11-04

    A three-dimensional beam profile monitor based on tracking the ionization of the residual gas molecules in the evacuated beam pipe is described. Tracking in position and time of the ions and electrons produced in the ionization enables simultaneous position sampling in three dimensions. Special features which make it possible to sample very low beam currents were employed.

  1. Ionization dynamics of small water clusters: Proton transfer rate

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Takada, Tomoya

    2016-08-01

    The surfaces of icy planets and comets are composed of frozen water (H2O), carbon dioxide (CO2), and methane (CH4). These surfaces are irradiated by solar wind and cosmic rays from the interstellar space and they cause ionization of surface molecules. In this report, the effects of ionization of cold water clusters have been investigated using a direct ab initio molecular dynamics (AIMD) method to elucidate the rate of proton transfer (PT) in cations of small water clusters (H2O)n (n = 2-7). After ionization of the water clusters, PT occurred in all the cluster cations, and dissociation of the OH radical occurred for n = 4-7. The time of PT decreased with increasing the cluster size at n = 2-5 and reached a limiting value at n = 6 and 7. The mechanism of the PT process in ionized water clusters was discussed based on the theoretical results.

  2. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    SciTech Connect

    Gupta, Dhanoj; Antony, Bobby

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  3. Multiple ionization in the earlier stages of water radiolysis.

    PubMed

    Olivera, G H; Caraby, C; Jardin, P; Cassimi, A; Adoui, L; Gervais, B

    1998-08-01

    We have studied the fragmentation of water vapour molecules induced by collision with a Xe44+ beam at 6.7 MeV/u. From the measurement of the fragment time of flight, we show that the amount of fragmentation due to multiple ionization is very large. In the case of single ionization, we are able to reproduce accurately the experimental cross sections by calculating for each molecular level the single-ionization cross section in the framework of the CDW-EIS theory and with a diagram of dissociation modified with respect to the diagram obtained in the case of dipolar ionization. By using qualitative arguments based on the ability of the medium to neutralize a charged species, we tentatively extend our result to liquid water. From our analysis, we show that ionizations involving three or more ejected electrons could enhance the oxygen production. For the physicochemical phase we estimate that the rate of oxygen production by multiple ionization represents approximately 18% of the OH rate produced by single ionization.

  4. New ionization processes and applications for use in mass spectrometry.

    PubMed

    Trimpin, Sarah; Wang, Beixi; Lietz, Christopher B; Marshall, Darrell D; Richards, Alicia L; Inutan, Ellen D

    2013-01-01

    Mass spectrometry (MS) continues to improve at a rapid pace as most prominently witnessed for mass analyzers and fragmentation technology. Ionization methods have also seen resurgence with ambient ionization approaches gaining a foothold because they often provide a convenient and direct means of sample analysis. Nevertheless, a vast majority of biological analyses using MS apply electrospray ionization or matrix-assisted laser desorption/ionization, methods introduced in the 1980s, or variants thereof. To further advance applications by MS such as protein characterization, and, for example, addressing their location within specific cell types, the progress in mass analyzer and fragmentation technology needs to be matched with similar advances in ionization technology. It is imperative to seek ionization methods that more efficiently convert molecules, to gas-phase ions in a way that allows high transfer efficiency to the mass analyzer and subsequently the detector to achieve a more complete picture of sample composition. This review provides a snapshot of fundamental aspects of new ionization methods and potential biological and medical applications.

  5. Air-density-dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events

    NASA Astrophysics Data System (ADS)

    Riousset, Jeremy A.; Pasko, Victor P.; Bourdon, Anne

    2010-12-01

    Blue and gigantic jets are transient luminous events in the middle atmosphere that form when conventional lightning leaders escape upward from the thundercloud. The conditions in the Earth's atmosphere (i.e., air density, reduced electric field, etc.) leading to conversion of hot leader channels driven by thermal ionization near cloud tops to nonthermal streamer forms observed at higher altitudes are not understood at present. This paper presents a formulation of a streamer-to-spark transition model that allows studies of gas dynamics and chemical kinetics involved in heating of air in streamer channels for a given air density N under assumption of constant applied electric field E. The model accounts for the dynamic expansion of the heated air in the streamer channel and resultant effects of E/N variations on plasma kinetics, the vibrational excitation of nitrogen molecules N2(v), effects of gains in electron energy in collisions with N2(v), and associative ionization processes involving N2(A3Σu+) and N2(a'1Σu-) species. The results are in excellent agreement with available experimental data at ground and near-ground air pressures and demonstrate that for the air densities corresponding to 0-70 km altitudes the kinetic effects lead to a significant acceleration of the heating, with effective heating times scaling closer to 1/N than to 1/N2 predicted on the basis of similarity laws for Joule heating. This acceleration is attributed to a strong reduction in electron losses due to three-body attachment and electron-ion recombination processes with reduction of air pressure.

  6. Gridded electron reversal ionizer

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor)

    1993-01-01

    A gridded electron reversal ionizer forms a three dimensional cloud of zero or near-zero energy electrons in a cavity within a filament structure surrounding a central electrode having holes through which the sample gas, at reduced pressure, enters an elongated reversal volume. The resultant negative ion stream is applied to a mass analyzer. The reduced electron and ion space-charge limitations of this configuration enhances detection sensitivity for material to be detected by electron attachment, such as narcotic and explosive vapors. Positive ions may be generated by generating electrons having a higher energy, sufficient to ionize the target gas and pulsing the grid negative to stop the electron flow and pulsing the extraction aperture positive to draw out the positive ions.

  7. Multiple Scattering Effects in Ionization Processes

    NASA Astrophysics Data System (ADS)

    Barrachina, R. O.

    2011-10-01

    The momentum distributions of electrons emitted in the ionization of atoms and molecules by the impact of photons or massive particles usually present interference patterns similar to those of the demonstrations with light proposed by Thomas Young more than two centuries ago. Furthermore, these cross sections also display richer structures due to the same multiple-scattering effects that are at the origin of different techniques to probe atomic aggregates and solid samples. In this talk, I will review these effects and discuss some of their most important characteristics, showing that they lead to distortions that are not fully replicated by non-scattering or even single-scattering approximations.

  8. Hysteresis of ionization waves

    SciTech Connect

    Dinklage, A.; Bruhn, B.; Testrich, H.; Wilke, C.

    2008-06-15

    A quasi-logistic, nonlinear model for ionization wave modes is introduced. Modes are due to finite size of the discharge and current feedback. The model consists of competing coupled modes and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions under current variation is reproduced. Sidebands are predicted by the model and found in experimental data. The ad hoc model is equivalent to a general--so-called universal--approach from bifurcation theory.

  9. Stereochemical configuration and selective excitation of the chiral molecule halothane

    NASA Astrophysics Data System (ADS)

    Pitzer, Martin; Kastirke, Gregor; Burzynski, Phillip; Weller, Miriam; Metz, Daniel; Neff, Jonathan; Waitz, Markus; Trinter, Florian; Schmidt, Lothar Ph H.; Williams, Joshua B.; Jahnke, Till; Schmidt-Böcking, Horst; Berger, Robert; Dörner, Reinhard; Schöffler, Markus

    2016-12-01

    X-ray single-photon ionization and fragmentation of the chiral molecule halothane from a racemic mixture have been investigated using the cold target recoil ion momentum spectroscopy technique. Two important facets related to the core ionization of this species are examined: Firstly, the distinction of enantiomers (mirror isomers) and the determination of absolute configuration on a single-molecule level by four-body Coulomb explosion; secondly, the interplay of site-selective excitation and fragmentation patterns. These results are easily transferable to other molecular species and show the wealth of features that can be investigated by coincidence spectroscopy of chiral molecules.

  10. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  11. Low-Pressure, Field-Ionizing Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank; Smith, Steven

    2009-01-01

    A small mass spectrometer utilizing a miniature field ionization source is now undergoing development. It is designed for use in a variety of applications in which there are requirements for a lightweight, low-power-consumption instrument that can analyze the masses of a wide variety of molecules and ions. The device can operate without need for a high-vacuum, carrier-gas feed radioactive ionizing source, or thermal ionizer. This mass spectrometer can operate either in the natural vacuum of outer space or on Earth at any ambient pressure below 50 torr (below about 6.7 kPa) - a partial vacuum that can easily be reached by use of a small sampling pump. This mass spectrometer also has a large dynamic range - from singly charged small gas ions to deoxyribonucleic acid (DNA) fragments larger than 104 atomic mass units - with sensitivity adequate for detecting some molecules and ions at relative abundances of less than one part per billion. This instrument (see figure) includes a field ionizer integrated with a rotating-field mass spectrometer (RFMS). The field ionizer effects ionization of a type characterized as "soft" in the art because it does not fragment molecules or initiate avalanche arcing. What makes the "soft" ionization mode possible is that the distance between the ionizing electrodes is less than mean free path for ions at the maximum anticipated operating pressure, so that the ionizer always operates on the non-breakdown side of the applicable Paschen curve (a standard plot of breakdown potential on the ordinate and pressure electrode separation on the abscissa). The field ionizer in this instrument is fabricated by micromachining a submicron-thick membrane out of an electrically nonconductive substrate, coating the membrane on both sides to form electrodes, then micromachining small holes through the electrodes and membrane. Because of the submicron electrode separation, even a potential of only 1 V applied between the electrodes gives rise to an electric

  12. Air Proportional Counter

    DOEpatents

    Simpson, Jr, J A

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  13. Mind Molecules

    PubMed Central

    Snyder, Solomon H.

    2011-01-01

    Scientific styles vary tremendously. For me, research is largely about the unfettered pursuit of novel ideas and experiments that can test multiple ideas in a day, not a year, an approach that I learned from my mentor Julius “Julie” Axelrod. This focus on creative conceptualizations has been my métier since working in the summers during medical school at the National Institutes of Health, during my two years in the Axelrod laboratory, and throughout my forty-five years at Johns Hopkins University School of Medicine. Equally important has been the “high” that emerges from brainstorming with my students. Nothing can compare with the eureka moments when, together, we sense new insights and, better yet, when high-risk, high-payoff experiments succeed. Although I have studied many different questions over the years, a common theme emerges: simple biochemical approaches to understanding molecular messengers, usually small molecules. Equally important has been identifying, purifying, and cloning the messengers' relevant biosynthetic, degradative, or target proteins, at all times seeking potential therapeutic relevance in the form of drugs. In the interests of brevity, this Reflections article is highly selective, and, with a few exceptions, literature citations are only of findings of our laboratory that illustrate notable themes. PMID:21543333

  14. High pressure (>1 atm) electrospray ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Mandal, Mridul Kanti; Hiraoka, Kenzo

    2011-03-01

    High pressure electrospray ionization mass spectrometry has been performed by pressurizing a custom made ion source chamber with compressed air to a pressure higher than the atmospheric pressure. The ion source was coupled to a commercial time-of-flight mass spectrometer using a nozzle-skimmer arrangement. The onset voltage for the electrospray of aqueous solution was found to be independent on the operating pressure. The onset voltage for the corona discharge, however, increased with the rise of pressure following the Paschen's law. Thus, besides having more working gas for the desolvation process, gaseous breakdown could also be avoided by pressurizing the ESI ion source with air to an appropriate level. Stable electrospray ionization has been achieved for the sample solution with high surface tension such as pure water in both positive and negative ion modes. Fragmentation of labile compounds during the ionization process could also be reduced by optimizing the operating pressure of the ion source.

  15. An experimental quantification of the NOX production efficiency of energetic alpha particles in air

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Cooray, Vernon; Possnert, Göran; Nyberg, Johan

    2006-07-01

    An experimental study on the production of NOX by alpha particles impact in air at atmospheric pressure is presented. A mixed radioactive source of 208Po and 209Po with an integrated activity of 9.6 MBq over a solid angle of 2π and an average alpha particle energy of 4.5 MeV was used for ionization of atmospheric air in an airtight chamber and the NOX production was measured by the chemiluminescence method. The NOX production rate is found to be about 1.2 NOX molecules per ion-pair. The NOX production efficiency per Joule of dissipated energy is calculated to be 20×1016 NOX molecules per Joule. This efficiency is comparable to that of hot laboratory sparks discharges.

  16. The multiphoton ionization of uranium hexafluoride

    SciTech Connect

    Armstrong, D.P. . UEO Enrichment Technical Operations Div.)

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF{sub 6} have been conducted using focused light from the Nd:YAG laser fundamental ({lambda}=1064 nm) and its harmonics ({lambda}=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF{sub x}{sup +} fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U{sup n+} ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U{sup 2+}) intensity is much greater than that of the singly-charged uranium ion (U{sup +}). For the case of the tunable dye laser experiments, the U{sup n+} (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U{sup 2+} ion and the absence or very small intensities of UF{sub x}{sup +} fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule.

  17. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry.

  18. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry.

    PubMed

    Venter, Andre; Sojka, Paul E; Cooks, R Graham

    2006-12-15

    A droplet pickup and other mechanisms have been suggested for the ionization of biomolecules like peptides and proteins by desorption electrospray ionization. To verify this hypothesis phase Doppler particle analysis was used to study the sizes and velocities of droplets involved in DESI. It was found that impacting droplets typically have velocities of 120 m/s and average diameters of 2-4 microm. Small differences in sprayer construction influence the operating conditions at which droplets of these dimensions are produced. Under these conditions, the kinetic energy per impacting water molecule is less than 0.6 meV and sputtering through momentum transfer during collisions or ionization by other electronic processes is unlikely. Droplets arrive at the surface with velocities well below the speed of sound in common materials, thereby excluding the possibility of ionization by shockwave formation. Some droplets appear to roll along the surface, increasing contact time and presumably the amount of material that is taken up into droplets during conditions typical of the DESI experiment.

  19. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH).

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2011-02-10

    The ionization energies (IEs) and heats of formation (ΔH°(f0)/ΔH°(f298)) for thiophene (C(4)H(4)S), furan (C(4)H(4)O), pyrrole (C(4)H(4)NH), 1,3-cyclopentadiene (C(4)H(4)CH(2)), and borole (C(4)H(4)BH) have been calculated by the wave function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasi-perturbative triple excitation [CCSD(T)]. Where appropriate, the zero-point vibrational energy correction (ZPVE), the core-valence electronic correction (CV), and the scalar relativistic effect (SR) are included in these calculations. The respective CCSD(T)/CBS predictions for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), being 8.888, 8.897, 8.222, and 8.582 eV, are in excellent agreement with the experimental values obtained from previous photoelectron and photoion measurements. The ΔH°(f0)/ΔH°(f298) values for the aforementioned molecules and their corresponding cations have also been predicted by the CCSD(T)/CBS method, and the results are compared with the available experimental data. The comparisons between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2) suggest that the CCSD(T)/CBS procedure is capable of predicting reliable IE values for five-membered-ring molecules with an uncertainty of ±13 meV. In view of the excellent agreements between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), the similar CCSD(T)/CBS IE and ΔH°(f0)/ΔH°(f298) predictions for C(4)H(4)BH, whose thermochemical data are not readily available due to its reactive nature, should constitute a reliable data set. The CCSD(T)/CBS IE(C(4)H(4)BH) value is 8.868 eV, and ΔH°(f0)/ΔH°(f298) values for C(4)H(4)BH and C(4)H(4)BH(+) are 269.5/258.6 and 1125.1/1114.6 kJ/mol, respectively. The highest occupied molecular orbitals

  20. Specific cationic emission of cisplatin following ionization by swift protons

    NASA Astrophysics Data System (ADS)

    Moretto-Capelle, Patrick; Champeaux, Jean-Philippe; Deville, Charlotte; Sence, Martine; Cafarelli, Pierre

    2016-05-01

    We have investigated collision-induced ionization and fragmentation by 100 keV protons of the radio sensitizing molecule cisplatin, which is used in cancer treatments. A large emission of HCl+ and NH2+ is observed, but surprisingly, no cationic fragments containing platinum are detected, in contrast to ionization-dissociation induced by electronic collision. Theoretical investigations show that the ionization processes take place on platinum and on chlorine atoms. We propose new ionization potentials for cisplatin. Dissociation limits corresponding to the measured fragmentation mass spectrum have been evaluated and the theoretical results show that the non-observed cationic fragments containing platinum are mostly associated with low dissociation energies. We have also investigated the reaction path for the hydrogen transfer from the NH3 group to the Cl atom, as well as the corresponding dissociation limits from this tautomeric form. Here again the cations containing platinum correspond to lower dissociation limits. Thus, the experimental results suggest that excited states, probably formed via inner-shell ionization of the platinum atom of the molecule, correlated to higher dissociation limits are favored.

  1. Calcium: total or ionized?

    PubMed

    Schenck, Patricia A; Chew, Dennis J

    2008-05-01

    Measurement of serum total calcium (tCa) has been relied on for assessment of calcium status, despite the fact that it is the ionized calcium (iCa) fraction that has biologic activity. Serum tCa does not accurately predict iCa status in many clinical conditions. For accurate assessment of iCa status, iCa should be directly measured. Anaerobic measurement of serum iCa under controlled conditions provides the most reliable assessment of calcium status; aerobic measurement of iCa with species-specific pH correction is highly correlated with anaerobic measurements.

  2. Electron dynamics of molecular double ionization by circularly polarized laser pulses

    SciTech Connect

    Tong, Aihong; Zhou, Yueming; Huang, Cheng; Lu, Peixiang

    2013-08-21

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by circularly polarized laser pulses with different internuclear distances (R). The results show that the DI mechanism changes from sequential double ionization (SDI) to nonsequential double ionization (NSDI) as the internuclear distance increases. In SDI range, the structure of the electron momentum distribution changes seriously as R increases, which indicates the sensitive dependence of the release times of the two electrons on R. For NSDI, because of the circular polarization, the ionization of the second electron is not through the well-known recollision process but through a process where the first electron ionizes over the inner potential barrier of the molecule, moves directly towards the other nucleus, and kicks out the second electron.

  3. Laser desorption lamp ionization source for ion trap mass spectrometry.

    PubMed

    Wu, Qinghao; Zare, Richard N

    2015-01-01

    A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm) is directed to a target inside a chamber evacuated to ~15 Pa causing desorption of molecules from the target's surface. The desorbed molecules are ionized by a vacuum ultraviolet (VUV) lamp (filled with xenon, major wavelength at 148 nm). The resulting ions are stored and detected in a three-dimensional quadrupole ion trap modified from a Finnigan Mat LCQ mass spectrometer operated at a pressure of ≥ 0.004 Pa. The limit of detection for desorbed coronene molecules is 1.5 pmol, which is about two orders of magnitude more sensitive than laser desorption laser ionization mass spectrometry using a fluorine excimer laser (157 nm) as the ionization source. The mass spectrum of four standard aromatic compounds (pyrene, coronene, rubrene and 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (OPC)) shows that parent ions dominate. By increasing the infrared laser power, this instrument is capable of detecting inorganic compounds.

  4. Quantification of static magnetic field effects on radiotherapy ionization chambers

    NASA Astrophysics Data System (ADS)

    Agnew, J.; O’Grady, F.; Young, R.; Duane, S.; Budgell, G. J.

    2017-03-01

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  5. Quantification of static magnetic field effects on radiotherapy ionization chambers.

    PubMed

    Agnew, J; O'Grady, F; Young, R; Duane, S; Budgell, G J

    2017-03-07

    Integrated magnetic resonance (MR) imaging and radiotherapy (RT) delivery machines are currently being developed, with some already in clinical use. It is anticipated that the strong magnetic field used in some MR-RT designs will have a significant impact on routine measurements of dose in the MR-linac performed using ionization chambers, which provide traceability back to a primary standard definition of dose. In particular, the presence of small air gaps around ionization chambers may introduce unacceptably high uncertainty into these measurements. In this study, we investigate and quantify the variation attributable to air gaps for several routinely-used cylindrical ionization chambers in a magnetic field, as well as the effect of the magnetic field alone on the response of the chambers. The measurements were performed in a Co-60 beam, while the ionization chambers were positioned in custom-made Perspex phantoms between the poles of an electromagnet, which was capable of generating magnetic fields of up to 2 T field strength, although measurements were focused around 1.5 T. When an asymmetric air gap was rotated at cardinal angles around the ionization chambers investigated here, variation of up to 8.5  ±  0.2 percentage points (PTW 31006 chamber) was observed in an applied magnetic field of 1.5 T. The minimum peak-to-peak variation was 1.1  ±  0.1% (Exradin A1SL). When the same experiment was performed with a well-defined air gap of known position using the PTW 30013 chamber, a variation of 3.8  ±  0.2% was observed. When water was added to the phantom cavity to eliminate all air gaps, the variation for the PTW 30013 was reduced to 0.2  ±  0.01%.

  6. Nucleation in an ultra low ionization environment

    NASA Astrophysics Data System (ADS)

    Olaf Pepke Pedersen, Jens; Bødker Enghoff, Martin; Paling, Sean; Svensmark, Henrik

    2010-05-01

    Atmospheric ions can enhance the nucleation of aerosols, as has been established by experiments, observation, and theory. In the clean marine atmosphere ionization is mainly caused by cosmic rays which in turn are controlled by the activity of the Sun, thus providing a potential link between solar activity and climate. In order to understand the effect ions may have on the formation of cloud condensation nuclei and thus the Earth's radiation budget the overall contribution of ion induced nucleation to the global production of secondary aerosols must be determined. One issue with determining this contribution is that several mechanisms for nucleation exist and it can be difficult to determine the relative importance of the various mechanisms in a given nucleation event when both ion induced and electrically neutral nucleation mechanisms are at work at the same time. We have carried out nucleation experiments in the Boulby Underground Laboratory, located 1100 meters below ground, thus reducing the flux of ionizing cosmic radiation by six orders of magnitude. Similarly we have reduced the gamma background by shielding the experiment in lead and copper. Finally we have used air stored for several weeks and passed through an active charcoal filter in order to reduce the Radon concentration. In this way we have been able to make nucleation experiments with very low ionizing background, meaning that we can rule out ion induced nucleation as a contributing mechanism. Our experimental setup is a 50 L electropolished stainless steel reactor at near atmospheric conditions. The chamber contains clean air with the addition of water vapour, ozone, and sulphur dioxide. Using UV lights at 254 nm ozone is photolyzed, leading to the production of sulphuric acid and thus aerosols. An 18 MBq Caesium-137 gamma ray source with various amounts of lead in front allows us to alter the ionization in our chamber. By making series of nucleation bursts with varying amounts of ionizing

  7. Mass-Analyzed Threshold Ionization Spectroscopy of 2-Phenylethanol: Probing of Conformational Changes Caused by Ionization

    NASA Astrophysics Data System (ADS)

    Georgiev, S.; Karaminkov, R.; Chervenkov, S.; Delchev, V.; Neusser, H. J.

    2009-10-01

    The vibrational structure of the ionic ground state of different conformers of the biologically relevant molecule 2-phenylethanol has been investigated by combination of two-photon two-color mass-analyzed threshold ionization spectroscopy (MATI) and quantum chemical calculations at M05, MP2, and coupled cluster (CC) levels of theory with extended basis sets. MATI spectra recorded via gauche vibronic bands are with poor structure and increasing background, whereas the ones measured via vibronic bands of the anti conformers feature well-resolved vibronic structure in the cation. Ab initio computations predict three stable conformers for the 2-phenylethanol cation out of five initial neutral structures. None of the theoretical structures in the cation features a nonclassical OH···π hydrogen bond in conjunction with the analysis of the MATI spectra. This provides clear evidence that the OH···π hydrogen bond stabilizing the lowest-energy gauche conformer in the neutral breaks upon ionization.

  8. Dynamics and structural changes of small water clusters on ionization.

    PubMed

    Lee, Han Myoung; Kim, Kwang S

    2013-07-05

    Despite utmost importance in understanding water ionization process, reliable theoretical results of structural changes and molecular dynamics (MD) of water clusters on ionization have hardly been reported yet. Here, we investigate the water cations [(H2O)(n = 2-6)(+)] with density functional theory (DFT), Möller-Plesset second-order perturbation theory (MP2), and coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)]. The complete basis set limits of interaction energies at the CCSD(T) level are reported, and the geometrical structures, electronic properties, and infrared spectra are investigated. The characteristics of structures and spectra of the water cluster cations reflect the formation of the hydronium cation moiety (H3O(+)) and the hydroxyl radical. Although most density functionals fail to predict reasonable energetics of the water cations, some functionals are found to be reliable, in reasonable agreement with high-level ab initio results. To understand the ionization process of water clusters, DFT- and MP2-based Born-Oppenheimer MD (BOMD) simulations are performed on ionization. On ionization, the water clusters tend to have an Eigen-like form with the hydronium cation instead of a Zundel-like form, based on reliable BOMD simulations. For the vertically ionized water hexamer, the relatively stable (H2O)5(+) (5sL4A) cluster tends to form with a detached water molecule (H2O).

  9. Optical Measurements of Air Plasma

    DTIC Science & Technology

    2008-05-05

    generated in air by means of an electron beam is highly efficient. Fast electrons propagating through air result in production of electron- ion pairs...through the mechanism of impact ionization, which requires 33.7 eV per electron- ion pair. The air pressure, concentration of variable species, such as...and polyatomic species. Because our time scales are in the 1 ms to 10 ms range, there is a strong possibility of obtaining real-time absorption

  10. Mass analyzed threshold ionization spectroscopy of indazole cation

    NASA Astrophysics Data System (ADS)

    Su, Huawei; Pradhan, Manik; Tzeng, Wen Bih

    2005-08-01

    We have recorded the two-color resonant two-photon mass analyzed threshold ionization (MATI) spectra of indazole via four intermediate states. The adiabatic ionization energy of this molecule is determined to be 67 534 ± 5 cm -1. The observed MATI bands include in-plane ring bending as well as out-of-plane ring twisting and bending vibrations of the indazole cation. Comparing the present data with those of indole and 7-azaindole leads to a better understanding about the influence of the nitrogen atom in the aza-aromatic bicyclic system.

  11. Radial behavior of the average local ionization energies of atoms

    SciTech Connect

    Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S. )

    1991-11-01

    The radial behavior of the average local ionization energy {ital {bar I}}({bold r}) has been investigated for the atoms He--Kr, using {ital ab} {ital initio} Hartree--Fock atomic wave functions. {ital {bar I}}({bold r}) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that {ital {bar I}}({bold r}) may be a meaningful measure of local polarizabilities in atoms and molecules.

  12. Molecular Strong Field Ionization viewed with Photoelectron Velocity Map Imaging

    NASA Astrophysics Data System (ADS)

    Sandor, Peter

    In this thesis, work is presented on molecular strong-field ionization, during which an electron is removed from polyatomic molecules in the presence of strong laser fields. This is a process which is the basis of a number of experimental techniques to uncover electronic dynamics in atoms and molecules on the femtosecond and attosecond timescale. 'Strong' refers to an electric field strength which leads to a response from the system which can not be modeled perturbatively. These fields can be easily produced in the focus of femtosecond laser radiation, as is done in this work. With the use of velocity map imaging of the photoelectron in coincidence with the fragment ion, multiple ionization--dissociation pathways can be distinguished. It is shown that as opposed to early attempts to model the process, multiple low-lying states are populated in the ion, and also the signatures of multielectron dynamics are revealed. By changing the laser pulse duration from 30 fs to below 10 fs, control is demonstrated over which quantum states of the ion are populated. It is also shown that for pulses shorter than 10 fs (which is a timescale below the shortest vibrational period in molecules), ionization pathways that involve motion of the nuclei are almost completely shut off. Finally, the origin of electrons with <1 meV kinetic energy is discussed. A two-step model is proposed for creating the electrons: the first step is population transfer to high-lying excited states of the neutral molecule by the laser field; the second step is ionization. Different ionization mechanisms are examined and their viability is checked against available data.

  13. Atomiclike ionization and fragmentation of a series of CH3-X (X: H, F, Cl, Br, I, and CN) by an intense femtosecond laser.

    PubMed

    Tanaka, Michinori; Murakami, Masanao; Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2007-09-14

    Methane derivatives of CH(3)-X (X: H, F, Cl, Br, I, and CN) were ionized and fragmented by an intense femtosecond laser with a 40 fs pulse at 0.8 microm in intensities of 10(13)-10(15) W cm(-2). The curves of the ionization yields of CH(3)-X versus laser intensities have been found to be fitted with an atomic ionization theory (the theory of Perelomov, Popov, and Terent'ev) that has been established to reproduce experimental results well for rare gas atoms. The saturation intensities have been reproduced within a factor of 1.6 of the calculated ones. For molecules with low ionization potentials such as amines, another atomic ionization theory (the theory of Ammosov, Delone, and Krainov) reproduced the saturation intensities. The atomiclike ionization behavior of molecules indicates that the fragmentation occurs after the ionization. The fragmentation mechanisms after the ionization of some molecular ions are discussed.

  14. Atomiclike ionization and fragmentation of a series of CH3-X (X: H, F, Cl, Br, I, and CN) by an intense femtosecond laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Michinori; Murakami, Masanao; Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2007-09-01

    Methane derivatives of CH3-X (X: H, F, Cl, Br, I, and CN) were ionized and fragmented by an intense femtosecond laser with a 40fs pulse at 0.8μm in intensities of 1013-1015Wcm-2. The curves of the ionization yields of CH3-X versus laser intensities have been found to be fitted with an atomic ionization theory (the theory of Perelomov, Popov, and Terent'ev) that has been established to reproduce experimental results well for rare gas atoms. The saturation intensities have been reproduced within a factor of 1.6 of the calculated ones. For molecules with low ionization potentials such as amines, another atomic ionization theory (the theory of Ammosov, Delone, and Krainov) reproduced the saturation intensities. The atomiclike ionization behavior of molecules indicates that the fragmentation occurs after the ionization. The fragmentation mechanisms after the ionization of some molecular ions are discussed.

  15. Molecules in the Spotlight

    SciTech Connect

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  16. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  17. Directional deprotonation ionization of acetylene in asymmetric two-color laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-05-01

    We experimentally investigate the deprotonation dissociative double ionization of an acetylene molecule by an asymmetric two-color laser pulse. We find that the ejection direction of the proton, and hence the directional C-H bond breaking of a polyatomic hydrocarbon molecule, can be controlled by finely tuning the phase of a two-color laser pulse.

  18. Characterization of Nonpolar Lipids and Selected Steroids by Using Laser-Induced Acoustic Desorption/Chemical Ionization, Atmospheric Pressure Chemical Ionization, and Electrospray Ionization Mass Spectrometry†

    PubMed Central

    Jin, Zhicheng; Daiya, Shivani; Kenttämaa, Hilkka I.

    2011-01-01

    Laser-induced acoustic desorption (LIAD) combined with ClMn(H2O)+ chemical ionization (CI) was tested for the analysis of nonpolar lipids and selected steroids in a Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR). The nonpolar lipids studied, cholesterol, 5α-cholestane, cholesta-3,5-diene, squalene, and β-carotene, were found to solely form the desired water replacement product (adduct-H2O) with the ClMn(H2O)+ ions. The steroids, androsterone, dehydroepiandrosterone (DHEA), estrone, estradiol, and estriol, also form abundant adduct-H2O ions, but less abundant adduct-2H2O ions were also observed. Neither (+)APCI nor (+)ESI can ionize the saturated hydrocarbon lipid, cholestane. APCI successfully ionizes the unsaturated hydrocarbon lipids to form exclusively the intact protonated analytes. However, it causes extensive fragmentation for cholesterol and the steroids. The worst case is cholesterol that does not produce any stable protonated molecules. On the other hand, ESI cannot ionize any of the hydrocarbon analytes, saturated or unsaturated. However, ESI can be used to protonate the oxygen-containing analytes with substantially less fragmentation than for APCI in all cases except for cholesterol and estrone. In conclusion, LIAD/ClMn(H2O)+ chemical ionization is superior over APCI and ESI for the mass spectrometric characterization of underivatized nonpolar lipids and steroids. PMID:21528012

  19. Probing Electron Dynamics in Simple Molecules with Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Rivière, Paula; Palacios, Alicia; Pérez-Torres, Jhon Fredy; Martín, Fernando

    Attosecond pulses are an ideal tool to explore electron and nuclear dynamics in atoms and molecules. Either as single attosecond pulses (SAP), in attosecond pulse trains (APT), or in combination with infrared (IR) pulses, these pulses, with frequencies in the VUV-XUV regime, have been widely used to probe ionization, electron tunneling, or autoionization in atoms. More recently, similar processes have been studied in molecules. A correct theoretical description of such processes in molecules often requires a fully dimensional treatment due to the important role of nuclear motion and electron correlation. This restricts ab initio calculations to the simplest molecules. In this chapter, we discuss single ionization of hydrogen molecules (H2 and D2) induced by time-delayed SAP+IR and APT+IR schemes. Ab initio time-dependent theoretical calculations are compared with existing experiments.

  20. Probing the mechanisms of an air amplifier using a LTQ-FT-ICR-MS and fluorescence spectroscopy.

    PubMed

    Dixon, R Brent; Muddiman, David C; Hawkridge, Adam M; Fedorov, A G

    2007-11-01

    We report the first quantitative assessment of electrosprayed droplet/ion focusing enabled by the use of a voltage-assisted air amplifier between an electrospray ionization emitter and a hybrid linear ion trap Fourier transform ion cyclotron resonance mass spectrometer (ESI-LTQ-FT-ICR-MS). A solution of fluorescent dye was electrosprayed with a stainless steel mesh screen placed in front of the MS inlet capillary acting as a gas-permeable imaging plate for fluorescence spectroscopy. Without use of the air amplifier, no detectable FT-ICR signal was observed, as well as no detectable fluorescence on the screen upon imaging using a fluorescence scanner. When the air amplifier was turned ON while electrospraying the fluorescent dye, FT-ICR mass spectra with high signal to noise ratio were obtained with an average ion injection time of 21 ms for an AGC target value of 5 x 10(5). Imaging of the screen using a fluorescence scanner produced a distinct spot of cross-sectional area approximately 33.5 mm(2) in front of the MS inlet capillary. These experimental results provide direct evidence of aerodynamic focusing of electrosprayed droplets/ions enabled by an air amplifier, resulting in improved electrospray droplet/ion capture efficiency and reduced ion injection time. A second set of experiments was carried out to explore whether the air amplifier assists in desolvation. By electrospraying a mix of quaternary amines, ratios of increasingly hydrophobic molecules were obtained. Observation of the solvophobic effect associated with electrospray ionization resulted in a higher abundance of the hydrophobic molecule. This bias was eliminated when the air amplifier was turned ON and a response indicative of the respective component concentrations of the molecules in the bulk solution was observed.

  1. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  2. Ionized cluster beam deposition

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1983-01-01

    Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.

  3. Stagnation-point heat transfer correlation for ionized gases

    NASA Technical Reports Server (NTRS)

    Bade, W. L.

    1975-01-01

    Based on previous laminar boundary-layer solutions for argon, xenon, nitrogen, and air, it is shown that the effect of gas ionization on stagnation-point heat transfer can be correlated with the variation of the frozen Prandtl number across the boundary layer. A formula is obtained for stagnation-point heat transfer in a noble gas and is shown to be valid from the low-temperature range to the region of strong ionization. It is concluded that the considered effect can be well correlated by the 0.7 power of the Prandtl-number ratio across the boundary layer.

  4. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  5. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  6. Single- and multi-photon ionization studies of organosulfur species

    SciTech Connect

    Cheung, Yu -San

    1999-02-12

    Accurate ionization energies (IE`s) for molecular species are used for prediction of chemical reactivity and are of fundamental importance to chemists. The IE of a gaseous molecule can be determined routinely in a photoionization or a photoelectron experiment. IE determinations made in conventional photoionization and photoelectron studies have uncertainties in the range of 3--100 meV (25--250 cm-1). In the past decade, the most exciting development in the field of photoionization and photoelectron spectroscopy has been the availability of high resolution, tunable ultraviolet (UV) and vacuum ultraviolet (VUV) laser sources. The laser pulsed field ionization photoelectron (PFI-PE) scheme is currently the state-of-the-art photoelectron spectroscopic technique and is capable of providing photoelectron energy resolution close to the optical resolution. The author has focused attention on the photoionization processes of some sulfur-containing species. The studies of the photoionization and photodissociation on sulfur-containing compounds [such as CS2, CH3SH, CH3SSCH3, CH3CH2SCH2CH3, HSCH2CH2SH and C4H4S (thiophene) and sulfur-containing radicals, such as HS, CS, CH3S, CH3CH2S and CH3SS], have been the major subjects in the group because sulfur is an important species contributing to air pollution in the atmosphere. The modeling of the combustion and oxidation of sulfur compounds represents important steps for the control of both the production and the elimination of sulfur-containing pollutants. Chapter 1 is a general introduction of the thesis. Chapters 2 and 6 contain five papers published in, or accepted for publication in, academic periodicals. In Chapter 7, the progress of the construction in the laboratory of a new vacuum ultraviolet laser system equipped with a reflectron mass

  7. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: Charge transfer reaction of N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2; N{sup +}= 0-9) + Ar

    SciTech Connect

    Chang, Yih Chung; Xu Yuntao; Lu Zhou; Xu Hong; Ng, C. Y.

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N{sub 2}{sup +}(v{sup +}, N{sup +}) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}, v{sup +}= 0-2, N{sup +}= 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N{sub 2}{sup +} PFI-PI beam can be formed with a laboratory kinetic energy resolution of {Delta}E{sub lab}={+-} 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E{sub cm}'s) down to thermal energies. Absolute total rovibrationally selected cross sections {sigma}(v{sup +}= 0-2, N{sup +}= 0-9) for the N{sub 2}{sup +}(X {sup 2}{Sigma}{sub g}{sup +}; v{sup +}= 0-2, N{sup +}= 0-9) + Ar CT reaction have been measured in the E{sub cm} range of 0.04-10.0 eV, revealing strong vibrational enhancements and E{sub cm}-dependencies of {sigma}(v{sup +}= 0-2, N{sup +}= 0-9). The thermochemical threshold at E{sub cm}= 0.179 eV for the formation of Ar{sup +} from N{sub 2}{sup +}(X; v{sup +}= 0, N{sup +}) + Ar was observed by the measured {sigma}(v{sup +}= 0), confirming the narrow {Delta}E{sub cm} spread achieved in

  8. Associative ionization reactions involving excited atoms in nitrogen plasma

    SciTech Connect

    Popov, N. A.

    2009-05-15

    A model of kinetic processes in gas-discharge plasmas of pure nitrogen and its mixtures with nitrogen oxide and oxygen is presented. A distinctive feature of the model is that it includes associative ionization reactions involving N({sup 2}P) electronically excited atoms. Taking into account these processes allows one to explain both the anomalously slow decay of gas-discharge nitrogen plasma and the increase in the electron density in the region of the so-called pink afterglow in nitrogen. The possibility of substantially accelerating secondary ionization by adding NO molecules to a partially dissociated nitrogen is demonstrated. It is shown that such acceleration is caused by the associative ionization reaction N({sup 2}P) + O({sup 3}P) {yields} e + NO{sup +}. The calculated results agree well with available experimental data.

  9. Mass analyzed threshold ionization spectroscopy of 7-azaindole cation

    NASA Astrophysics Data System (ADS)

    Lee Lin, Jung; Tzeng, Wen Bih

    2003-10-01

    The vibrationally resolved mass analyzed threshold ionization (MATI) spectra of jet-cooled 7-azaindole have been recorded by ionizing via four different intermediate levels. The adiabatic ionization energy of this molecule is determined to be 65 462±5 cm -1, which is greater than that of indole by 2871 cm -1. The vibrational spectra of 7-azaindole in the S 1 and D 0 states have been successfully assigned by comparing the measured frequencies with those of indole as well as the predicted values from the ab initio calculations. Detailed analysis on the MATI spectra shows that the structure of the cation is somewhat different from that of this species in the neutral S 1 state.

  10. Total and ionization cross sections of electron scattering by fluorocarbons

    NASA Astrophysics Data System (ADS)

    Antony, B. K.; Joshipura, K. N.; Mason, N. J.

    2005-02-01

    Electron impact total cross sections (50-2000 eV) and total ionization cross sections (threshold to 2000 eV) are calculated for typical plasma etching molecules CF4, C2F4, C2F6, C3F8 and CF3I and the CFx (x = 1-3) radicals. The total elastic and inelastic cross sections are determined in the spherical complex potential formalism. The sum of the two gives the total cross section and the total inelastic cross section is used to calculate the total ionization cross sections. The present total and ionization cross sections are found to be consistent with other theories and experimental measurements, where they exist. Our total cross section results for CFx (x = 1-3) radicals presented here are first estimates on these species.

  11. Picosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  12. Cluster Formation of Sulfuric Acid with Dimethylamine or Diamines and Detection with Chemical Ionization

    NASA Astrophysics Data System (ADS)

    Jen, C. N.; McMurry, P. H.; Hanson, D. R.

    2015-12-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to chemically ionize clusters for detection. In this study, we compare measured cluster concentrations formed by reacting sulfuric acid vapor with dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine) using nitrate and acetate ions. We show from flow reactor measurements that nitrate is unable to chemically ionize clusters with weak acidities. In addition, we vary the ion-molecule reaction time to probe the chemical ionization processes and lifetimes of ions composed of sulfuric acid and base molecules. We then model the neutral and ion cluster formation pathways, including chemical ionization, ion-induced clustering, and ion decomposition, to better identify which cluster types cannot be chemically ionized by nitrate. Our results show that sulfuric acid dimer with two diamines and sulfuric acid trimer with 2 or more base molecules cannot be chemical ionized by nitrate. We conclude that cluster concentrations measured with acetate CI gives a better representation of both cluster abundancies and their base content than nitrate CI.

  13. Chemical Ionization Mass Spectrometry.

    DTIC Science & Technology

    1980-01-30

    Under low voltage El conditions sample sensitivity may drop by I or 2 orders of magnitude. In the negative ion mode, polyaromatic hydrocar- bons either...preparation involved placing a drop of solution con- taining the sample in a suitable solvent on the surface of the emitter using a 10 ut syringe...tween Ions and Molecules", P. Ausloos, Ed., Plenum Press, N. Y. (1974). 31. Eyring, C. F.; Mackeown, S. S.; and Millikan , R. A., Phys. Rev., (1928

  14. MALDI- or ESI? Pros and cons for protein and small molecules

    SciTech Connect

    Olivares, J. A.

    2004-01-01

    Mass spectrometry has become a very popular technique in the analytical characterization of elements and molecules that range from inorganic, organic, and biological species. This popularity has soared in the past 15 years primarily through the development of ionization sources that can easily ionize large organic and biological molecules, intact and/or with controlled fragmentation. The two primary ionization mechanisms responsible for this capability are Matrix Assisted Laser Desorption Ionization (MALDI) and Electrospray Ionization (ESI). The development of the latter resulted in the 2002 Nobel Prize in Chemistry Engineering for John Fenn. This capability has presented a new paradigm allowing the field of proteomics to break through, with the characterization of major fractions of the proteins in a biological cell. The sensitivity, specificity, and structural characterization of available today using these techniques will be discussed with some examples in the characterization of both large and small molecules and relative merits of each technology.

  15. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.

    PubMed

    Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2012-12-14

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.

  16. X-ray FEL induced multiphton ionization and molecular dissociation

    NASA Astrophysics Data System (ADS)

    Fang, Li

    2014-05-01

    X-ray Free electron lasers (FELs) enable multiphoton absorption at the core levels which is not possible with conventional light sources. Multiphoton ionization and the subsequent core-hole states relaxation lead to dramatic dynamics of the molecules. We present our experimental as well as theoretical results on multiphoton ionization and molecular fragmentation dynamics with the Linac Coherent Light Source (LCLS) at SLAC National Laboratory. We investigated simple diatomic system, N2 molecules, where we used multiphoton ionization as an internal clock for imaging the dynamics in time and the internuclear separation domain. We observed the modification of the ionization dynamic by varying the x-ray beam parameters and the effect of the spatial distribution on the ionization. We also investigated a complex system, C60, where we developed a full model to simulate the multiphoton ionization that results in various molecular ions and atomic carbon ions up to charge 6+. The calculation agrees well with our experimental results in ion kinetic energy distribution and charge state distribution. Moreover, our model provides further insights into the photoionization and dissociation dynamics as a function of time and molecular size. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Thank T. Osipov, B. Murphy, Z. Jurek, S.-K. Son, R. Santra, and N. Berrah, M. Hoener, O. Gessner, F. Tarantelli, S.T. Pratt, O. Kornilov, C. Buth, M. Güehr, E. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, L. DiMauro, M. Glownia, E. Kukk, S.R. Leone, L. Avaldi, P. Bolognesi, J. Eland, J. Farrell, R. Feifel, L. Frasinski, D.T. Ha, K. Hoffmann, B. McFarland, C. Miron, M. Mucke, R. Squibb, K. Ueda for their contributions to this work.

  17. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    NASA Astrophysics Data System (ADS)

    Neustetter, M.; Jabbour Al Maalouf, E.; Limão-Vieira, P.; Denifl, S.

    2016-08-01

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n+ (0 ≤ n ≤ 6) and W2(CO)n+ (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n+ (0 ≤ n ≤ 3) and W2C(CO)n+ (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  18. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Song-Feng, Zhao; Fang, Huang; Guo-Li, Wang; Xiao-Xin, Zhou

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov-Popov-Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  19. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  20. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  1. Symmetry breaking and hole localization in multiple core electron ionization.

    PubMed

    Carravetta, V; Ågren, H

    2013-08-08

    Motivated by recent opportunitites to study hollow molecules with multiple core holes offered by X-ray free electron lasers, we revisit the core-hole localization and symmetry breaking problem, now studying ionization of more than one core electron. It is shown, using a N2 molecule with one, two, three, and four core holes, for example, that in a multiconfigurational determination of the core ionization potentials employing a molecular point group with broken inversion symmetry, one particular configuration is sufficient to account for the symmetry breaking relaxation energy in an independent particle approximation in the case of one or three holes, whereas the choice of point group symmetry is unessential for two and four holes. The relaxation energy follows a quadratic dependence on the number of holes in both representations.

  2. Iron ionization and recombination rates and ionization equilibrium

    NASA Technical Reports Server (NTRS)

    Arnaud, M.; Raymond, J.

    1992-01-01

    In the past few years important progress has been made on the knowledge of ionization and recombination rates of iron, an astrophysically abundant heavy element and a major impurity in laboratory fusion devices. We make a critical review of the existing data on ionization and dielectronic recombination and present new computations of radiative recombination rate coefficients of Fe(+14) through Fe(+25) using the photoionization cross sections of Clark et al. (1986). We provide analytical fits to the recommended data (direct ionization and excitation-autoionization cross sections; radiative and dielectronic recombination rate coefficients). Finally we determine the iron ionic fractions at ionization equilibrium and compare them with previous computations as well as with observational data.

  3. An innovative ultrasound assisted extraction micro-scale cell combined with gas chromatography/mass spectrometry in negative chemical ionization to determine persistent organic pollutants in air particulate matter.

    PubMed

    Beristain-Montiel, E; Villalobos-Pietrini, R; Arias-Loaiza, G E; Gómez-Arroyo, S L; Amador-Muñoz, O

    2016-12-16

    New clean technologies are needed to determine concentration of organic pollutants without generating more pollution. A method to extract Persistent Organic Pollutants (POPs) from airborne particulate matter was developed using a novel technology recently patented called ultrasound assisted extraction micro-scale cell (UAE-MSC). This technology extracts, filters, collects the sample, and evaporates the solvent, on-line. No sample transfer is needed. The cell minimizes sample manipulation, solvent consumption, waste generation, time, and energy; fulfilling most of the analytical green chemistry protocol. The methodology was optimized applying a centred 2(3) factorial experimental design. Optimum conditions were used to validate and determine concentration of 16 organochlorine pesticides (OCls) and 6 polybrominated diphenyl ethers (PBDEs). The best conditions achieved were 2 extractions with 5mL (each) of dichloromethane over 5min (each) at 60°C and 80% ultrasound potency. POPs were determined by gas chromatography/mass spectrometry in negative chemical ionization (GC/MS-NCI). Analytical method validation was carried out on airborne particles spiked with POPs at seven concentration levels between 0.5 and 26.9pgm(-3). This procedure was done by triplicate (N=21). Recovery, ranged between 65.5±2.3% and 107.5±3.0% for OCls and between 79.1±6.5% and 105.2±3.8% for PBDEs. Linearity (r(2)) was ≥0.94 for all compounds. Method detection limits, ranged from 0.5 to 2.7pgm(-3), while limits of quantification (LOQ), ranged from 1.7 to 9.0pgm(-3). A Bias from -18.6% to 9% for PBDEs was observed in the Standard Reference Material (SRM) 2787. SRM 2787 did not contain OCls. OCls recoveries were equivalent by UAE-MSC and Soxhlet methods UAE-MSC optimized extraction conditions reduced 30 times less solvent and decreased the extraction time from several hours to ten minutes, respect to Soxhlet. UAE-MSC was applied to 15 samples of particles less than 2.5μm (PM2.5) from three

  4. Optical ionization detector

    DOEpatents

    Wuest, Craig R.; Lowry, Mark E.

    1994-01-01

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.

  5. Optical ionization detector

    DOEpatents

    Wuest, C.R.; Lowry, M.E.

    1994-03-29

    An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.

  6. Microwave reflectometer ionization sensor

    NASA Technical Reports Server (NTRS)

    Seals, Joseph; Fordham, Jeffrey A.; Pauley, Robert G.; Simonutti, Mario D.

    1993-01-01

    The development of the Microwave Reflectometer Ionization Sensor (MRIS) Instrument for use on the Aeroassist Flight Experiment (AFE) spacecraft is described. The instrument contract was terminated, due to cancellation of the AFE program, subsequent to testing of an engineering development model. The MRIS, a four-frequency reflectometer, was designed for the detection and location of critical electron density levels in spacecraft reentry plasmas. The instrument would sample the relative magnitude and phase of reflected signals at discrete frequency steps across 4 GHz bandwidths centered at four frequencies: 20, 44, 95, and 140 GHz. The sampled data would be stored for later processing to calculate the distance from the spacecraft surface to the critical electron densities versus time. Four stepped PM CW transmitter receivers were located behind the thermal protection system of the spacecraft with horn antennas radiating and receiving through an insulating tile. Techniques were developed to deal with interference, including multiple reflections and resonance effects, resulting from the antenna configuration and operating environment.

  7. Ionizing radiation promotes protozoan reproduction

    SciTech Connect

    Luckey, T.D.

    1986-11-01

    This experiment was performed to determine whether ionizing radiation is essential for maximum growth rate in a ciliated protozoan. When extraneous ionizing radiation was reduced to 0.15 mrad/day, the reproduction rate of Tetrahymena pyriformis was significantly less (P less than 0.01) than it was at near ambient levels, 0.5 or 1.8 mrad/day. Significantly higher growth rates (P less than 0.01) were obtained when chronic radiation was increased. The data suggest that ionizing radiation is essential for optimum reproduction rate in this organism.

  8. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  9. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  10. Electron Impact Ionization of C_2F_6

    NASA Astrophysics Data System (ADS)

    Iga, Ione; Pereira Sanches, Ivana; Srivastava, Santosh Kumar

    2001-10-01

    Besides CF_4, perfluoroethane, C_2F_6, is also one of the fluorocarbon compounds most frequently used in plasma processing applications. Consequently, the knowledge of the ionization properties of C_2F6 is clearly of interest in order to model the plasma-chemical reactions. Nevertheless, only few partial ionization-cross-section measurements [1,2] for this molecule were reported in the literature. Also, the energy range covered in these studies was very limited (below 120 eV). Recently, we have studied these properties. More specifically, partial ionization cross sections (PICS) for the fragments: C^+, F^+, CF^+, CF_2^+, CF_3^+ and C_2F_5^+, produced by electron impact on C_2F_6, were measured in a single-collision condition from near ionization threshold to 1000 eV. In addition, total ionization cross sections (TICS) are also obtained by summing up the PICS's. The comparison of our measured PICS and derived TICS with available data [1-4] will be presented during the Conference. [1] H. U. Poll, J. Meischner, Contrib. Plasma Phys. 27 (1987) 359. [2] C. Q. Jiao, A Garscadden, P. D. Haaland, Chem. Phys. Lett. 310 (1999) 52. [3] H. Nishimura, W. M. Huo, M. A Ali and Y -K. Kim, J. Chem. Phys. 110 (1999) 3811. [4] L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27 (1998) 1 and references therein.

  11. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  12. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions.

    PubMed

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) (-•) radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H(•) and H(+), it can be termed oxidative ionization. The superoxide radical-anion (O2(-•)), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2(-•) adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) (-) ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2(-•) present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained. Graphical Abstract ᅟ.

  13. Molecular above-threshold ionization spectra as an evidence of the three-point interference of electron wave packets

    NASA Astrophysics Data System (ADS)

    Hasović, Elvedin; Milošević, Dejan B.; Gazibegović-Busuladžić, Azra; Čerkić, Aner; Busuladžić, Mustafa

    2015-03-01

    We consider high-order above-threshold ionization (HATI) of polyatomic molecules ionized by a strong linearly polarized laser field. Improved molecular strong-field approximation by which the HATI process on polyatomic molecular species can be described is developed. Using this theory we calculate photoelectron angular-energy spectra for different triatomic molecules. Special attention is devoted to the minima that are observed in the calculated high-energy electron spectra of the ozone and carbon dioxide molecules. A key difference between these minima and minima that are observed in the corresponding spectra of diatomic molecules are presented.

  14. [Development of a membrane inlet-single photon ionization/chemical ionization-mass spectrometer for online analysis of VOCs in water].

    PubMed

    Hua, Lei; Wu, Qing-Hao; Hou, Ke-Yong; Cui, Hua-Peng; Chen, Ping; Zhao, Wu-Duo; Xie, Yuan-Yuan; Li, Hai-Yang

    2011-12-01

    A home-made membrane inlet- single photon ionization/chemical ionization- time-of-flight mass spectrometer has been described. A vacuum ultraviolet (VUV) lamp with photon energy of 10.6 eV was used as the light source for single photon ionization (SPI). Chemical ionization (CI) was achieved through ion-molecule reactions with O2- reactant ions generated by photoelectron ionization. The two ionization modes could be rapidly switched by adjusting electric field in the ionization region within 2 s. Membrane inlet system used for rapid enrichment of volatile organic compounds (VOCs) in water was constructed by using a polydimethylsiloxane (PDMS) membrane with a thickness of 50 microm. A purge gas was added to accelerate desorption of analytes from the membrane surface. The purge gas could also help to prevent the pump oil back-streaming into the ionization region from the analyzer chamber and improve the signal to noise ratio (S/N). Achieved detection limits were 2 microg x L(-1) for methyl tert-butyl ether (MTBE) in SPI mode and 1 microg x L(-1) for chloroform in SPI-CI mode within 10 s analysis time, respectively. The instrument has been successfully applied to the rapid analysis of MTBE in simulated underground water nearby petrol station and VOCs in disinfected drinking water. The results indicate that the instrument has a great application prospect for online analysis of VOCs in water.

  15. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  16. Ionization-based detectors for gas chromatography.

    PubMed

    Poole, Colin F

    2015-11-20

    The gas phase ionization detectors are the most widely used detectors for gas chromatography. The column and makeup gases commonly used in gas chromatography are near perfect insulators. This facilitates the detection of a minute number of charge carriers facilitating the use of ionization mechanisms of low efficiency while providing high sensitivity. The main ionization mechanism discussed in this report are combustion in a hydrogen diffusion flame (flame ionization detector), surface ionization in a plasma (thermionic ionization detector), photon ionization (photoionization detector and pulsed discharge helium ionization detector), attachment of thermal electrons (electron-capture detector), and ionization by collision with metastable helium species (helium ionization detector). The design, response characteristics, response mechanism, and suitability for fast gas chromatography are the main features summarized in this report. Mass spectrometric detection and atomic emission detection, which could be considered as ionization detectors of a more sophisticated and complex design, are not discussed in this report.

  17. Structure and bonding in ionized water clusters.

    PubMed

    Do, Hainam; Besley, Nicholas A

    2013-06-27

    The structure and bonding in ionized water clusters, (H2O)(n)(+) (n = 3–9), has been studied using the basin hopping search algorithm in combination with quantum chemical calculations. Initially candidate low energy isomers were generated using basin hopping in conjunction with density functional theory. Subsequently, the structures and energies were refined using second order Møller–Plesset perturbation theory and coupled cluster theory, respectively. The lowest energy isomers are found to involve proton transfer to give H(3)O(+) and a OH radical, which are more stable than isomers containing the hemibonded hydrazine-like fragment (H(2)O–OH(2)), with the calculated infrared spectra consistent with experimental data. For (H(2)O)(9)(+) the observation of a new structural motif comprising proton transfer to form H(3)O(+) and OH, but with the OH radical involved in hemibonding to another water molecule is discussed.

  18. Initial Stage of the Microwave Ionization Wave Within a 1D Model

    NASA Astrophysics Data System (ADS)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-05-01

    The dynamics of the microwave breakdown in a gas is simulated numerically within a simple 1D model which takes into account such processes as the impact ionization of gas molecules, the attachment of electrons to neutral molecules, and plasma diffusion. Calculations are carried out for different spatial distributions of seed electrons with account for reflection of the incident electromagnetic wave from the plasma. The results reveal considerable dependence of the ionization wave evolution on the relation between the field frequency and gas pressure, as well as on the existence of extended rarefied halo of seed electrons. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave moving towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with the formation of repetitive jumps of the ionization front.

  19. Ambient Ionization Mass Spectrometry for Cancer Diagnosis and Surgical Margin Evaluation

    PubMed Central

    Ifa, Demian R.; Eberlin, Livia S.

    2017-01-01

    Background There is a clinical need for new technologies that would enable rapid disease diagnosis based on diagnostic molecular signatures. Ambient ionization mass spectrometry has revolutionized the means by which molecular information can be obtained from tissue samples in real time and with minimal sample pretreatment. New developments in ambient ionization techniques applied to clinical research suggest that ambient ionization mass spectrometry will soon become a routine medical tool for tissue diagnosis. Content This review summarizes the main developments in ambient ionization techniques applied to tissue analysis, with focus on desorption electrospray ionization mass spectrometry, probe electrospray ionization, touch spray, and rapid evaporative ionization mass spectrometry. We describe their applications to human cancer research and surgical margin evaluation, highlighting integrated approaches tested for ex vivo and in vivo human cancer tissue analysis. We also discuss the challenges for clinical implementation of these tools and offer perspectives on the future of the field. Summary A variety of studies have showcased the value of ambient ionization mass spectrometry for rapid and accurate cancer diagnosis. Small molecules have been identified as potential diagnostic biomarkers, including metabolites, fatty acids, and glycerophospholipids. Statistical analysis allows tissue discrimination with high accuracy rates (>95%) being common. This young field has challenges to overcome before it is ready to be broadly accepted as a medical tool for cancer diagnosis. Growing research in new, integrated ambient ionization mass spectrometry technologies and the ongoing improvements in the existing tools make this field very promising for future translation into the clinic. PMID:26555455

  20. Resonance ionization for analytical spectroscopy

    DOEpatents

    Hurst, George S.; Payne, Marvin G.; Wagner, Edward B.

    1976-01-01

    This invention relates to a method for the sensitive and selective analysis of an atomic or molecular component of a gas. According to this method, the desired neutral component is ionized by one or more resonance photon absorptions, and the resultant ions are measured in a sensitive counter. Numerous energy pathways are described for accomplishing the ionization including the use of one or two tunable pulsed dye lasers.

  1. Ionization oscillations in Hall accelerators

    NASA Astrophysics Data System (ADS)

    Barral, S.; Peradzyński, Z.

    2010-01-01

    The underlying mechanism of low-frequency oscillations in Hall accelerators is investigated theoretically. It is shown that relaxation oscillations arise from a competition between avalanche ionization and the advective transport of the working gas. The model derived recovers the slow progression and fast recession of the ionization front. Analytical approximations of the shape of current pulses and of the oscillation frequency are provided for the case of large amplitude oscillations.

  2. Calibrated In Situ Measurement of UT/LS Water Vapor Using Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Thornberry, T. D.; Rollins, A.; Gao, R.; Watts, L. A.; Ciciora, S. J.; McLaughlin, R. J.; Fahey, D. W.

    2011-12-01

    Over the past several decades there has been considerable disagreement among in situ water vapor measurements by different instruments at the low part per million (ppm) mixing ratios found in the upper troposphere and lower stratosphere (UT/LS). These discrepancies contribute to uncertainty in our understanding of the microphysics related to cirrus cloud particle nucleation and growth and affect our ability to determine the effect of climate changes on the radiatively important feedback from UT/LS water vapor. To address the discrepancies observed in measured UT/LS water vapor, a new chemical ionization mass spectrometer (CIMS) instrument has been developed for the fast, precise, and accurate measurement of water vapor at low mixing ratios. The instrument utilizes a radioactive α particle source to ionize a flow of sample air drawn into the instrument. A cascade of ion-molecule reactions results in the production of protonated water ions proportional to the water vapor mixing ratio that are then detected by the mass spectrometer. The multi-step nature of the ionization mechanism results in a non-linear sensitivity to water vapor, necessitating calibration across the full range of values to be measured. To accomplish this calibration, we have developed a novel calibration scheme using catalytic oxidation of hydrogen to produce well-defined water vapor mixing ratios that can be introduced into the instrument inlet during flight. The CIMS instrument was deployed for the first time aboard the NASA WB-57 high altitude research aircraft during the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) mission in March and April 2011. The sensitivity of the instrument to water vapor was calibrated every ~45 minutes in flight from < 1 to 150 ppm. Analysis of in-flight data demonstrates a typical sensitivity of 2000 Hz/ppm at 4.5 ppm with a signal to noise ratio (2 σ) > 50 for a 1 second measurement. The instrument and its calibration system performed successfully in

  3. Physics of Molecules

    NASA Astrophysics Data System (ADS)

    Williams, D.; Murdin, P.

    2000-11-01

    Many varieties of molecule have been detected in the Milky Way and in other galaxies. The processes by which these molecules are formed and destroyed are now broadly understood (see INTERSTELLAR CHEMISTRY). These molecules are important components of galaxies in two ways. Firstly, radiation emitted by molecules enables us to trace the presence of diffuse gas, to infer its physical properties and ...

  4. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  5. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko; Aikawa, Yuri

    2012-03-10

    We investigate the impact of photochemistry and X-ray ionization on the molecular composition of, and ionization fraction in, a protoplanetary disk surrounding a typical T Tauri star. We use a sophisticated physical model, which includes a robust treatment of the radiative transfer of UV and X-ray radiation, and calculate the time-dependent chemical structure using a comprehensive chemical network. In previous work, we approximated the photochemistry and X-ray ionization; here, we recalculate the photoreaction rates using the explicit UV wavelength spectrum and wavelength-dependent reaction cross sections. We recalculate the X-ray ionization rate using our explicit elemental composition and X-ray energy spectrum. We find that photochemistry has a larger influence on the molecular composition than X-ray ionization. Observable molecules sensitive to the photorates include OH, HCO{sup +}, N{sub 2}H{sup +}, H{sub 2}O, CO{sub 2}, and CH{sub 3}OH. The only molecule significantly affected by the X-ray ionization is N{sub 2}H{sup +}, indicating that it is safe to adopt existing approximations of the X-ray ionization rate in typical T Tauri star-disk systems. The recalculation of the photorates increases the abundances of neutral molecules in the outer disk, highlighting the importance of taking into account the shape of the UV spectrum in protoplanetary disks. A recalculation of the photoreaction rates also affects the gas-phase chemistry due to the adjustment of the H/H{sub 2} and C{sup +}/C ratios. The disk ionization fraction is not significantly affected by the methods adopted to calculate the photochemistry and X-ray ionization. We determine that there is a probable 'dead zone' where accretion is suppressed, present in a layer, Z/R {approx}< 0.1-0.2, in the disk midplane, within R Almost-Equal-To 200 AU.

  6. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  7. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  8. Dissociative double ionization of CO in orthogonal two-color laser fields

    NASA Astrophysics Data System (ADS)

    Song, Qiying; Lu, Peifen; Gong, Xiaochun; Ji, Qinying; Lin, Kang; Zhang, Wenbin; Ma, Junyang; Zeng, Heping; Wu, Jian

    2017-01-01

    We experimentally investigate dissociative double ionization of CO by a phase-controlled orthogonal two-color (OTC) laser pulse. Directional breaking of doubly ionized CO as a function of both kinetic energy and emission direction of the nuclear fragments is observed in the polarization plane steered by the laser phase. It is attributed to the dominating sequential double ionization at the maximum strength and nonsequential double ionization at a relatively weak strength of the spatiotemporally shaped oscillating laser field pointing to various directions. Our results are interesting not only for two-dimensional control of directional bond breaking, but also strengthen our understanding of strong-field sequential and nonsequential double ionization of molecules which are spatiotemporally streaked to various directions and kinetic energies by an OTC laser pulse.

  9. A Radical-Mediated Pathway for the Formation of [M + H]+ in Dielectric Barrier Discharge Ionization

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Gyr, Luzia; Mirabelli, Mario F.; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-09-01

    Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H]+) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H]+). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH]+ and [M - H]+ were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI.

  10. Ionization of 4,4'-bis(phenylethynyl) anthracene by electron impact.

    PubMed

    Kukhta, A V; Kukhta, I N; Zavilopulo, A N; Agafonova, A S; Shpenik, O B

    2009-01-01

    Ionization of a 4,4'-bis(phenylethynyl)anthracene (C(30)H(18), BPEA) molecule is studied for the first time at different energies of bombarding electrons in crossed electron and molecular beams. The relative cross-section of single ionization of a BPEA molecule in the energy range of 5-55 eV is measured. The ionization potential, E(I) = 7.62 +/- 0.2 eV, is determined using the threshold region of C(30)H(18)(+) ion yield energy dependence. A scheme of the BPEA molecule fragmentation is proposed. Experimental results are in reasonable accordance with calculations made in the framework of the density functional theory.

  11. Strong Field Molecular Ionization in the Impulsive Limit: Freezing Vibrations with Short Pulses.

    PubMed

    Sándor, Péter; Tagliamonti, Vincent; Zhao, Arthur; Rozgonyi, Tamás; Ruckenbauer, Matthias; Marquetand, Philipp; Weinacht, Thomas

    2016-02-12

    We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses. Using calculations which take vibrational dynamics into account, we interpret our results in terms of nuclear motion and nonadiabatic dynamics during the ionization process.

  12. Development of a highly-sensitive Penning ionization electron spectrometer using the magnetic bottle effect

    SciTech Connect

    Ota, Masahiro; Ishiguro, Yuki; Nakajima, Yutaro; Miyauchi, Naoya; Yamakita, Yoshihiro

    2016-02-01

    This paper reports on a highly-sensitive retarding-type electron spectrometer for a continuous source of electrons, in which the electron collection efficiency is increased by utilizing the magnetic bottle effect. This study demonstrates an application to Penning ionization electron spectroscopy using collisional ionization with metastable He*(2{sup 3}S) atoms. Technical details and performances of the instrument are presented. This spectrometer can be used for studies of functional molecules and assemblies, and exterior electron densities are expected to be selectively observed by the Penning ionization.

  13. Electron dynamics of molecular double ionization by elliptically polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Ai-Hong, Tong; Guo-Qiang, Feng; Dan, Liu

    2015-03-01

    Using the classical ensemble method, we have investigated double ionization (DI) of diatomic molecules driven by elliptically polarized few-cycle laser pulses. The results show that DI channel depends strongly on internuclear distances (R), which is dominated by nonsequential double ionization (NSDI) for small and large R, while sequential double ionization (SDI) for mediate R. By tracing NSDI trajectories, we find that NSDI mainly originates from recollision process for small R and collision process for large R. Moreover, the correlated momentum distributions along the long axis strongly depend on the carrier-envelope-phase (CEP), and this phase dependence is affected by R.

  14. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  15. Controlling Electron Dynamics of Oriented Molecules Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Miyabe, S.; Lucchese, R.; Rescigno, T.; Midorikawa, K.; McCurdy, C. W.

    2016-05-01

    Attosecond pulses offer routes to study and potentially manipulate ultrafast electron dynamics of atoms and molecules on their intrinsic time scale, and therefore attracted attention from various disciplines. In this report we show that for a molecule, oriented in space and excited by an attosecond pulse, the amount of electronic coherence left in the ion depends not only on the orientation of the electric field polarization vector in the molecular-frame, but also on the angular distribution in molecular-frame of electrons ejected in different ionization channels. In our numerical simulation we use one-photon single ionization amplitudes calculated using the complex-Kohn variational method, and we express the amount of coherence in the ion in terms of the (N+1)-electron reduced density matrix of the full N-electron system of the ion plus ionized electron.

  16. Mass Spectrometry of Large, Fragile, and Involatile Molecules.

    ERIC Educational Resources Information Center

    Busch, Kenneth L.; Cooks, R. Graham

    1982-01-01

    Desorption ionization (DI) is used to obtain mass spectra of molecules whose vaporization by heating may lead to thermal degradation. Discusses DI techniques, characteristics of DI mass spectra, ion production, current applications of DI in mass spectroscopy, developments in DI, and prospects for future evolution of new DI techniques. (Author/JN)

  17. Biological effects of ionizing radiation at the molecular, cellular, and organismal levels. Triennial progress report, October 15, 1977-October 14, 1980

    SciTech Connect

    Lange, C.S.

    1980-01-01

    Two major accomplishments have been achieved in the past three years with the support of this contract. Firstly, the original Zimm theory of rotor speed dependent DNA sedimentation has been tested quantitatively and found to be correct, i.e., T4c and T4D+ DNAs sedimented with S/sup 0//sub 20,w/ values as predicted by the equation of Zimm and Schumaker. Furthermore, the quantitative validity of the theory means that the size (M/sub r/) of a DNA sedimenting under speed-dependent conditions is not undefinable but rather can be uniquely obtained by the application of that theory to the data. Secondly, the viscoelastic recoil (GAMMA/sub 11/), or more accurately, the zero shear rate reduced recoil (GAMMA/sub 11, r, o/) has been shown to be a quantitative direct function of the number of intact (T4c) DNA molecules present (per ml) in solution. This demonstration made possible the measurement of a direct survival curve for intact DNA molecules (i.e., without double-strand breaks) after exposure to ionizing radiation. A /sub DNA/D/sub 37/ of 47.4 krads was obtained for the DNA of T4c coliphage irradiated in air as a solution of phage particles. It is noteworthy that this survival curve measures the number of intact DNA molecules, not the average number of breaks/molecule.

  18. The influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Miao; Li, Jing-Lun; Yu, Jie; Cong, Shu-Lin

    2017-03-01

    We investigate theoretically the influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization (REMPI) dynamics, taking the LiH molecule for example. The LiH molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region, and then excited by the femtosecond pump pulse, and finally ionized by the femtosecond probe pulse. We focus on the impact of the pre-orientation on the ionization probability, energy- and angle-resolved photoelectron spectra and photoelectron angular distribution (PAD). It is found that the ionization probability and peak intensity of energy-resolved photoelectron spectra are significantly affected by molecular orientation. The angle-resolved photoelectron spectra are related to the molecular orientation. The PAD can be changed by varying the delay time between the THz SCP and pump pulse. We also investigate the effect of temperature on excitation and ionization dynamics.

  19. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    PubMed

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques.

  20. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.